
Hybrid Gene Selection Framework using

Adaptive Wrapper and Filtering Techniques

Authors
Md Anisul Islam 104411

Md Mozaharul Mottalib 104438

Supervisor
Prof. Dr. M. A. Mottalib

Head of the Department

Department of Computer Science & Engineering (CSE)

Islamic University of Technology (IUT)

 Co-Supervisor

Shaikh Jeeshan Kabeer

Lecturer

Department of Computer Science & Engineering (CSE)

Islamic University of Technology (IUT)

A Thesis submitted to the Department of Computer Science & Engineering (CSE)

 in Partial Fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science & Engineering (CSE)

Department of Computer Science & Engineering (CSE)

Islamic University of Technology (IUT)

Organization of the Islamic Cooperation (OIC)

Gazipur, Bangladesh

September, 2014

CERTIFICATE OF RESEARCH

This is to certify that the work presented in this thesis paper is the outcome of the

research carried out by the candidates under the supervision of Prof. Dr. M. A.

Mottalib, Head of the Department, Department of Computer Science and

Information Technology, IUT and co-supervision of Shaikh Jeeshan Kabeer,

Lecturer, Department of Computer Science and Information Technology, IUT,

Gazipur. It is also declared that neither this thesis nor any part thereof has been

submitted anywhere else for the award of any degree or any judgment.

Authors

Md Anisul Islam

Md Mozaharul Mottalib

Signature of Co-Supervisor

Shaikh Jeeshan Kabeer
Lecturer, Department of CSE, IUT

Signature of Supervisor

Prof. Dr. M. A. Mottalib
Head, Department of CSE, IUT

Signature of the Head of the Department

Prof. Dr. M. A. Mottalib
Head, Department of CSE, IUT

 1

Abstract

Analysing the thousands of gene expression values is a difficult task due

to the curse of dimensionality of data produced by Microarray chips.

Primary role of an effective feature selection model is to simplify this

task. To simplify the task of disease classification and predicting cancer,

feature selection plays a vital role through removing less informative

genes. In this study, we propose a hybrid approach to gene selection

using adaptive filter and adaptive wrapper approach. As filter method

exhibits some limitations, an adaptive form of filtering has been

employed that iteratively selects genes in each iteration and emphasizes

on the misclassified samples and in subsequent iteration tries to find out

the effective genes for misclassified samples. This approach performs

better than traditional filter methods as it focuses on its weaknesses. In

gene selection, Artificial Neural Networks (ANN) are mostly used as a

classifier. In this study, adaptive ANN has been used as an internal

wrapper. This helps to generate a better subset of genes. The proposed

hybrid approach is applied on leukaemia, colon and lung cancer

benchmarked datasets. Better result has been found compared to other

well-known approaches.

Table of Contents
Chapter 1 .. 1

Introduction .. 1

1.1 Overview .. 1

1.2 Problem Statement .. 1

1.3 Research Challenges .. 1

1.4 Motivation ... 2

1.5 Scopes .. 2

1.6 Research Contribution ... 2

1.7 Thesis Outline ... 2

Chapter 2…………………………………………………………………………3
2.1 Feature Selection ... 3

2.2 Feature Selection Techniques .. 4

2.3 Artificial Neural Network .. 5

Chapter 3 .. 7

Proposed Method .. 7

3.1 Overall Concept ... 7

3.2 Adaptive Wilcoxon Rank Sum Test .. 8

3.2.1 Terminologies .. 8

3.2.1 Adaptive Wilcoxon Steps .. 9

3.2.2 Algorithm .. 10

3.3 Adaptive Artificial Neural Network ... 10

3.3.1 Terminologies .. 11

3.3.2 Algorithm .. 11

3.4 Our Proposed Approach .. 12

Chapter 4 .. 13

Experimental Analysis & Result Comparison……………………………….13
4.1 Dataset Details .. 13

4.2 Performance Analysis .. 14

4.3 Comparative Analysis .. 18

Chapter 5 .. 19

Conclusion .. 19

Appendix Implementation Code .. 20
References……………………………………………………………………….29

List of Tables

Table 1. Summery of Microarray Datasets ... 13

Table 2. Reduced number of genes by Boost Feature Subset Selection 14

Table 3. Result for Leukemia Dataset .. 15

Table 4. Result for Lung Cancer Dataset ... 16

Table 5. Result for Colon Cancer Dataset .. 17

Table 6. Comparative analysis between results from three dataset 18

1

Chapter 1

Introduction

1.1 Overview

Researches are going on to get rid of curse of dimensionality of data. Several
methodologies have been applied and still there are scope of improvement. The
main focus in recent days is to minimize the space and time complexity to get
a better solution in critical research areas. Many machine learning algorithms
are being applied to process huge amount of data within short period of time.
Feature selection is the technique of selecting a subset of features for building
learning models [1]. It attempts to identify and highlight the most informative
genes from microarray dataset which have significant effect on the biological
states of leaving organism. Our main focus is to select the most informative
genes from the microarray dataset to reduce the dimensionality of the problem.

1.2 Problem Statement

One of the main problems of high dimensional data is the inclusion of noisy
and irrelevant data in the information set[2]. Space and time complexity
increases due to large number of noisy, redundant and uninformative gene
expression [3]. Reducing the dimensionality is the goal in feature selection.

1.3 Research Challenges

Execution of a brute force exhaustive search is not encouraged due to high
dimensional feature space. Therefore an optimal method is to be devised to
achieve an accurate and efficient outcome. The desired outcome of the method
is minimizing the number of features and increasing the predictive power of
the classifiers. To add more intensity to the problem domain this field of
bioinformatics produces inadequate testing and training samples. With the
removal of noisy, irrelevant and redundant information the proposed method
must be able to handle the correlation factor existing between the features and
thus utilize the combined predictive power. Our proposed method encompasses
all these factors and theoretically expects to bring about better results handling
noisy, redundant and correlated data.

2

1.4 Motivation

This study aims at deriving a better method for feature selection using a hybrid
approach. This approach has an upper hand on other approaches as it does
consider the collective measure of genes and not only focus to individuals. The
approach inherits both the merits from filter and wrapper approaches. The
adaptive wrapper approach gives better result taking less runtime than the
other traditional wrapper approaches.

1.5 Scopes

In case of research, to improve the search criteria for feature selection, two
probable approaches can be taken. Firstly, the improvements can come from
existing approaches. Secondly, it may come from generating new approaches.
In this study, we have worked with a hybrid approach which is the combination
of two algorithms. This approach tends to reduce some shortcomings of the
existing methods which we will discuss later. Computer vision, Pattern
recognition, Artificial intelligence etc. are the fields where feature selection can
be of great use.

1.6 Research Contribution

In this study, the limitation of the existing filtering approach has been
improved. An adaptive filter and adaptive wrapper method has been combined
inheriting merits from both of the approach. The original dataset is reduced to
about half by using adaptive Wilcoxon method. The adaptive Wilcoxon
method cannot handle with the noise present in the dataset and also cannot
fully utilize the collective predictive power of genes. To overcome this
shortcomings we used an adaptive wrapper method. It includes the use of
Artificial Neural Network working as an internal wrapper.

1.7 Thesis Outline

In chapter 1 we have talked about the introduction to our accomplished work.
Chapter 2 will be dealing with the basics of feature selection, different existing
feature selection techniques. Chapter 3 will be on highlighting our proposed
work, giving an overall concept of our work. The experimental analysis along

3

with result comparison with different methods are chalked out in Chapter 4.
Here the implementation code is also given. Chapter 5 focuses on the scopes of
future work to be done on our study.

Chapter 2

Literature Review
2.1 Feature Selection

Feature selection is the technique of selecting a subset of relevant features
(genes) for building robust learning models [2][14]. With the advancement of
technology, processing speed of computer has increased and also a lot of data
collection technologies have been improved whereas the generated data is really
enormous that cannot be dealt with efficiently in short time. Use better feature
selection method we can reduce the huge dataset into a smaller version that
meets the need improving time and space complexity both. In machine learning
and statistics, feature selection techniques are widely used. We are mainly
focused on the first part. Different machine learning algorithms are there for
feature selection. They are categorized below:

 Supervised Learning: generates a function mapping input to the desired
output. Output is predetermined here.

 Unsupervised Learning: models a set of input but there is no mapping
to desired output.

 Semi-supervised Learning: combines both labeled and unlabeled
examples to generate an appropriate function or classifier.

 Reinforcement Learning: an observation of real world is given. Every
action has some impact on the environment. Environment provides
feedback that guides the learning algorithm.

 Transduction: predicts new output based on training input, training
output and test input.

 Learning to Learn: learns its own inductive bias based on previous
experience.

Most of the feature selection methods focuses on the supervised learning and

in this study it’s not different. An effective learning model is constructed based
on supervised learning.

4

2.2 Feature Selection Techniques

Feature selection can be applied on a set of features which can be a better
solution than choosing all possible subsets of features [3] - 14. It is impractical
if a large number of sub-sets are available. Feature selection can be classified
into two broad categories:

1. Feature Ranking: This is also known as feature weighing which
assesses individual features and as-signs them weights according
to their degree of relevance. Many researches have been done
with feature ranking as the base method (for example Bekkerman
et al., 2003, Caruana and de SA, 2003, Weston et al., 2003).

2. Feature Subset Selection (FSS): This technique measures the
goodness of each found feature subset[3]. A great deal of work
has also been done Feature subset selection (for example Guyon
et al., 2004, Ma & Huang, 2005, Ooi & Tan 2003). Feature Subset
Selection techniques are more effective than FR techniques. In
our study we have emphasized on FSS. FSS follows three basic
methodologies:

 Filters
Filter techniques takes in account the relevance of
features by looking only into the intrinsic properties
(mean, variance, standard deviations etc.) of data. A
feature relevance score is calculated for scoring genes.
From the scored set of genes the low scoring features
are removed and the remaining subset features with
the higher scores are presented to the classifier
algorithm for classification. Similarly in information
gain which is another scoring method is used to score
the genes from which subsequent removal of low
scoring genes is done.[4]

 Wrapper
In wrapper techniques the entire feature space is
considered to generate a subset of features which are
evaluated through a classifier.[5]

 Embedded Methods
The entire feature space to search in order to find
optimal subsets of features. The search procedure is

5

built into the classifier in this variation. [Duda et al.
2001] used Bayesian theory to guide the search process
based on the probability of selection. In SVM classifier
was over hauled to weigh features and adjust them for
making selection in the process of finding the solution.

In order to perform feature selection the feature space needs to be traversed
i.e. feature searching. Feature searching involves going through the feature
space to select features to be used for classification. Many approaches to feature
selection exist which can be broadly classified into the following:

Exhaustive

Exhaustive search or brute-force is a general problem-solving technique that
traverses all the possibilities for the solution checking whether each of the
candidates satisfies the solution criteria. Exhaustive search is easy to
implement and will guarantee a solution if it exists. The downside of this
method is its cost. Cost is proportional to the number of candidate solutions
which tends to grow very rapidly as the size of the problem increases. Thus
this approach should avoided when sample size is very large.

Best first

Best first is a heuristic searching technique. It traverses through the candidate
solution and selects that appears to be the best choice under the current
situation and moves forward. But this approach does not ensure an optimum
solution. An evaluation function defines the selection of a particular candidate.

Simulated Annealing

In simulated annealing instead of choosing the best move it picks a random
one and if the move improves the situation then it is accepted otherwise the
probability of the move is decreased to ensure that such moves are not chosen
in the future.

2.3 Artificial Neural Network

Artificial Neural Networks (ANNs) are computational models extensively used
in machine learning, pattern recognition and related fields. It is inspired by

animal’s central nervous system, in particular brain. It has different learning

6

paradigm like: Supervised, Unsupervised, Reinforcement. ANNs consist of sets
of adaptive weights that are tuned by these learning algorithms. These
adaptive weights are logical connection strengths between neurons. These
connections are active during training and prediction. One common criticism
regarding ANN is that it requires a large diversity of training for operation.
ANNs are excellent for extracting information from a noisy dataset. In
traditional feature selection techniques, ANNs are mostly used as classifiers.
However it can also be used to assess the quality of the selected feature[19].

7

Chapter 3

Proposed Method
3.1 Overall Concept

Fig. Outline of proposed approach.

The basic steps of our proposed approach is like:

1. Microarray Dataset represents the gene expression values in the form of
matrix.

2. We are using Wilcoxon Rank Sum test to score genes in an iterative
manner to minimize the dimensionality of the feature space.

3. Then we are using the adaptive Artificial Neural Network as an internal
wrapper to get the final best gene subset.

Microarray
Dataset

Adaptive Wilcoxon
Test

Adaptive ANN

Final Subset

8

3.2 Adaptive Wilcoxon Rank Sum Test

In comparison with single gene based feature selection, adaptive filter
approach gives much better result. This process identifies the weak
performers in a particular iteration by calculating the score through
Wilcoxon Rank Sum Test and tries to find out the features that would
perform well for those weak performers. It can be compared to giving a
boost to weak performers in a particular iteration. At first all the genes are
assigned equal probabilities to be selected. Then Wilcoxon Rank Sum Test
is performed to rank all the genes. As all genes are assigned equal
probabilities at the beginning, during first iteration every gene has equal
probabilities to be selected.

Fig. Example of redundancy in selected gene set

The first two gene, gene1 and gene2 acts similarly. In almost 80% of the
samples the expression level of gene1 and gene2 can be used to identify the
class label of the particular sample efficiently. The expression levels of these
two genes are higher cancer samples than in normal ones.

3.2.1 Terminologies
First we discuss some basic terminologies of the adaptive Wilcoxon Rank
Sum Test:

 A bootstrap sample set SS
t is a multi-set of

samples randomly drawn with replacement from the

9

original set of samples S. The sampling probability of
each sample in S is determined by a probability table

p(s) where s∈ S.

 The worst set of samples Sworst with respect to
bootstrap dataset B and a single-gene based scoring
function F is defined as a multi set:

argmax (F (E (g, SS
t – S)))

S SS
t and S =

Here SS
t - S means a set by removing S from SS

t. We also call SS
t - S

_worst the best set of samples. This algorithm starts off by generating a set of
samples called a bootstrap sample set SS

t which is a multi-set of samples
obtained by random sampling from the pool of all samples S. The probability

of a sample being selected is equal to p(s) where s ∈ S and initially all samples

have a probability of
1

𝑆
.

3.2.1 Adaptive Wilcoxon Steps

Steps of the adaptive Wilcoxon Rank Sum Test is given bellow:

1. Score all the genes in the dataset using Wilcoxon Rank Sum Test, sort them
and select the top score gene.

2. Worst set of sample is identified.

3. Probability of these worst samples for selection in next iteration is increased.

4. Next iteration selects gene performing well for the worst sample set.

5. This algorithm would run until the number of selected genes (BG) has been
found which depends on the dataset being evaluated.

10

3.2.2 Algorithm

3.3 Adaptive Artificial Neural Network

Wrapper-based feature selection is attractive because wrapper methods are
able to optimize the features they select to the specific learning algorithm [22].
Standard wrapper methods are expensive to use with neural nets in terms of
space and time. We present an internal wrapper feature selection method that

Algorithm 1: Adaptive Wilcoxon Test

N is the number of genes to be selected. F is a single gene based
discriminative score.

1. Initialize P(s) to be 1/st (st is the total number of samples in the dataset).

2. G_s as an empty set

3. For GS n do

4. Generate the bootstrap sample set SS
t

5. Calculate the Wilcoxon Rank Sum test on bootstrap

6. Add top ranked gene g based on Wilcoxon score to GS

7. Find worst ∂ samples Sworst based on gene g and SS
t using algorithm2

8. Reduce the probability for the best set of samples (those samples which

are classified accurately by the gene g)

9. Remove g from dataset

11.End for

10.Return G_s

Algorithm 2: Worst Sample Set Determination

1. S1, S0 to be empty sets.

2. For all s in S do

3. S1 ← S – s

4. Calculate Wilcoxon Rank Sum for the gene g, add score to S0

5. End for

6. Sort S0, add samples S corresponding to top ∂ scores in S0 to S1

7. Return S1

11

gives better result than the traditional external wrapper feature selection
approaches. This internal wrapper feature selection method selects features at
the same time hidden units are being added to the growing neural network
architecture.

3.3.1 Terminologies

The network contains INS nodes for the inputs, and OUTS nodes for the
outputs. The edge weights are trained using standard back propagation of
errors. Back propagation is done on the training set. Each successful iteration
adds a hidden unit to network. RMSE error is calculated for all possible net
and the best one is considered. We select some features for each of the sample
on basis of error calculation. Finally on basis of threshold value (VTH), final
subset of gene is selected.

3.3.2 Algorithm

After getting selected features from each of the samples, frequency of
occurrence of the genes is calculated. Using the threshold value (VTH), final

subset is selected.

Algorithm 3: Adaptive Artificial Neural Network

1. Initialize network net.

2. For k = 0 to MaxHidden

3. Network best = NULL

4. For each input i

5. Network new = net with an additional hidden unit added

6. add edge from node i to the new hidden unit

7. add edges from each hidden unit in net to new one

8. add edges from the new hidden unit to each output node

9. train(new)

10. if(best == NULL or RMSE(new) RMSE(best))
11. best = new
12. End

13. End

14. net = best
15. End

12

X = ∑ 𝐴𝑛
𝑖=0 i1, ∑ 𝐴𝑛

𝑖=0 i2, …, ∑ 𝐴𝑛
𝑖=0 im

S = x: x X x VTH

Here, n and m corresponds to total number of samples and total number of
features.

3.4 Our Proposed Approach

 Fig. Proposed adaptive wrapper and filter approach

Begin Adaptive
Wilcoxon Test

Score all the genes in dataset, sort
them and select top score genes

Next iteration, select genes
performing well for worst sample set

by increasing probability

This Adaptive Wilcoxon Test will
continue until number of selected

genes has been found

Begin Adaptive Wrapper

Initialize Neural Network

Calculate Training Error and find
out the best network for every

sample

Derive the final subset using
threshold value

13

Chapter 4

Experimental Analysis & Result Comparison

We have used Matlab R2013 and JetBrains Intellij IDEA 13.0 as main platform
of our work. Java Encog Neural Network Framework has been used for working
with Artificial Neural Networks.

4.1 Dataset Details

We have applied our proposed approach on three state of the art databases:
Acute Lymphoblastic leukemia cancer (ALL), Lung cancer and colon cancer.
Table 1 summarizes the data sets. In the ALL dataset there are 72 tissue
samples (47 B-cell and 25 T-cell). In the lung dataset there are 181 tissue
samples (47 MPM and 134 ADCA). The training set contains 32 of them, 16
MPM and 16 ADCA. The rest 149 samples are used for testing. Each sample
is described by 7130 genes. Colon dataset contains 62 samples collected from
colon-cancer patients. Among them, 40 tumor biopsies are from tumors
(labeled as "negative") and 22 normal (labeled as "positive") biopsies are from
healthy parts of the colons of the same patients. 2000 genes out of around 6500
genes were selected based on the confidence in the measured expression levels.

Dataset Number of
Classes

Number of Samples in
the Dataset

Number of Genes

ALL

(Leukemia)

2 (B-cell
ALL and

T-cell
ALL)

72 (47 B-cell and 25 T-
cell ALL)

7130

LUNG 2 (MPM
and

ADCA)

181 (47 MPM and 134
ADCA)

12533

COLON 2 (Normal
and tumor)

62 (22 normal and 40
tumor)

2000

Table 1: Summery of Microarray Datasets.

14

Table 1 shows that dataset for Colon cancer contains the lowest number of
genes comparing to other two datasets. This low number of genes exposes to
higher possibilities of misclassifications and over fitting. More the number of
samples allows us to train classifiers so that we can correctly classify test
samples.

4.2 Performance Analysis

Our implementation work begins with adaptive Wilcoxon Test where we select
a particular number of genes using Wilcoxon Rank Sum Scoring method. The
main objective to perform this step is to provide our adaptive wrapper
approach a better initial population.

While implementing adaptive filter we have used Wilcoxon Rank Sum Score
to calculate the scoring for each gene within a sample. Then we got all the
scores of the genes for retrieving the best scored gene.

Then we applied adaptive filter on the three important available microarray
datasets and got the reduced number of genes to apply as the input for adaptive
wrapper approach. These are shown in the table below-

Datasets Original Number

Of Genes
Adaptive Wilcoxon

output

Leukemia (ALL) Cancer 7130 2139

Lung Cancer 12533 3760

Colon 2000 1300

Table 2: Reduced number of genes by Boost Feature Subset Selection

We have roughly taken 30% of genes from Leukemia and Lung cancer datasets.
These genes are then considered in the adaptive wrapper approach. As the
number of genes in Colon cancer dataset is only 2000, the output of adaptive
Wilcoxon was set to 65% of total number of genes which is 1300.

15

Result for Leukemia Dataset:

Table 3: Result for Leukemia Dataset

Graphical Comparison:

16

Result for Lung Cancer:

Table 4: Result for Lung Cancer Dataset

Graphical Comparison:

17

Result for Colon cancer:

 Table 5: Result for Colon Cancer Dataset

Graphical Comparison:

18

4.3 Comparative Analysis

Table 6: Comparative analysis between results from three dataset

Comparative analysis shows that both “Adaptive Wilcoxon-ANN-KNN” and

“Adaptive Wilcoxon-ANN-SVM” approach give slightly better result than the
other approaches.

19

Chapter 5

Conclusion
There are various techniques for Gene Selection. Researchers have done many
works on this field. Day by day the techniques are evolving. A relatively new
way is using Artificial Neural network. This method has been used rarely in
this field.

The main problem of Gene Selection from microarray dataset is the large
amount of data obtained in a microarray. The redundant and noisy data
misdirects classification. So, a filter method can help to reduce the number of
genes to take into account. Our proposal includes adaptive Wilcoxon test to
select a fixed but relatively smaller number of genes from the large dataset.

Neural networks are prone to large input numbers. But Adaptive ANN method
reduces the required number of genes to very minute scale, thus initiating
training and testing by the neural network. It is evident that our proposed
method works better than previous works in many of the cases, it can
contribute in not only Gene Selection, but also in several other fields like
Geology, Archeology, Geography, Climate study, Image processing etc.

20

Appendix
Implementation Code

Matlab Implementation Code:

load grp.mat

% Loading dataset

filename =’LungCancerDataset.xls';

data = xlsread(filename);

[r, c] = size(data);

c = c - 1;

%indices of samples

x = 1:c;

% Number of genes to be selected, n (30% of total number of features)

n = round(r * 0.3);

bestIndex = zeros(n, 1);

% Assigning equal probability to each sample...

p = repmat(1/c, 1, c);

cdf = cumsum(p);

% Creating an empty set to store top ranked genes...

f = zeros(1,n);

sizeOfF = 1;

reducedData = zeros(n, c + 1);

% Initializing the bootstrap sample set...

% Loop will continue until n genes are selected...

while (sizeOfF <= n)

 bootstrapSet = zeros(r - sizeOfF + 1, (2 * c) + 1);

 bootGrp = zeros(1, 2 * c);

 randomIndex = zeros(1, 2 * c);

 selection = rand(1, 2 * c);

 for i = 1 : 2 * c

 randomIndex(1, i) = sum(cdf <= selection(i));

 while(randomIndex(i) == 0)

 v = rand;

 randomIndex(1, i) = sum(cdf <= v);

 end

 end

 [rndRow, rndCol] = size(randomIndex);

21

 for i = 1 : rndCol

 bootstrapSet(:,i) = data(:,randomIndex(1,i));

 bootGrp(:,i) = grp(:,randomIndex(1,i));

 end

 if sum(bootGrp) == rndCol || sum(bootGrp) == 0

 continue;

 end

 [IDX, Z] = rankfeatures(bootstrapSet(:, 1: (2 * c)), bootGrp,

'CRITERION','wilcoxon');

 % Copying the index from data to bootstrap

 bootstrapSet(:,rndCol + 1) = data(:,c + 1);

 % Best gene containing the expression values for selected samples

 best = zeros(1, rndCol);

 for i = 1 : rndCol

 best(1, i) = data(IDX(1), randomIndex(1, i));

 end

 % Index of best stored

 bestIndex(sizeOfF, 1) = bootstrapSet(IDX(1), rndCol + 1);

 [p] = elimination(best, bootGrp, p, randomIndex);

 % Removing top ranked gene....

 reducedData(sizeOfF, :) = data(IDX(1), :);

 data(IDX(1), :) = [];

 sizeOfF = sizeOfF + 1;

end

reducedData = sortrows(reducedData, c + 1);

[r, c] = size(reducedData);

for j = 1 : c - 1

 minimum = min(reducedData(:, j));

 maximum = max(reducedData(:, j));

 for i = 1 : r

 value = reducedData(i, j);

 value = ((maximum - value) / (maximum - minimum));

 reducedData(i, j) = value;

 end

end

22

%not considering the augmented column symboling index in reducedData data set (

reducedData(:, 1 : c - 1))

input = reducedData(:, 1 : c - 1);

index = reducedData(:, c);

%in input.txt file, rows indicates samples and column indicates features

dlmwrite('input.txt', input', 'delimiter', '\t', 'precision', 4, 'newline', 'pc');

%in index.txt file values signifies the index values of the selected genes

dlmwrite('index.txt', index', 'delimiter', '\t', 'precision', 4, 'newline', 'pc');

function [p] = elimination(best, bootGrp, p, randomIndex)

 [~, rndCol] = size(randomIndex);

 w = zeros(rndCol, rndCol);

 for i = 1 : rndCol

 w(i, :) = best(1, :);

 w(i, i) = 0;

 end

 global eIDX;

 [eIDX] = rankfeatures(w, bootGrp, 'CRITERION','ttest');

 threshold = 0.005;

 for i = 1 : (rndCol * 0.75)

 p(1, randomIndex(1, eIDX(i,1))) = p(1, randomIndex(1, eIDX(i,1)))

+ threshold;

 end;

 p = p./norm(p,2);

 norm(p,2);

end

KNN Validation:

% load('grp.mat');

% Loading dataset

filename = 'LungCancerDataset.xls';

data = xlsread(filename);

[r, c] = size(data);

X = data';

23

X(c, :) = [];

Y = grp';

% Number of neighbors

n = 3;

classifier = ClassificationKNN.fit(X, Y);

classifier.NumNeighbors = n;

SVM Validation:

filename = 'LungCancerDataset.xls';

data1 = xlsread(filename);

[r, c] = size(data1);

data = data1';

load grp.mat;

cp = classperf(grp);

geneindex = zeros(1);

iteration = 1;

% threshold frequency

threshold = 2;

output = dlmread('output.txt');

for i = 1 : 2237

 if output(i) > threshold

 geneindex(iteration) = index(i);

 iteration = iteration + 1;

 end

end

data = data(:, geneIndex);

% testTrainRatio tuning

testTrainRatio = .9;

[train, test] = crossvalind('holdout', grp, testTrainRatio);

svmStruct = svmtrain(data(train,:),grp(train));

class = svmclassify(svmStruct,data(test,:));

classperf(cp,class,test);

cp.CorrectRate

24

Java Implementation Code:

Main.java

1 package com.company;

2

3 import com.data.Data;

4

5 import org.encog.engine.network.activation.ActivationSigmoid;

6 import org.encog.ml.data.MLData;

7 import org.encog.ml.data.MLDataPair;

8 import org.encog.ml.data.MLDataSet;

9 import org.encog.ml.data.basic.BasicMLDataSet;

10 import org.encog.neural.error.ATanErrorFunction;

11 import org.encog.neural.networks.BasicNetwork;

12 import org.encog.neural.networks.layers.BasicLayer;

13 import org.encog.neural.networks.training.propagation.resilient.ResilientPropagation;

14

15 import java.util.Arrays;

16 import java.util.HashMap;

17 import java.util.Map;

18

19 public class Main {

20 //taking 10% of the input features as prominent, it's around 200....

21 public static int numOfProminentFeature = 200;

22 public static Map<Integer,Integer> histogram = new HashMap<Integer, Integer>();

23

24 public static void main(String[] args) {

25 Data data = new Data();

26 data.loadData();

27 data.printData();

28

29 data.loadClassLabel();

30 int tempCount = 0;

31

32 for(int i = 0; i < data.featureCount; i++){

33 histogram.put(i,0);

34 }

35

36 for(int i = 0; i < data.sampleCount; i++){

37 int[] prominentArray = new int[numOfProminentFeature] ;

38 Arrays.fill(prominentArray,-1);

39

40 for(int j = 0; j<numOfProminentFeature; j++){

41

42 int minIndex = -1;

43 double minError = 12345;

44 double[][] inputArray = new double[1][j+1];

45

46 int n = 0;

47 for(int m = 0; m < prominentArray.length; m++){

48

49 if(prominentArray[m] >= 0){

50 double tempValue = data.dataArray[i][prominentArray[m]];

51 inputArray[0][n] = tempValue;

52 n++;

53 }

54 }

55

56 for(int k = 0; k < data.featureCount; k++){

57 int flag = 0;

58 for(int m = 0; m < prominentArray.length; m++){

59 if(prominentArray[m] == k){

60 flag = 1;

61 break;

62 }

25

63 }

64

65 if(flag == 1){

66 continue;

67 }

68

69 inputArray[0][n] = data.dataArray[i][k];

70 //creating network

71 double[][] tempTarget = {{data.classLabel[i][0]}};

72 MLDataSet trainingSet = new BasicMLDataSet(inputArray,tempTarget);

73

74 BasicNetwork network = new BasicNetwork();

75 network.addLayer(new BasicLayer(new

ActivationSigmoid(),true,j+1));

76 network.addLayer(new BasicLayer(new

ActivationSigmoid(),true,j+1));

77 network.addLayer(new BasicLayer(new ActivationSigmoid(),true,1));

78

79

80 network.getStructure().finalizeStructure();

81 network.reset();

82

83 final ResilientPropagation train = new

ResilientPropagation(network, trainingSet);

84

85 int epoch = 1;

86 double tempError = 0;

87

88 while(true){

89 train.iteration();

90

91 tempError = train.getError();

92 if(tempError == Double.NaN || Double.isNaN(tempError)) {

93 continue;

94 }

95

96 epoch++;

97 if(train.getError() < 0.01){

98 break;

99 }

100 }

101

102 if (tempError < minError) {

103 minError = tempError;

104

105 minIndex = k;

106 }

107 }

108

109 prominentArray[j] = minIndex;

110 histogram.put(minIndex,histogram.get(minIndex) + 1);

111 }

112

113 for(int t = 0; t < prominentArray.length; t++){

114 System.out.print(prominentArray[t]+ " ");

115 }

116 System.out.println("");

117 }

118

119 for(int i = 0; i < data.featureCount; i++){

120 System.out.print(histogram.get(i)+ " ");

121 }

122 }

123

124

125 }

26

Data.java

1 package com.data;

2

3 import java.io.BufferedReader;

4 import java.io.FileInputStream;

5 import java.io.InputStream;

6 import java.io.InputStreamReader;

7

8

9 public class Data {

10 public String test = "";

11 public String dataFileName = "input.txt";

12 public String classLabelFileName = "classLabel.txt";

13 public String [] tempDataArray;

14 public String [] tempClassLabelArray;

15 public double minDataValue;

16 public double maxDataValue;

17 public double [][] dataArray;

18 public double [][] classLabel;

19 public int sampleCount = 72;

20 public int featureCount = 2139; //30% of the base data set

21

22

23 /*loads comma separated feature values from the input text file */

24 public void loadData(){

25 //reading

26 try{

27 InputStream ips=new FileInputStream(this.dataFileName);

28 InputStreamReader ipsr=new InputStreamReader(ips);

29 BufferedReader br=new BufferedReader(ipsr);

30 String line;

31 while ((line=br.readLine())!=null){

32 test+=line+"\n";

33 }

34 br.close();

35

36 }

37 catch (Exception e){

38 System.out.println(e.toString());

39 }

40

41 tempDataArray =test.split("\\s+");

42 formatData();

43 }

44

45

46 /*loads comma separated class label value from input text file*/

47 public void loadClassLabel(){

48 test = "";

49 try{

50 InputStream ips=new FileInputStream(this.classLabelFileName);

51 InputStreamReader ipsr=new InputStreamReader(ips);

52 BufferedReader br=new BufferedReader(ipsr);

53 String line;

54 while ((line=br.readLine())!=null){

55 test+=line+"\n";

56 }

57 br.close();

58 } catch (Exception e){

59 System.out.println(e.toString());

60 }

61 tempClassLabelArray = test.split("\\s+");

62 formatClassLabel();

63 }

64

27

65 public void printTempData(){

66 System.out.println("Array :"+ tempDataArray.length);

67 for(int i=0;i< tempDataArray.length;i++)

68 {

69 System.out.println("array"+i+" :"+ tempDataArray[i]);

70 }

71 }

72

73 public void formatData(){

74 int flag = 0;

75 dataArray = new double[this.sampleCount][this.featureCount];

76

77 for(int i = 0; i < this.sampleCount; i++) {

78 for(int j = 0; j < this.featureCount; j++) {

79 dataArray[i][j] = Double.parseDouble(tempDataArray[flag]);

80 flag++;

81 }

82 }

83 }

84

85 public void formatClassLabel(){

86 int flag = 0;

87 classLabel = new double[this.sampleCount][1];

88

89 for(int i = 0; i < this.sampleCount; i++) {

90 classLabel[i][0] = Double.parseDouble(tempClassLabelArray[flag]);

91 flag++;

92 }

93 }

94

95 public void printData(){

96 for(int i = 0; i < this.sampleCount; i++) {

97 System.out.println("Sample No# " + (i+1));

98 for(int j = 0; j < this.featureCount; j++) {

99 System.out.print(dataArray[i][j] + " ");

100 }

101 System.out.println();

102 }

103 }

104

105

106

107 public void setMinDataValue(){

108 minDataValue=1111;

109 for(int i = 0; i < this.sampleCount; i++) {

110 for(int j = 0; j < this.featureCount; j++) {

111 if (dataArray[i][j] < minDataValue) {

112 minDataValue = dataArray[i][j];

113 }

114 }

115 }

116 }

117

118 public void setMaxDataValue(){

119 maxDataValue=1111;

120 for(int i = 0; i < this.sampleCount; i++) {

121 for(int j = 0; j < this.featureCount; j++) {

122 if (dataArray[i][j] < maxDataValue) {

123 maxDataValue = dataArray[i][j];

124 }

125 }

126 }

127 }

128

129 public double getMaxDataValue(){

130 return this.maxDataValue;

131 }

28

132

133 public double getMinDataValue(){

134 return this.minDataValue;

135 }

136

137 public int getSampleCount() {

138 return sampleCount;

139 }

140

141 public void setSampleCount(int sampleCount) {

142 this.sampleCount = sampleCount;

143 }

144

145 public int getFeatureCount() {

146 return featureCount;

147 }

148

149 public void setFeatureCount(int featureCount) {

150 this.featureCount = featureCount;

151 }

152

153

154 }

155

29

References

[1] Li-ye-chuang et al.(2012) A hybrid BPSO-CGA Approach for Gene
Selection and Classification of Microarray Data JOURNAL OF
COMPUTATIONAL BIOLOGY Volume 19, Number 1,2012

[2] Juana Canul-Reich et al. (2008) Feature Selection for Microarray Data
by AUC

[3] John Quackenbush (2001) Computational Genetics: Computational
analysis of microarray data

[4] Cosmin Lazar (2012) A Survey on Filter Techniques for Feature
Selection in Gene Expression Microarray Analysis

[5] RuichuCai et al (2010) A New Hybrid Method for Gene Selection

[6] Wei Zhao et al. (2011) A Novel Framework for Gene Selection

[7] Kelly Fleetwood et al. (2010) an Introduction to Differential Evolution

[8] Wei-Neng Chen et al. (2010) A Novel Set-Based Particle Swarm
Optimization Method for Discrete Optimization Problems

[9] L.-Y. Chuang et al. (2010) Correlation-based Gene Selection and
Classification Using Taguchi-BPSO

[10] Mohd Saberi Mohamad et al. (2009) Particle swarm optimization for

gene selection in classifying cancer classes. In Artif Life Robotics (2009) 14:16–
19

[11] Sheng Ding-(2009) Feature Selection based F-score and ACO
Algorithmin Support Vector Machine

[12] Shutao Li et al. (2008) Gene selection using hybrid particle swarm
optimization and genetic algorithm

[13] Mojtaba Ahmadieh Khanesar et al. (2007) A Novel Binary Particle
Swarm Optimization. In 15th Mediterranean Conference on Control and
Automation, Athens, Greece.

[14] Xueming Yang et al. (2007) A modified particle swarm optimizer with
dynamic adaptation

[15] R. K. Agrawal, et al. (2007) a Hybrid Approach for Selection of
Relevant Features for Microarray Datasets

30

[16] Qi Shen et al. (2006) a combination of modified particle swarm
optimization algorithm and support vector machine for gene selection and

tumor classification

[17] Chung-Jui Tu et al. (2006) Feature Selection using PSO-SVM

[18] Xian Xu et al. (2006) Boost Feature Subset Selection: A New Gene
Selection Algorithm for Microarray Dataset

[19] Sergio Ledesma et al. (2008) Feature Selection Using Artificial Neural
Networks

[20] Akbar Rahideh et al. (2011) Cancer Classification Using Clustering
Based Gene Selection and Artificial Neural Networks

[21] Md. Monirul Kabir et al (2010) a new wrapper feature selection
approach using neural network

[22] Backstorm, L. et al. (2006) C2FS: An Algorithm for Feature Selection
in Cascade Neural Networks

[23] Vitaly Schetinin et al. (2003) A Learning Algorithm for Evolving
Cascade Neural Networks

