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Abstract 

 

Analysing the thousands of gene expression values is a difficult task due 

to the curse of dimensionality of data produced by Microarray chips. 

Primary role of an effective feature selection model is to simplify this 

task. To simplify the task of disease classification and predicting cancer, 

feature selection plays a vital role through removing less informative 

genes. In this study, we propose a hybrid approach to gene selection 

using adaptive filter and adaptive wrapper approach. As filter method 

exhibits some limitations, an adaptive form of filtering has been 

employed that iteratively selects genes in each iteration and emphasizes 

on the misclassified samples and in subsequent iteration tries to find out 

the effective genes for misclassified samples. This approach performs 

better than traditional filter methods as it focuses on its weaknesses. In 

gene selection, Artificial Neural Networks (ANN) are mostly used as a 

classifier. In this study, adaptive ANN has been used as an internal 

wrapper. This helps to generate a better subset of genes. The proposed 

hybrid approach is applied on leukaemia, colon and lung cancer 

benchmarked datasets. Better result has been found compared to other 

well-known approaches.  
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Chapter 1 

Introduction 
 

1.1 Overview 
 
Researches are going on to get rid of curse of dimensionality of data. Several 
methodologies have been applied and still there are scope of improvement. The 
main focus in recent days is to minimize the space and time complexity to get 
a better solution in critical research areas. Many machine learning algorithms 
are being applied to process huge amount of data within short period of time. 
Feature selection is the technique of selecting a subset of features for building 
learning models [1]. It attempts to identify and highlight the most informative 
genes from microarray dataset which have significant effect on the biological 
states of leaving organism. Our main focus is to select the most informative 
genes from the microarray dataset to reduce the dimensionality of the problem.  

 

1.2 Problem Statement 
 
One of the main problems of high dimensional data is the inclusion of noisy 
and irrelevant data in the information set[2]. Space and time complexity 
increases due to large number of noisy, redundant and uninformative gene 
expression [3]. Reducing the dimensionality is the goal in feature selection.  

 

1.3 Research Challenges 
 
Execution of a brute force exhaustive search is not encouraged due to high 
dimensional feature space. Therefore an optimal method is to be devised to 
achieve an accurate and efficient outcome. The desired outcome of the method 
is minimizing the number of features and increasing the predictive power of 
the classifiers. To add more intensity to the problem domain this field of 
bioinformatics produces inadequate testing and training samples. With the 
removal of noisy, irrelevant and redundant information the proposed method 
must be able to handle the correlation factor existing between the features and 
thus utilize the combined predictive power. Our proposed method encompasses 
all these factors and theoretically expects to bring about better results handling 
noisy, redundant and correlated data. 
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1.4 Motivation 
 
This study aims at deriving a better method for feature selection using a hybrid 
approach. This approach has an upper hand on other approaches as it does 
consider the collective measure of genes and not only focus to individuals. The 
approach inherits both the merits from filter and wrapper approaches. The 
adaptive wrapper approach gives better result taking less runtime than the 
other traditional wrapper approaches. 

 

1.5 Scopes 
 
In case of research, to improve the search criteria for feature selection, two 
probable approaches can be taken. Firstly, the improvements can come from 
existing approaches. Secondly, it may come from generating new approaches. 
In this study, we have worked with a hybrid approach which is the combination 
of two algorithms. This approach tends to reduce some shortcomings of the 
existing methods which we will discuss later. Computer vision, Pattern 
recognition, Artificial intelligence etc. are the fields where feature selection can 
be of great use.    

 

1.6 Research Contribution 
 
In this study, the limitation of the existing filtering approach has been 
improved. An adaptive filter and adaptive wrapper method has been combined 
inheriting merits from both of the approach. The original dataset is reduced to 
about half by using adaptive Wilcoxon method. The adaptive Wilcoxon 
method cannot handle with the noise present in the dataset and also cannot 
fully utilize the collective predictive power of genes. To overcome this 
shortcomings we used an adaptive wrapper method. It includes the use of 
Artificial Neural Network working as an internal wrapper. 

 

1.7 Thesis Outline 
 
In chapter 1 we have talked about the introduction to our accomplished work. 
Chapter 2 will be dealing with the basics of feature selection, different existing 
feature selection techniques. Chapter 3 will be on highlighting our proposed 
work, giving an overall concept of our work.  The experimental analysis along 
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with result comparison with different methods are chalked out in Chapter 4. 
Here the implementation code is also given. Chapter 5 focuses on the scopes of 
future work to be done on our study.  

 

Chapter 2 

Literature Review 
2.1 Feature Selection 
 
Feature selection is the technique of selecting a subset of relevant features 
(genes) for building robust learning models [2][14]. With the advancement of 
technology, processing speed of computer has increased and also a lot of data 
collection technologies have been improved whereas the generated data is really 
enormous that cannot be dealt with efficiently in short time. Use better feature 
selection method we can reduce the huge dataset into a smaller version that 
meets the need improving time and space complexity both. In machine learning 
and statistics, feature selection techniques are widely used. We are mainly 
focused on the first part. Different machine learning algorithms are there for 
feature selection. They are categorized below: 

 Supervised Learning: generates a function mapping input to the desired 
output. Output is predetermined here. 

 Unsupervised Learning: models a set of input but there is no mapping 
to desired output.  

 Semi-supervised Learning: combines both labeled and unlabeled 
examples to generate an appropriate function or classifier. 

 Reinforcement Learning: an observation of real world is given. Every 
action has some impact on the environment. Environment provides 
feedback that guides the learning algorithm. 

 Transduction: predicts new output based on training input, training 
output and test input. 

 Learning to Learn: learns its own inductive bias based on previous 
experience. 

Most of the feature selection methods focuses on the supervised learning and 

in this study it’s not different. An effective learning model is constructed based 
on supervised learning. 
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2.2 Feature Selection Techniques 
 
Feature selection can be applied on a set of features which can be a better 
solution than choosing all possible subsets of features [3] - 14. It is impractical 
if a large number of sub-sets are available. Feature selection can be classified 
into two broad categories:  

1. Feature Ranking: This is also known as feature weighing which 
assesses individual features and as-signs them weights according 
to their degree of relevance. Many researches have been done 
with feature ranking as the base method (for example Bekkerman 
et al., 2003, Caruana and de SA, 2003, Weston et al., 2003). 
 

2. Feature Subset Selection (FSS): This technique measures the 
goodness of each found feature subset[3]. A great deal of work 
has also been done Feature subset selection (for example Guyon 
et al., 2004, Ma & Huang, 2005, Ooi & Tan 2003). Feature Subset 
Selection techniques are more effective than FR techniques. In 
our study we have emphasized on FSS. FSS follows three basic 
methodologies: 

 

 Filters 
Filter techniques takes in account the relevance of 
features by looking only into the intrinsic properties 
(mean, variance, standard deviations etc.) of data. A 
feature relevance score is calculated for scoring genes. 
From the scored set of genes the low scoring features 
are removed and the remaining subset features with 
the higher scores are presented to the classifier 
algorithm for classification. Similarly in information 
gain which is another scoring method is used to score 
the genes from which subsequent removal of low 
scoring genes is done.[4] 
 

 Wrapper 
In wrapper techniques the entire feature space is 
considered to generate a subset of features which are 
evaluated through a classifier.[5] 
 

 Embedded Methods 
The entire feature space to search in order to find 
optimal subsets of features. The search procedure is 
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built into the classifier in this variation. [Duda et al. 
2001] used Bayesian theory to guide the search process 
based on the probability of selection. In SVM classifier 
was over hauled to weigh features and adjust them for 
making selection in the process of finding the solution.  

In order to perform feature selection the feature space needs to be traversed 
i.e. feature searching. Feature searching involves going through the feature 
space to select features to be used for classification. Many approaches to feature 
selection exist which can be broadly classified into the following: 

 

Exhaustive 

Exhaustive search or brute-force is a general problem-solving technique that 
traverses all the possibilities for the solution checking whether each of the 
candidates satisfies the solution criteria. Exhaustive search is easy to 
implement and will guarantee a solution if it exists. The downside of this 
method is its cost. Cost is proportional to the number of candidate solutions 
which tends to grow very rapidly as the size of the problem increases. Thus 
this approach should avoided when sample size is very large. 

 

Best first 

Best first is a heuristic searching technique. It traverses through the candidate 
solution and selects that appears to be the best choice under the current 
situation and moves forward. But this approach does not ensure an optimum 
solution. An evaluation function defines the selection of a particular candidate. 

 

Simulated Annealing  

In simulated annealing instead of choosing the best move it picks a random 
one and if the move improves the situation then it is accepted otherwise the 
probability of the move is decreased to ensure that such moves are not chosen 
in the future. 

 

2.3 Artificial Neural Network 
 
Artificial Neural Networks (ANNs) are computational models extensively used 
in machine learning, pattern recognition and related fields. It is inspired by 

animal’s central nervous system, in particular brain. It has different learning 
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paradigm like: Supervised, Unsupervised, Reinforcement. ANNs consist of sets 
of adaptive weights that are tuned by these learning algorithms. These 
adaptive weights are logical connection strengths between neurons. These 
connections are active during training and prediction. One common criticism 
regarding ANN is that it requires a large diversity of training for operation. 
ANNs are excellent for extracting information from a noisy dataset. In 
traditional feature selection techniques, ANNs are mostly used as classifiers. 
However it can also be used to assess the quality of the selected feature[19]. 
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Chapter 3 

Proposed Method 
3.1 Overall Concept 
 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. Outline of proposed approach. 

 

The basic steps of our proposed approach is like: 

1. Microarray Dataset represents the gene expression values in the form of 
matrix.  

2. We are using Wilcoxon Rank Sum test to score genes in an iterative 
manner to minimize the dimensionality of the feature space. 

3. Then we are using the adaptive Artificial Neural Network as an internal 
wrapper to get the final best gene subset. 

 

 

 

Microarray 
Dataset 

Adaptive Wilcoxon 
Test 

Adaptive ANN 

Final Subset 
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3.2 Adaptive Wilcoxon Rank Sum Test 
 

In comparison with single gene based feature selection, adaptive filter 
approach gives much better result. This process identifies the weak 
performers in a particular iteration by calculating the score through 
Wilcoxon Rank Sum Test and tries to find out the features that would 
perform well for those weak performers. It can be compared to giving a 
boost to weak performers in a particular iteration. At first all the genes are 
assigned equal probabilities to be selected. Then Wilcoxon Rank Sum Test 
is performed to rank all the genes. As all genes are assigned equal 
probabilities at the beginning, during first iteration every gene has equal 
probabilities to be selected.  

 

Fig. Example of redundancy in selected gene set 

The first two gene, gene1 and gene2 acts similarly. In almost 80% of the 
samples the expression level of gene1 and gene2 can be used to identify the 
class label of the particular sample efficiently. The expression levels of these 
two genes are higher cancer samples than in normal ones.  

3.2.1 Terminologies 
First we discuss some basic terminologies of the adaptive Wilcoxon Rank 
Sum Test: 

 A bootstrap   sample set SS
t is a multi-set of 

samples randomly drawn with replacement from the 
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original set of samples S. The sampling probability of 
each sample in S is determined by a probability table 

p(s) where s∈ S. 

 The worst set of samples  Sworst with respect to 
bootstrap dataset B and a single-gene based scoring 
function F is defined as a multi set: 

 

argmax (F (E (g, SS
t – S))) 

S  SS
t and S =   

 

Here SS
t - S means a set by removing S from   SS

t. We also call SS
t - S 

_worst the best set of samples. This algorithm starts off by generating a set of 
samples called a bootstrap sample set SS

t which is a multi-set of samples 
obtained by random sampling from the pool of all samples S. The probability 

of a sample being selected is equal to p(s) where s ∈ S and initially all samples 

have a probability of 
1

𝑆
. 

 

 

3.2.1 Adaptive Wilcoxon Steps 
 
Steps of the adaptive Wilcoxon Rank Sum Test is given bellow: 

1. Score all the genes in the dataset using Wilcoxon Rank Sum Test, sort them 
and select the top score gene. 

2. Worst set of sample is identified. 

3. Probability of these worst samples for selection in next iteration is increased. 

4. Next iteration selects gene performing well for the worst sample set. 

5. This algorithm would run until the number of selected genes (BG) has been 
found which depends on the dataset being evaluated. 
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3.2.2 Algorithm 

 

 

 

 

3.3 Adaptive Artificial Neural Network 
 
Wrapper-based feature selection is attractive because wrapper methods are 
able to optimize the features they select to the specific learning algorithm [22]. 
Standard wrapper methods are expensive to use with neural nets in terms of 
space and time. We present an internal wrapper feature selection method that 

Algorithm 1: Adaptive Wilcoxon Test  

 
N is the number of genes to be selected. F is a single gene based 
discriminative score. 
 
1. Initialize P(s) to be 1/st   (st is the total number of samples in the dataset). 

2. G_s as an empty set 

3. For GS n do 

4.     Generate the bootstrap sample set   SS
t   

5.     Calculate the Wilcoxon Rank Sum test on bootstrap 

6.     Add top ranked gene g based on Wilcoxon score to GS 

7.     Find worst ∂ samples Sworst based on gene g and  SS
t  using algorithm2 

8.      Reduce the probability for the best set of samples (those samples which      

are classified accurately by the gene g) 

9.     Remove g from dataset 

11.End for  

10.Return G_s 

Algorithm 2: Worst Sample Set Determination  

 
1. S1, S0 to be empty sets. 

2. For all s in S do 

3.      S1  ←  S – s 

4.      Calculate Wilcoxon Rank Sum for the gene g, add score to S0   

5. End for  

6. Sort S0, add samples S corresponding to top ∂ scores in S0 to S1 

7. Return S1 



11 
 

gives better result than the traditional external wrapper feature selection 
approaches. This internal wrapper feature selection method selects features at 
the same time hidden units are being added to the growing neural network 
architecture.  

 

3.3.1 Terminologies 
 
The network contains INS nodes for the inputs, and OUTS nodes for the 
outputs. The edge weights are trained using standard back propagation of 
errors. Back propagation is done on the training set. Each successful iteration 
adds a hidden unit to network. RMSE error is calculated for all possible net 
and the best one is considered. We select some features for each of the sample 
on basis of error calculation. Finally on basis of threshold value (VTH), final 
subset of gene is selected.                                                                           

 

3.3.2 Algorithm  
 

 

 

After getting selected features from each of the samples, frequency of 
occurrence of the genes is calculated. Using the threshold value (VTH), final 

subset is selected. 

Algorithm 3: Adaptive Artificial Neural Network  

 
1. Initialize network net. 

2. For k = 0 to MaxHidden 

3.      Network best = NULL 

4.      For each input i   

5.             Network new = net with an additional hidden unit added 

6.             add edge from node i to the new hidden unit 

7.             add edges from each hidden unit in net to new one 

8.             add edges from the new hidden unit to each output node 

9.             train(new) 

10.            if(best == NULL or RMSE(new)  RMSE(best)) 
11.                       best = new 
12.            End 

13.     End 

14.     net = best 
15. End 
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X = ∑ 𝐴𝑛
𝑖=0 i1,  ∑ 𝐴𝑛

𝑖=0 i2, …, ∑ 𝐴𝑛
𝑖=0 im 

S = x: x  X  x  VTH 

 

Here, n and m corresponds to total number of samples and total number of 
features. 

 

3.4 Our Proposed Approach 
 
 
 

 
 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

         Fig. Proposed adaptive wrapper and filter approach 

Begin Adaptive 
Wilcoxon Test 

Score all the genes in dataset, sort 
them and select top score genes 

Next iteration, select genes 
performing well for worst sample set 

by increasing probability 

This Adaptive Wilcoxon Test will 
continue until number of selected 

genes has been found 

Begin Adaptive Wrapper 

Initialize Neural Network 

Calculate Training Error and find 
out the best network for every 

sample 

Derive the final subset using 
threshold value 
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Chapter 4 

Experimental Analysis & Result Comparison 
 

We have used Matlab R2013 and JetBrains Intellij IDEA 13.0 as main platform 
of our work. Java Encog Neural Network Framework has been used for working 
with Artificial Neural Networks.  

 

4.1 Dataset Details 
 
We have applied our proposed approach on three state of the art databases:  
Acute Lymphoblastic leukemia cancer (ALL), Lung cancer and colon cancer. 
Table 1 summarizes the data sets. In the ALL dataset there are 72 tissue 
samples (47 B-cell and 25 T-cell). In the lung dataset there are 181 tissue 
samples (47 MPM and 134 ADCA). The training set contains 32 of them, 16 
MPM and 16 ADCA. The rest 149 samples are used for testing. Each sample 
is described by 7130 genes. Colon dataset contains 62 samples collected from 
colon-cancer patients. Among them, 40 tumor biopsies are from tumors 
(labeled as "negative") and 22 normal (labeled as "positive") biopsies are from 
healthy parts of the colons of the same patients. 2000 genes out of around 6500 
genes were selected based on the confidence in the measured expression levels. 

 

Dataset Number of 
Classes 

Number of Samples in 
the Dataset 

Number of Genes 

ALL 

(Leukemia) 

2 (B-cell 
ALL and 

T-cell 
ALL) 

72 (47 B-cell and 25 T-
cell ALL) 

7130 

LUNG 2 (MPM 
and 

ADCA) 

181 (47 MPM and 134 
ADCA) 

12533 

COLON 2 (Normal 
and tumor) 

62 (22 normal and 40 
tumor) 

2000 

 

Table 1: Summery of Microarray Datasets. 
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Table 1 shows that dataset for Colon cancer contains the lowest number of 
genes comparing to other two datasets. This low number of genes exposes to 
higher possibilities of misclassifications and over fitting. More the number of 
samples allows us to train classifiers so that we can correctly classify test 
samples. 

 

4.2 Performance Analysis 
 
Our implementation work begins with adaptive Wilcoxon Test where we select 
a particular number of genes using Wilcoxon Rank Sum Scoring method. The 
main objective to perform this step is to provide our adaptive wrapper 
approach a better initial population.  

While implementing adaptive filter we have used Wilcoxon Rank Sum Score 
to calculate the scoring for each gene within a sample. Then we got all the 
scores of the genes for retrieving the best scored gene. 

Then we applied adaptive filter on the three important available microarray 
datasets and got the reduced number of genes to apply as the input for adaptive 
wrapper approach. These are shown in the table below- 

 
Datasets Original Number 

Of Genes 
Adaptive Wilcoxon 

output 

Leukemia (ALL) Cancer 7130 2139 

Lung Cancer 12533 3760 

Colon 2000 1300 

 

Table 2: Reduced number of genes by Boost Feature Subset Selection 

 

We have roughly taken 30% of genes from Leukemia and Lung cancer datasets. 
These genes are then considered in the adaptive wrapper approach. As the 
number of genes in Colon cancer dataset is only 2000, the output of adaptive 
Wilcoxon was set to 65% of total number of genes which is 1300. 
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Result for Leukemia Dataset: 

 

Table 3: Result for Leukemia Dataset 

Graphical Comparison: 
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Result for Lung Cancer: 

 

Table 4: Result for Lung Cancer Dataset 

Graphical Comparison: 
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Result for Colon cancer: 

 

 Table 5: Result for Colon Cancer Dataset 

Graphical Comparison: 
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4.3 Comparative Analysis  

 

Table 6: Comparative analysis between results from three dataset 

 

Comparative analysis shows that both “Adaptive Wilcoxon-ANN-KNN” and 

“Adaptive Wilcoxon-ANN-SVM” approach give slightly better result than the 
other approaches. 
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Chapter 5 

Conclusion 
There are various techniques for Gene Selection. Researchers have done many 
works on this field. Day by day the techniques are evolving. A relatively new 
way is using Artificial Neural network. This method has been used rarely in 
this field.  

The main problem of Gene Selection from microarray dataset is the large 
amount of data obtained in a microarray. The redundant and noisy data 
misdirects classification. So, a filter method can help to reduce the number of 
genes to take into account. Our proposal includes adaptive Wilcoxon test to 
select a fixed but relatively smaller number of genes from the large dataset. 

Neural networks are prone to large input numbers. But Adaptive ANN method 
reduces the required number of genes to very minute scale, thus initiating 
training and testing by the neural network. It is evident that our proposed 
method works better than previous works in many of the cases, it can 
contribute in not only Gene Selection, but also in several other fields like 
Geology, Archeology, Geography, Climate study, Image processing etc.  
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Appendix  
Implementation Code 

 

Matlab Implementation Code: 

load grp.mat 

% Loading dataset 

filename =’LungCancerDataset.xls'; 

data = xlsread(filename); 

[r, c] = size(data); 

c = c - 1; 

 

%indices of samples 

x = 1:c; 

 

% Number of genes to be selected, n ( 30% of total number of features ) 

n = round( r * 0.3 ); 

bestIndex = zeros( n, 1 ); 

 

% Assigning equal probability to each sample... 

p = repmat(1/c, 1, c); 

cdf = cumsum( p ); 

 

% Creating an empty set to store top ranked genes... 

f = zeros(1,n); 

sizeOfF = 1; 

reducedData = zeros( n, c + 1 ); 

 

% Initializing the bootstrap sample set... 

 

% Loop will continue until n genes are selected... 

while (sizeOfF <= n) 

    bootstrapSet = zeros(r - sizeOfF + 1, ( 2 * c ) + 1 ); 

    bootGrp = zeros( 1, 2 * c ); 

    randomIndex = zeros( 1, 2 * c ); 

    selection = rand( 1, 2 * c ); 

    for i = 1 : 2 * c 

        randomIndex( 1, i ) = sum( cdf <= selection( i )); 

        while( randomIndex( i ) == 0 ) 

            v = rand; 

            randomIndex( 1, i ) = sum( cdf <= v ); 

        end 

    end 

    [rndRow, rndCol] = size( randomIndex ); 
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    for i  = 1 : rndCol 

       bootstrapSet(:,i) = data(:,randomIndex(1,i) ); 

       bootGrp(:,i) = grp(:,randomIndex(1,i)); 

    end 

 

    if sum( bootGrp ) == rndCol || sum( bootGrp ) == 0 

       continue; 

    end 

 

    [IDX, Z] = rankfeatures(bootstrapSet( :, 1: (2 * c ) ), bootGrp, 

'CRITERION','wilcoxon'); 

 

    % Copying the index from data to bootstrap 

    bootstrapSet(:,rndCol + 1) = data(:,c + 1 ); 

 

    % Best gene containing the expression values for selected samples 

    best = zeros( 1, rndCol ); 

 

    for i  = 1 : rndCol 

       best( 1, i ) = data( IDX(1), randomIndex( 1, i )); 

    end 

 

    % Index of best stored 

    bestIndex( sizeOfF, 1 ) = bootstrapSet( IDX( 1 ), rndCol + 1 ); 

 

    [ p ] = elimination( best, bootGrp, p, randomIndex ); 

 

    % Removing top ranked gene.... 

    reducedData( sizeOfF, : ) = data( IDX( 1 ), : ); 

    data( IDX( 1 ), : ) = []; 

 

    sizeOfF = sizeOfF + 1; 

 

end 

 

reducedData = sortrows( reducedData, c + 1 ); 

[ r, c ] = size( reducedData ); 

 

for j = 1 : c - 1 

    minimum = min( reducedData( :, j )); 

    maximum = max( reducedData( :, j )); 

    for i = 1 : r 

        value = reducedData( i, j ); 

        value = ( ( maximum - value ) / ( maximum - minimum ) ); 

        reducedData( i, j ) = value; 

    end 

end 

 



22 
 

%not considering the augmented column symboling index in reducedData data set ( 

reducedData( :, 1 : c - 1 ) ) 

input = reducedData( :, 1 : c - 1 ); 

 

index = reducedData( :, c ); 

 

%in input.txt file, rows indicates samples and column indicates features 

dlmwrite( 'input.txt', input', 'delimiter', '\t', 'precision', 4, 'newline', 'pc' ); 

 

%in index.txt file values signifies the index values of the selected genes 

dlmwrite( 'index.txt', index', 'delimiter', '\t', 'precision', 4, 'newline', 'pc' ); 

function [ p ] = elimination( best, bootGrp, p, randomIndex ) 

 

    [ ~, rndCol ] = size( randomIndex ); 

    w = zeros( rndCol, rndCol ); 

 

    for i = 1 : rndCol 

        w( i, : ) = best( 1, : ); 

        w( i, i ) = 0; 

    end 

 

    global eIDX; 

    [ eIDX ] = rankfeatures( w, bootGrp, 'CRITERION','ttest'); 

 

    threshold = 0.005; 

 

    for i = 1 : ( rndCol * 0.75 ) 

        p( 1, randomIndex( 1, eIDX( i,1 ) ) ) = p( 1, randomIndex( 1, eIDX( i,1 ) ) ) 

+ threshold; 

    end; 

 

    p = p./norm(p,2); 

    norm(p,2); 

 

end 

KNN Validation: 

% load( 'grp.mat' ); 

 

% Loading dataset 

filename = 'LungCancerDataset.xls'; 

data = xlsread( filename ); 

[ r, c ] = size( data ); 

 

X = data'; 
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X( c, : ) = []; 

Y = grp'; 

 

% Number of neighbors 

n = 3; 

 

classifier = ClassificationKNN.fit( X, Y ); 

classifier.NumNeighbors = n; 

SVM Validation: 

filename = 'LungCancerDataset.xls'; 

data1 = xlsread(filename); 

[ r, c ] = size(data1); 

data = data1'; 

load grp.mat; 

cp = classperf( grp ); 

 

geneindex = zeros( 1 ); 

iteration = 1; 

 

% threshold frequency 

threshold = 2; 

 

output = dlmread( 'output.txt' ); 

 

for i = 1 : 2237 

    if output( i ) > threshold 

        geneindex( iteration ) = index( i ); 

        iteration = iteration + 1; 

    end 

end 

 

data = data( :, geneIndex ); 

 

% testTrainRatio tuning 

testTrainRatio = .9; 

[ train, test ] = crossvalind( 'holdout', grp, testTrainRatio ); 

 

svmStruct = svmtrain(data(train,:),grp(train)); 

class = svmclassify(svmStruct,data(test,:)); 

 

classperf(cp,class,test); 

cp.CorrectRate 
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Java Implementation Code: 

 

Main.java 
 

1    package com.company;  

2      

3    import com.data.Data;  

4      

5    import org.encog.engine.network.activation.ActivationSigmoid;  

6    import org.encog.ml.data.MLData;  

7    import org.encog.ml.data.MLDataPair;  

8    import org.encog.ml.data.MLDataSet;  

9    import org.encog.ml.data.basic.BasicMLDataSet;  

10   import org.encog.neural.error.ATanErrorFunction;  

11   import org.encog.neural.networks.BasicNetwork;  

12   import org.encog.neural.networks.layers.BasicLayer;  

13   import org.encog.neural.networks.training.propagation.resilient.ResilientPropagation;  

14     

15   import java.util.Arrays;  

16   import java.util.HashMap;  

17   import java.util.Map;  

18     

19   public class Main {  

20       //taking 10% of the input features as prominent, it's around 200....  

21       public static int numOfProminentFeature = 200;   

22       public static Map<Integer,Integer> histogram = new HashMap<Integer, Integer>();  

23     

24       public static void main(String[] args) {  

25           Data data = new Data();  

26           data.loadData();  

27           data.printData();  

28     

29           data.loadClassLabel();  

30           int tempCount = 0;  

31     

32           for(int i = 0; i < data.featureCount; i++){  

33               histogram.put(i,0);  

34           }  

35     

36           for(int i = 0; i < data.sampleCount; i++){  

37               int[] prominentArray = new int[numOfProminentFeature] ;  

38               Arrays.fill(prominentArray,-1);  

39     

40               for(int j = 0; j<numOfProminentFeature; j++){  

41     

42                   int minIndex = -1;  

43                   double minError = 12345;  

44                   double[][] inputArray = new double[1][j+1];  

45     

46                   int n = 0;  

47                   for(int m = 0; m < prominentArray.length; m++){  

48     

49                       if(prominentArray[m] >= 0){  

50                           double tempValue = data.dataArray[i][prominentArray[m]];  

51                           inputArray[0][n] = tempValue;  

52                           n++;  

53                       }  

54                   }  

55     

56                   for(int k = 0; k < data.featureCount; k++){  

57                       int flag = 0;  

58                       for(int m = 0; m < prominentArray.length; m++){  

59                           if(prominentArray[m] == k){  

60                               flag = 1;  

61                               break;  

62                           }  
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63                       }  

64     

65                       if(flag == 1){  

66                           continue;  

67                       }  

68     

69                       inputArray[0][n] = data.dataArray[i][k];  

70                       //creating network  

71                       double[][] tempTarget = {{data.classLabel[i][0]}};  

72                       MLDataSet trainingSet = new BasicMLDataSet(inputArray,tempTarget);  

73     

74                       BasicNetwork network = new BasicNetwork();  

75                       network.addLayer(new BasicLayer(new   

ActivationSigmoid(),true,j+1));  

76                       network.addLayer(new BasicLayer(new 

ActivationSigmoid(),true,j+1));  

77                       network.addLayer(new BasicLayer(new ActivationSigmoid(),true,1));  

78     

79     

80                       network.getStructure().finalizeStructure();  

81                       network.reset();  

82     

83                       final ResilientPropagation train = new 

ResilientPropagation(network, trainingSet);  

84     

85                       int epoch = 1;  

86                       double tempError = 0;  

87     

88                       while(true){  

89                           train.iteration();  

90     

91                           tempError = train.getError();  

92                           if(tempError == Double.NaN || Double.isNaN(tempError)) {  

93                               continue;  

94                           }  

95     

96                           epoch++;  

97                           if(train.getError() < 0.01 ){  

98                               break;  

99                           }  

100                      }  

101    

102                      if (tempError < minError ) {  

103                          minError = tempError;  

104    

105                          minIndex = k;  

106                      }  

107                  }  

108    

109                  prominentArray[j] = minIndex;  

110                  histogram.put(minIndex,histogram.get(minIndex) + 1);  

111              }  

112    

113              for(int t = 0; t < prominentArray.length; t++){  

114                  System.out.print(prominentArray[t]+ " ");  

115              }  

116              System.out.println("");  

117          }  

118    

119          for(int i = 0; i < data.featureCount; i++){  

120              System.out.print(histogram.get(i)+ " ");  

121          }  

122    } 

123    

124        

125 }    
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Data.java 
 

1    package com.data;  

2      

3    import java.io.BufferedReader;  

4    import java.io.FileInputStream;  

5    import java.io.InputStream;  

6    import java.io.InputStreamReader;  

7      

8      

9     public class Data {  

10       public String test = "";  

11       public String dataFileName = "input.txt";  

12       public String classLabelFileName = "classLabel.txt";  

13       public String [] tempDataArray;  

14       public String [] tempClassLabelArray;  

15       public double minDataValue;  

16       public double maxDataValue;  

17       public double [][] dataArray;  

18       public double [][] classLabel;  

19       public int sampleCount = 72;  

20       public int featureCount = 2139; //30% of the base data set  

21     

22     

23    /*loads comma separated feature values from the input text file */  

24       public void loadData(){  

25           //reading  

26           try{  

27               InputStream ips=new FileInputStream(this.dataFileName);  

28               InputStreamReader ipsr=new InputStreamReader(ips);  

29               BufferedReader br=new BufferedReader(ipsr);  

30               String line;  

31               while ((line=br.readLine())!=null){  

32                   test+=line+"\n";  

33               }  

34               br.close();  

35     

36           }  

37           catch (Exception e){  

38               System.out.println(e.toString());  

39           }  

40     

41           tempDataArray =test.split("\\s+");  

42           formatData();  

43       }  

44     

45     

46    /*loads comma separated class label value from input text file*/  

47       public void loadClassLabel(){  

48           test = "";  

49           try{  

50               InputStream ips=new FileInputStream(this.classLabelFileName);  

51               InputStreamReader ipsr=new InputStreamReader(ips);  

52               BufferedReader br=new BufferedReader(ipsr);  

53               String line;  

54               while ((line=br.readLine())!=null){  

55                   test+=line+"\n";  

56               }  

57               br.close();  

58           } catch (Exception e){  

59               System.out.println(e.toString());  

60           }  

61           tempClassLabelArray = test.split("\\s+");  

62           formatClassLabel();  

63       }  

64     
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65       public void printTempData(){  

66           System.out.println("Array :"+ tempDataArray.length);  

67           for(int i=0;i< tempDataArray.length;i++)  

68           {  

69               System.out.println("array"+i+"  :"+ tempDataArray[i]);  

70           }  

71       }  

72     

73       public void formatData(){  

74           int flag = 0;  

75           dataArray = new double[this.sampleCount][this.featureCount];  

76     

77           for(int i = 0; i < this.sampleCount; i++) {  

78               for(int j = 0; j < this.featureCount; j++) {  

79                   dataArray[i][j] = Double.parseDouble(tempDataArray[flag]);  

80                   flag++;  

81               }  

82           }  

83       }  

84     

85       public void formatClassLabel(){  

86           int flag = 0;  

87           classLabel = new double[this.sampleCount][1];  

88     

89           for(int i = 0; i < this.sampleCount; i++) {  

90               classLabel[i][0] = Double.parseDouble(tempClassLabelArray[flag]);  

91               flag++;  

92           }  

93       }  

94     

95       public void printData(){  

96           for(int i = 0; i < this.sampleCount; i++) {  

97               System.out.println("Sample No# " + (i+1)  );  

98               for(int j = 0; j < this.featureCount; j++) {  

99                   System.out.print(dataArray[i][j] + " ");  

100              }  

101              System.out.println();  

102          }  

103      }  

104    

105    

106    

107      public void setMinDataValue(){  

108          minDataValue=1111;  

109          for(int i = 0; i < this.sampleCount; i++) {  

110              for(int j = 0; j < this.featureCount; j++) {  

111                  if (dataArray[i][j] < minDataValue) {  

112                      minDataValue = dataArray[i][j];  

113                  }  

114              }  

115          }  

116      }  

117    

118      public void setMaxDataValue(){  

119          maxDataValue=1111;  

120          for(int i = 0; i < this.sampleCount; i++) {  

121              for(int j = 0; j < this.featureCount; j++) {  

122                  if (dataArray[i][j] < maxDataValue) {  

123                      maxDataValue = dataArray[i][j];  

124                  }  

125              }  

126          }  

127      }  

128    

129      public double getMaxDataValue(){  

130          return this.maxDataValue;  

131      }  
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132    

133      public double getMinDataValue(){  

134          return this.minDataValue;  

135      }  

136    

137      public int getSampleCount() {  

138          return sampleCount;  

139      }  

140    

141      public void setSampleCount(int sampleCount) {  

142          this.sampleCount = sampleCount;  

143      }  

144    

145      public int getFeatureCount() {  

146          return featureCount;  

147      }  

148    

149      public void setFeatureCount(int featureCount) {  

150          this.featureCount = featureCount;  

151      }  

152    

153    

154  }  

155   
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