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 Abstract 
 

 

“Prioritizing the candidate gene is amongst the notable work in bioinformatics. Techniques have 

been applied to reduce the number of promising genes for a certain disease. Previous works 

were done by using PageRank and HITS algorithm on graph based network.  However using 

frequent pattern mining this prioritizing can be made more efficient. In this paper, we propose 

four algorithms. The first one indexes the unique sequences of length four using an integer value. 

The second algorithm finds the frequency of the frequent patterns of various lengths by searching 

through the integer values instead of the patterns themselves. Third one weights the candidate 

gene in compare with the genes of database. Fourth algorithm creates the graph network and 

ranks the candidate gene. All this is done highly efficiently by the use of mapping techniques e.g. 

HashMap. Due to its highly frugal nature, the proposed algorithm can reduce typical memory 

usage by 37.5% at the very minimum.” 
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Chapter 1: Introduction 
 

 

Bioinformatics is the field of science in which biology, computer science and information 

technology merges to form a single discipline. It is the emerging field that deals with the 

application of computers to the collection, organization, analysis, manipulation, and sharing of 

data to solve biological problems on molecular level. In comparison with other areas of science, 

Bio-informatics represents a new area of growth. In recent years, there has been a significant 

change in the field of bioinformatics due to the advance methods applied in computation. 

Applying these methods we came to know the answers of some of the ever-alluding biological 

questions which were previously unknown. 

 

Still many things are there that are unanswered and researchers are trying to find a solution [9]. 

Answering these questions requires that investigators will deal with large, complex data sets 

(both public and private) in a rigorous fashion to reach valid, biological conclusions. While 

working with any sector of genomic sequences we must handle millions of data sets. For certain 

disease from the database we can see that many genes are associated with that particular disease, 

challenging task is to find out the most prominent gene that is responsible for that disease and 

rank the rest of the genes associated with the disease, this is the basic concept of gene 

prioritization and before ranking genes we need to find the solution from the dataset of a gene 

that is by mapping or finding the frequent pattern that is dominating the gene. This also needs to 

be analyzed in an efficient way [1] this is also a major challenges in this field. We can give many 

examples of the importance of gene ranking or prioritizing, data mining and finding frequent 

pattern from the given sequences, such as in case of disease diagnosis and other important 

sectors these play a vital role. For a particular disease if we can find that it is occurring for a 

certain gene (there are many genes but this one is prominent) and of that gene which pattern in 

the gene then we can work only on that to eradicate that disease, this particular pattern can be 

found through data mining, again in case of agriculture if we can find that if a pattern frequently 

occurs in the sequence then it leads to maximum growth of the crops. Research for finding 

patterns is on process for a long period of time and many came up with many solutions and the 

work is still going on. We can naturally say that efficient solution of data handling will lead the 

world to a new dimension. 

 

The scientific world could not reach to a certain stage where they can declare they have reached 

the ultimate level of efficiency in Candidate gene prioritization. So ranking these genes for 

finding which gene is most prominent is still considered as one of the remarkable works of this 

field. Normally every now and then new genes are being discovered and researchers are finding 

new relation between gene and diseases. In normal cases similarity between genes is derived 

from one or more types of known information about genes such as functional annotations [11], 
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but due to lack of information researchers moved to another approach that is of building 

networks, still we cannot considered it as the most efficient one. Again we should have to 

consider this that each gene consists of large size and in case of DNA sequence only A,C,T,G 

makes a nucleotide and so it is very natural that numerous combinations and permutations of 

A,C,T and G’s will be repeated many times[3]. Thus, the importance of candidate gene ranking 

and then recognizing the correct DNA sequence pattern is easily understandable. There are a lot 

of aspects of gene that needs to be discovered for proper analysis. Reasons and causes of all 

diseases can be found if the data are properly analyzed and sorted. Analyzing the gene and 

ranking it then from the sequence we can find the maximum weighted rank. 

 

Now we will go through some of the methods that have been implemented in this two fields 

(gene prioritization and pattern mining/data analysis). Here we will discuss about Hyperlink-

Induced Topic Search (HITS), PageRank, GSP (Generalized Sequential Pattern),  MacosVspan. 

 

Initial works in the field of gene prioritization has been done by HITS [16] and PageRank [15]. 

PageRank is an algorithm that is being used by Google to rank their page according to the weight 

provided on the page, this concept is also used in case of gene ranking this method is normally 

used for building and getting result from the network. Another method that was used to be 

applied is HITS which used to work on the number of clicks and visits on that page, this method 

is not very efficient so later PageRank got the priority.  

 

Early works in the field of finding frequent pattern and data mining were mainly based on 

Apriori algorithm [5, 6]. This algorithm is quite straightforward in its approach. It generally finds 

all the repeating frequent patterns in the sequence. It is better in the sense that it picks out all the 

repeating elements and places it in the database. The disadvantage is that it takes a lot of 

computational time to complete the data transformation of the repeating sequences. Summary of 

the apriori algorithm is: super pattern of a non-frequent pattern is not frequent [2].  Apriori 

algorithm was easy but not efficient, to introduce the efficiency factor need for another method 

arise. So after apriori algorithm came GSP (Generalized Sequential Pattern) with a view to 

removing some of the disadvantages of the algorithm [6]. It doesn’t directly list the information 

in database. It first scans the general candidate solutions and this scanning happens in a 

continuous manner. After the scanning then it is tested. Still it has the limitations as it needs to 

scan large number of database and so it affects the memory. 

 

Then, a more efficient algorithm was introduced which was prefix span [6]. The concept is that it 

examines only the postfix subsequence after it’s completed or taken into account of the prefix 

subsequence. It follows the recursion pattern which can be used once at a time so it was still not 

enough to fulfill our goal. Later MacosVspan and improved version of MacosVspan was 
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introduced which helped to access and manipulate the database faster using fixed length 

contiguous sequence [7]. 

 

Now to make this gene prioritization efficient we used frequent pattern finding. We develop an 

algorithm where we will get a gene (unknown) as the input, then we will analyze that particular 

gene sequence the subsequent nucleotide sequences of a given size can be identified within a 

particular DNA sequence using an assigned numerical value. We’ll also store their repetition 

count in a memory efficient manner by using ASCII byte-encoding, and the most repeating 

sequence(s) of the given length will be provided as output. Now for that candidate gene we will 

find the frequency of the sequence of particular length and then we will find the weight by 

comparing it with the displacement and then dividing it with the number of sequences. We will 

have same information about the other genes so after getting weight of the candidate gene we can 

put this gene into different networks (graph). This network will be a directed graph where direct 

all gene nodes will point towards a disease node and in a network there will be only one disease 

node gene nodes will be the gene that are associated with the disease. We will compare it with 

different networks and try to rank the candidate gene with their weights in different network. For 

larger weight we will say that this candidate gene is most prominent and if we get a low weight 

value then we can say that for that particular disease that gene is not that much prominent. To 

find a responsible gene for a disease is a hectic job and there is still scope for developing the 

procedures, our proposed method is one of them and it will pave the way for further development 

in this field.   
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Chapter 2: Literature Reviews 
 

 

We have studied few algorithms and methods that are related to the candidate gene prioritization 

and frequent pattern finding and data mining. In the following we tried to describe the concepts 

of some of the algorithms, along with their perceived shortcomings/limitations. 

 

2.1 Apriori Algorithm: 
 

This algorithm is quite straightforward in its approach. It generally finds all the repeating 

frequent patterns in the sequence. Apriori uses a "bottom up" approach, where frequent subsets 

are extended one item at a time (a step known as candidate generation), and groups of 

candidates are tested against the data. The algorithm terminates when no further successful 

extensions are found. Assume that a large supermarket tracks sales data by stock-keeping unit 

(SKU) for each item: each item, such as "butter" or "bread", is identified by a numerical SKU. 

The supermarket has a database of transactions where each transaction is a set of SKUs that were 

bought together. 

 

Let the database of transactions consist of following item sets: 

 

Table I: Item Set 

Item sets 

{1,2,3,4} 

{1,2,4} 

{1,2} 

{2,3,4} 

{2,3} 

{3,4} 

{2,4} 

 

We will use Apriori to determine the frequent item sets of this database. To do so, we will say 

that an item set is frequent if it appears in at least 3 transactions of the database: the value 3 is the 

support threshold. 
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The first step of Apriori is to count up the number of occurrences, called the support, of each 

member item separately, by scanning the database a first time. We obtain the following result: 

 

Table II: Items and Corresponding Support Values. 

 

Item Support 

{1} 3 

{2} 6 

{3} 4 

{4} 5 

 

All the item sets of size 1 have a support of at least 3, so they are all frequent. 

 

The next step is to generate a list of all pairs of the frequent items: 

 

Table III: Pair of frequent Items. 

 

 

 

 

 

 

The pairs {1, 2}, {2, 3}, {2, 4} and {3, 4} all meet or exceed the minimum support of 3, so they 

are frequent. The pairs {1, 3} and {1, 4} are not. Now, because {1, 3} and {1, 4} are not 

frequent, any larger set which contains {1, 3} or {1, 4} cannot be frequent. In this way, we can 

prune sets: we will now look for frequent triples in the database, but we can already exclude all 

the triples that contain one of these two pairs: 

 

Table IV: Support Value 

 

Item Support 

{2,3,4} 2 

{1,2} 3 

{1,3} 1 

{1,4} 2 

{2,3} 3 

{2,4} 4 

{3,4} 5 
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In the example, there are no frequent triplets -- {2, 3, 4} is below the minimal threshold, and the 

other triplets were excluded because they were super sets of pairs that were already below the 

threshold. 

 

We have thus determined the frequent sets of items in the database, and illustrated how some 

items were not counted because one of their subsets was already known to be below the 

threshold. 

 

2.2 GSP (Generalized Sequential Pattern): 
 

The basic structure of the GSP algorithm for finding sequential patterns is as follows: 

 

The algorithm makes multiple passes over the data. The first pass determines the support of each 

item, that is, the number of data-sequences that include the item. At the end of the first pass, the 

algorithm knows which items are frequent, that is, have minimum support. Each such item yields 

a 1-element frequent sequence consisting of that item. Each subsequent pass starts with a seed 

set: the frequent sequences found in the previous pass. The seed set is used to generate new 

potentially frequent sequences, called candidate sequences. Each candidate sequence has one 

more item than a seed sequence; so all the candidate sequences in a pass will have the same 

number of items. The support for these candidate sequences is found during the pass over the 

data. At the end of the pass, the algorithm determines which of the candidate sequences are 

actually frequent. 

 

The main difference between Apriori and GSP is the generation of candidate sets. Let us assume 

that A → B and A → C are two frequent 2-sequences. The items involved in these sequences are 

(A, B) and (A, C) respectively. Under normal circumstances, the candidate generation in a usual 

Apriori style would give (A, B, C) as a 3-itemset, but in the present context we get the following 

3-sequences as a result of joining the above 2- sequences: 

 

A → B → C, A → C → B and A → BC. 

Figure 1: GSP Algorithm 

 

The candidate–generation phase takes this into account. The GSP algorithm discovers frequent 

sequences, allowing for time constraints such as maximum gap and minimum gap among the 

sequence elements. Moreover, it supports the notion of a sliding window, i.e. of a time interval 
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within which items are observed as belonging to the same event, even if they originate from 

different events. 

 

2.3 Prefix Span: 
 

The concept of prefix span is that it examines only the postfix subsequence after it’s completed 

or taken into account of the prefix subsequence. 

Given two sequences 𝛼 = 𝑎1𝑎2𝑎3 …𝑎𝑛  and 𝛽 =  𝑏1𝑏2𝑏3 …𝑏𝑚 , 𝑚 < 𝑛, sequence β is called a 

prefix of α if and only if: 

𝑏𝑖 = 𝑎𝑖, 𝑓𝑜𝑟 𝑖 ≤ 𝑚 − 1; 

𝑏𝑚 ⊆ 𝑎𝑚. 

Example: 

𝛼 = < 𝑎(𝑎𝑏𝑐)(𝑎𝑐)𝑑(𝑐𝑓) > 

𝛽 = < 𝑎(𝑎𝑏𝑐)𝑎 > 

 

This algorithm needs to be re-run for every sequence, which is why there still remains the 

problem. Thus later MacosVspan was introduced to make this access faster using fixed length 

contiguous sequence [7]. 

 

Going through the algorithms we understood that GSP succeeded Apriori algorithm, still it was 

not sufficient, and so Prefix Span and MacosVspan was introduced. Later two algorithms has the 

benefit of accessing the sequence in a fast manner. But the goal of memory efficiency and fast 

access both were not meet together in those algorithms. In our work we tried to come up with the 

solution of making it memory efficient as well as fast accessing. 

 

2.4 PageRank Algorithm: 
 

PageRank is an algorithm that is being used by Google to rank their page according to the weight 

provided on the page.  

 

PageRank works by counting the number and quality of links to a page to determine a rough 

estimate of how important the website is. The underlying assumption is that more important 

websites are likely to receive more links from other websites [17]. 
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PageRank is a probability distribution used to represent the likelihood that a person randomly 

clicking on links will arrive at any particular page. PageRank can be calculated for collections of 

documents of any size. It is assumed in several research papers that the distribution is evenly 

divided among all documents in the collection at the beginning of the computational process. 

The PageRank computations require several passes, called "iterations", through the collection to 

adjust approximate PageRank values to more closely reflect the theoretical true value. A 

probability is expressed as a numeric value between 0 and 1. A 0.5 probability is commonly 

expressed as a "50% chance" of something happening. Hence, a PageRank of 0.5 means there is 

a 50% chance that a person clicking on a random link will be directed to the document with the 

0.5 PageRank. 

In the following we explain the general equation for the PageRank algorithm: 

 

EQUATION: 

P(1) = P(2) +  P(3)+  P(4)   

 

 

 

Figure 2: PageRank Scenario 

Let us denote by A the transition matrix of the graph,  

𝐴 =  

[
 
 
 
 
 
 
 0 0  1

1

2
1

3
0 0 0

1

3

1

2
0

1

2
1

3

1

2
0 0]

 
 
 
 
 
 
 

 

. 
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2.5 HITS (Hyper Induced Topic Search): 
 

HITS is an algorithm that generally ranks the number of pages in the web by counting the 

number of clicks that has been hit on that page.  

 

In the HITS algorithm, the first step is to retrieve the most relevant pages to the search query. 

This set is called the root set and can be obtained by taking the top n pages returned by a text-

based search algorithm. A base set is generated by augmenting the root set with all the web 

pages that are linked from it and some of the pages that link to it. The web pages in the base set 

and all hyperlinks among those pages form a focused subgraph. The HITS computation is 

performed only on this focused subgraph. According to Kleinberg the reason for constructing a 

base set is to ensure that most (or many) of the strongest authorities are included. 

 

2.6 Directed Graph: 

In graph theory a graph is considered to be as a directed graph if a set of objects (called vertices 

or nodes) are connected together, where all the edges are directed from one vertex to another.A 

directed graph is sometimes called a digraph or a directed network. 

 

One can formally define a directed graph as G = (N, E), consisting of the set N of nodes and the 

set E of edges, which are ordered pairs of elements of N. 

 

 

Figure 3: A Directed Graph. 
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2.7 Dempster-Shafer Theory 
 

This theory is related with probability, in case of probability we generalize the whole sample 

space and assume that it is known to us. By normalization we make it as 1(one), but in this 

theory a belief works that is we are not aware about the whole sample space and in case of 

normalization there is a chance that total probability might be less or greater than one. The 

Dempster–Shafer theory (DST) is a mathematical theory of evidence.  It allows one to combine 

evidence from different sources and arrive at a degree of belief (represented by a belief function) 

that takes into account all the available evidence [20].  

 

The belief value can depend on the type of objects we are dealing with. We can also find out the 

conditional probability with the Dempster-Shafer theory given that the sample space is that we 

are dealing with is considered as a complete one. 

 

A flow-chart representing the activities that we need to perform to find the belief function and 

corresponding belief-value is given in the following: 

 

 

Capacities 

 

Sets of probability functions 

 

(Upper & lower probability) 

 

Dempster-Shafer Theory 

 

Inner & outer measure 

 

Focal elements are disjoint 

 

Probability measure 

 

Figure 4: Flowchart of Dempster-Shafer Theory 
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2.8 Motivation: 
 

Candidate Gene Prioritization and Frequent pattern finding are still considered as one of the 

areas that the researchers are willing to work. There are many aspects in that field that has the 

scope for development. We tried to combine this two aspects and making the ranking system of 

the gene a better one. An algorithm to find the frequent pattern has already been developed by us 

and by realizing that this can be implemented on finding the candidate gene we tried to develop a 

new algorithm.  

 

Recent years many high throughput technologies that survey a large number of genes have been 

developed for elucidating the genetic factor of common disease, challenge is that they produce a 

large number of data set , that is why we tried to combine this two aspects, to handle this large 

dataset efficiently we used mapping technique and with gene prioritization we reduced  the 

number of promising gene of a disease. 

 

Mapping has always been a favorite tool for database designers to make data access much more 

efficient and if the data handling mostly consists of unique data, Mapping is one of the most 

invaluable techniques. 

 

In computing, a hash table (also hash map) is a data structure used to implement an associative 

array, a structure that can map keys to values. A hash table uses a hash function to compute an 

index into an array of buckets or slots, from which the correct value can be found. [10] 

 

Thus, taking the concept of HashMaps (Hash tables that uses one-to-one mapping) we wanted to 

devise an algorithm that will search frequent patterns occurring within a single genetic sequence 

and do the computation in such a manner that the size of the database doesn’t increase the time 

complexity. 

 

Methods of Prioritizing gene are still need to be developed, using graph network many have 

given methods, we saw an opportunity that in the existing network of this system we can make a 

new method by implementing the existing algorithm of frequent pattern finding. Little 

modification in the network can give us a way better scope to implement our method. 
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Chapter 3: Proposed Algorithm 
 

 

In order to reduce computational complexity as well as space complexity, we’ve put two 

algorithms in place. The first algorithm will take a DNA database file (collected from GenBank, 

NCBI etc.) of a sample species and then encode it using numerical values. We refer to this 

algorithm as “Unique Pattern Indexing”. 

 

The second algorithm will then find the frequent patterns themselves and map them to 

appropriate values. We refer to this algorithm as “Searching Frequent Patterns” These two 

algorithms are detailed further in the following. 

 

3.1 Unique Pattern Indexing 
 

This algorithm takes a text file containing the DNA sequence of the target species (referred to as 

‘Database’ from hereon) and encodes it with numerical values for further processing. The 

encoding process is dynamic. The idea behind the encoding is that since the unique sequences  

within a Database will be nothing more than  various permutations and combinations of A, G, C, 

T (in case of DNA) of length four, we will only need to assign a numerical value to each unique 

sequence and later replace that sequence whenever encountered within the complete DNA 

sequence. Table 1 represents a sample of such a database: 

 

Table V: Unique Pattern Index 

ID Sequence 

1 AGCT 

2 ACGT 

3 AACT 

4 TGAA 

5 TAGC 

6 CATA 

    

255 CCCT 

256 AAAA 
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Since at most 256 (44) combinations of A, C, G, T (of length 4) is possible in case of DNA, the 

ID value will only go up to 256 at worst case scenario. Once the ID value is generated, we will 

use these values to replace the corresponding sequence (e.g. TGAA will be replaced with 4) and 

thus save the final output as a text file. 

 

As we divide the whole DNA sequence in sub-sequences of length four, around the end of the 

sequence there may be a stray sequence of length one, two, or three. For example, for the 

sequence AAATAGCTTATAGC, the program will extract and id the sub-sequences AAAT (1), 

AGCT (2), TATA (3). Since the last sequence encountered is GC which is of length two, the 

program will simply put it into the file as GC and id it to 4. 

 

In summary, Unique Pattern Indexing Algorithm indexes each unique pattern and puts it into a 

HashMap. The workflow is described below: 

Algorithm: Unique Pattern Indexing (Step 1) 

Input: A text file containing the DNA sequence (D) of the target species. 

Output: A dynamically populated text file containing every (length <= 4) unique DNA 

sequence encountered in the target sequence. 

 

Pseudocode: 

//read from the database file 

F = read database 

//put the sequences within database into a HashMap h 

h.key = sequence 

h.value = id 

//read the subsequence of length 4 from the target sequence 

length = target_sequence.length 

beginning = 0 

i = 0 

While segment_size < length 

           segment_size = i * 4 

           end = segment_size 

           if segment_size < length 

                       temp = target_sequence.substring.beginning to target_sequence.substring.end 

                       i++ 

                       beginning = end 

                       if h contains key = temp //if there’s a match 

                              put corresponding h.value into output 

                       else //if no match is found, put the new sequence into hashmap and write to 

database 

                               h.set_key_value_pair = temp, h.size+1 //h.size gives the total length of the 

hashmap 
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                               length++ 

                        endif 

              endif 

endwhile 

Algorithm 1: Unique Pattern Indexing 

 

3.2 Searching Frequent Pattern: 
 

Upon processing the given input DNA sequence by replacing each unique sequence (primarily of 

length four) with its corresponding index, the file is then checked for frequent patterns of length 

4, 8, 12, and 16 via Searching Frequent Pattern Algorithm. 

Algorithm: Searching Frequent Pattern (Step 2) 

Input: The output text file from Step 1. 

Output: Four different text files, each containing the repeating sequences of length 4, 8, 12, 

and 16 respectively, along with their repeat counted, and sorted in an ascending manner. 

 

Pseudocode: 

//read from the processed_sequence file 

F = readfile processed_sequence 

//put the sequences within F into a StringBuilder sb 

sb.append = f.readline 

//put each id within sb (separated by a space) into a String Array 

HashMap map 

String splitted [] 

for i = 0; i < sb.length; i++ 

       splitted [i] = sb.unique_id .split_by_spaces //the ids are separated by spaces in the original 

file 

endfor 

//process segment of size 4 and check for repetition 

for I = 0; i < splitted.length; i++ 

        temp = splitted[i] 

         if map.contains temp 

            flag = map.value_for_temp 

            flag++ 

            map.put_value = flag 

         else 

            map.put_key = temp 

            map.put_value = 1 

          endif 

endfor 

//sort map 

map.sort_by_ascending_order = true 

//write to an appropriately titled text file 

File output = repetition_count_4 



Page | 20 
 

output.write map 

//clear map to save memory 

map.clear 

//similarly process segments of size 8, 12 and 16 while adjusting the loop termination 

condition accordingly 

Algorithm 2: Searching Frequent Pattern 

 

3.3 Displacement Based Weighting Algorithm: 
 

This algorithm will provide the weight on the gene which will be used for generating the graph. 

Creating the network graph and analyzing the weights we will be able to rank the gene. We will 

first find the most frequent pattern (of length 4) of the candidate gene and will find its relative 

frequency then we will calculate the displacement by comparing this frequency with the 

frequencies from known database. This will be for one pattern, we will have to find this for all 

the genes in the database, from this cumulative result we will subtract 1 and will get weight for 

that gene.  

 

Calculate Relative Frequency: 

 

I. Find out the frequent patterns of length 4 in ascending/descending order (ordering 

method is not important since we’ll take the most frequent pattern first and then the 

second most one and so on). 

II. Each sequence will have a unique ID (as the sequences themselves are unique as well). 

We’ll need this ID value in the later parts of the procedure. 

Then we calculate the relative frequency using the following equation: 

Relative Frequency =
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ∗ 𝑟𝑒𝑝𝑒𝑎𝑡 𝑐𝑜𝑢𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
 

 

Here, length of the sequence is 4. We won’t be handling sequences of length 8/12/16 for 

now since that will need manipulating thousands of data. 

III. Then we will construct the sorted table for each gene sample. In our case, we have 20 

gene samples for 2 diseases, 10 samples per disease. So there will be 20 different tables. 

IV. Now, we will take the target gene sample (the sample that needs to be ranked) and 

construct the Relative Frequency table in the similar manner. 
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Calculate Displacement: 

 

In this step, we need to compare the ranks of each ID sequence in the following manner: 

There are two diseases in the database for now: Alzheimer’s and Prostate Cancer. Each disease 

has 10 samples (collected from NCBI). Accordingly, there are 10 tables sorted by the Relative 

Frequencies of the unique sequences (of length 4). 

I. We take the most frequent sequence of the test gene sample. Let the ID of the sequence 

be 55. One thing to note here is: the ID values are consistent across samples. That is, if 

ID 55 represents the sequence AATA, then it does the same across all the samples in the 

current database as well as samples that might be added in the future. 

II. Then we take one sample from the database for a particular disease. Say, we want to find 

out how the sample gene ranks in terms of inducing Prostate Cancer. So, we take one 

sample gene (that induces Prostate Cancer) from the database. 

III. Now, we calculate the Displacement value Δd given that the selected sequence of length 

4 (in this case, the sequence with ID 55) exists in the sample taken from the database 

using the following equation:  

∆𝑑𝑖 = |𝑟𝑡 − 𝑅𝑖|  ⋯ ⋯ ⋯ (i) 
Where, 

∆𝑑𝑖 = Displacement for sequence i (i = ID value for the particular sequence), 

rt = Rank of the sequence in the test sample, 

Ri = Rank of the sequence in the ith database sample. 

IV. In case the sequence in the test sample that needs to be weighted doesn’t exist in the 

database sample, then we simply assign: Ri = 0. 

 

Assign Weights: 

Weight of sequence with ID i, 

𝑤𝑖 = 1 −
Δ𝑑𝑖

n
 ⋯ ⋯ ⋯ (𝑖𝑖) 

 

If i exists in the sample from the database. 

 

Otherwise (in case i doesn’t exist), 

𝑤𝑖 = −
Δ𝑑𝑖

n
 ⋯ ⋯ ⋯ (𝑖𝑖𝑖) 

Where ∆𝑑𝑖 = 𝑟𝑡 (since Ri = 0) and n = total number of unique sequences of length 4. 
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Then we add up the weights of all n unique sequences and calculate the cumulative weight for 

the target sample with respect to the first sample in the database. 

𝑤1 =
∑ 𝑤𝑖

𝑛
𝑖=1

𝑛
 ⋯ ⋯ ⋯ (𝑖𝑣) 

 

Similarly, we find 𝑤𝑘 for all k samples in the database. Since we have 10 sequences for Prostate 

Cancer, we will have weights from 𝑤1 up to 𝑤10. 

 

Now, we find the cumulative weight for the test sample with respect to all the sequences present 

in the database: 

𝑊𝑑 =
∑ 𝑤𝑘

𝑚
𝑘=1

𝑚
 ⋯ ⋯ ⋯ (𝑣) 

Where, 

𝑊𝑑 = 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝒅 

𝑚 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑜𝑟 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝒅 

 

Example: 

 

Let us imagine that the gene we need to rank is named XYZ. 

 

Say, sequence with ID 99 is the most frequent one and repeats 59 times and the length of the 

sample is 16767. So, the Relative Frequency, R.F. = (59*4)/16767 = 0.014075. In this way, we 

build the table with every sequence involved. 

 

Now, we want to rank XYZ in terms of Prostate Cancer. So, we take the first gene sample from 

Prostate Cancer, which is ABCB7. 

 

In case of ABCB7, let’s say that seq. ID 99 ranks 3rd. So, the displacement will be: 

 

𝛥𝑑𝑖 =  |1 − 3|  =  2. 

 

In this way, we find the consecutive displacements for all the sequences involved and then 

calculate the weight. 
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3.4 Graph Generating and Ranking Algorithm: 
 

This algorithm will take the weighted genes as input and will create a directed graph where gene 

nodes will point towards the disease node. In a single network there will be one disease node and 

many gene nodes.  From the weight of each node assigned on the edge we rank the genes. We 

use JUNG2 [19] for graph generation. 

 

Step 4: Generating Weighted Graph Network 

I. We take the corresponding nodes and their edge weight (calculated via the algorithm 

described in section 4.3 and put it in a three-dimensional array in the following order: 

(gene_node, disease_node, weight). 

II. We then generate the graph so that the gene nodes are connected to the disease nodes via 

a directed edge. 

III. The direction will be such that for the disease nodes, out-degree = 0 and for the gene 

nodes, in-degree = 0. 

IV. In this manner, we keep repeating the process for each new sample in the database. 

 

 

Figure 5: Graph Generation Code. 
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Chapter 4: Materials and Methods 
 

 

4.1 Materials: 
 

In order to build the initial database, we need some sample DNA sequences. The sample dataset 

are obtained from NCBI database and are of different lengths. This gives us a realistic simulation 

given the dataset are all obtained from different species of bacteria and viruses. Table II shows 

our sample dataset, along with their NCBI reference. 

 

Table VI: Sample Dataset 

Experimental Dataset NCBI Reference 

Sequence 

Data 

Acaryochloris marina 

MBIC11017 chromosome, 

complete genome 

 

 

NC_009925.1 

 

 

AATAAATA…ACCAC 

Acidithiobacillus caldus, SM-1 

chromosome, complete genome 

 

 

NC_015850.1 

 

 

ATGAGTAG…TCATC 

Achromobacter xylosoxidans A8 

chromosome, complete genome 

 

 

NC_014640.1 

 

 

ATGAAAGA…GCGAC 

Acetobacter pasteurianus 386B, 

complete genome 

 

 

NC_021991.1 

 

 

AATGGGTA…GCTAG 

Acetobacter pasteurianus IFO 

3283-01, complete genome 

 

 

NC_013209.1 

 

 

ACTGCAGG…TAGAA 

 

Each of these sample files are of varying sizes and of different species, thus making the 

simulation environment closer to a real-life test case scenario. 
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As for the disease gene prioritization, we have used the following 6 genes for primary analysis. 

The final dataset will have 20 genes initially, and more will be added with the progression of 

time. 

 

Table VII: Disease Gene Database 

Gene Name Induced Disease(s) 

ABCB7 ATP-binding cassette, sub-

family B (MDR/TAP), 

member 7 

myocardial infarction,  

pearson syndrome,  x-linked 

sideroblastic anemia with 

ataxia,  x-linked sideroblastic 

anemia and 12 others. 

ALM alpha-2-macroglobulin alzheimers disease,  

argyrophilic grain disease 

ADAM10 ADAM metallopeptidase 

domain 10 

alzheimers disease,  degos 

disease 

ACOX3 acyl-CoA oxidase 3, 

pristanoyl 

Mutism 

ABCA1 ATP-binding cassette, sub-

family A (ABC1), member 1 

coronary artery disease,  scott 

syndrome,  syringomyelia,  

Alzheimer’s, xfamilial 

hypercholesterolemia,  

chediak-higashi syndrome 

ACTR3BP6 ACTR3B pseudogene 6 HIV-1 

 

4.2 Methods: 
 

To continue with the simulation, at first we applied the Unique Pattern Indexing algorithm on the 

sample data. To do that, we first load the (unique) DNA sequences within the database into a 

HashMap and store them as a key. Then we number them sequentially and put the indices into 

the value field of the HashMap.  This was for frequent Pattern finding then starts the process of 

gene prioritizing. We first find the relative frequencies of candidate gene and known genes and 

then comparing there displacement we find the weight and after that we generate the graph 

network. Then we do the ranking of the genes from their assigned weight. The whole process can 

be summarized as below: 

 

 At first load the input database file. 

 Create a HashMap and initialize it as empty. 

 Check for each substring of length from the beginning of the sequence, and check if the 

substring exists within the Map as a ‘key’. If it does, ignore it and move on to the next 

substring. Otherwise assign an ‘incremented’ value.  

 Load this indexing file as input to the Displacement Based Weighting Algorithm this will 

give repeat count and relative frequency. 
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 We take two HashMap to compare the candidate gene and the known gene this 

comparison will help to give weight and produce the graph network and it will help to 

maintain the complexity to O(1).  

 

At first we extract subsequences of length 4 from the beginning of the target sequence and see if 

it exists as a key within the HashMap. If it exists, we just retrieve the value for that key and put it 

into the output file. Otherwise we first put the subsequence into the HashMap, assign it a new 

value to it, and then put that value into the output. To exemplify, we consider the input string 

AAGTACTTTATAACTTTATA. Now, the algorithm will automatically assign the index value 1 

to AAGT, 2 to ACTT and 3 to TATA etc. Since ACTT already got a value assigned, it will just 

be replaced with 2. So, the output will be 1 2 3 2 3. In this manner, we iterate through the 

sequence up until the very end. If we encounter a sequence of length 3 or less and it does not 

exist in the HashMap, we treat it as a new unique sequence and put it into the DNA database. 

 

At this point we employed the Frequent Pattern Searching algorithm. At first, we load the output 

file from Unique Pattern Indexing algorithm and treat the whole sequence as a single, continuous 

string. 

 

In this manner we split the string into segments of length 4( we are not considering length 

8/12/16). We process the segments of length 4 at first to check repetition. The first value is put 

into a HashMap as key and the corresponding value field is set to zero (0). Whenever a repetition 

is encountered, the value field is incremented by 1. 

 

Upon completion of the whole sequence for repeating patterns of length 4, we sort the HashMap 

by values and write the output to an appropriate output file. After going through all the values, 

we clear the HashMap. 

 

Now we got a table with the values of key(id) and their unique pattern(total 256) . Now for the 

Displacement Based Weighting Algorithm we will have to give to input sequence this will be two 

genes. One is the candidate gene and another will be a gene from the database whose information 

is known to us. The algorithm will provide two outputs on the two  input sequence for each of 

the sequence the number of repeated pattern will be shown and also the relative frequency             

(4 * repeat count/total length). Then we will calculate the displacement, we will take the 

modulus value. 

 

The comparison will be done by putting the information of the two genes in two HashMap table. 

For first table unique id will be Rank list (most frequent pattern will be ranked 1) and in the 

second column in will the id which is unique for all. In second HashMap table we will also have 

same columns here key will be that unique id and second column will hold the ranking. In two 
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tables taking the common values we can compare the displacement.  This was for one candidate 

gene and one gene from database we have to do this for the candidate gene and all the genes of 

the database. 

 

Finally we will generate a Graph Network with the disease nodes and corresponding gene nodes, 

with the gene nodes connected to the disease ones via an outbound directed edge. 

 

 

 

Figure 6: Sample Dataset. 
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Chapter 5: Performance Evaluation 
 

 

We applied the algorithms over the experimental dataset described at Table II to generate the 

frequent pattern of length 4. We have taken the results of the first five species from Table II in 

order to keep the resultset more manageable. We have displayed only the last three values (i.e. 

the three most frequent values) from the ascending ordered sorted list of frequent patterns. 

However, the other values can be easily retrieved from the output file if such need ever arises. 

The results are illustrated in Table III. 

 

5.1 Experimental Results (Mining Frequent Pattern): 
 

Our goal is to find the number of repeating sequences of nucleotides of length 4, 8, 12 and 16. 

The algorithm automatically sorts the results in an ascending manner, so the three most repeating 

sequences were easy to find. 

 

For example for the whole sequence of reference “NC_009925.1” we got “AAAA” has been 

repeated 11829 times “TTTT” has been repeated 11588 times “CAAA” has been repeated 11539 

times. We got this result for string length of 4. For length 8, 12 and 16 and for rest of the datasets 

we got the result in similar fashion. For example, string “GCGATCGC” (length = 8) repeated 

488 times, TGCGATCGCAAC (length = 12) repeated 52 times and finally the pattern 

GATCGGCTGAAGTCAG (length = 16) repeated 10 times. 

 

Searching this frequency of patterns helps us in many ways, if we did not find the repeating 

sequence, it would be hard to find the proper cause that has altered the million character long 

gene sequence. If we know that which patterns are most frequent in a sequence, then without 

dealing the whole sequence we can emphasize on those subsequence only. For disease diagnosis 

it is often the case that we do not have to search the whole sequence. Instead searching for the 

frequent patterns are often enough to find valuable related data. 
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Table VIII: Simulation Results Showing Frequent Patterns of Length 4, 8, 12 and 16 

Length Reference Sequence Frequency 

4 NC_009925.1 AAAA 11829 

TTTT 11588 

CAAA 11539 

NC_015850.1 GGCG 8158 

CGCC 8144 

GCGC 8138 

NC_014640.1 GCGC 38449 

CGGC 31313 

GCCG 31117 

NC_021991.1 TGGC 6290 

GCCA 6223 

CAGC 6099 

NC_013209.1 TGGC 6526 

GCCA 6448 

TGCC 6338 

8 NC_009925.1 GCGATCGC 488 

CGAT CGCA 447 

TGCGATCG 418 

NC_015850.1 CCGCCGCC 160 

CGGCGGCG 152 

GGCGGCGG 143 

NC_014640.1 GCGCGGCG 870 

GCGCGCGC 869 

CGCCGCCG 807 

NC_021991.1 TTTCTGGC 106 

GCCT GCGC 102 

CATCCAGC 98 

NC_013209.1 TTTCTGGC 113 

TCTGGCAG 109 

12 NC_009925.1 TGCGATCGCAAC 52 

GTTGCGATCGCA 44 

TGCGATCGCATC 44 

NC_015850.1 CCCT GGGCGCGG 10 

CCAGTTCCGCCT 10 

TCGAGAGCCAGA 9 

NC_014640.1 GGCGCTGGCCGC 34 

GAAAGCGCCGCC 32 

NC_021991.1 TCTGGCTCTGGC 16 

GCTCTGGCTCTG 15 

TGGCTCTGGCTC 15 

NC_013209.1 

 

CTGGCTCTGGCT 12 

GGCTCTGGCTCT 12 
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CTCTGGCTCTGG 11 

16 NC_009925.1 GATCGGCTGAAGTCAG 10 

CTTGGAGTGCATCATC 9 

AATGCTTGGAGTGCAT 9 

NC_015850.1 ACCAGAACCTCAAGAC 9 

GGGCGCGGGAAGGCTC 9 

NC_014640.1 CTCCGGACCGCAATCG 7 

TGCTGCTGGACGAACC 6 

CCAACGGCGCGGGCAA 6 

NC_021991.1s GCTCTGGCTCTGGCTC 15 

TGGCTCTGGCTCTGGC 15 

TCTGGCTCTGGCTCTG 14 

NC_013209.1 GGCTCTGGCTCTGGCT 12 

CTGGCTCTGGCTCTGG 11 

CTCTGGCTCTGGCTCT 11 

 

 

5.2 Graph Generation and Weight Assignment: 
 

In order to generate the graph, at first we need to find out the weights associated with each gene 

sample so that the candidate gene(s) can be prioritized alongside them. 

 

By using the method described in Algorithm 3.3 we find out the relative frequency of the unique 

IDs in a particular gene sample. For example, the following table shows the relative frequency 

for ACTR3BP6 (hiv_1), a gene that is responsible for HIV-AIDS type-1. 

 

Table IX: Relative Frequency for ACTR3BP6 (hiv_1) 

Sequence ID Relative Frequency 

99 0.01952277 

49 0.01301518 

55 0.01301518 

59 0.01301518 

131 0.01084598 

88 0.00867678 

159 0.00650759 

. 

. 

. 

. 

68 0.00433839 
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Now, we need to calculate the weights of various target sequence by comparing them with the 

sequences in the known database and assigning weight as per the method explained in 

Algorithm 3.4. 

 

A few of the weights generated after applying Algorithm 3.4 is given below in order to gain a 

perspective: 

 

Table X: Weights of the tested Disease Genes 

Disease Gene Disease Induced Weight 

ABCB7 Alzheimer’s Disease 0.8957366 

A2M Alzheimer's Disease 0.8637768 

ADAM10 Alzheimer's Disease 0.9152687 

ACOX3 Mutism 0.8969674 

ABCA1 Alzheimer's Disease 0.8765102 

 

One thing to note here is: we compared the genes of Alzheimer’s with those of Alzheimer’s in 

Table V, not with the known genes of other diseases. In case that we compare the gene of one 

disease with another one which is not a related disease, the weight value decidedly goes down a 

lot, as cam be seem from Table VI: 

 

Table XI: Weights of Genes when compared with an unrelated disease 

Disease Gene Disease Induced Compared With Weight 

ACTR3BP6 HIV/AIDS Alzheimer’s Disease 0.43917594 

ADAM10 Alzheimer’s Disease HIV/AIDS 0.41317346 

 

In this way, we can see that the unrelated diseases need not to be compared since the weight will 

be below an acceptable level anyway. 

 

Finally, with all the weights assigned to the candidate genes and prioritizing them according to 

the weight generated, we draw a Graph to visualize the system so that the linkages can be 

referred to at a glance. We create disease nodes, gene nodes and create an outbound link from a 

gene node to corresponding disease node. 

 

We also put the calculated weight along the edge of a linkage to show the connection between 

the disease and the candidate gene. In this way we can build a bigger and more accurate network 

as we put in more sample and calculate more weights to normalize the final value. 
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As can be seen from the graph network below, the nodes are of two types: disease and gene 

nodes and they can be told apart quite easily since only the disease nodes have incoming edges 

while the gene nodes got only outgoing edges. 

 

The weight of each gene is shown alongside the edge. This graph is “pannable” and “zoomable” 

in the actual application, so the values can be magnified and analyzed separately if required. 

 

 

 

Figure 7: Output Graph Networks 
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5.3 Simulation Environment: 
 

The simulation was done on a desktop running Windows 7 SP1 64 bit. The hardware includes a 

core i5-3570 processor running at 3.8GHz (overclocked) and 8GB of system RAM running at 

2133MHz. The system also has a discrete GPU (Nvidia GTX 760 with 2GB of GDDR5 VRAM). 

 

The programs implementing the algorithms were written in Java and the IDE was Netbeans 7.4 

running Java version 7 update 51. We also used JUNG (Java Universal Network and Graph 

Utility) version 2.0 for Graph Network generation. 

 

The source codes for the algorithm can be downloaded for free from: 

https://copy.com/rr7uZC1sQR0m 

https://copy.com/i4IXP4jJC4ql 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://copy.com/rr7uZC1sQR0m
https://copy.com/i4IXP4jJC4ql
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Chapter 6: Discussion & Conclusion 
 

 

6.1 Discussion: 
 

While working with the gene database due to restrictions we could not access the whole data 

base. Around 10000 samples were there among them 5000 were accessible. According to the 

Dempster-Shafer theory or belief that the normalization of the total sample space can be done 

though we don’t have full information of the system. According to this belief the system will 

work similarly for both 5000 data and 10000 data. 

 

Saving memory and reducing time complexity is our prime concern in this proposed method. In 

normal case if we want to represent a nucleotide of length four we need 4 characters that occupy 

8 bytes (4×2 byte) in the memory. If we want to deal with a pattern 16 characters long then we 

need 256 (16×16 bits) bits in the memory. In our algorithm we are representing a nucleotide with 

a numerical value, this can range from one digit to maximum three digit. So for representing  

nucleotides of length 16, in the best case scenario we need only 4 bytes  of memory and for the 

worst case scenario if we represent all  nucleotides using three digit integer then we need 

maximum 12 bytes of memory that is 96 (12×8) bits of memory so minimum memory efficiency 

is 37.5%. 

 

Since our algorithm does a lot of comparison within a large dataset, the computational 

complexity is of a big concern. However, by using Mapping Techniques, we have reduced the 

time complexity for comparison to 𝑂(1). As per the concept of big-oh notation, this means that 

the comparison takes a constant amount of time regardless of how large the dataset might be. 

This makes it perfect for comparing large amounts of genetic data without any additional 

computational overhead. 

 

6.2 Conclusion: 
 

Using our proposed method will help to reduce the amount of accessing data for finding 

particular pattern as well as it will be memory efficient. Memory efficiency and fast access of 

data are not only one of the prime targets in the field of bioinformatics but also in other sectors. 

Sectors where huge amount of data need to be analyzed and where repetitions of patterns are 

important, our method will prove helpful there [8]. 
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For instance evaluating patterns of telephone use, if a company wants to check the number of 

calls in a particular time for a particular user then it can use the pattern matching algorithm. If we 

need this for thousands of users then our algorithm will prove useful. 

 

Again in business identifying fraud insurance claims can be done efficiently or human resources 

(HR) departments want to identify the characteristics of their most successful employees. 

Information obtained – such as universities attended by highly successful employees – can help 

HR focus recruiting efforts accordingly. Also in the field of medical diagnosis where sometimes 

it is needed to find out the sample or required pattern in less time consuming manner our 

algorithm can be of great use in this types of scenario. Sales forecasting database marketing, 

balancing stock, call roaming percentage are also some of the sectors where our method can be 

proved helpful. 
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