
1 
 

                                                                               

ISLAMIC UNIVERSITY OF TECHNOLOGY 

ORGANISATION OF ISLAMIC COOPERATION 

DEPARTMENT OF MECHANICAL AND CHEMICAL 

ENGINEERING 

 

PROJECT THESIS PAPER 

PROJECT TITLE: 

“Trajectory Planning and Tracking of an Autonomous Robot Vehicle” 

 

Submitted by: 

Md Mahdiuzzahid Rifat (101406) 

Md Raihanul Islam (101408) 

Jonaed Bin Mustafa Kamal (101442) 

Md Wasequl Islam (101444) 

 

Project Supervisor: 

Prof. Dr. Md. Nurul Absar Chowdhury 



2 
 

DECLARATION 

This is to declare that the project titled “Trajectory Planning and Tracking of an 

Autonomous Robot Vehicle” was designed and successfully implemented by us 

under the supervision of Dr. Md. Nurul Absar Chowdhury, Professor, MCE 

Department, IUT. The following thesis has not been submitted elsewhere for the 

reward of any degree or diploma or for publication. 

 

Dr. Md. Nurul Absar Chowdhury 
Professor 
MCE Department 
Islamic University of Technology  …………………………………………………………………… 
 
 
 
Md Mahdiuzzahid Rifat  
Student No. 101406   …………………………………………………………………… 
 
 
 
Md Raihanul Islam  
Student No. 101408   …………………………………………………………………… 
 
 
 
Jonaed Bin Mustafa Kamal  
Student No. 101442   …………………………………………………………………… 
 
 
 
Md Wasequl Islam  
Student No. 101444   …………………………………………………………………… 

 



3 
 

Acknowledgement 

All praise to Allah. We wish to express our deep gratitude to 

our honorable project supervisor Professor Dr. Nurul Absar 

Chowdhury of IUT for his continuous supervision, guidance and 

suggestions in our project. Without his help this project would 

never have achieved this success. 

 

 

 

 

 

 

 

 

 

 



4 
 

Table of Contents 

Abstract 6  
Robot 7 
Characteristics of a Robot 7 
Autonomous Robot 8 
Qualities of an Autonomous Robot 8 
Short History of Robot 10 
Manufacturing a Robot 12 
Autonomous Vehicle 13 
Benefits of Autonomous Vehicle 13 
Drawbacks 14 
Trajectory Planning 14 
Communication Mediums of Autonomous Car 19 
GPS 19 
Basic Concepts of GPS 19 
GPS Tracking 21 
Architecture of a GPS Tracker 21 
Types of GPS Tracker 22 
GPS Technique 23 
GPS Tracking Method 24 
GPS Tracking Method of a Robot 25 
Microprocessor 26 
Classification of Microprocessor 27 
Microcontroller 28 
Arduino Mega 2560 36 
AT Mega 2560 38 
Base Unit of Our Project 45 
Components of our Car 47 



5 
 

Assembly of the Vehicle 51 
Communication 52 
RF Tranceiver 52 
Setup of the RF Transceiver 53 
Setup of the GPS Chip 56 
Problems in Making the GPS work 57 
The Complete Setup of the Car 58 
The Final Setup 60 
Program Schematic  
References 

61 
63 

  

 

 

 

 

 

 

 

 

 

 



6 
 

 

Abstract: 

This paper is about trajectory planning and tracking of an autonomous robot vehicle. The 

autonomous robot was made by transforming a simple RC car into a GPS guided robot. Present 

and the target locations were given from a computer. Communication between the robot and 

the computer was done by using RF module. The receiver of the module was kept upon the car 

and the transmitter was connected to the computer. Tracking was done by the same GPS 

module that was used to guide the vehicle. All the processes were done using two Arduino 

Mega 2560 microprocessors. One was used for the transmitter and the other one was used for 

the receiver and control of the car. 
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Robot1: 

Robot is an electro-mechanical device that can perform tasks by itself. It may require some to 

no human interaction. A robot requires an electric circuit and a programming to run. Robots 

range from humanoids to large industrial robots or even microscopic Nano robots. A robot 

contains sensors, control systems, manipulators, power supplies and software. All these 

systems work together (simultaneously or sequentially) to make a robot work. A robot maybe 

fully autonomous or semi-autonomous. A fully autonomous robot can work without the help of 

any human interaction.  

Characteristics of a Robot: 

 Sensing  

First of all a robot must have the capabilities of sensing its environment. Sensing is done 
in the same way that a human senses its surroundings. While a human senses its 
environment with the help of ears, eyes, nose a robot senses its surroundings using 
different sensors. Different sensors are used for a robot to sense its surroundings. Some 
of the sensors are- 

 Sonar 
 Electro-magnetic 
 Touch 
 Chemical 
 Altitude 
 Thermal 

  

 Movement 

A robot needs to move around. Movement can be done by wheels, legs, propellers or by 
some other means. A robot may be able to travel from one place to another some of its 
parts may move keeping the robot in a specific place.  

 Energy  

Power is required for the robot to perform its tasks. The robot may power itself or it 
may require the help of human to power it up. The robot may be electrically powered, 
battery powered or solar powered. The amount of power required and the way it needs 
to be powered depends on the tasks that the robot has to perform. 

                                                           
1
  Most of the descriptive parts (definitions, descriptions, history etc.) of our paper were taken from different 

websites and papers and are not the outcomes of our project. 
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 Intelligence  

A robot also needs intelligence to perform the task. Robot intelligence is created by 
programming. A coding is needed to run the robot and make it understand what it 
needs to do. 

Autonomous Robot: 

An autonomous robot is a robot that can perform tasks completely on its own or sometimes 

with some help from human. These types of robots require very little amount of human help or 

sometimes no human help at all. A very common example of autonomous robot is Sony’s AIBO 

series. These were pet toys resembling dogs, cats or other pets. These autonomous robots were 

made mainly for entertainment but could do a lot of work completely on its own. 

 

 

Figure 1: Sony's AIBOs- a great example of autonomous robots 

 

Qualities of an Autonomous Robot: 

Self-maintenance: 

The first requirement for a robot to be autonomous is the ability to take care of it itself. For 

example, if an autonomous robot needs to recharge itself, it should be able to go to a charging 

dock by itself. 

Self maintenance is done by using some proprioceptive sensors. Proprioceptive sensors are 

sensors which help the robot to gain information about its internals. Such as if anything inside 

the robot goes wrong it should be able to sense that and alert the user of it. 
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Common proprioceptive sensors are: 

1. Thermal  

2. Hall Effect  

3. Optical 

4. Contact 

Sensing the environment 

Next it should have the ability to sense its surroundings. These robots sense their surroundings 

and act by themselves. This does not need any human interaction. Sensing environment is done 

with the help of exteroceptive sensors. 

Common exteroceptive sensors are:  

1. Electromagnetic spectrum  
2. Sound  
3. Touch  
4. Chemical sensors 

 

Task performance 

The next step in autonomous behavior is to actually perform a physical task. Autonomous task 

performance requires a robot to perform conditional tasks. For instance, security robots can be 

programmed to detect intruders and respond in a particular way depending upon where the 

intruder is. 

Indoor position sensing and navigation 

For a robot to associate behaviors with a place (localization) requires it to know where it is and 

to be able to navigate point-to-point. At first, autonomous navigation was based on planar 

sensors, such as laser range-finders, that can only sense at one level. The most advanced systems 

now fuse information from various sensors for both localization (position) and navigation. 

Outdoor autonomous position-sensing and navigation 

Outdoor autonomy is most easily achieved in the air, since obstacles are rare. Outdoor autonomy 

is most difficult for ground vehicles, due to:  

a) 3-dimensional terrain  
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b) Great disparities in surface density  

c) Weather exigencies and  

d) Instability of the sensed environment 

Short History of Robot: 

Remote-controlled systems 

Remotely operated vehicles were demonstrated in the late 19th Century in the form of several 
types of remotely controlled torpedoes. The early 1870s saw remotely controlled torpedoes by 
John Ericsson (pneumatic), John Louis Lay (electric wire guided), and Victor von Scheliha 
(electric wire guided). 

The Brennan torpedo, invented by Louis Brennan in 1877 was powered by two contra-rotating 
propellers that were spun by rapidly pulling out wires from drums wound inside the torpedo. 

Differential speed on the wires connected to the shore station allowed the torpedo to be 
guided to its target, making it "the world's first practical guided missile". In 1897 the British 
inventor Ernest Wilson was granted a patent for a torpedo remotely controlled by "Hertzian" 
(radio) waves and in 1898 Nikola Tesla publicly demonstrated a wireless-controlled torpedo 
that he hoped to sell to the US Navy. 

 

 

 

Figure 2: Brennan Torpedo 
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Archibald Low, known as the "father of radio guidance systems" for his pioneering work on 
guided rockets and planes during the First World War. In 1917, he demonstrated a remote 
controlled aircraft to the Royal Flying Corps and in the same year built the first wire-guided 
rocket 

 

Modern autonomous robots  

The first electronic autonomous robots with 

complex behavior were created by   William 

Grey Walter of the Burden Neurological 

Institute at Bristol, England in 1948 and 1949. 

His first robots, named Elmer and Elsie, were 

constructed between 1948 and 1949 and were 

often described as tortoises due to their shape 

and slow rate of movement. The three-wheeled 

tortoise robots were capable of photo taxis, by 

which they could find their way to a recharging    

station when they ran low on battery power.  

 

            

Figure 3: Elsie 

 
 
 
 
 

   

The first digitally operated and programmable robot was invented by George Devol in 1954 and 

was ultimately called the Unimate. This ultimately laid the foundations of the modern robotics 

industry which could lift hot pieces of metal from a die casting machine and stack them.  

The first palletizing robot was introduced in 1963 by the Fuji Yusoki Kogyo Company.
 
In 1973, 

a robot with six electromechanically driven axes was patented by KUKA robotics in Germany, 

and the programmable universal manipulation arm was invented by Victor Scheinman in 1976, 

and the design was sold to Unimation. 

Commercial and industrial robots are now in widespread use performing jobs more cheaply or 

with greater accuracy and reliability than humans. They are also employed for jobs which are too 

dirty, dangerous or dull to be suitable for humans. Robots are widely used in manufacturing, 

assembly and packing, transport, earth and space exploration, surgery, weaponry, laboratory 

research, and mass production of consumer and industrial goods. 
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Figure 4: A Modern Autonomous Robot 

 

 

Manufacturing a Robot: 
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1. At first the task of the robot is selected. The robot can perform one task only or several 
tasks. For example, the robot can be an automated hand for collecting samples. In this 
case collecting samples is the selected task. 

2. Then the path of the robot or the trajectory is selected. That is the robot will follow a 
specific path in order to complete the task.  For the above example the hand should 
move between the samples and the collecting box. The path maybe one-dimensional, 
two-dimensional or three-dimensional. 

3. A control system is then designed which will control the robot that is controlling all of its 
movements. The control system includes a computer system. The computer system 
maybe a fully fledged computer or it may be a micro-processor. 

4. Necessary sensors and tracking devices are required to sense the robot’s internal and 
external states and to track its path. 

5. The computer system and the sensors and tracking devices are then assembled together 
into a body. This will complete the construction of the robot. 

6. The robot will be able to move according to its path using the external and internal 
sensors. 

7. Some internal sensors must be used to monitor the control system e.g. battery level. 
8. If the robot does not act to the desired task, then the control system and the sensors 

will have to be revised. 

Autonomous Vehicle: 

An autonomous vehicle can be defined as a driverless vehicle or robot vehicle. An autonomous 

vehicle is a vehicle that can travel by itself. It not only fulfills transportation capabilities of a 

traditional vehicle but also can drive on its own. It has the ability of a complete autonomous 

robot. Autonomous vehicles sense their surroundings with the help of radar, GPS, or computer 

vision. It has the ability to avoid obstacles in its path and move according to the set path and 

destination. Some autonomous vehicles can update their maps based on sensory input, 

allowing the vehicles to keep track of their position even when conditions change or when they 

enter uncharted environments. 

 

Benefits of Autonomous Vehicle: 

- No human error will result in significant decrease in road accidents. 

- It will be much helpful for disabled people as there will be no need to actually drive the 

car. 

- Traffic congestion will also significantly decrease. 

- Traffic flow will be much faster and smoother. 

- Occupants of the vehicle can spend time in doing other things without driving. 
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- The vehicle will be able to drive in uncertain terrains and make the occupant know 

where it won’t be able to go. 

- Research can be done in places where it is very unsafe for human to go. 

 

Drawbacks: 

However there are several possible drawbacks which are listed below- 

- The automated vehicle might not go to places where it was possible for the vehicle to go 

in case of human driving. 

- Use of this technology must require a standard rule for the whole world, otherwise 

different rules in different countries might result in complete prohibition of the 

technology. 

- Responsibilities of the manufacturers will increase as car manufacturer will be 

responsible for any car crash. 

 

Trajectory Planning
2 

Introduction 

Trajectory is defined as the path that a moving object follows through space as a function of 

time. Trajectory planning can be defined as the planning of the trajectory that the object will 

follow. This will include setting up the start and end points as well as designing the path that the 

object will follow. 

Criteria for Trajectories: 

• Efficient - easy to compute and execute 

• Predictable and accurate - should not degenerate near a singularity 

• Position, Velocity and Acceleration should be smooth functions of time 

• The output of the trajectory planner is a sequence of arm configurations (either in joint or 

Cartesian space) that form the input to the feedback control system of the robot arm. 

While this problem seems fairly straight forward at first glance, it is not. Complications include: 

• Hand rotation also needs to be planned and controlled (e.g. last 3 joints of a 6-axis robot like a 

puma) 

                                                           
2
  The trajectory planning segment is taken from reference 13 and not an outcome of our project 
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• Trajectory planning is often kinematic analysis only; the actual dynamics of the robot 

(acceleration of the link mass, friction, gravity, gear backlash etc are ignored.

 
Figure 5: Trajectory planning of a robot 

 

 

 

Ways of Planning a Trajectory: 

Trajectory planning can be done by several methods. Trajectory planning can be done using- 

1. Joint space 

2. Cartesian space  

3. Polynomial interpolation etc. 

Procedures of Trajectory Planning: 

Typically trajectory planning includes the following procedures- 

1. Defining Cartesian pose points (position+ orientation) 

2. Programming a velocity (average) between these points as 0-100%, 100% being the 

maximum system value. 

3. Linear interpolation in the joint space between points samples from the built 

trajectory. 

 

Path Planning 

Path planning is a purely geometric matter, since it implies the generation of a geometric path 

without a specified time law, while the trajectory planning assigns time to the geometric path.  
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Path planning is one of the most interesting topics of advanced robotics. The challenge of path 

planning for a mobile system is to find a collision free motion between the initial and final 

position. The easiest method is to plan the path in a known and in a static environment.  

There are three most important approaches to path planning: road-map, cell decomposition and 

potential field 

The road-map approach is based on the capture of the free space connectivity on a system of 1-

dimensional curves (road-map) in the C-free space or in its closure. The so-built road-map is 

used as a set of standardized paths. The path planning is then reduced to linking the initial and 

final configurations to, with the aim to find a path in between the two configurations. 

The cell decomposition methods divide the free space of the robot in regions, called cells, so that 

it is possible to easily create a path between any two configurations of the same cell. Afterwards 

a connectivity graph is constructed, which represents the adjacency relations between cells. 

A different approach consists of the discretization of the C-space in a dense and regular grid of 

configurations, finding a free path. As the grid is generally very wide, this approach requires 

very powerful heuristics used in the path research. An alternative approach that has achieved 

remarkable results in extremely complex problems is the probabilistic roadmap planners (PRMs). 

It is a methodology that uses probabilistic techniques (random sampling) to construct the 

roadmap. The great advantage of PRM is that their complexity depends more on the path 

complexity rather than the complexity of the environment and the size of the configurations 

space. 

Trajectory Planning 

The target of the trajectory planning is to generate the reference inputs for the manipulator 

control system that ensures the implementation of the desired movement. It can be assumed that 

a trajectory planning algorithm takes as inputs the geometric path, the kinematic and dynamic 

constraints of the manipulator; the output is the trajectory of the joints, or of the end-effector, 

expressed as a sequence of values of position, velocity and acceleration. 

The geometric path is usually specified in the operative space, since both the task to perform and 

the obstacles to avoid can be more naturally described in this space. The trajectory planning in 

the operative space consists to generate a time sequence of values (within the constraints 

imposed) that specify the position and orientation of the end-effector. This solution is adopted 

when the movement is on a path with geometric characteristics defined in the operative space; 

the path can be specified exactly by primitive path or in an approximated way by the allocation 

of path points that are usually connected with polynomial sequences. Anyway, since the control 

action on the manipulator is made on the joints, a kinematic inversion is necessary in order to 

derive the evolution of variables in the joint space. 

A trajectory planned in the joint space consists in the acquisition of the values, for each joint of 

the manipulator, corresponding to the via-points set by the user. The trajectories defined in the 

joint space are generated by means of interpolation functions which respect the limits imposed. 
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This planning solution can also easily avoid the problems involved in moving near singular 

configurations and the possible presence of redundant degrees of mobility.  

The main drawback is related to the fact that the execution of a movement planned in the joint 

space is not so easy to predict in the operative space, due to the nonlinear effects introduced by 

the direct kinematics. Regardless of the particular strategy adopted, it is essential that the laws of 

motion generated in the planning phase are such as induce forces and torques at the joints 

compatible with the given constraints, hence reducing the possibility to excite mechanical 

resonance modes, that are most often not modeled. Starting from this fundamental consideration, 

it is necessary that the planning algorithms output smooth trajectories, i.e. trajectories with a high 

order of continuity. 

 In the scientific literature on the trajectory planning problem it is possible to find different 

optimality criteria; the most significant are: 

• Minimum execution time; 

• Minimum energy (or actuator effort); 

• Minimum jerk. 

 

Kinematics of Trajectory Planning: 
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We can design the trajectory of a robot by dividing the path into very small parts e.g. P1, P2, P3 

etc. P1 has the starting point coordinates x0 and F(x0) and end points x1 and F(x1). Similarly for P2 

we get the points x1, F(x1) and x2, F(x2). In this way we can obtain a number of paths P1, P2, P3 

etc. By adding the paths we can obtain the whole path. The accuracy of the path depends on the 

number of divisions of the path. 

 

Vehicle Kinematics Analysis 

Under the basic assumptions of planar motion, rigid body and non-slippage of tire, the large size 

vehicle with four steering wheels as shown in figure 1 can be approximated using a bicycle 

model. To describe the vehicle motion a global co-ordinate X-Y is fixed on the horizontal plane 

on which the vehicle moves. 

Reference point C is chosen at the center of gravity of the vehicle body. Its coordinates (X,Y) 

represents the position of the vehicle; Vehicle velocity v is defined at the reference point C; 

Heading angle Ψ is the angle from the X-axis to the longitudinal axis of the vehicle body AB; 

Course angle ϒ s the angle from the X-axis to the direction  of the vehicle velocity, v; Slip-side 

Angle β is the angle from the longitudinal axis of the vehicle body AB to the direction of vehicle 

velocity, v; Turning radius r is the distance between  the reference point C and the Instant 

Rotating Center (IRC) O; Front Wheel Velocity  Vf is the velocity defined at the intersection of 

the mid-plane of the virtual front wheel and the velocity defined at the intersection of the mid-

plane of the virtual front wheel and the front wheel axle, A; Rear Wheel Velocity vr is the 

velocity defined at the intersection of the mid plane of the virtual rear wheel and the rear wheel 

axle, B; Front wheel steering angle δf is the angle from the longitudinal axis of the vehicle body 

AB to the direction of vf Rear wheel steering angle δr is the angle from the longitudinal axis of 

the vehicle body AB to the direction of vr. 

Referring to figure 2, the kinematic model of 4WS vehicles can be expressed as follows 

                    (1-1) 

                    (1-2) 

    
                

     
      (1-3) 

 

Where 
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Β= arc tan
               

     
     (1-4) 

And 

V= 
               

     
      (1-5) 

 

Communication Mediums of Autonomous Car: 

An autonomous car communicates using different techniques. Most common are- 

- GPS 

- Radar 

- Computer Vision etc. 

For our communication system we used GPS.  

 

GPS: 

The Global Positioning System (GPS) is a space-based satellite navigation system that provides 

location and time information in all weather conditions, anywhere on or near the Earth where 

there is an unobstructed line of sight to four or more GPS satellites. 

The GPS project was developed in 1973 to overcome the limitations of previous navigation 

systems, integrating ideas from several predecessors, including a number of classified 

engineering design studies from the 1960s. GPS was created and realized by the U.S. 

Department of Defense (DoD) and was originally run with 24 satellites. It became fully 

operational in 1995. Advances in technology and new demands on the existing system have 

now led to efforts to modernize the GPS system and implement the next generation of GPS III 

satellites and Next Generation Operational Control System (OCX). 

Basic concept of GPS 

A GPS receiver calculates its position by precisely timing the signals sent by GPS satellites high 

above the Earth. Each satellite continually transmits messages that include: 

 the time the message was transmitted and, 
 satellite position at time of message transmission. 
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The receiver uses the messages it receives to determine the transit time of each message and 

computes the distance to each satellite using the speed of light. Each of these distances and 

satellites' locations defines a sphere. The receiver is on the surface of each of these spheres when 

the distances and the satellites' locations are correct. These distances and satellites' locations are 

used to compute the location of the receiver using the navigation equations. This location is then 

displayed, perhaps with a moving map display or latitude and longitude; elevation or altitude 

information may be included, based on height above the geode. 

 

 

 

Figure 6: A typical GPS receiver with integrated antenna 

 

In typical GPS operation, four or more satellites must be visible to obtain an accurate result. Four 

sphere surfaces typically do not intersect. Because of this, it can be said with confidence that 

when the navigation equations are solved to find an intersection, this solution gives the position 

of the receiver along with the difference between the time kept by the receiver's on-board clock 

and the true time-of-day. 

Figure 6: GPS Block II-F 
satellite in Earth orbit 
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GPS Tracking: 

A GPS tracking unit is a device that uses the Global Positioning System to determine the 

precise location of a vehicle, person, or other asset to which it is attached and to record the 

position of the asset at regular intervals. The recorded location data can be stored within the 

tracking unit, or it may be transmitted to a central location data base, or internet-connected 

computer, using a cellular (GPRS or SMS), radio, or satellite modem embedded in the unit. This 

allows the asset's location to be displayed against a map backdrop either in real time or when 

analyzing the track later, using GPS tracking software. 

 

Architecture of a GPS Tracker: 

A GPS tracker essentially contains GPS module to receive the GPS signal and calculate the 

coordinates. For data loggers it contains large memory to store the coordinates, data pushers 

additionally contains the GSM/GPRS modem to transmit this information to a central computer 

either via SMS or via GPRS in form of IP packets. 

 

Figure 7: Architecture of a GPS tracker 
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Types of GPS trackers 

Usually, a GPS tracker will fall into one of these three categories. 

Data loggers 

A GPS logger simply logs the position of the device at regular intervals in its internal memory. 

Modern GPS loggers have either a memory card slot, or internal flash memory and a USB port. 

Some act as a USB flash drive. This allows downloading of the track log data for further 

analyzing in a computer. 

 

Figure 8: Typical data logger 

 

Data pushers 

Data pusher is the most common type of GPS tracking unit, used for asset tracking, personal 

tracking and Vehicle tracking system. 

Also known as a GPS beacon, this kind of device pushes or sends the position of the device as 

well as other information like speed or altitude at regular intervals, to a determined server that 

can store and instantly analyze the data. 

A GPS navigation device and a mobile phone sit side-by-side in the same box, powered by the 

same battery. At regular intervals, the phone sends a text message via SMS or GPRS, containing 

the data from the GPS receiver. 

Most 21st-century GPS trackers provide data "push" technology, enabling sophisticated GPS 

tracking in business environments, specifically organizations that employ a mobile workforce, 

such as a commercial fleet. Typical GPS tracking systems used in commercial fleet management 

have two core parts: location hardware (or tracking device) and tracking software. This 

combination is often referred to as an “Automatic Vehicle Location” system. The tracking device 

is most often hardware installed in the vehicle. 
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Data pullers 

GPS data pullers are also known as GPS transponders. Contrary to data pushers, that send the 

position of the devices at regular intervals (push technology), these devices are always-on and 

can be queried as often as required (pull technology). This technology is not in widespread use, 

but an example of this kind of device is a computer connected to the Internet and running gpsd. 

These can often be used in the case where the location of the tracker will only need to be known 

occasionally e.g. placed in property that may be stolen, or that does not have constant source of 

energy to send data on a regular basis, like freights or containers. 

Data Pullers are coming into more common usage in the form of devices containing a GPS 

receiver and a cell phone which, when sent a special SMS message reply to the message with 

their location. 

GPS Technique: 

The GPS position of an object can be found by the following technique. 

 

At least four GPS satellites are needed to determine one object’s location. Data from four 

GPS satellites intersect at one point to determine the objects location. The more the 

satellites are used, the more accurate position can be found.  
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GPS Tracking Method: 

A GPS tracking system uses the Global Navigation Satellite System (GNSS) network. This 

network incorporates a range of satellites that use microwave signals that are transmitted to GPS 

devices to give information on location, vehicle speed, time and direction. So, a GPS tracking 

system can potentially give both real-time and historic navigation data on any kind of journey.  

 The method is given below: 

1. GPS provides special satellite signals, which are processed by a receiver. 

2. These GPS receivers not only track the exact location but can also compute velocity and 

time. The positions can even be computed in three-dimensional views with the help of 

four GPS satellite signals. The Space Segment of the Global Positioning System consists 

of 27 Earth-orbiting GPS satellites. There are 24 operational and 3 extra (in case one 

fails) satellites that move round the Earth each 12 hours and send radio signals from 

space that are received by the GPS receiver.  

  

3. The control of the Positioning System consists of different tracking stations that are 

located across the globe. These monitoring stations help in tracking signals from the GPS 

satellites that are continuously orbiting the earth.  

4. Space vehicles transmit microwave carrier signals.  

5. The users of Global Positioning Systems have GPS receivers that convert these satellite 

signals so that one can estimate the actual position, velocity and time.  
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GPS Tracking Method of a Robot: 

The GPS tracking method of a robot can be described by the following diagram: 
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1. The user provides a GPS coordinate to the robot. 

2. The robot reads the GPS coordinate and moves to the specified location. 

3. It then reads the GPS coordinate of its present point. 

4. If the robot reads the coordinate as the end point it stops. 

5. Otherwise it adjusts its speed and wheel direction and moves to the next coordinate. 

This process is done over and over again until the robot reaches its destination. This is a very 

effective way of tracking the path that it follows. 

Microprocessor: 
A microprocessor is a device that works as a computer’s central processing (CPU) unit but is 

constructed on a single integrated circuit (IC) or sometimes on a few integrated circuits. The 

microprocessor is a multipurpose, programmable device that accepts digital data as input, 

processes it according to instructions stored in its memory, and provides results as output. It is 

an example of sequential digital logic, as it has internal memory. Microprocessors operate on 

numbers and symbols represented in the binary numeral system. 

Advantages of Using a Microprocessor over a whole CPU: 

- Reduces cost 

- Reduces power consumption 

- Reduces size 

- Decreases electrical connections thus making more reliable 

- Less prone to damage 

- Can be used in very small devices 

- Reduces computer size 

Before microprocessors, small computers had been implemented using racks of circuit boards 

with many medium and small scale integrated circuits. Microprocessors integrated this into one 

or a few large-scale ICs. Continued increases in microprocessor capacity have since rendered 

other forms of computers almost completely obsolete. 

Structure: 

The internal structure of a microprocessor varies depending upon the intended purpose. A 

minimal microprocessor might only include an arithmetic logic unit (ALU) and a control logic 

section. The ALU performs operations such as addition, subtraction, and operations such as 

AND or OR. The logic section retrieves instruction operation codes from memory, and initiates 

whatever sequence of operations of the ALU requires carrying out the instruction. A single 

operation code might affect many individual data paths, registers, and other elements of the 
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processor. However design of a practical microprocessor is much more complex. For example 

the internal structure of the Arduino mega microprocessor is shown in the diagram below. 

 

Figure 9: Internal structure of the Arduino mega 

Classification of Microprocessor: 

 

 

Microprocessors 

General Purpose  

GPP Proper Microcontrollers 

Specific Purpose 

Digital Signal 
Processors 

Applicaiton 
Specific IC   

Application 
Specific 

Instruction set 
Processor 
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Some Microprocessors Used in Small Robots: 

1. Arduino UNO 

2. Arduino Duemilanove 

3. Arduino Nano 

4. Arduino Mega 

5. Arduino Mega 2560 

6. Arduino Pro Mini 328 

7. Lynx motion Mini Atom 

8. DFRobot Romeo etc. 

 

Microcontroller 

A microcontroller is a small computer on a single integrated circuit containing a processor core, 

memory and programmable input/output peripherals. Program memory in the form of NOR flash 

or OTP TOM is also often included on chip, as well as a typically small amount of RAM. 

Microcontrollers are designed for embedded applications. 

Some microcontrollers may use four-bit words and operate at clock rate frequencies as low as 4 

kHz, for low power consumption (single-digit mill watts or microwatts). They will generally 

have the ability to retain functionality while waiting for an event such as a button press or other 

interrupt; power consumption while sleeping (CPU clock and most peripherals off) may be just 

Nano watts, making many of them well suited for long lasting battery applications. Other 

microcontrollers may serve performance-critical roles, where they may need to act more like a 

digital signal processor (DSP), with higher clock speeds and power consumption. 

 

Figure: AT mega 32 bit and 8 bit microcontroller 

Features 

http://en.wikipedia.org/wiki/Clock_rate
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 A true computer on a chip 

 It can function as complete system without any external component 

 Flexibility 

 Embedded applications 

 Application software is ROM-based 

 On-chip Oscillator 

 On-chip RAM of limited size 

 On-chip ROM of limited size 

 On-chip Input output ports 

 Serial port is also built in 

 Timer counter is also on-chip 

History 

The first microprocessor was the 4-bit Intel 4004 released in 1971, with the Intel 8008 and other 

more capable microprocessors becoming available over the next several years. However, both 

processors required external chips to implement a working system. The Smithsonian Institution 

says TI engineers Gary Boone and Michael Cochran succeeded in creating the first 

microcontroller in 1971. The result of their work was the TMS 1000, which became 

commercially available in 1974. It combined read-only memory, read/write memory, processor 

and clock on one chip and was targeted at embedded systems.  

Partly in response to the existence of the single-chip TMS 1000, Intel developed a computer 

system on a chip optimized for control applications, the Intel 8048, with commercial parts first 

shipping in 1977. It combined RAM and ROM on the same chip. This chip would find its way 

into over one billion PC keyboards, and other numerous applications. 

Most microcontrollers at this time had two variants. One had an erasable EPROM program 

memory, with a transparent quartz window in the lid of the package to allow it to be erased by 

exposure to ultraviolet light. The other was a PROM variant which was only programmable 

once. 

In 1993, the introduction of EEPROM memory allowed microcontrollers (beginning with the 

Microchip PIC16x84) to be electrically erased quickly without an expensive package as required 

for EPROM, allowing both rapid prototyping, and In System Programming. (EEPROM 

technology had been available prior to this time, but the earlier EEPROM was more expensive 

and less durable, making it unsuitable for low-cost mass-produced microcontrollers.) The same 

year, Atmel introduced the first microcontroller using Flash memory, a special type of 

EEPROM. Other companies rapidly followed suit, with both memory types. 

Embedded Design 

http://en.wikipedia.org/wiki/Intel_4004
http://en.wikipedia.org/wiki/Intel_8008
http://en.wikipedia.org/wiki/Smithsonian_Institution
http://en.wikipedia.org/wiki/Texas_Instruments
http://en.wikipedia.org/wiki/TMS_1000
http://en.wikipedia.org/wiki/Intel_8048
http://en.wikipedia.org/wiki/Random_access_memory
http://en.wikipedia.org/wiki/Read_only_memory
http://en.wikipedia.org/wiki/EPROM
http://en.wikipedia.org/wiki/Ultraviolet
http://en.wikipedia.org/wiki/Programmable_read-only_memory
http://en.wikipedia.org/wiki/EEPROM
http://en.wikipedia.org/wiki/PIC16x84
http://en.wikipedia.org/wiki/EPROM
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http://en.wikipedia.org/wiki/Flash_memory
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A micro controller is a self-contained system with a processor, memory and other peripherals 

which can be used as an embedded system. Although embedded systems are sophisticated, they 

require minimal memory and program length, which make them easier platform to work with. 

Typical input output device s such as switch, relay, leds, LCD display, radio frequency devices 

can be used. 

Microcontrollers are capable of providing real time response to events in the embedded system 

they are working. When a certain event occur, an interrupt system can signal the processor to 

suspend processing the current instruction sequence and to begin an interrupt service routine 

(ISR, or "interrupt handler"). The ISR will perform any processing required based on the source 

of the interrupt, before returning to the original instruction sequence. Possible interrupt sources 

are device dependent, and often include events such as an internal timer overflow, completing an 

analog to digital conversion. 

Interrupts 

Micro controllers must provide real time (predictable, though not necessarily fast) response to 

events in the embedded system they are controlling. When certain events occur, an interrupt 

system can signal the processor to suspend processing the current instruction sequence and to 

begin an interrupt service routine (ISR, or "interrupt handler"). The ISR will perform any 

processing required based on the source of the interrupt, before returning to the original 

instruction sequence. Possible interrupt sources are device dependent, and often include events 

such as an internal timer overflow, completing an analog to digital conversion, a logic level 

change on an input such as from a button being pressed, and data received on a communication 

link. Where power consumption is important as in battery operated devices, interrupts may also 

wake a microcontroller from a low power sleep state where the processor is halted until required 

to do something by a peripheral event. 

 

 

The Structure of an interrupt is given below: 

 Used for real time application 

 Marking feature 

 Enabling Interrupt and disabling interrupt 

 Switching (context) 

 Vectored interrupt 

 Priority 

Interrupt latency 

http://en.wikipedia.org/wiki/Interrupt_service_routine
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Interrupt_service_routine
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In contrast to general-purpose computers, microcontrollers used in embedded systems often seek 

to optimize interrupt latency over instruction throughput. Issues include both reducing the 

latency, and making it be more predictable (to support real-time control). 

When an electronic device causes an interrupt, the intermediate results (registers) have to be 

saved before the software responsible for handling the interrupt can run. They must also be 

restored after that software is finished. If there are more registers, this saving and restoring 

process takes more time, increasing the latency. Ways to reduce such context/restore latency 

include having relatively few registers in their central processing units (undesirable because it 

slows down most non-interrupt processing substantially), or at least having the hardware not save 

them all (this fails if the software then needs to compensate by saving the rest "manually"). 

Another technique involves spending silicon gates on "shadow registers": One or more duplicate 

registers used only by the interrupt software, perhaps supporting a dedicated stack. 

Other factors affecting interrupt latency include: 

 Cycles needed to complete current CPU activities. To minimize those costs, 

microcontrollers tend to have short pipelines (often three instructions or less), small write 

buffers, and ensure that longer instructions are continual or restartable. Reduced 

instruction set computing/RISC design principles ensure that most instructions take the 

same number of cycles, helping avoid the need for most such continuation/restart logic. 

 The length of any critical section that needs to be interrupted. Entry to a critical section 

restricts concurrent data structure access. When a data structure must be accessed by an 

interrupt handler, the critical section must block that interrupt. Accordingly, interrupt 

latency is increased by however long that interrupt is blocked. When there are hard 

external constraints on system latency, developers often need tools to measure interrupt 

latencies and track down which critical sections cause slowdowns.  

o One common technique just blocks all interrupts for the duration of the critical 

section. This is easy to implement, but sometimes critical sections get 

uncomfortably long. 

o A more complex technique just blocks the interrupts that may trigger access to 

that data structure. This is often based on interrupt priorities, which tend to not 

correspond well to the relevant system data structures. Accordingly, this 

technique is used mostly in very constrained environments. 

o Processors may have hardware support for some critical sections. Examples 

include supporting atomic access to bits or bytes within a word, or other atomic 

access primitives like the Load-link/store-conditional/LDREX/STREX exclusive 

access primitives introduced in the ARMv6 architecture. 

 Interrupt nesting. Some microcontrollers allow higher priority interrupts to interrupt 

lower priority ones. This allows software to manage latency by giving time-critical 

interrupts higher priority (and thus lower and more predictable latency) than less-critical 

ones. 

 Trigger rate. When interrupts occur back-to-back, microcontrollers may avoid an extra 

context save/restore cycle by a form of tail call optimization. 

http://en.wikipedia.org/wiki/Interrupt_latency
http://en.wikipedia.org/w/index.php?title=Reduced_instruction_set_computing/RISC&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Reduced_instruction_set_computing/RISC&action=edit&redlink=1
http://en.wikipedia.org/wiki/Critical_section
http://en.wikipedia.org/w/index.php?title=Load-link/store-conditional/LDREX/STREX&action=edit&redlink=1
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/Tail_call
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Lower end microcontrollers tend to support fewer interrupt latency controls than higher end 

ones. 

Program 

A typical microcontroller program must fit in the available on-chip program memory, as it is 

costly to provide a system with external and expandable memory. Compilers and assemblers 

convert high-level language and assembly language codes into a compact machine code the 

microcontroller's memory. Depending on the device, the program memory may be permanent, 

read-only memory that can only be programmed at the factory, or program memory that may be 

field-alterable flash or erasable read-only memory. 

There are other versions available where the ROM is accessed as an external device rather than 

as internal memory, however these are becoming increasingly rare due to the widespread 

availability of cheap microcontroller programmers. 

A customizable microcontroller incorporates a block of digital logic that can be personalized in 

order to provide additional processing capability, peripherals and interfaces that are adapted to 

the requirements of the application. For example, the AT91CAP from Atmel has a block of logic 

that can be customized during manufacture according to user requirements. 

 

 

Other microcontroller features 

Microcontrollers usually contain from several to dozens of general purpose input/output pins 

(GPIO). GPIO pins are software configurable to either an input or an output state. When GPIO 

pins are configured to an input state, they are often used to read sensors or external signals. 

Configured to the output state, GPIO pins can drive external devices such as LEDs or motors. 

Many embedded systems need to read sensors that produce analog signals. This is the purpose of 

the analog-to-digital converter (ADC). Since processors are built to interpret and process digital 

data, i.e. 1s and 0s, they are not able to do anything with the analog signals that may be sent to it 

by a device. So the analog to digital converter is used to convert the incoming data into a form 

that the processor can recognize. A less common feature on some microcontrollers is a digital-to-

analog converter (DAC) that allows the processor to output analog signals or voltage levels. 

In addition to the converters, many embedded microprocessors include a variety of timers as 

well. One of the most common types of timers is the Programmable Interval Timer (PIT). A PIT 

may either count down from some value to zero, or up to the capacity of the count register, 

overflowing to zero. Once it reaches zero, it sends an interrupt to the processor indicating that it 

has finished counting. This is useful for devices such as thermostats, which periodically test the 

temperature around them to see if they need to turn the air conditioner on, the heater on, etc. 

http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/Peripherals
http://en.wikipedia.org/wiki/Interface_%28computer_science%29
http://en.wikipedia.org/wiki/AT91CAP
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Programmable_Interval_Timer
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A dedicated Pulse Width Modulation (PWM) block makes it possible for the CPU to control 

power converters, resistive loads, motors, etc., without using lots of CPU resources in tight timer 

loops. 

A micro-controller is a single integrated circuit, commonly with the following features: 

 central processing unit - ranging from small and simple 4-bit processors to complex 32- 

or 64-bit processors 

 volatile memory (RAM) for data storage 

 ROM, EPROM, EEPROM or Flash memory for program and operating parameter 

storage 

 discrete input and output bits, allowing control or detection of the logic state of an 

individual package pin 

 serial input/output such as serial ports (UARTs) 

 other serial communications interfaces like I²C, Serial Peripheral Interface and Controller 

Area Network for system interconnect 

 peripherals such as timers, event counters, PWM generators, and watchdog 

 clock generator - often an oscillator for a quartz timing crystal, resonator or RC circuit 

 many include analog-to-digital converters, some include digital-to-analog converters 

 in-circuit programming and debugging support 

This integration drastically reduces the number of chips and the amount of wiring and circuit 

board space that would be needed to produce equivalent systems using separate chips. 

Furthermore, on low pin count devices in particular, each pin may interface to several internal 

peripherals, with the pin function selected by software. This allows a part to be used in a wider 

variety of applications than if pins had dedicated functions. 

Micro-controllers have proved to be highly popular in embedded systems since their introduction 

in the 1970s. 

Some microcontrollers use a Harvard architecture: separate memory buses for instructions and 

data, allowing accesses to take place concurrently. Where a Harvard architecture is used, 

instruction words for the processor may be a different bit size than the length of internal memory 

and registers; for example: 12-bit instructions used with 8-bit data registers. 

The decision of which peripheral to integrate is often difficult. The microcontroller vendors often 

trade operating frequencies and system design flexibility against time-to-market requirements 

from their customers and overall lower system cost. Manufacturers have to balance the need to 

minimize the chip size against additional functionality. 

Microcontroller architectures vary widely. Some designs include general-purpose 

microprocessor cores, with one or more ROM, RAM, or I/O functions integrated onto the 

package. Other designs are purpose built for control applications. A micro-controller instruction 

set usually has many instructions intended for bit-wise operations to make control programs 

more compact.
[9]

 For example, a general purpose processor might require several instructions to 
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test a bit in a register and branch if the bit is set, where a micro-controller could have a single 

instruction to provide that commonly required function. 

Microcontrollers typically do not have a math coprocessor, so floating point arithmetic is 

performed by software. 

Programming environments 

Microcontrollers were originally programmed only in assembly language, but various high-level 

programming languages are now also in common use to target microcontrollers. These languages 

are either designed specially for the purpose, or versions of general purpose languages such as 

the C programming language. Compilers for general purpose languages will typically have some 

restrictions as well as enhancements to better support the unique characteristics of 

microcontrollers. Some microcontrollers have environments to aid developing certain types of 

applications. Microcontroller vendors often make tools freely available to make it easier to adopt 

their hardware. 

Many microcontrollers are so quirky that they effectively require their own non-standard dialects 

of C, such as SDCC for the 8051, which prevent using standard tools (such as code libraries or 

static analysis tools) even for code unrelated to hardware features. Interpreters are often used to 

hide such low level quirks. 

Interpreter firmware is also available for some microcontrollers. For example, BASIC on the 

early microcontrollers Intel 8052;
[10]

 BASIC and FORTH on the Zilog Z8
[11]

 as well as some 

modern devices. Typically these interpreters support interactive programming. 

Simulators are available for some microcontrollers. These allow a developer to analyze what the 

behavior of the microcontroller and their program should be if they were using the actual part. A 

simulator will show the internal processor state and also that of the outputs, as well as allowing 

input signals to be generated. While on the one hand most simulators will be limited from being 

unable to simulate much other hardware in a system, they can exercise conditions that may 

otherwise be hard to reproduce at will in the physical implementation, and can be the quickest 

way to debug and analyze problems. 

Recent microcontrollers are often integrated with on-chip debug circuitry that when accessed by 

an in-circuit emulator via JTAG, allow debugging of the firmware with a debugger. 

As of 2008 there are several dozen microcontroller architectures and vendors including: 

 ARM core processors (many vendors)  

o ARM Cortex-M cores are specifically targeted towards microcontroller 

applications 

 Atmel AVR (8-bit), AVR32 (32-bit), and AT91SAM (32-bit) 

 Cypress Semiconductor's M8C Core used in their PSoC (Programmable System-on-Chip) 

 Freescale ColdFire (32-bit) and S08 (8-bit) 

 Freescale 68HC11 (8-bit) 
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 Intel 8051 

 Infineon: 8-bit XC800, 16-bit XE166, 32-bit XMC4000 (ARM based Cortex M4F), 32-

bit TriCore and, 32-bit Aurix Tricore Bit microcontrollers
[12]

 

 MIPS 

 Microchip Technology PIC, (8-bit PIC16, PIC18, 16-bit dsPIC33 / PIC24), (32-bit 

PIC32) 

 NXP Semiconductors LPC1000, LPC2000, LPC3000, LPC4000 (32-bit), LPC900, 

LPC700 (8-bit) 

 Parallax Propeller 

 PowerPC ISE 

 Rabbit 2000 (8-bit) 

 Renesas Electronics: RL78 16-bit MCU; RX 32-bit MCU; SuperH; V850 32-bit MCU; 

H8; R8C 16-bit MCU 

 Silicon Laboratories Pipelined 8-bit 8051 Microcontrollers and mixed-signal ARM-based 

32-bit microcontrollers 

 STMicroelectronics STM8 (8-bit), ST10 (16-bit) and STM32 (32-bit) 

 Texas Instruments TI MSP430 (16-bit) C2000 (32-bit) 

 Toshiba TLCS-870 (8-bit/16-bit). 

Many others exist, some of which are used in very narrow range of applications or are more like 

applications processors than microcontrollers. The microcontroller market is extremely 

fragmented, with numerous vendors, technologies, and markets. Note that many vendors sell or 

have sold multiple architectures. 

 

Microcontroller embedded memory technology 

Since the emergence of microcontrollers, many different memory technologies have been used. 

Almost all microcontrollers have at least two different kinds of memory, a non-volatile memory 

for storing firmware and a read-write memory for temporary data. 

Data 

From the earliest microcontrollers to today, six-transistor SRAM is almost always used as the 

read/write working memory, with a few more transistors per bit used in the register file. FRAM 

or MRAM could potentially replace it as it is 4 to 10 times denser which would make it more 

cost effective. 

In addition to the SRAM, some microcontrollers also have internal EEPROM for data storage; 

and even ones that do not have any (or not enough) are often connected to external serial 

EEPROM chip (such as the BASIC Stamp) or external serial flash memory chip. 

A few recent microcontrollers beginning in 2003 have "self-programmable" flash memory.
[3]

 

Firmware 
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The earliest microcontrollers used mask ROM to store firmware. Later microcontrollers (such as 

the early versions of the Freescale 68HC11 and early PIC microcontrollers) had quartz windows 

that allowed ultraviolet light in to erase the EPROM. 

The Microchip PIC16C84, introduced in 1993,
[13]

 was the first microcontroller to use EEPROM 

to store firmware. In the same year, Atmel introduced the first microcontroller using NOR Flash 

memory to store firmware.
[3]

 

Arduino Mega 2560
3
 

Arduino Mega is a microcontroller board based on the ATmega2560. It has 54 digital I/O pins 

(14 of them are PWM outputs), 16 analog inputs, a 16 MHz oscillator, a USB connection and a 

Power jack. Arduino Mega 2560 can be powered by connecting it to a laptop via a USB cable or 

by powering it with a battery. 

 

                     Figure: Front Side of Arduino Mega 2560 

                                                           
3
  Descriptions and specifications of Arduino and Atmega are taken from reference 32 
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                     Figure: Back Side of Arduino Mega 2560 

 

Specification: 

Microcontroller ATmega2560 

Operating Voltage 5V 

Input Voltage (recommended) 7-12V 

Input Voltage (limits) 6-20V 

Digital I/O Pins 54 (of which 15 provide PWM output) 

Analog Input Pins 16 

DC Current per I/O Pin 40 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 256 KB of which 8 KB used by boot loader 

SRAM 8 KB 

EEPROM 4 KB 

Clock Speed 16 MHz 
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AT Mega 2560: 

The microcontroller that is used in the Arduino 2560 is the AT Mega 2560. It is a small, 

compact, high-performance and low power microcontroller used to make small robots. 

Specifications: 

- 8-bit AVR RISC-based microcontroller 

- 256KB ISP flash memory 

- 8KB SRAM 

-  4KB EEPROM 

- 86 general purpose I/O lines 

- 32 general purpose working registers 

- Real-time counter 

- Six flexible timer/counters with compare modes 

- PWM 

- 4 USARTs 

- Byte oriented 2-wire serial interface 

- 16-channel 10-bit A/D converter 

-  JTAG interface for on-chip debugging 

- 16 MIPS at 16 MHz 

- Operates between 4.5-5.5 volts. 

 
Figure: ATMega2560 microcontroller 

 

Power 

Arduino Mega 2560 can be powered using an external power supply or via the USB connection. 

The external power source can either be selected from an AC to DC adapter or battery. The 

board has 5 power pins which can supply power as well: 

 VIN – The input voltage to the Arduino board when it’s using an external power source 

The power can be supplied by a pin or through the power jack. 
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 5V – This pin outputs a regulated 5V from the regulator on the board. The board can be 

supplied with power either from the DC power jack (7 - 12V), the USB connector (5V), or 

the VIN pin of the board (7-12V). 

 3V3 - A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 

50 mA. 

 GND -  Ground Pins 

 

 

Memory 

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for the 

boot loader), 8 KB of SRAM and 4 KB of EEPROM 

Input and Output 

All 54 digital pins on the Mega can be used as an input or output, using the pinMode(), 

digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can supply or 

receive a maximum of 40 m. Besides some pins have specialized functions: 

 Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 

(TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX) TTL 

serial data. Pins 0 and 1 are also connected to the corresponding pins of the 

ATmega16U2 USB-to-TTL Serial chip.  

 External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 

4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be configured to trigger an 

interrupt on a low value, a rising or falling edge, or a change in value. See the 

attachInterrupt() function for details.  

 PWM: 2 to 13 and 44 to 46. Provide 8-bit PWM output with the analogWrite() function.  

 SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI 

communication using the SPI library. The SPI pins are also broken out on the ICSP 

header, which is physically compatible with the Uno, Duemilanove and Diecimila.  

 LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH 

value, the LED is on, when the pin is LOW, it's off.  

 TWI: 20 (SDA) and 21 (SCL). Support TWI communication using the Wire library. 

Note that these pins are not in the same location as the TWI pins on the Duemilanove or 

Diecimila.  

The Mega2560 has 16 analog inputs, each of which provides 10 bits of resolution. 

http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/AttachInterrupt
http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/Wire
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  Figure: Arduino Mega 2560 Pin description 

The PIN mapping of Arduino Mega 2560 is given below: 

Arduino Mega 2560 PIN mapping table  

Pin Number Pin Name Mapped Pin Name 

1 PG5 ( OC0B ) Digital pin 4 (PWM) 

2 PE0 ( RXD0/PCINT8 ) Digital pin 0 (RX0) 

3 PE1 ( TXD0 ) Digital pin 1 (TX0) 

4 PE2 ( XCK0/AIN0 )   

5 PE3 ( OC3A/AIN1 ) Digital pin 5 (PWM) 

6 PE4 ( OC3B/INT4 ) Digital pin 2 (PWM) 

7 PE5 ( OC3C/INT5 ) Digital pin 3 (PWM) 

8 PE6 ( T3/INT6 )   

9 PE7 ( CLKO/ICP3/INT7 )   

10 VCC VCC 

11 GND GND 
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12 PH0 ( RXD2 ) Digital pin 17 (RX2) 

13 PH1 ( TXD2 ) Digital pin 16 (TX2) 

14 PH2 ( XCK2 )   

15 PH3 ( OC4A ) Digital pin 6 (PWM) 

16 PH4 ( OC4B ) Digital pin 7 (PWM) 

17 PH5 ( OC4C ) Digital pin 8 (PWM) 

18 PH6 ( OC2B ) Digital pin 9 (PWM) 

19 PB0 ( SS/PCINT0 ) Digital pin 53 (SS) 

20 PB1 ( SCK/PCINT1 ) Digital pin 52 (SCK) 

21 PB2 ( MOSI/PCINT2 ) Digital pin 51 (MOSI) 

22 PB3 ( MISO/PCINT3 ) Digital pin 50 (MISO) 

23 PB4 ( OC2A/PCINT4 ) Digital pin 10 (PWM) 

24 PB5 ( OC1A/PCINT5 ) Digital pin 11 (PWM) 

25 PB6 ( OC1B/PCINT6 ) Digital pin 12 (PWM) 

26 PB7 ( OC0A/OC1C/PCINT7 ) Digital pin 13 (PWM) 

27 PH7 ( T4 )   

28 PG3 ( TOSC2 )   

29 PG4 ( TOSC1 )   

30 RESET RESET 

31 VCC VCC 

32 GND GND 

33 XTAL2 XTAL2 

34 XTAL1 XTAL1 

35 PL0 ( ICP4 ) Digital pin 49 

36 PL1 ( ICP5 ) Digital pin 48 

37 PL2 ( T5 ) Digital pin 47 

38 PL3 ( OC5A ) Digital pin 46 (PWM) 

39 PL4 ( OC5B ) Digital pin 45 (PWM) 

40 PL5 ( OC5C ) Digital pin 44 (PWM) 

41 PL6 Digital pin 43 

42 PL7 Digital pin 42 

43 PD0 ( SCL/INT0 ) Digital pin 21 (SCL) 

44 PD1 ( SDA/INT1 ) Digital pin 20 (SDA) 

45 PD2 ( RXDI/INT2 ) Digital pin 19 (RX1) 

46 PD3 ( TXD1/INT3 ) Digital pin 18 (TX1) 
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47 PD4 ( ICP1 )   

48 PD5 ( XCK1 )   

49 PD6 ( T1 )   

50 PD7 ( T0 ) Digital pin 38 

51 PG0 ( WR ) Digital pin 41 

52 PG1 ( RD ) Digital pin 40 

53 PC0 ( A8 ) Digital pin 37 

54 PC1 ( A9 ) Digital pin 36 

55 PC2 ( A10 ) Digital pin 35 

56 PC3 ( A11 ) Digital pin 34 

57 PC4 ( A12 ) Digital pin 33 

58 PC5 ( A13 ) Digital pin 32 

59 PC6 ( A14 ) Digital pin 31 

60 PC7 ( A15 ) Digital pin 30 

61 VCC VCC 

62 GND GND 

63 PJ0 ( RXD3/PCINT9 ) Digital pin 15 (RX3) 

64 PJ1 ( TXD3/PCINT10 ) Digital pin 14 (TX3) 

65 PJ2 ( XCK3/PCINT11 )   

66 PJ3 ( PCINT12 )   

67 PJ4 ( PCINT13 )   

68 PJ5 ( PCINT14 )   

69 PJ6 ( PCINT 15 )   

70 PG2 ( ALE ) Digital pin 39 

71 PA7 ( AD7 ) Digital pin 29 

72 PA6 ( AD6 ) Digital pin 28 

73 PA5 ( AD5 ) Digital pin 27 

74 PA4 ( AD4 ) Digital pin 26 

75 PA3 ( AD3 ) Digital pin 25 

76 PA2 ( AD2 ) Digital pin 24 

77 PA1 ( AD1 ) Digital pin 23 

78 PA0 ( AD0 ) Digital pin 22 

79 PJ7   

80 VCC VCC 

81 GND GND 
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82 PK7 ( ADC15/PCINT23 ) Analog pin 15 

83 PK6 ( ADC14/PCINT22 ) Analog pin 14 

84 PK5 ( ADC13/PCINT21 ) Analog pin 13 

85 PK4 ( ADC12/PCINT20 ) Analog pin 12 

86 PK3 ( ADC11/PCINT19 ) Analog pin 11 

87 PK2 ( ADC10/PCINT18 ) Analog pin 10 

88 PK1 ( ADC9/PCINT17 ) Analog pin 9 

89 PK0 ( ADC8/PCINT16 ) Analog pin 8 

90 PF7 ( ADC7 ) Analog pin 7 

91 PF6 ( ADC6 ) Analog pin 6 

92 PF5 ( ADC5/TMS ) Analog pin 5 

93 PF4 ( ADC4/TMK ) Analog pin 4 

94 PF3 ( ADC3 ) Analog pin 3 

95 PF2 ( ADC2 ) Analog pin 2 

96 PF1 ( ADC1 ) Analog pin 1 

97 PF0 ( ADC0 ) Analog pin 0 

98 AREF Analog Reference 

99 GND GND 
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Figure 7:       Figure: Arduino Mega 2560 PIN Diagram 



45 
 

 

Base Unit of Our Project: 

Our objective was to make a miniature model of an autonomous car. The base unit of our 

project was an R/C car. Our aim was to turn this car into an autonomous vehicle guided by GPS. 

The model that we used in our project was a HSP monster truck. 

 

Figure 8: Base Unit of Our Project 

 

Features of the Vehicle: 

 Four wheel drive system with shaft drive 
 Fast Speed: 60km/hr 
 Can run on any road surface 
 Equipped with professional high performance brushless motor and bevel gear differential 

gear box 
 Transmission shaft enables the car steadier, light shock fast speed while running 
 High capacity 7.2V SC2000 mAh NI-MH rechargeable battery 
 Front /rear bumper provide good protection against accident impacts 
 Equipped with axletrees to reduce friction of the components and to run smoother and 

faster 
 Front and read double wishbone suspension 
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Specifications of the Vehicle: 
 

Length 400mm 

Width 310mm 

Height 185mm 

Wheelbase 275mm 

Gear Ratio 1:10.3 

Weight 2267g 

Wheel Diameter 120mm 

Wheel Width 60mm 

Engine SP03302 Brushless Motor 
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Components of our Car: 

 

 

Figure 9: Different parts of the vehicle 

  

The 4 wheeler robot vehicle includes different parts such as-  

 speed control motor 

 steering control motor 

 battery 

 tires 

 suspension system etc.  
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Speed Controller: 

 Controls speed of the vehicle 

 Maximum speed up to 60km/hr 

 

Figure 10: Electronic Speed Controller 

 

Motor: 

 

Figure 11: Speed control motor of the vehicle 
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Battery: 

 7.2 volt 1800mAh battery 

 Works for up to half hour when fully charged 

 

Figure 12: Battery 

 

Heat guard: 

 Absorbs heat emitted by the motor 

 Made of aluminum for maximum heat absorption 

 

Figure 13: Heat sink of the speed control motor 
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Suspension System: 

 

Figure 14: :  Suspension System of the vehicle 

Tires: 

 Wheelbase: 275mm 

 Wheel diameter 120mm 

 Wheel width 60mm 

 

Figure 15: Tires 
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Assembly of the Vehicle: 

 

 

 

Figure 16: Assembly of the Vehicle 
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Communication: 

Communication was done by two steps- 

1. Communication between the car and the computer was done by using NRF. 

2. Communication between the car and GPS satellite was done using Ublox GPS 

chip.  

 

 

We gave GPS coordinates as input to the computer. GPS coordinates included the present 

location and the target location. This input was sent to the car with the help of NRF. The car 

read the inputs and moved according to the specified locations using the GPS chip. 

 

RF Transceiver: 

For the communication between our computer and the car we used an RF transceiver. It is a 

communication system which uses radio frequency to communicate. For the whole setup we 

needed a transmitter and a receiver. The transmitter was connected to the computer and the 

receiver was connected to the car. We needed two Arduino boards for the setup. One was used 

for the transmitter while the other was used for the receiver. 

 

NRF24L01:  

 

The RF transceiver that we used was the NRF24L01. It is a highly integrated, ultra low power RF 

transceiver IC for the 2.4GHz ISM band.  

 

 

 
 
 
Specifications: 

- Peak RX/TX currents lower than 14mA 
- Sub μA power down mode 
- Advanced power management  
- 1.9 to 3.6V supply range 
- Provides a true ULP solution  

 

 
Figure 17:NRF24L01 
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Setup of the RF Transceiver: 

a) Transmitter:   

For the transmitter we have used a total of 11 wires meaning 11 pins of the Arduino 

board. The pins used are as follows- 

- 5 PWM pins 

- RX1 pin 

- 4 digital pins 

- 3.3V power pin 

The setup is shown below- 

 

  

 

 

 

 

 

 

 

Figure 18: The Complete Setup of the Transmitter 
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b) Receiver: 

For the receiver we used another similar Arduino board and another NRF24L01. The 

same 11 pins were used but this time the Arduino was set above the car, so the ESC, 

servo and the battery of the car were connected to the same Arduino board using an 

extra of 3 digital pins and a Vin pin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: The Complete Setup of the Receiver 
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c) Making a Software for the NRF Communication: 

We had to make a software for the transceiver to run. The software contained a main 

window from which we could control the car manually as well as setup the 

communication. By clicking the communication setup button we would enter another 

window. From this window we would select the port and the frequency. 

 

 

Figure 20: Main Window 

 

 

Figure 21: Command setup window 
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Setup of the GPS Chip: 

We used a Ublox chip for the GPS communication of the car. We connected the GPS chip with 

the Arduino board on the car. This GPS chip was used to find the present location of the car as 

well as to identify the target location. The GPS chip was connected to the Arduino using 4 of its 

pins. The pins were Rx, Tx, Vin and Gnd. 

 

Figure 22: U-blox PAM 7Q chip 
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Designing a Software for the GPS Chip:  

We designed a software to give the input and the target locations. The software was a web 

browser based application. The inputs were given from a computer. The car communicated 

with the computer using the NRF communication described above.  

 

 

Figure 23: Web Application For the GPS Communication 

 

Problems in Making the GPS work: 

Unfortunately we couldn’t make the GPS communication work. This may have happened due to 

the following reasons- 

- There could be problem with the coding. 

- The microprocessor couldn’t handle the program calculations. 

- The hardware setup could be incorrect. 

- There could have been problem with the hardware. 
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- The software design might be suitable for the system. 

With further time and experience we might have found the solution. 

The Complete Setup of the Car: 

The complete setup of the car includes the NRF receiver, the GPS chip, ESC, servo and the 

battery pack. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NRF24L01 

 

 

U-blox PAM 7Q 

 

 

Arduino 

Mega 2560 

 

Electronic Speed 

Control Unit 

 

Servo 

 

9V Battery 

p
o

w
e

r 

 

p
o

w
e

r 

 

p
o

w
e

r 

data 

 

data 

data 

 

data 

 



59 
 

 

 

Figure 24: Complete Setup of the Car (without the GPS chip) 
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The Final Setup: 

The final setup includes the complete car setup and the RF transmitter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program Schematic 
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Algorithm for the Communication between the Computer and the Car:  
 

Step 1: start  
Step 2: take command from user  
Step 3: process command using micro-controller 1  
Step 4: send data to RF transmitter  
Step 5: receive data by RF receiver  
Step 6: process data using micro-controller 2  
Step 7: if data garbage then stop  
Step 8: if data not garbage then proceed to step 9  
Step 9: if up arrow key pressed then power to ESC and move forward  
Step 10: if down key pressed then power to ESC and move backward  
Step 11: if right arrow key pressed then power to servo and turn wheel right  
Step 12: if left arrow key pressed then power to servo and turn wheel left  
Step 13: if no key is pressed then stop and go to step 2  
Step 14: stop  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Since we couldn’t make the GPS work, we didn’t give the algorithm for GPS communication. 
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Flow chart of the Program: 
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