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Abstract 

       

When free electrons inside the metal get affected, they start to oscillate. The 

movement of this oscillation inside the metal is called plasmon. The excitation can 

be done by exposing metal to a photon. Surface Plasmon-Polarition is formed when 

coupling between a plasmon inside the metal and photon outside the metal happens, 

and they travel at the same speed. SPPs can be used as an alternative medium for 

transmitting signals as it can overcome the light diffraction limit. But the main 

limitation of SPP is higher propagation loss in metal and short propagation distance 

not exceeding micrometers. The main goal of this thesis is to optimize the modeling 

parameters for several optically valued materials and analyze their performance in 

FDTD. Lorentz model and modified Lorentz model parameter of several optically 

valued material has been optimized using large scale nonlinear algorithm. SPP 

propagation characteristics through dielectric-metal-dielectric waveguide have 

been investigated to analyze the performance of one of the optimized dielectric 

material.  
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Chapter 1 

Introduction and Background 
 

1.1     Introduction 

 

The photon is an electromagnetic wave that can be considered as the unit of light. 

Circuits and devices controlling electrons are called “electronics”. In the same 

analogy, circuits and devices controlling photons are called “photonics”. 

Plasmonics forms a major part of the fascinating field of nanophotonics, which 

explores how electromagnetic fields can be confined over dimensions on the order 

of or smaller than the wavelength. It is based on interaction processes between 

electromagnetic radiation and conduction electrons at metallic interfaces or in small 

metallic nanostructures, leading to an enhanced optical near field of sub-wavelength 

dimension. At present, the communication system is fully dependent on the optical 

fibers which offer high bandwidth and low loss than electronic interconnections. The 

same advantage can be availed if the optical technology is used in computer chips. 

Also, the optical chips will not require any insulation since photons do not interact 

with each other, making the system lighter. According to the diffraction limit rule, 

light cannot propagate through aperture that is smaller than half of its wavelength. 

But this diffraction limit can be overcome by using a new type of electromagnetic 

wave called Surface-Plasmon-Polariton (SPP) that is generated at the metal surface 

due to the coupling of photon and electron when metal is exposed to light in a certain 

way. SPPs in certain conditions propagate on the surface of the metal no matter what 

is the dimension. This property of SPP will enclose a new horizon in technological 

advancement. If plasmon based integrated circuits are used, there will be a dramatic 



14 
 

increase in computation power chips and hopefully in the near future plasmon based 

chips will be available. Researchers have achieved enormous performance 

improvement in solar cell technology using plasmonics. The absorption efficiency 

has increased significantly by implementing plasmon enhanced solar cells [1-3]. 

Plasmonics is also being applied in the field of imaging [4-7] biosensing [8], bragg 

reflector [9] and metamaterials [10]. 

 

1.2    Literature Review 

We shall discuss prospects for using numerical solutions of Maxwell’s equation s, 

in particular Finite-Difference-Time-Domain (FDTD) method to innovate and 

design key electrical engineering technologies ranging from cellphones and 

computers to lasers and photonic circuits. Overall, FDTD technique is marching-in-

time procedure that simulates the continuous actual electromagnetic waves in a finite 

spatial region by sampled-data numerical analogous propagating in a computer data 

space[11]. In this section our focus will be on published works done on different 

types of material modelling using Finite-Difference-Time-Domain (FDTD) based 

various models (Like as: Drude Model, Debye Model, Lorentz Model, Lorentz 

Drude Model, Modified Lorentz Model) and extract the optical parameters. 

T. Onuki et al.[12] studied the propagation of plasmons on gold nanowires [13] 

experimentally. The experiments were done on two different nanowires, one 2 µm 

long and the other 6 µm long. The results were compared to numerical simulations 

from FDTD, and they showed agreement on propagation length. Hochberg et al [14] 

showed that light can also be efficiently coupled between more conventional silicon 

waveguides and these plasmonic waveguides with compact couplers. Metal was 

modeled also by the Debye model [15]. 



15 
 

Krug et al. [16] have reported the gold parameters that are applicable in the 

wavelength range of 700-1000 nm. Pernice et al.[17] have extracted the parameters 

for Nickel using Lorentz-Drude model. A.D. Rakic et al.[18] have reported the 

parameters for Nickel, Palladium, Titanium and 8 other metals using Lorentz-Drude 

and Brendel-Bormann Model. 

 

1.3   Thesis Objective 

The main objective of the thesis is to extract the modeling parameters for different 

linear dispersive material and use those material modeling parameters to study the 

SPP propagation in different optical nanostructures. However, more specifically, the 

objectives are 

 To extract the modeling parameters for different metals and dielectric 

materials. 

 To develop a simulation based model on the FDTD method that is capable of 

simulating the properties of linear dispersive materials. 

 Using the FDTD simulator to study plasmonic waveguides. 

 To investigate the symmetric SPP propagation properties in dielectric-metal-

dielectric waveguide. 

 To summarize important conclusions from the obtained results and discuss 

the potential applications. 
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1.4   Thesis Organization 

This thesis has been arranged in the following way: 

 In Chapter 2, the basic theory of SPP propagation has been described. This 

chapter introduces the fundamental knowledge and necessary mathematical 

formulations of SPP propagation at the single and double interface. 

 In Chapter 3, the widely used models for modeling metals have been 

described in detail with necessary derivations. Since SPPs are created due to 

the coupling of photon energy to the free electrons of metal, modeling metals 

is one of the key steps for the simulation of SPP propagation. 

 In Chapter 4 we have developed our simulation model based on FDTD 

method. The fundamentals of the FDTD algorithm for 1D and 

2D simulations are discussed with formulation of the “Absorbing Boundary 

Condition”. PML is introduced as a result to prevent the reflection at the 

boundary. 

 In chapter 5, we have presented the modeling parameters of different optical 

materials using large scale nonlinear optimization method. The obtained 

modeling parameters and their validations are also provided in this chapter. 

 In Chapter 6, we have used single pole-pair Lorentz model parameter of 

Arsenic Sulfide to simulate SPP propagation through optical nanostructure 

(dielectric-metal-dielectric waveguide). We have also investigated the electric 

and magnetic field profile and power transmission efficiency inside the 

nanostructure. 

 In Chapter 7, we have provided the concluding remarks about our work and 

our future plans with the thesis 
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Chapter 2 

SPP Propagation Theory 
 

2.1 Introduction 

 

Surface Plasmon Polariton (SPP) are infrared or visible frequency electromagnetic 

waves, which travel along a metal-dielectric or metal-air interface. Other words 

Surface plasmon polaritons are electromagnetic excitations propagating at the 

interface between a dielectric and a conductor, evanescently confined in the 

perpendicular direction. These electromagnetic surface waves arise via the coupling 

of the electromagnetic fields to oscillations of the conductor’s electron plasma. 

So the term "surface plasmon polariton" explains that the wave involves both charge 

motion in the metal ("surface plasmon") and electromagnetic waves in the air or 

dielectric ("polariton"). SPPs can have tighter spatial confinement and higher local 

field intensity. Perpendicular to the interface. An SPP will propagate along the 

interface until its energy is lost due to absorption in the metal or scattering into other 

directions (such as into free space).If a photon is incident on a smooth metal surface, 

there is no SPP propagation at metal air surface due to the incompatibility that is 

comparable to internal reflection. 

However, electromagnetic wave propagation is obtained from the solution of 

Maxwell’s equations in each medium, and the associated boundary conditions. 

Maxwell’s equations of macroscopic electromagnetism can be written as follows: 
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From Gauss’s Law for the electric field 

                                                                 .
ext

D                                               (2.1) 

From Gauss’s Law for the magnetic field, 

                                                              . 0B                                                  (2.2) 

From Faraday’s Law 

                                                             
B

E
t


  


                                           (2.3)

 

From Ampere’s Law 

                                                           
ext

D
H

t
J


  


                                        (2.4)

 

Here, 

E   is the electric field vector in volt per meter 

D  is the electric flux density vector in coulombs per square meter 

H  is the magnetic field vector in amperes per meter 

B  is the magnetic flux density vector in Webbers per square meter 

ext
  is the charge density 

extJ  is the current density 

The four macroscopic fields can be also linked further via the polarization P and 

magnetization M by 

                                                     
o

D E P                                                        (2.5) 
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B

H M
o

                                                     (2.6) 

Now this equations can be simplified for linear, isotropic, nonmagnetic media as 

                                                     
o r

D E                                                         (2.7)
 

     o r
B H 

  
                                           (2.8) 

where, 

o  is electric permittivity of vacuum in Farad per meter 

o
 is the magnetic permeability of vacuum in Henry per meter 

r  is the relative permittivity 

r
 is the relative permeability 

 

Due to this field confinement and enhancement at a metal/dielectric interface, the 

SPP play a key role in various areas of science, such as optics, material science, and 

biology and very recently in nanoelectronics and nanophotonics. 

Optical fibers and waveguides can carry information three order greater than their 

magnitude of interconnects but they have some limitations. Optical components 

can’t be scaled down because diffraction destroy the propagation when light wave 

dimension is very small. An effective way to circumvent this drastic but natural 

limitation is to convert light into SPP waves, which can overcome the diffractive 

limit since the SPP wavelength is always very small; therefore, SPP devices are 
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called sub wavelength components. The incoming light will be thus converted into 

SPP and then processed (propagated at a remote location, focused, modulated, etc.) 

and reconverted at the output back into light with diffractive properties. In this way, 

by merging photonics and electronics at the nanoscale, plasmonic chips could be 

implemented for high data rate processing or very effective sensing applications. 

 

Figure. 2.1. Basic configuration of a plasmonic chip that use diffractive optics to excite the SPP and to 

outcouple the emitted light. 

 

2.2   SPP at Single Interface 

 

SPP propagation through metal-semiconductor surface is the simplest form of 

propagation at a single surface. Here, semiconductor has a positive dielectric 

constant and metal has a negative dielectric constant.  For metal the bulk plasmon 

frequency will be   and the amplitude decays perpendicular to the z− direction. 

For the TM solutions in both spaces: metal and dielectric will be for z > 0 

                                            
2

2( )
k zj x

zH z A e e 
                                        (2.9) 
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                                               2

2 2

0 2

1 k zj x

xE z jA k e e

 


                             (2.10)

 

 
                                      2

1

0 2

k zj x

zE z A e e

 


                             (2.11) 

And for z <0 

                                              
1

1( )
k zj x

yH z Ae e 
                                        (2.12)

 

                                          1

1 1

0 1

1 k zj x

xE z jA k e e

 


                               (2.13)

 

    
   1

1

0 1

k zj x

xE z A e e

 


                                   (2.14) 

Here, as 1 2A A and                       
2 2

1 1

k

k




 

      (2.15)
 

 

The surface wave exists at the metal dielectric interface with opposite sign of their 

real dielectric permittivity. So, we can write: 

                                                       1 2
0

1 2

k
 


 




                                             (2.16) 

 

The TE surface mode can be expressed as: 

 

                                            2

2( )
k zj x

yE z A e e 
                                          (2.17) 
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                                            2

2

0

k zj x

zH z A e e




                                          (2.18) 

For 0z   

                                                1

1( )
k zj x

yE z Ae e 
                                          (2.19) 

                                             1

1 1

0 1

1 k zj x

xH z jA k e e

 
                                 (2.20)

 

                                              1

1

0 1

k zj x

zH z A e e

 
                                     (2.21) 

for z  < 0. The continuity of yE  and  xH  requires: 

                                                   1 1 2( ) 0A K K                                              (2.22) 

The surface requires that the real part of 1k  and 2k should be greater than zero for 

confinement. This will be satisfied if 1 2 0A A  . Therefore no surface modes for 

the TE polarization. SPP only exist for TM mode polarization. 

 

Figure 2.2: SPP at the single interface 
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2.3   SPP at Double Interface 

 

Two mostly used double interface configurations of SPP waveguides are: Metal-

Dielectric-Metal (MDM) and Dielectric-Metal-Dielectric (DMD). In these cases 

SPPs are formed on both interfaces. When the distance is shorter than decay distance, 

it forms coupled mode of SPP. This coupled mode of propagation can also be sub-

divided into even and odd modes, as shown in the figure 

 

Figure 2.3: SPP at the double interface. 
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Chapter 3 

Material Modeling Within Optical Range 

 

3.1 Introduction 

Low frequencies and long EM wavelengths metals are considered as perfect 

conductors. Perfect conductors have zero fields. At optical frequencies metals 

become dispersive materials rather than perfect conductors. It actually indicates that 

fields can exist inside metal which die very quickly inside metal. At frequencies 

higher than the optical range, metals become transparent or just dielectrics. In this 

chapter we study the properties of SPPs highly depending on the material response 

to light. Descriptions and derivations will be presented for various models describing 

the behavior of metal in the presence of light. 

When an oscillating external electromagnetic field propagates inside any material, 

the materials behavior can be known from the following terms: 

 D (electrical flux density) 

 E (electric field intensity) 

 P (polarization density) 

For any material, the following equations apply [19] 

                                                        D E                                                           (3.1) 

                                                       0P E                                                          (3.2) 
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                                                        0D E P                                                    (3.3) 

Where,   is the permittivity in F/m and  is the susceptibility which measures how 

easily it is polarized. 

The relation n between permittivity and susceptibility is found by, 

                                                         0D E E                                                   (3.4) 

                                                     Or, 0( )D E                                                (3.5) 

Combining equation 3.5 and 3.1 gives, in frequency domain,  

                                                   0( ) (1 ( ))                                                     (3.6) 

Thus we get relative permittivity as, 

                                                   ( ) (1 ( ))r                                                      (3.7) 

Permittivity and susceptibility of dispersive materials depend on frequency. 
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3.2     Different Material Models 

3.2.1    The Debye Model 

Materials are made of electric dipoles, so when an electric field is applied, these 

dipoles follow the coordination of the applied field with some relaxation time. 

 

Electric field oscillating at a slow frequency             Strong polarization          Short 

relaxation time 

Electric field oscillating at a fast frequency               Low polarization             long 

relaxation time 

 

Polarization takes time to follow the electric field. At steady state, it is given by, 

                                                
(t)

. (t) P
dP

P
dt

                                                     (3.8) 

Where, 

P =polarization 

(t)P =instantaneous polarization 

 =relaxation time constant 

                                             
/(t) P (1 )tP e 

                                                  (3.9) 
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Derivation of P(t) gives, 

                                                
/(t) 1 tdP

P e
dt







                                                 (3.10) 

Substitution in equation (3.9), 

                                                
(t)

. (t) P
dP

P
dt

                                                   (3.11) 

P  is equal to the steady state value of permittivity which gives, 

                                           0

(t)
. (t) ( 1)E

dP
P

dt
                                               (3.12) 

Solving for E(t) 

                                             0. ( 1)E(t) P(t)
dP

dt
                                               (3.13) 

Taking the equation to the frequency domain gives, 

                                           0( 1)E( ) P( )(1 j )                                              (3.14) 

Dividing by 0 E( ) gives, 

                                            
0

1 ( )
( )

(1 j ) ( )

P

E

 
 

  


 


,                                        (3.15) 

where ( )  is a complex-valued, frequency-domain susceptibility function which 

has one or more real poles at separate frequencies. Thus, the permittivity is given 

by, 

                                           
1

. ( ) ( ) 1 1
(1 j )

r


   




   


                               (3.16) 
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Conditions: For permittivity functions to fit in the range from 0 frequency to infinity 

frequency 

,(0) s  ( )r    

where,  is the permittivity at infinity frequency and ,s is the static permittivity at 

DC. 

Therefore the relative permittivity relation becomes, 

                                                 . ( )
1

s
r

j

 
  







 


                                          (3.17) 

For a Debye medium having P poles, we express the permittivity relation as, 

                                    
1 1

( )
1 1

P P
ps

r

p pj j

 
   

 


 

 


   

 
                               (3.18) 

 

 

3.2.2    The Lorentz Model 

 

In Lorentz model electrons are considered to be attached to atoms. They do not move 

freely in the metal. It’s a heavy massed ball is connected to a small massed ball. 

There is restoring force acting between them which can be denoted by Fr 
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Figure 3.1: Forces acting in Lorentz model 

 

The restoring force is given by 

                                                                     rF kr                                        (3.19) 

Where, k is spring constant in Newton per meter. 

Therefore, Newton’s first law of motion, 

                                                      *mr eE r                                                (3.20) 

becomes,[20] 

                                                  * 0mr m r mkr eE                                        (3.21) 

Defining the natural frequency  0

k

m
   , in frequency domain the above equation 

will be, 

                                            2 2

0( )(m jm m ) eE( ) 0R                            (3.22) 
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The polarization for n electrons is given by 

                                                     . ( ) neR( )P                                              (3.23) 

From equations (3.23) and (3.24), we find, 

                                                     
2

2
.P( ) ( )

(j )

ne
E

m
 

 


 
                              (3.24) 

Dividing by 0E  we get, susceptibility ( )   

                                              
2

2 2

0 0 0

( )
( )

( j )

P ne

E m


 

     
 

  
                       (3.25) 

 

From 0( ) ( )(1 ( ))D E       we get D in frequency domain as 

                                           

2

0 2 2

0

( ) (1 )E( )
p

D
j


  

  
 

  
                          (3.26) 

 

For multiple pole P’ the Lorentz model looks like, 

                                            

2'
' '

2 2
1 ' '

( )
2

p
p p

p p pj

 
  

  





 

 
                           (3.27) 

Where, s      is the change in relative permittivity due to the Lorentz pole 

pair, p  is the frequency of the pole pair and  p  is the damping coefficient. 
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3.2.3    Modified Lorentz Model 

To obtain more accurate fitting, Lorentz Model is modified[21] as follows: 

                             

2 '

2 2
1

( )
( )

2

p
p p

p

p p p

i

i

  
   

  





  

 
                                 (3.28) 

                                                p s    
                                                 (3.29) 

where,   is permittivity at infinite frequency, p   is the pole-pair frequency, p   is 

the damping coefficient , p  is the change in relative permittivity due to change in 

,p th pole and s  is zero frequency relative permittivity. Here,  p  , p  , '

p   are in 

1/µm. 

 

3.3   Material Dispersion 

Material dispersion is a phenomenon in which different optical wavelengths 

propagate at different velocities, depending on the refractive index of the material 

used. The phase velocity of numerical wave modes can differ from C by an amount 

varying with wavelength, propagation direction and grid discretization. Propagation 

of a plane wave is fully described by two quantities: the optical frequency 2 f   

and the wave vector k . The direction of k determines the direction of propagation of 

the plane wave. We know the phase velocity is, 

                                                           
1c

v
n 

                                                (3.31) 
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Where, n is the refractive index and c is velocity of light in free space. 

Sometimes, K is called wavenumber, which is 

                                                           
2

k



                                                      (3.32) 

The wave equation of dispersion less media is free of w and k and we ended up with 

an equation 

                                                         
2 2

2

2 2
v

t x

  


 
                                              (3.33) 

Solving this equation with the help of exponential function (kx t)(x, t) Aei    we get 

the solution as, 

                                                             
2 2 2v k                                              (3.34) 

The velocity of the wave is                  v
k


   

                                                        Or, k
v


                                                   (3.35) 

Where, (+) sign means the –x direction propagation and (-) means +x direction 

propagation. We can find our expected parameters from this v which relates with 

equation (3.31). The magnetic flux density and electric flux density for dispersive 

medium are: 

                                                           D E                                                    (3.36) 

                                                          B H                                                    (3.37) 
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Chapter 4 

Overview of Finite-Difference Time Domain 

Method 

 

4.1    The Yee Algorithm 

 

The Finite-Difference Time Domain (FDTD) method is one of the most popular 

method solving electromagnetic problems (Maxwell’s equation). It can cover a wide 

frequency range with single simulation run. Its charming property is that it can deal 

with a non-linear material in linear way. To understand a wave propagation 

simulation FDTD is preferred most. This method was first proposed by Yee in 1966 

[22]. 

To solve an electromagnetic problem, the idea is to simply discretize the Maxwell’s 

equation with central difference approximation both in space and time. At first, we 

have allocate the electric and magnetic field components in space and then let them 

march in time for the evaluation. 

Maxwell’s equation actually consist of 4 basic set of equations. They are as follows:  

                                            Gauss’s Law   :    vD                                          (4.1) 

               Gauss’s Law for Magnetism        :     0B                                     (4.2) 

                                  Faraday’s Law      :    
B

E
t


  


                                     (4.3) 
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                              Ampere’s Law:     
D

H J
t


  


                                       (4.4) 

 

We will not use the two Gauss’ laws (4.1) and (4.2) since they can be derived from 

the curl equations (4.3) and (4.4). In linear isotropic non-dispersive materials, we 

have the following definitions for the electric displacement (D) and magnetic flux 

( B ): 

                                                              0rD E E                                             (4.5) 

                                                            0rB H H                                            (4.6) 

 

The Time dependent Maxwell’s curl equations in the free space is: 

                                                    
1H

E
t 


  


                                                  (4.7) 

                                                     
1E

H
t 


 


                                                   (4.8) 

 

Now, considering the Taylor series expansion of the function f(x) expanded about 

the point x with an offset of (±Δx) which gives two another functions f(x+Δx) and 

f(x-Δx). Subtracting these two functions and dividing by distance (2Δx) gives the 

central-difference approximation. 
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Figure 4.1: Estimation for the derivative of f(x) using Forward, Backward and Central-Difference 

 

                                
( ) ( ) ( )

( )
2

df x f x x f x x
f x

dx x

  
 


                                        (4.9) 

 

 

To solve Maxwell’s equation numerically, we evaluate Faraday’s Law and in the 

Cartesian co-ordinate system to get three magnetic and electric field components Hx, 

Hy, Hz and Ex, Ey , Ez respectively .The curl operation of the equations (4.2)&(4.3) 

produces these six coupled scalar equations: 
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From Faraday’s Law: 

                                                               
1

( )
yx z

EH E

t z y

 
 

  
                                               (4.10) 

                                             
1

( )
y xz

H EE

t x z

 
 

  
                                                (4.11) 

                                               
1

( )
yxz

EEH

t y x


 

  
                                              (4.12) 

From Ampere’s law: 

 

                                (4.13) 

 

                                                  
1

( )
y x z

E E E

t z x

  
 

  
                                            (4.14) 

         
1

( )
y xz

E EE

t z y

 
 

  
                        (4.15) 

 

Figure 4.2: Yee’s spatial grid showing electrical and magnetic field component per cell. 

1
( )

yx z
EE E

t y z

 
 

  
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4.1.1   One-Dimensional Simulation 

 

For one dimensional z-directed TEM wave (Hz = Ez = 0) with no variation in the X 

and Y direction (i.e.  0
y x

 
 

 
 ), those 6 equations become: 

                                            
1 yx

HE

t z


 

 
                                                          (4.16) 

                                           
1y x

H H

t z

 
 

 
                                                         (4.17) 

Now replacing all the derivatives in Ampere’s and Faraday’s laws with central-

difference approximation from equation (4.1) and discretize in space and time, we 

get 

 

                                     
  1/2 1/2, ( ) ( )n n

x x x
E z t E k E k

t t

  


 
                                        (4.18) 

                           
 , ( 1/ 2) ( 1/ 2)n n

y y yH z t H k H k

z x

   


 
                                       (4.19) 

 

Solving these resulting difference equations we obtain “Update equations” that 

express the future fields (known) in terms of past fields (unknown). 

              1/2 1/2

0

( ) ( ) ( 1/ 2) ( 1/ 2)n n n n

x x y y

t
E k E k H k H k

x

  
      

                         (4.20) 
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              1 1/2 1/2

0

( 1/ 2) ( 1/ 2) ( 1) ( )n n n n

y y x x

t
H k H k E k E k

x

  
       

                 (4.21) 

 

Actually the solution is made by Leap-Frog method, which will be discussed later. 

 

4.1.2   Two-Dimensional Simulation 

 

The structures studied in this project are one-dimensional metallic thin films (with 

or without surface corrugations) which can be described in the two-dimensional 

space. The number of FDTD relations can thus be reduced from six in the 3D space 

to only three in 2D. There are two sets of three fields which can be used. They are 

designated as the TM z and TE z modes, respectively corresponding to the sets of 

field components (Ez, Hx, Hy) and (Hz, Ex, Ey). It is important to distinguish the 

TE/TM FDTD modes from the TE/TM polarization modes. The former denotes two 

independent sets of electromagnetic field components in the 2D space; while the 

latter designates the fundamental two independent linear polarization modes of light 

relatively to the plane of incidence. In our FDTD algorithm, we have implemented 

the TEz FDTD mode in order to model a TM-polarization incidence on the structure. 

 

For the Transverse Electric (TE) or Transverse Magnetic (TM) in 2D space, if no 

variation in Z-direction ( 0
z





 ), Maxwell’s equations look like 
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1x z

E H

t y

 


 
                                                      (4.22) 

                                                
1y z

E H

t x

 
 

 
                                                    (4.23) 

            
1

( )
yx x

EE E

t y x

 
 

  
                                                  (4.24) 

 

Now we have to discretize these equations first, 

 

              
(i, j) H (i, j 1)1x z z

E H

t y

  


 
                                                 (4.25) 

                                   
(i, j) H (i 1, j)1y z z

E H

t x

  
 

 
                                              (4.26) 

                   
(i 1, j) E (i, j)(i, j 1) (i, j)1

( )
y yx xz

EE EH

t y x

   
 

  
                             (4.27) 

Therefore the previous set of equations become, 

 

                    
1 1/2 1/2(i, j) E (i, j) (i, j 1/ 2) (i, j 1/ 2)1

n n n n

x x z z
E H H

t y

     


 
                         (4.30) 

 

                  
1 1/2 1/2(i, j) E (i, j) (i 1/ 2, j) (i 1/ 2, j)1

n n n n
y y z z

E H H

t x

     
 

 
                        (4.31) 
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1/2 1/2 1/2(i, j) (i, j) (i, j 1/ 2) E (i 1/ 2, j)(i, j 1/ 2) (i, j 1/ 2)1
( )

n n n nn n
y y y yx x

H H EE E

t y x

        
 

  
         

(4.32) 

 

After implementing the leap in space, we implement a leap in time. Now the update 

equations become, 

                  
1/2 1/2

1 (i, j 1/ 2) (i, j 1/ 2)
E (i, j) E (i, j)

n n
n n z z
x x

H Ht

y

 
   

 


                       (4.33) 

 

                        
1/2 1/2

1 (i 1/ 2, j) (i 1/ 2, j)
E (i, j) E (i, j)

n n
n n z z
y y

H Ht

x

 
   

 


                    (4.34) 

 

 

1/2 1/2
(i 1/ 2, j) E (i, j 1/ 2)(i, j 1/ 2) (i, j 1/ 2)

(i, j) (i, j) ( )

n nn n
y yn n x x

z z

EE Et
H H

y x

 
    

  
 

                

(4.35) 

 

Using the leap frog method we continue to update our equations. The term “n+1” 

means one time step later and “k” means the distance z=Δx.k. E and H are both 

interleaved in space and time. H uses the arguments k+1/2 and k-1/2 to indicate that 

H field values are assumed to be located between E field values. 
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Figure 4.3: Updating Field values using Leap Frog method 

 

4.2    Stability 

 

A classical electromagnetic wave propagating in free space cannot travel faster than 

the speed of light. In FDTD, this condition is mathematically expressed by 

the Courant condition which determines the suitable size range of x  and t , 

respectively the space and time discretization steps. This is also known as “Stability 

Condition”. To propagate a distance of one cell requires a minimum time of 

0/t x c    . For two dimensional simulation, we need to allow propagation in the 

diagonal direction. Then 0/ 2t x c    and similarly for three dimensional 

0/ 3t x c   .We can summarize by the following relation, 

 

                                                 0/t x nc                                                  (4.36) 
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Where ‘n’ is dimension of the simulation. If no dimension is specified, for simplicity 

we use, 

 

                                                  
02

x
t

c


                                                            (4.37) 

4.3    Absorbing Boundary Condition 

 

When simulating propagation of EM waves, it is necessary to keep unwanted 

reflections from coming back and the computational domain needs to be terminated. 

Terminating the computational domain for a medium surrounded by metals or 

perfect electric conductors is achieved by forcing the fields to be equal to zero. It is 

necessary to keep unwanted reflections from coming back and Probably the best 

solution is the Perfectly Matched Layer (PML), proposed by Berenger, which 

absorbs outgoing wave. Berenger introduced two quantities,   and  


 , which 

are the electric conductivity and magnetic conductivity. The resulting equations for 

TE waves inside the PML are given by 

                                                              
0

x X
x

E H
E

t y


 
 

 
                                                                    (4.38) 

                                                             
0

y z
y

E H
E

t x


 
  

 
                                                                   (4.39) 

                                                        
0

yxz
z

EEH
H

t y x
 


  

  
                                                            (4.40) 
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When the impedance of two media are equal, then no reflection occurs at normal 

incidence when the wave travels from one medium to another, which is known as 

impedance matching and this is applied in PML. This condition results in the 

following equation. 

                                                       
0 0

 

 



                                                    (4.41) 

 

The problem is solved for normal incidence only. However, the algorithm should 

deal with all forms of incidence. Therefore, we should split the field zH  into two 

fields zxH  and zyH  where one is at normal incidence and the other is tangential to the 

PML and their summation is equal to zH . Applying this to the FDTD means splitting 

x  to x    and  y   where the first deals with zyH  and the other deals with zxH . Thus 

we get three equations: 

                                           
0

yzx
x zx

EH
H

t x
 


  

 
                                           (4.42) 

                                             
0

zy x
y zy

H E
H

t y
 

 
  

 
                                         (4.43) 

                                              z zx zyH H H                                                          (4.44) 

In the computational domain for TE mode, we have x , y and y    equal to zero, but 

they are generally non-zero inside the PML. Applying PML in this manner works 

well with a homogeneous medium. However, problems are caused by objects that 

reach the limits of the simulation space and the presence of dispersive material and 

non-dispersive material at the PML walls. Zaho introduced a PML algorithm that is 

material-independent and he called it material-independent PML (MIPML). The 
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main idea is to apply the PML algorithm on a layer different than the layer of electric 

and magnetic fields. 

 

Figure 4.4: PML setup 

The problem is that, if the PML is applied on E  and H  fields, then the constants in 

the loops involved with E  and H  are affected by the material in the simulation space. 

It is difficult to produce constants that take care of material inside the simulation 

space and PML walls. Therefore, in the MIPML, the constants involved with electric 

flux density D  and magnetic flux density B  (which are material independent by their 

nature) are responsible for the PML walls only. Therefore, the new electric 

conductivity,   and magnetic conductivity,    are introduced in Maxwell’s 

equations. 
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The following two-dimensional simulation shows the radiation from a Gaussian 

pulse given at the middle of the mater.  The radiation is absorbed by the PML and it 

is demonstrated in the following figures: 

 

Figure 4.5:Propogation of electric field at time step,T= 5 

 

Figure 4.6:Propogation of electric field at time step,T=18 
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Figure 4.7:Propogation of electric field at time step,T=38 

 

 

Figure 4.8:Propogation of electric field at time step,T=70 
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4.4    Material Dispersion in the FDTD 

 

Modeling metals in FDTD requires knowledge of modeling dispersive materials. 

Three main methods used to model dispersive materials: 

1. The ADE Method [23] 

2. Z-Transformation [24, 25] 

3. Recursive Convolution(RC) Method [26] 

 

For optimization purpose we used ADE method as it is more straightforward to 

handle non-linear dispersive materials than RC method. So we will discuss about 

ADE FDTD method while Z-transformation and RC will be briefed also. 

 

4.4.1    The Auxiliary Differential Equation (ADE) 

 

To introduce dispersion relation in FDTD, Taflove proposed ‘Auxiliary Differential 

Equation’. It actually use Fourier transform to convert dispersion relation from 

frequency domain to time domain. The Fourier transform results in a relationship 

between the new E field value and the previous E and D values. This relation can be 

added to the algorithm to update the E fields. The new algorithm with ADE becomes 

 

                                  
1

( )
yxz

EEH

t y x


  

  
                                                   (4.45) 



48 
 

                                      x z
D H

t y

 


 
                                                                (4.46) 

                                     (D,E)E f                                                                 (4.47) 

 

As an example, we will explain how to get the function relating D to E in a 

dispersive medium. Starting with 

                                       
0( ) E( )D

j


  


                                                     (4.48) 

Multiplying by j  

                                       0( ) ( )j D E                                                        (4.49) 

Applying the Fourier transform 

                                          
0

(t)
(t)

dD
E

dt
                                                       (4.50) 

Discretizing using forward difference scheme 

                                        
1

0

n n
nD D

E
t

 




                                                   (4.51) 

Finally, solving for E 

                                              
1

0

n n
n D D

E
t 





                                                  (4.52) 
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4.4.2   Z-Transformation 

 

Z-transformation is very useful when dealing with functions in the sampled time 

domain. In FDTD the fields are already in discrete form and they need to be 

processed through a frequency-dependent system (permittivity or permeability). 

Actually this method is similar like ADE except the fact that it is simple and 

short. The transform from the frequency domain to the Z-domain is done as 

follows: 

                               ( ) ( ) ( ) (z) (z) tE(z)D E D                               (4.53) 

where (z)  is z-transform of ( )   as an example, as already done in the ADE. 

The relation between D and E is given by 

                                         
0( ) ( )D E

j


  


                                                   (4.54) 

Applying Z-transform, 

                                       0

1
(z) (z)

1
D tE

z

 


 


                                                  (4.55) 

Multiplying by 1(1 z )  

                                    1

0(z)(1 z ) E(z)D                                                     (4.56) 

Or 

                                     1

0(z) (z) EnD z D t                                                 (4.57) 

Going from the z-domain to the time-domain 
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                                         1

0D tEn n nD                                                     (4.58) 

Finally, solving for E 

                                                
1

0

n n
n D D

E
t 





                                              (4.59) 

which matches with ADE. 

 

4.4.3    Recursive Convolution 

 

Luebbers et al. formulated the first frequency dispersive FDTD algorithm using 

the recursive convolution (RC) scheme. Later it became piecewise linear 

recursive convolution (PLRC) method for more precision [27].Due to the 

accuracy and stability [28] this method is more suitable than any other method. 

The numerical dispersion caused by the permittivity varies with space has 

significant value. The dispersion relation is shown in Ai et al.[29]. In the initial 

derivation of PLRC method for a linear dispersive medium, the relation between 

electric flux density and electric field intensity is expressed as: 

                                0 0

0

(t) (t) (t ) ( )

t

D E E d                                             (4.60) 

which can be discretized as: 

                                   0 0

0

(n t ) ( )

n t

n nD E E d      


                                       (4.61) 
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Chapter 5 

Parameter Optimization of Optical Materials 
 

The optimized Lorentz Model (LM) parameter of three materials and Modified 

Lorentz Model (MLM) parameters for another nine materials are presented. A large 

scale non-linear algorithm has been used for the optimization of optical parameters. 

The optimized parameters are used to determine the complex relative permittivity of 

these ten materials in optical and IR region of electromagnetic spectrum. The 

complex relative permittivity obtained, is compared with the experimental data. The 

comparison shows an excellent agreement. 

 

5.1   Material Models 

5.1.1   Lorentz Model 

 

Lorentz media are characterized by a complex valued, frequency domain 

susceptibility function ( )  that has one or more pairs of complex poles. For a 

Lorentz medium characterized by a single pole pair, we have 

 

             

2

2 2
( )

2

p

p

p pi


 

  




        (5.1) 
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Where,   is the change in relative permittivity due to Lorentz pole pair, p  is the 

frequency of the pole-pair and p  is the damping coefficient. The real valued time 

domain susceptibility function ( )t  is obtained by Fourier transformation of (5.1), 

which yields the exponentially decaying sinusoidal function 

                

2

2 2

2 2
( ) sin( ) ( )ptp p

p p p

p p

t e t U t
 

  
 


 


    (5.2) 

For a Lorentz medium of P pole pairs, the expression in (5.1) can be extended to 

express the relative permittivity as[11, 21] 

                              

2

2 2
1

( )
2

p
p

p p pi


  

  





 

 


    (5.3) 

where P is the number of pole-pair. 

 

5.1.2   Modified Lorentz Model  

 

The frequency dependent complex permittivity for P pole-pair modified Lorentz 

model[21] can be expressed as 

                        

2 '

2 2
1

( )
( )

2

p
p p

p

p p p

i

i

  
   

  





  

 


     (5.4) 

                                      p s    
       (5.5) 
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where   is the permittivity at infinite frequency,  p   is the pole-pair frequency, 

p   is the damping coefficient, p   is the change in relative permittivity due to 

change in modified Lorentz pole-pair and s  is zero frequency relative permittivity. 

Here p , p , '

p   are in 1/ m  and speed of light is unity. 

 

5.2 Optimized Materials  

 

Optical parameter optimized for the tabulated material using Lorentz model and 

modified Lorentz model. 

Material Model Used 

Crystalline Arsenic Sulfide  

 

Lorentz Model Yttrium Aluminum Garnet 

Silicon Carbide 

Copper  

 

 

 

 

 

Modified Lorentz Model 

Hexagonal Cobalt 

Iridium 

Nickel 

Palladium 

Platinum 

Titanium 
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5.3 Optimization Method 

 

In recent years, different approaches have been taken for modeling frequency 

dependent material properties in FDTD methods for electromagnetics. Among them 

recursive convolution (RC), Z-transformation and auxiliary differential equation 

(ADE) methods are most efficient [30].  Numerical methods used for non-linear 

optimization problems are iterative in nature [31]. The ADE method is more 

straightforward to handle non-linear dispersive materials, but it is not possible with 

RC due to the linearity intrinsic to the convolution integral. Moreover, the ADE 

method requires minor changes in the algorithm when modeling materials with 

different shapes of the permittivity function. That’s why in this paper, we have used 

ADE technique for optimization purpose. 

The experimental values of refractive index and extinction coefficient has been taken 

from the book of  Edward D. Palik [32] and used them to obtain the complex relative 

permittivity for each material using the following equations: 

                         exp ( ) ( )erimental real imagi            (5.6) 

                                                      
2 2( )real n k          (5.7) 

                                                       ( ) 2imag nk                  (5.8) 

Where, n=refractive index and k=extinction coefficient. 

The ADE algorithms have a much better numerical performance and can be used to 

extract any parameter of the equations (5.3) & (5.4) within a defined range. It has its 
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uses in image enhancement and noise filter too. This technique works as follows: 

first, we assume a value over a wide frequency range for our desired parameters; 

depending on that value output is obtained, then we move on to the next range. When 

the whole range is covered, an optimized value is obtained for every parameter. 

 Here, we defined a particular range for every parameter of the Lorentz model 

and modified Lorentz model. The constraint that we followed for the optimization 

of Lorentz and modified Lorentz parameters are 1  , s  , 1p   and  ' 1p  . Then 

we keep updating the parameters value within that range until the RMS deviation 

reaches the desired level. If the RMS deviation is still not less than our desired value, 

then we again define the range newly and keep the iterations going on. Thus we 

obtain the optimized complex relative permittivity with minimum RMS deviation 

through an iterative method. Here, we calculated the RMS deviation by using the 

following equation:  

 

              RMS-deviation=

2 2

(exp ) ( )

1 1

1

( ) ( )
N N

n erimental n optimized

n n

N

n

n

  
 



 


             (5.9) 
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5.4 Optimized parameters 

5.4.1 Optimized parameter for Dielectric material for 

Lorentz model 

Table 5.1: Optimized parameter for Crystalline Arsenic Sulfide, Yttrium Aluminum Garnet, Silicon Carbide 

for Lorentz model 

 

The optimized parameters for three dielectric materials using large scale non-linear 

algorithm are presented on Table 5.1. In each case only single Lorentz pole pair is 

used. From the table it is seen that RMS deviation between the experimental data 

and fitted data is very small which indicates the robustness and accuracy of the 

optimization algorithm. 

Material 

 

Parameters 

 

Wavelength 

m   

 

  ( )   

 

No.  of 

pole 

 

  

 

p  p  

 

p   

RMS 

Deviation 

As2S3 
 

0.58-1.35 

 

1.000010 

8.627+ 

1.16e-11i 

 

01 

 

7.291255 

 

0.003577 

 

0.000000 

 

- 
0.25358 

Y3Al5O12  

 

0.20-1.40 

 

1.000000 

3.298+4.195i 

 

01 

 

2.277736 

 

0.008875 

0.000000 

 

- 

0.00305 

SiC 
 

0.49-2.00 

 

1.000000 

6.630+ 

2.418e-6i 

 

01 

 

5.531084 

 

0.006033 
0.000000 

 

- 
0.01006 
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The complex relative permittivity for each material has been determined using both 

optimized parameters and experimental values. Then the real and imaginary parts 

have been separated from the complex relative permittivity and plotted which is 

presented in figures 5.1 to 5.3. The blue colour square and dotted line indicates the 
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Figure 5.1: Curve fitting for 

Crystalline Arsenic Sulfide 

Figure 5.2: Curve fitting for 

Yttrium Aluminum Garnet 

Figure 5.3: Curve fitting for Silicon Carbide 
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imaginary part of the experimental and fitted data of complex relative permittivity 

respectively. While the red colour circular and solid line indicates the real part of 

experimental and fitted complex relative permittivity respectively. From the figure 

it is clearly visible that the real and imaginary parts of the complex relative 

permittivity obtained using extracted parameter agrees very well with the real and 

imaginary parts of the complex relative permittivity obtained from the experimental 

data [32]. We have used single pole-pair to optimize the Lorentz model parameter 

for Crystalline Arsenic Sulfide, Yttrium Aluminum Garnet and Silicon Carbide. The 

more is the number of pole-pairs, the higher the computational time is required. So 

our single pole-pair model requires significantly less computation time. 

 

5.4.2 Optimized parameter for Dielectric material for 

modified Lorentz model 

Table 5.2: Optimized parameter for Silicon Monoxide for modified Lorentz model 

 

 

Two modified Lorentz pole-pair has been used for the extraction of optical parameter 

for Silicon Monoxide for modified Lorentz model in the wavelength range of 300 

nm to 700 nm. From the table 5.2 it seen the RMS deviation is 0.00873 which 

Material 

 

Parameters 

 

Wavelength 

m  

 

  ( )   

 

No.  of 

pole 

 

  

 

p  p  

 

p   

RMS 

Deviation 

SiO 

 

 

 

0.30-0.70 

 

 

1.000010 

3.886+0.046i 

 

01 

 

0.843325 

 

0.003269 

0.001399 

 

0.007668 

0.00873 

 

02 

 

1.692655 

 

0.053413 

0.330511 

 

0.000377 
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indicates the robustness and accuracy of the optimization algorithm. From the Figure 

5.4, it is seen that the real and imaginary parts of the complex relative permittivity 

obtained using extracted parameter agrees very well with the real and imaginary 

parts of the complex relative permittivity obtained from the experimental data. 
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Figure 5.4: Curve fitting for Silicon Monoxide 
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5.4.3 Optimized parameter for Metal for modified Lorentz 

model 

Table 5.3: Optimized parameter for seven metals for modified Lorentz model 

 

Metals 

Parameters 

Wavelength 

( m ) 
  

( )   No. 

of 

pole 

p  
p  

p  
p   RMS 

deviation 

 

Iridium 

 

0.40-1.378 1.000010 

-

42.569 

+ 

47.394i 

1 9.812548 0.007721 0.002038 0.365869 

0.34571 
2 -6.615408 0.001107 0.018571 24.829479 

3 3.465769 0.000001 0.010698 24.416921 

4 10.000000 0.012207 0.270698 25.000000 

Nickel 

 

 

0.40-1.240 1.000000 

-

22.236 

+ 

33.419i 

1 9.950488 0.000000 0.130676 24.380180 

0.27815 

2 9.817351 0.000714 0.000622 0.018331 

3 -5.892833 0.038143 0.064130 24.999932 

4 -1.706868 0.001133 0.006165 8.735793 

5 9.720442 0.021658 0.216016 14.336483 

 

Hexagonal 

Cobalt 

 

0.31-1.088 1.000010 

-

22.794 

+ 

30.460i 

1 -2.303728 0.000019 0.000046 2.716080 

0.06615 

2 7.482513 0.000001 0.000045 0.840162 

3 -0.130284 0.017380 0.068599 9.498441 

4 -4.537557 1.439304 1.722500 0.002436 

5 0.026348 0.004801 0.002629 2.775001 

 

Palladium 

 

0.30-1.215 1.000009 

-

33.894 

+ 

31.796i 

1 
4.414364 0.003812 0.010677 0.744925 

0.05420 

2 -6.444852 0.026238 0.038512 7.995214 

3 -8.511503 0.000347 0.000118 0.013975 

4 6.958597 0.000038 0.029772 7.269253 

5 -1.989911 0.001571 0.005313 5.178818 

6 9.999941 0.075260 1.463879 0.004552 

Titanium 

 

 

0.30-.751 1.000010 

-

3.992+ 

16.341i 

1 -7.436450 0.018265 0.297033 8.885233 

0.06341 

2 6.453287 0.002265 0.001220 0.004731 

3 3.237341 0.001320 0.020354 0.777545 

4 -1.107759 0.271852 0.005674 24.990500 

5 9.952923 0.052360 0.406145 3.648494 

6 1.189443 0.023341 0.088210 3.118273 
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Table 5.3: Optimized parameter for seven metals for modified Lorentz model (continued) 

 

 

 

The optimized parameters for the seven metals using large scale non-linear 

algorithm are presented in table 5.3. From the table it can be observed that a 

maximum RMS deviation of 0.86289 occurs for Copper which indicates the 

robustness and accuracy of the optimization algorithm. 

The real and imaginary parts have been separated from the complex relative 

permittivity and plotted which is presented in figures 5.5 to 5.11. The red color 

indicates the real part while the blue color indicates the imaginary part of the 

complex relative permittivity. The solid lines denote the extracted parameters and 

the circle denote the experimental values. From the figure it is clearly visible that 

Metal 

Parameters 

Wavelengt

h 

( m ) 
  

 

s  

No. 

of 

pole 

 

p  

 

p  

 

p  
 

 

p   
RMS 

deviation 

 

Copper 

 

.516-.729 1.00001 

-

18.719 

+ 

1.866i 

1 0.037490 0.002187 0.000630 2.112530 

0.86289 

2 -9.904444 0.032381 0.000000 1.216072 

3 -10.00000 0.002186 0.000103 0.000000 

4 -9.965275 0.129588 0.000000 18.784637 

Platinum 

 

 

.413-1240 1.00000 

-

25.330 

+ 

51.953i 

1 4.251835 0.025682 0.062638 23.729744 

0.08484 

2 7.128254 0.000001 0.002710 0.637786 

3 -9.999999 0.004847 0.132864 25.000000 

   4 

 
2.880717 

0.018043 

 

0.258912 

 

16.869811 
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the real and imaginary parts of the complex relative permittivity obtained using 

extracted parameters agree very well with the real and imaginary parts of the 

complex relative permittivity obtained from the experimental values [32]. 

The single pole-pair Debye model parameter obtained by Sagor et al. [33] for Iridium 

exhibits an RMS deviation of 1.6216 in the wavelength range of 600 nm to 1100nm 

whereas our obtained four pole-pair modified Lorentz model parameter exhibits an 

RMS deviation of only 0.34571 in the wavelength range of 400nm to 1378nm. For 

Nickel, the RMS deviation for the single pole-pair Debye model parameter obtained 

by Sagor et al.[33] shows an RMS deviation of 1.027 in the wavelength range of 

600nm to 1100nm whereas our obtained five pole-pair modified Lorentz parameter 

shows an RMS deviation of only 0.27815 in the wavelength range of 400 nm to 1240 

nm. 
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For Hexagonal Cobalt, the RMS deviation for the single pole-pair Debye model 

parameter obtained by Sagor et al.[33] shows an RMS deviation of 1.1510 in the 

wavelength range of 350nm to 1000nm whereas our obtained five pole-pair modified 

Lorentz parameter shows an RMS deviation of only 0.06615 in the wavelength range 

of 310 nm to 1088 nm. 
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Figure 5.5: Curve fitting for 
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For Palladium, the RMS deviation for the single pole-pair Debye model parameter 

obtained by Sagor et al.[33] shows an RMS deviation of 0.2489 in the wavelength 

range of 300nm to 700nm whereas our obtained six pole-pair modified Lorentz 

parameter exhibits an RMS deviation of only 0.05420 in the wavelength range of 

300 nm to 1215nm.  

 

The single pole-pair Debye model parameter obtained by Sagor et al. [33] for 

Titanium exhibits an RMS deviation of 1.1239 in the wavelength range of 400nm to 

700nm whereas our obtained six pole-pair modified Lorentz model parameter 

exhibits an RMS deviation of only 0.06341 in the wavelength range of 300nm to 

751nm. 
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Similarly from the table it is seen that the RMS deviation for Copper and Platinum 

is also minimum i.e. 0.86289 and 0.08484 respectively. In case of Copper and 

Platinum, we have used four pole-pair and five pole-pair for the extraction of 

modified Lorentz parameter.  

 

In general, all models of metals have a negative real part of permittivity in most of 

the frequency range. The imaginary part, which is responsible for attenuation, is very 

large in most of the frequency range. The very large imaginary part causes EM waves 

to attenuate very fast inside the metal. That is why metals are considered as perfect 

conductors. In the optical range, metals have a reasonably small imaginary part and 

a reasonably small negative real part, as shown in above figure. Because of this, 

SPPs have the ability to propagate in metals.  
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Chapter 6 

Application and Case Study 
 

6.1   Simulation model 

 

An FDTD method [22] based model has been used for simulation purpose. Here, the 

general auxiliary differential equation (ADE) based FDTD [34] approach has been 

utilized to incorporate the frequency dependent dispersion property of the 

constituent material. This algorithm is useful for the simulation of materials with 

different dispersive properties. The perfectly matched layer [35] has been integrated 

at all the boundaries in order to prevent back reflections. 

Considering the dispersion property of material the frequency-dependent electric 

flux density can be expressed as 

                                               ( ) ( ) ( )oD E P           (6.1) 

The general Lorentz model is given by  

                                            2
( ) ( )

a
P E

b jc d
 

 


           (6.2) 

Using inverse Fourier transform, above equation can be written as 

                                     
' ''( ) ( ) ( ) ( )bP t cP t dP t aE t                           (6.3) 

The FDTD solution for the first order polarization of Eq. (6.3) can be given as 
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The values of 1C , 2C  and 3C depend on the material under consideration. Finally the 

electric field intensity becomes 
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                      (6.5) 

Where N is the number of pole-pair and 1nD  is the update value of the electric flux 

density calculated by using FDTD algorithm. 

6.2   Numerical Results for Temporal Solitons 

 

In this section the dynamics of temporal solitons calculated using ADE non-linear 

dispersion algorithm for the FDTD method has been presented. Single pole-pair 

Lorentz model parameters of As2S3 is used to demonstrate the dispersion of a secant 

wave while propagating through As2S3. The pulse that we have used is of unity 

amplitude of its electric field with a carrier frequency of    Hz. The grid 

resolution was set at 5nm. The below figure depicts the result of dispersive ADE-

FDTD computation. In Fig. 6.1, the computed rightward propagating pulse for the 

Lorentz dispersive case is plotted at 20000 and 40000 time-steps. The parameters 

used for simulation is as follows: 

1.000010  , 8.291s  ,
156.7425 10 ( / sec)o rad   and 

11

1.885 10 ( / sec)rad   . 

141.37 10
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Figure 6.1 Calculated optical pulse after 20,000 and 40,000 time-steps 

 

6.3   Plasmonic Waveguide 

 

In this section, the FDTD simulator is used to study plasmonic waveguides. SPPs 

are electromagnetic waves propagating on the surface between two media: dielectric 

and metal. Here, we have investigated the symmetric SPP propagation properties in 

dielectric-metal-dielectric waveguide where 2 3As S is used as dielectric material and 

Ag as metal. The schematic view of metal-dielectric-metal waveguide that we have 

used for simulation is given in figure 6.2. The width of the metal layer has been taken 

as 300 nm and width of both dielectric layers as 850 nm. Here, input plane type light 

source has been used which can propagate in a particular direction and has an 
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intensity distribution across the incident plane. The profile pumped into DMD 

waveguide is given in figure 6.3 and in figure 6.4. 

The SPP wavelength is given by, 

                                            

'

'

d m
SPP o

d m

 
 

 


                (6.6) 

Where, o is the free space wavelength, d is the real part of the complex relative 

permittivity of dielectric and 
'

m  is the real part of the complex relative permittivity 

of the metal. 

 

Figure 6.2: Schematic diagram of the DMD waveguide used for simulation. 
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Figure 6.3: Ex profile pumped into DMD waveguide 

 

Figure 6.4: Hy profile pumped into DMD waveguide 

In figure 6.5 to figure 6.10 the field distributions are shown in both time domain and 

frequency domain. 
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Figure 6.5: Ex profile at different time instant 

 

Figure 6.6: Ez profile at different time instant 
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Figure 6.7: Hy profile at different time instant 

 

 

 

Figure 6.8: Ex field strength at different distance 
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Figure 6.9: Ez field strength at different distance 

 

Figure 6.10: Hy field strength at different distance 

 

The variation in electric field strength (2D) in different time steps at different 

distances from the dielectric metal interface are presented in figure 6.11 
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Figure 6.11: 2D Electric field distribution inside the DMD waveguide used for simulation at time step (a) 

100 (b) 500 (c) 950 (d) 1400 (e) 1750 (f) 2646 

(a) 
(b) 

(c) 
(d) 

(e) (f) 
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It can be observed that the electric field strength decreases as one goes away from 

the interface. This is the reason SPP mode field decreases exponentially in strength 

as one goes further from the interface in the y-direction. Due to the skin effect of the 

SPP mode in the metal and dielectric layers it happens. The resonance mode is also 

clearly visible in the figures with peak amplitudes centered on different input signal 

wavelength for different materials. Figure 6.12 depicts the power transmission 

efficiency of the DMD waveguide. The efficiency is determined by measuring input 

source power at the starting point of the metal channel and received power at the end 

of the metal channel. 

 

Figure 6.12: Power transmission efficiency at different distances. 
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Chapter 7 

Conclusion and Future Works 

 

7.1 Summary and Conclusion 

 

The main contribution of this thesis is the extraction of modeling parameters for 

several materials and the analysis of a coupling structure using Silver as metal and 

Arsenic Sulfide as dielectric. In this thesis, investigations of the propagation of SPPs 

in the nanostructure were done and field distribution inside the waveguide has been 

analyzed. In near future, SPPs can take the role of electrons to reach better and 

smaller devices. The thesis can be summarized as follows: 

 

 A large scale nonlinear optimization method has been described and the 

modeling parameters for several metals and dielectric materials have been 

extracted in the visible and near-IR range of the electromagnetic spectrum. 

The comparison between the optimized result and experimental result has 

been shown to prove the validity of the optimization method. 

 An ADE-FDTD algorithm based two dimensional simulation model has 

been developed in order to simulate optical nanostructures. The validity of 

the simulation model has been checked by simulating with the parameters 

given by Taflove and comparing the results provided by Taflove [11]. 

Then the dynamics of temporal solitons has been calculated for Arsenic 

Sulfide using the simulation model. In this case single pole-pair Lorentz 

model parameter of Arsenic Sulfide has been used. 
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 Electric field distribution in dielectric-metal-dielectric waveguide has been 

analyzed for Arsenic Sulfide (dielectric) and Silver (metal) and power 

transmission efficiency at different distances has been shown.  

 

7.2 Future Works 

 

Work in this very interesting field can be extended in many directions. 

 We will investigate metal-dielectric-metal waveguide with a combiner 

constructed with different dielectric materials. 

 We will investigate metal-dielectric-metal waveguide with a combiner 

constructed with different dielectric materials. 

 We will investigate SPP propagation characteristics in different DMD 

waveguide. The characteristics that will be focused are SPP wavelength, 

SPP penetration depth and electric field strength at different distances from 

the metal-dielectric surface. 

 The current numerical simulator can be extended to 3D to observe the 

linear dispersion of different nanostructures. 

 We will try to arrange some experimental setups and implement our work 

practically. 
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