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Abstract 
Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely 

distributed, clean, produces no greenhouse gas emissions during operation and uses 
little land. Unlike other sources of electricity that require fuel in processing plants, 
wind energy generates electricity through wind, which is free. So wind turbines 
might be used jointly with conventional generation system to contribute to the grid. 
But this practice can affect the stability of the conditions of the power system. 
Hence, we need to contemplate the power system stability conditions when DFIG 
power plant appended to it. 

This thesis describes the modeling and small signal analysis of a grid 
connected doubly-fed induction generator (DFIG). The model was developed from 
the basic flux linkage, voltage and torque equations. The change in properties for 
different system parameters, operating points, and grid strengths are computed and 
observed. The results offer a better understanding of the DFIG intrinsic dynamics, 
which can also be useful for control design and model justification. 

 

Keywords 
Doubly-fed induction generator, DFIG, small-signal model, eigenvalue analysis, 

small-signal stability, non-linear dynamic model 
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Chapter 1 

Introduction 
1.1 Introduction 

Wind energy is gaining increasing importance throughout the world. This fast 
development of wind energy technology and of the market has large implications 
for a number of people and institutions: for instance, for scientists who research 
and teach future wind power and electrical engineers at universities; for 
professionals at electric utilities who really need to understand the complexity of 
the positive and negative effects that wind energy can have on the power system; 
for wind turbine manufacturers; and for developers of wind energy projects, who 
also need that understanding in order to be able to develop feasible, modern and 
cost-effective wind energy projects. Currently, five countries – Germany, USA, 
Denmark, India and Spain – concentrate more than 83% of worldwide wind energy 
capacity in their countries [10]. 

With the worldwide trend and wish to integrate more wind energy into the 
power system, there has been an urgent need of suitable dynamical models of wind 
generators. As control design is a major concern, a small-signal analysis can give 
valuable information on the DFIG properties, limitations and control options. This 
thesis presents the small-signal analysis of a grid connected doubly-fed induction 
generator (DFIG). To this end, the system non-linear dynamical model is derived. 
Then, its linearization and eigenvalue analysis are presented. 

As an initiative, this thesis first considers a single machine infinite-bus system 
and investigates the stability conditions with and without disturbance. Afterwards, 
a DFIG is considered to be connected to the infinite-bus system along with the 
single machine and the power system stability is examined once more. 
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1.2 Power system stability 

Power system stability may be defined as that property of the system which 
enables the synchronous machines of the system to respond to a disturbance from a 
normal operating condition so as to return to a condition where their operation is 
again normal. 

The power system stability is divided is divided in two classes: 

1. Steady state stability 

The steady state stability of a power system is defined as the ability of the 
system to bring itself back to its stable configuration following a small 
disturbance in the network.  

In case the power flow through the circuit exceeds the maximum power 
permissible, then there are chances that a particular machine or a group of 
machines will cease to operate in synchronism, and result in yet more 
disturbances. In such a situation, the steady state limit of the system is said 
to have reached. Or in other words the steady state stability limit of a system 
refers to the maximum amount of power that is permissible through the 
system without loss of its steady state stability.  

2. Transient stability 

Transient stability of a power system refers to the ability of the system to 
reach a stable condition following a large disturbance in the network 
condition. In all cases related to large changes in the system like sudden 
application or removal of load, switching operations, line faults or loss due 
to excitation the transient stability of the system comes into play. It in fact 
deals in the ability of the system to retain synchronism following a 
disturbance sustaining for a reasonably long period of time. 

And the maximum power that is permissible to flow through the network 
without loss of stability following a sustained period of disturbance is 
referred to as the transient stability of the system. Going beyond that 
maximum permissible value for power flow, the system would temporarily 
be rendered as unstable. 
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1.3 Wind Turbine 

A wind turbine is a device that converts kinetic energy from the wind into 
electrical power. A wind turbine is similar to a fan but works in reverse direction. 
Typically wind turbines are much larger in size as compared to a fan [11]. 
The result of over a millennium of windmill development and modern engineering, 
today's wind turbines are manufactured in a wide range of vertical and horizontal 
axis types. The smallest turbines are used for applications such as battery 
charging for auxiliary power for boats or caravans or to power traffic warning 
signs. Slightly larger turbines can be used for making small contributions to a 
domestic power supply. Arrays of large turbines, known as wind farms, are 
becoming an increasingly important source of renewable energy and are used by 
many countries as part of a strategy to reduce their reliance on fossil fuels. 

1.3.1 Types of wind turbine 
Wind turbines can rotate about either a horizontal or a vertical axis, the former 
being both older and more common [11]. 

1. Horizontal-axis wind turbines 
Horizontal-axis wind turbines (HAWT) have the main rotor shaft and electrical 
generator at the top of a tower, and must be pointed into the wind. Most have a 
gearbox, which turns the slow rotation of the blades into a quicker rotation that 
is more suitable to drive an electrical generator [11].  
Since a tower produces turbulence behind it, the turbine is usually positioned 
upwind of its supporting tower. Turbine blades are made stiff to prevent the 
blades from being pushed into the tower by high winds. Additionally, the blades 
are placed a considerable distance in front of the tower and are sometimes tilted 
forward into the wind a small amount. 

2. Vertical-axis wind turbine 
Vertical-axis wind turbines (or VAWTs) have the main rotor shaft arranged 
vertically. One advantage of this arrangement is that the turbine does not need 
to be pointed into the wind to be effective, which is an advantage on a site 
where the wind direction is highly variable. It is also an advantage when the 
turbine is integrated into a building because it is inherently less steerable. Also, 
the generator and gearbox can be placed near the ground, using a direct drive 
from the rotor assembly to the ground-based gearbox, improving accessibility 
for maintenance. 
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1.3.2 Working principle of Wind turbine 

Wind turbines use wind energy to produce electricity. The wind turbines are 
machines that have a rotor with three propeller blades. These blades are 
specifically arranged in a horizontal manner to propel wind for generating 
electricity. Wind turbines are placed in areas that have high speeds of wind, to spin 
the blades much quicker for the rotor to transmit the electricity produced to a 
generator. 
Thereafter the electricity produced is supplied to different stations through the grid. 
One wind turbine can generate enough electricity to be used by a single household. 
A wind energy plant normally consists of many wind turbines that are 30 to 50m 
long each. According to the rule, the higher you go, the cooler it becomes and 
more air is circulated. This rule is applied by constructing turbines at high 
altitudes, to use the increased air circulation at high altitudes to propel the turbines 
much faster. 
1.3.3 Components of wind turbine 
The main components of a wind turbine for electricity generation are: rotor, 
transmission system and generator, yaw and control system. Apart from the rotor, 
most of the components are kept inside the ‘nacelle’ [11]. 
 

 
 

Fig.1.1 Components of wind turbine 
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1.4 Types of Wind Generator 

 
 
Fig.1.2 widely used wind turbine types: (a) constant-speed wind turbine (Type A); 
(b) variable-speed wind turbine with doubly fed induction generator (Type B); and 
(c) direct-drive variable-speed wind turbine with multi pole synchronous generator 

(Type C) [10] 

1.5 Doubly-fed induction generator 

The concept of variable speed with partial scale frequency converter is known as 
doubly fed induction generator (DFIG). Similar to the squirrel cage induction 
generator, it needs a gearbox. The stator winding of the generator is coupled to the 
grid, and the rotor winding to a power electronic converter, nowadays usually a 
back-to-back voltage source converter with current control loops. In this way, the 
electrical and mechanical rotor frequencies are decoupled, because the power 
electronic converter compensates the difference between mechanical and electrical 
frequency by injecting a rotor current with variable frequency. Variable-speed 
operation thus becomes possible. This means that the mechanical rotor speed can 
be controlled according to a certain goal function, such as energy yield 
maximization or noise minimization.  
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The rotor speed is controlled by changing the generator power in such a way that it 
equals the value derived from the goal function. In this type of conversion system, 
the control of aerodynamic power is usually performed by pitch control. 

1.6 Method of simulation 

In this thesis the non-linear model of single machine infinite-bus system and non-
linear model of DFIG connected to infinite bus together with conventional 
generation are developed through equation. These models are then simulated using 
the software MATLAB. 

After that, the stability conditions of the models are observed. The results offer a 
better understanding of the DFIG intrinsic dynamics. 

1.7 Structure of the thesis 

This thesis is divided into 4 chapters. The main objective and goal is highlighted in 
the abstract part of the thesis. The thesis starts with the analysis of the non-linear 
model of single machine infinite-bus system and ends with small signal analysis of 
DFIG. 

In chapter 1, a brief discussion of the thesis work is given in the introduction. Then 
in chapter 2, the non-linear model of the single machine infinite bus system is 
analyzed. Afterwards, the noon-linear model of DFIG operating side by side to a 
conventional generator in a power system is investigated. The results and the 
graphs of these simulations are emerged in chapter 4. 
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Chapter 2 

Modeling of Synchronous Generator 
2.1 Modeling of a Synchronous Generator Connected To Infinite Bus: 

A single machine connected to an infinite bus (SMIB) is although not so 
realistic but for simplicity that can be considered. The system considered is in fig 
2.1. This shows the external network with two ports. One port is connected to 
generator terminals while the second port is connected to a voltage source Eb∠0. 
Both the magnitude Eb and the phase angle of the voltage source are assumed to be 
constant. Also there is no loss of generality in assuming the phase angle of bus 
voltage as zero. 

 
Fig.2.1 External two port network 

The machine equations are: 
ௗఋ
ௗ௧

 = ωB(Sm-Sm0)          (2.1) 

ௗୗౣ
ௗ௧

 = ଵ
ଶு

[-D(Sm-Sm0) +Tm-Te]        (2.2) 

ௗா೜ᇲ

ௗ௧
 = ଵ

೏்೚
ᇲ ௤ᇱܧ-] ௗݔ) +  − ௗᇱݔ )id+Efd]        (2.3) 

ௗா೏
ᇲ

ௗ௧
 = ଵ

೜்೚
ᇲ ௗᇱܧ-] ௤ݔ) -  − ௤ᇱݔ )iq]        (2.4) 

 

âI  

t̂V  

ˆ ˆ( ) , ( )j j
t q d t q dV v jv e I i ji e      

External two port 
network 

+ 

Eb∠0 
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2.2 Initial conditions: 

Initial conditions are given below, 

âoI = Iao∠ϕ0 = ௉೟ି௝ொ೟
௏೟బ∠ିఏబ

         (2.5) 

Eqo∠δ0 = Vto∠θ0 + (Ra+jxq)Iao∠ϕ0       (2.6) 

ido = Iaosin(δ0-θ0)          (2.7) 

iqo = Iaocos(δ0-θ0)          (2.8) 

vdo = -vtosin(δ0-θ0)          (2.9) 

Efdo = Eqo + (xd-xq)ido         (2.10) 

௤௢ᇱܧ  = Eqo - (xd-ݔௗᇱ )ido         (2.11) 

ௗ௢ᇱܧ  = (xq-ݔ௤ᇱ )iqo          (2.12) 

Teo = ܧ௤௢ᇱ iqo + ܧௗ௢ᇱ ido + (ݔௗᇱ − ௤ᇱݔ )idoiqo = Tmo      (2.13) 

2.3 Simulation for a system diagram 

We added disturbance to simulate the real time disturbances occur in the practical 
network. Assume Eb = 1.0. We got the following curves for different cases. 
Different initial values for different cases are given below as a table, 

Variable Case(1) Case(2) Case(3) Case(4) 

δ 44.1 69.73 30.27 71.28 

௤ᇱܧ  1.111 0.6814 0.9312 0.3893 

ௗᇱܧ  -0.4568 -0.6126 -0.3273 -0.6245 

id -0.9332 -0.7813 -0.1536 -0.1535 

iq 0.3597 0.4835 0.2577 0.4838 

Efd 2.6787 2.0094 1.1923 0.6503 

Vt 1.0928 0.9804 1.0022 0.9232 

Table 2.1 Initial values for variation of Pt and Qt 
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Case 1: Pt = 0.9, Qt = 0.6 

 
Fig.2.2 Swing curve and terminal voltage curve (case 1) 

Case 2: Pt = 0.9, Qt = -0.02 

 
Fig.2.3 Swing curve and terminal voltage curve (case 2) 
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Case 3: Pt = 0.3, Qt = 0.02 

 
Fig.2.4 Swing curve and terminal voltage curve (case 3) 

Case 4: Pt = 0.3, Qt = -0.36 

 

Fig.2.5 Swing curve and terminal voltage curve (case 4) 
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2.4 Analysis of single machine system 

With classical model of the synchronous machine, the steady state instability at the 
limiting power is characterized by a slow monotonic increase (or decrease) in the 
rotor angle, resulting in loss of synchronism. With the advent of automatic voltage 
regulator (AVR) it was felt that steady state stability limit can be enhanced as the 
AVR acts to overcome the armature reaction. A simplified representation of the 
effect of AVR is the reduction of the generator reactance from xd to a much smaller 
value. It is to be noted that without AVR, modern turbo-generators cannot operate 
at full rated power. Also, the transient stability is improved by fast acting exciters 
with high gain. 

2.4.1 Small signal stability with block diagram representation  

Consider a single machine system shown in Fig.2.6. For simplicity we will assume 
a synchronous machine represented by model 1.0 neglecting damper windings both 
in d and q axis. Also the armature resistance if the machine is neglected and the 
excitation system represented by a single time-constant system shown in Fig.2.7. 

 

Fig.2.6 A single machine system 

 

Generator 
Re Xe 

Eb∠0 
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Fig.2.7 Excitation system 

 

The algebraic equations of the stator are 

௤ᇱܧ + ௗᇱݔ ݅ௗ= vq           (2.14) 

-xqiq = vd           (2.15) 

The complex terminal voltage can be expressed as 

(vq + jvd) = (iq + jid)(Re + jxe) + Ebe-jδ                  (2.16) 

Separating real and imaginary parts eq.(2.16) can be expressed as 

vq = Reiq – xeid + Ebcosδ                   (2.17) 

vd = Reid + xeiq - Ebsinδ                   (2.18) 

Substituting eqs.(2.17) and (2.18) in eq.(2.14) and (2.15), we get, 

൬
ௗᇱݔ) + (௘ݔ −ܴ௘

ܴ௘ ௤ݔ)− + ௘)൰ݔ ൬
݅ௗ
݅௤
൰ = ൬

ߜݏ݋௕ܿܧ − ௤ᇱܧ

ߜ݊݅ݏ௕ܧ−
൰     (2.19) 

After linearizing we get, 

Δid = C1Δδ+ C2ΔE’
q          (2.20) 

Δiq = C3Δδ+ C4ΔE’
q          (2.21) 

- 

Vt 

Vref + 

+ 

Vs 

Efd   1
E

E

K
sT
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Where  

C1 = ଵ
஺

[ܴ௘ܧ௕ܿߜݏ݋଴ −  ൫ݔ௤ +  [଴ߜ݊݅ݏ௕ܧ௘൯ݔ 

C2 = - ଵ
஺

௤ݔ) +   (௘ݔ

C3 = ଵ
஺

ௗᇱݔ)] + ଴ߜݏ݋௕ܿܧ(௘ݔ +  ܴ௘ܧ௕ߜ݊݅ݏ଴] 

C4 = ோ೐
஺

 

Linearizing Eq.(2.14) and (2.15) and substituting from Eq. (2.20) and (2.21), we 
get, 

Δvd = ݔௗᇱ ߜ߂ଵܥ + (1 + ௗᇱݔ ௤ᇱܧ߂(ଶܥ        (2.22) 

Δvq = −ݔ௤ܥଷߜ߂ − ௤ᇱܧ߂ସܥ௤ݔ         (2.23) 

 

2.4.2 Rotor mechanical equation and torque angle loop 

The rotor angle mechanical equations are  

0

' '

( )

2

( )

B m m

m
m m e

e q q q d d q

d s s
dt

dSH DS T T
dt

T E i x x i i


 

   

  

  

After linearizing eq.(2.26) we get, 

߂ ௘ܶ = ߜ߂ଵܭ + ௤ᇱܧ߂ଶܭ           (2.27) 

Where 

ଵܭ = ଷܥ௤଴ܧ −  ൫ݔ௤ − ௗᇱݔ ൯݅௤௢ܥଵ         (2.28) 

ଶܭ = ସܥ௤଴ܧ +  ݅௤௢ − ൫ݔ௤−ݔௗᇱ ൯݅௤௢ܥଶ        (2.29) 

௤௢ܧ = ௤଴ᇱܧ − ൫ݔ௤ − ௗᇱݔ ൯݅ௗ௢         (2.30) 

 

(2.24) 

(2.25) 

(2.26) 
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2.4.3 Representation of flux decay 

The equation of field winding can be expressed as 

ௗܶ௢
ᇱ ௗா೜ᇲ

ௗ௧
= ௙ௗܧ − ௤ᇱܧ + ௗݔ) − ௗᇱݔ )݅ௗ        (2.31) 

Linearizing the equation we get, 

ௗܶ௢
ᇱ ௗ௱ா೜ᇲ

ௗ௧
= ௙ௗܧ߂ − ௤ᇱܧ߂ + ௗݔ) − ௗᇱݔ ߜ߂ଵܥ)( + ௤ᇱܧ߂ଶܥ )     (2.32) 

Taking laplace transform we get, 

(1 + ݏ ௗܶ௢
ᇱ ௤ᇱܧ߂(ଷܭ = ௙ௗܧ߂ଷܭ −  (2.33)       ߜ߂ସܭଷܭ

Where  

ଷܭ =  ଵ
[ଵି൫௫೏ି௫೏

ᇲ ൯஼మ]
          (2.34) 

ସܭ = ௗݔ)−  − ௗᇱݔ  ଵ          (2.35)ܥ(

 

2.4.4 Representation of Excitation system 

The presentation of terminal voltage Vt can be expressed as, 

߂ ௧ܸ =  ௩೏೚
௏೟బ

ௗݒ߂ + ௩೜೚
௏೟೚

 ௤         (2.36)ݒ߂

In general form 

߂ ௧ܸ = ߜ߂ହܭ + ௤ᇱܧ߂଺ܭ           (2.37) 

Where 

ହܭ =  ௩೏೚
௏೟೚

ଷܥ௤ݔ + ௩೜೚
௏೟೚

ௗᇱݔ  ଵ         (2.38)ܥ

଺ܭ = − ௩೏೚
௏೟బ

ସܥ௤ݔ + ቀ௩೜బ
௏೟బ
ቁ (1 − ௗᇱݔ  ଶ)        (2.39)ܥ
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2.4.5 Computation of Heffron-Philips Constants for Lossless Network 

For Re=0, the expressions for the constants K1 to K6 are simplified. As the 
armature resistance is already neglected, this refers to a lossless network on the 
stator side. The expressions are given below, 

ଵܭ =  ா್ா೜೚௖௢௦ఋబ
(௫೐ା௫೜)

+ (௫೜ି௫೏
ᇲ )

(௫೐ା௫೏
ᇲ )
 ଴       (2.40)ߜ݊݅ݏ௕݅௤଴ܧ

ଶܭ = (௫೐ି௫೜)
(௫೐ା௫೏

ᇲ )
݅௤௢ = ா್௦௜௡ఋ೚

(௫೐ା௫೏
ᇲ )

         (2.41) 

ଷܭ =  (௫೐ି௫೏
ᇲ )

(௫೐ା௫೏)
           (2.42) 

ସܭ =  (௫೏ି௫೏
ᇲ )

(௫೐ା௫೏
ᇲ )
 ଴          (2.43)ߜ݊݅ݏ௕ܧ

ହܭ =  ି௫೜௩೏೚ா್௖௢௦ఋబ
൫௫೐ା௫೜൯௏೟೚

− ௫೏
ᇲ ௩೜బா್௦௜௡ఋబ
൫௫೐ା௫೏

ᇲ ൯௏೟೚
        (2.44) 

଺ܭ =  ௫೐
൫௫೐ା ௫೏

ᇲ ൯
. ቀ௩೜బ

௏೟೚
ቁ          (2.45) 

 

 
Fig.2.8 Overall block diagram 
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2.4.6 Simplified Model with State Equation 

It is possible to express the system equations in the state space form. From the 
block diagram, fig.2.8 the following system equations can be derived 

[ ] [ ]( )ref sx A x B V V             (2.46) 

Where  

ݔ = ௠ܵ߂     ߜ߂] ௤ᇱܧ߂       [௙ௗܧ߂     

1 2

4
' ' '

3

5 6

0 0 0

0
2 2 2

1 1[ ] 0

10

B

do do do

E E

E E E

K KD
H H H

KA
T T K T

K K K K
T T T

 
 
   
 
    
 
 
   
 

 

[ܤ] = ൤0    0    0    
ாܭ
ாܶ
൨ 

The dumping term D, is included in the swing equation. The eigenvalue of the 
matrix should lie in LHP in the ‘S’ plane for the system to be stable. The effect of 
various parameters (KE and TE) can be exclaimed from eigenvalue analysis. It is to 
be noted that the elements of matrix [A] are dependent on the operating condition. 

2.4.7 Characteristics of Heffron-Phillip constants 

The variations of K1, (K1 – K2K3K4) and K5 with variations in xe for case (i)Pg = 
0.5 and for case (ii) Pg = 1.0 are shown in fig.2.9. It is interesting to observe that, 

i. K1>0 for both cases. As expected, K1 reduces with increase in xe. The 
reduction is faster for case (b) Pg = 1.0. 

ii. (K1-K2K3K4) is positive for case (a) while for case (b) it becomes negative 
foe xe exceeding 0.7. 

iii. K5>0 for case (a) when xe<0.8. However, K5<0 for case (b) even for xe = 0.1. 
K5 reduces with increase in xe. 
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If AVR is not considered then the conditions for stability are  

K1 > 0, K1 – K2K3K4 > 0 

And if AVR is to be considered then the condition for stability is primarily, 

ாܭ <  
ସܭ
ହܭ−

 

 

 
Fig.2.9 Variations of parameters with xe 

Again, the variations of K1, (K1-K2K3K4) and K5 with xe = 0.4 and Pg varied from 
0.5 to 1.5 is shown in fig.2.10. It is interesting to observe that, 

i. K1>0 and remains practically constant. 
ii. (K1-K2K3K4) reduces with increase in Pg. It reaches the value of zero 

as Pg approaches 1.5p.u. 
iii. K5 reduces as Pg increases. K5 crosses zero as Pg approaches the value 

of 0.7p.u. and remains negative as Pg is further increased.  
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Fig.2.10. variations of parameters with Pg 

 

2.5 Eigenvalue analysis 

Suppose, A synchronous generator is connected to an infinite bus through an 
external reactance xe=0.4p.u. and  

(a)  Pg = 0.5, Vt=1.0, Eb=1.0 
(b)  Pg = 1.0, Vt=1.0, Eb=1.0 

We need to compute the eigenvalues for the two operating conditions and             
(i) without AVR and (ii) with AVR of TE = 0.05 and KE = 200. 

The system matrix [A] is defined in eqn. 2.46. The substitutions of the parameter 
values and calculation of eigenvalues using MATLAb program gives the following 
results. 

Pg Without AVR With AVR 
0.5 -0.1185±j5.9302 -0.1512±j5.5407 

-0.2259 -10.0803±j14.3810 
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(c) Variation of K5
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Pg Without AVR  With AVR 
1.0 -0.1702±j6.4518 0.5091±j7.1562 

-0.1225 -10.7405±j12.1037 
 

 
Fig.2.11 Eigenvalue loci for variation in Pg (0.5 – 1.7) 

 
Fig.2.12 Eigenvalue loci for variation in xe (0.1-1.0) 
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It is interesting to observe that 

(i) The complex pair of eigenvalues corresponding to low frequency rotor 
oscillations is affected by AVR in different ways for cases (a) and (b). In 
the first case (Pg = 0.5), the damping is slightly increased with AVR 
while the frequency of oscillation is slightly decreased. This is equivalent 
to the statement that while AVR can contribute damping torque (with 
K5>0) the synchronizing torque is slightly decreased. 
For the case (b), the net damping becomes negative while the frequency 
of oscillation increases slightly. This is mainly due to fact that K5<0, in 
this case.  

(ii) There is a negative real eigenvalue in the case without AVR which 
moves towards the origin as Pg is increased. However the inclusion of a 
single time constant excitation system results in another complex pair in 
the left half plane, further away from the imaginary axis compared to the 
rotor mode. The loci of eigenvalues for the case without AVR are shown 
in Fig.2.11 as Pg is varied from 0.5 to 1.7. The variations with xe (varied 
from 0.1 to 1.0) for Pg =1.0, are shown in fig.2.12. It is interesting to note 
that while the complex pair remains in the left half plane, the real 
eigenvalue crosses imaginary axis into RHP as either Pg or xe is 
increased. This shows that instability in the case when AVR in absent, is 
mainly due to monotonic increase (or decrease) in the rotor angle when 
small perturbations are present. 

2.5.2 Eigenvalue analysis for variation in AVR gain 

Now, if we plot the curve for variation in AVR gain, then we need to vary KE 
from 0 to 400. 

(i) Here for case (a), the damping increases at first as KE is increased from 
zero but starts decreasing as KE is further increased. However the locus 
remains in the LHP.  

(ii) For case (b), the damping starts decreasing as KE is increased from zero 
and the eigenvalue crosses imaginary axis as KE is increased beyond 17. 
Although the locus turns around as KE is further increased, it remains in 
the RHP. 

The difference in the loci for the two cases can be attributed to the fact that 
while K5<0 for case (b) it is positive for case (a). Thus instability is expected in 
case (b) for sufficiently large values of KE.  
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Fig.2.13 Eigenvalue loci for variation in AVR gain 
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Chapter 3 

Modeling of a Grid connected DFIG 
3.1 DFIG Equations in abc-Form 

Here the convention is adopted for positive current, voltage and flux directions are 
shown in Fig.3.1.  

 

 
Fig.3.1. Definition of positive current, voltage and flux directions 

 
As the machine is working in generator mode, positive currents are flowing out of 
it. The sign of the self-flux linkage produced by a current in a circuit is the same as 
that of the current. The polarity of the voltage induced by a changing flux is so that 
it results in a current that opposes the change (Lenz’s law)  
Applying the Kirchoff voltage law to Fig.3.1 gives:  
 
Vas = − ଵ

ωా
 ୢ
ୢ୲

 ψas - Rsias                  (3.1) 
 
where Rs, Vas, ias, and ψas are in [pu] and are the stator phase-a winding resistance, 
voltage, current and flux linkage, respectively; ωB [rad/sec] is the system base 
frequency which is equal to the synchronous frequency, i.e. ωB= 2πf, and t is the 
time in second and the flux ψas is: 
 
ψୟୱ = (Lୱୣ୪୤ + L୪ୣୟ୩)iୟୱ + L୫୳୲(iୠୱ + iୡୱ) + Lୱ୰ ቀcosθ୰iୟ୰ + cosቀθ୰ + ଶ஠

ଷ
ቁ iୠ୰ + cosቀθ୰ −

ଶ஠
ଷ
ቁ iୡ୰ቁ  

            (3.2) 
Where θr= θr(t) is the angle between the stator a-axis (stationary) and rotor a-axis 
(rotationary) as shown on Fig.3.1; Lself and Lleak are the self- and leakage 
inductance of a stator winding, respectively; Lmut is the mutual inductance between 
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two stator windings; and Lsr is the peak value of the mutual inductance between 
stator and rotor windings. For the other phases of the stator and rotor, similar 
equations can be written. 
 
3.2 abc-dq transformation 
In electrical engineering, direct-quadrature (dq) transformation is a mathematical 
transformation that rotates the reference system in an effort to simplify the analysis 
of three phase circuit. In the case of balanced three phase circuits, application of 
the dq transform reduces the three AC quantities to two DC quantities. Simplified 
calculations can then be carried out on these DC quantities. 
3.2.1 Transformation matrix 
For easier control, three-phase variables are transformed into dq variables. In 
matrix notation, we have:  
௤ௗ଴ݒ =  ఏܶݒ௔௕௖           (3.3) 

where vqd0 = [vq  vd  v0]’, vabc= [va  vb  vc]’, and Tθ is the abc-to-dq transformation 
matrix. The power invariant transformation is chosen, and the d-axis is leading the 
q-axis. Fig.3.2 shows the dq-frame woth respect to the stator 3 axis frame. The 
corresponding transformation matrix is given in eqn. (3.4). 

2 2sin sin( ) sin( )
3 3

2 2 2cos cos( ) cos( )
3 3 3

1 1 1
2 2 2

T

   

 
  

   
 
    
 
  
 

        (3.4) 

Tθ is orthogonal, thus the inverse transformation matrix is the transpose of Tθ. 
 

 
Fig.3.2 dq-frame with respect to stator abc-frame 
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3.2.2 DFIG equations in dq-form 
Applying Tθ to eqn(3.1)-(3.2) and the other stator and rotor phase equations gives 
the DFIG dq-model in [pu]: 

Vqs = − ଵ
னా

 ୢ
ୢ୲

 ψqs - Rsiqs + ωѱds           (3.5) 

Vds = − ଵ
னా

 ୢ
ୢ୲

 ψds - Rsids - ωѱqs           (3.6) 

Vqr = − ଵ
னా

 ୢ
ୢ୲

 ψqr - Rriqr + (ω- ωr)ѱdr             (3.7)  

Vdr = − ଵ
னా

 ୢ
ୢ୲

 ψdr - Rriqr - (ω- ωr)ѱqr             (3.8)  

ѱqs = Lssiqs + Lmiqr           (3.9) 
ѱds = Lssids + Lmidr           (3.10) 
ѱqr = Lssiqr + Lmiqs           (3.11) 
ѱqr = Lssidr + Lmids           (3.12) 

In eqn.3.5-3.8, ωis the rotational speed of the dq-frame, i.e. ω= dθ/dt where θ= θ(t) is 
the angle between the d-axis and stator a-axis ; and ωr is the rotational speed of the 
rotor, i.e. ωr = dθr/dt. For the synchronously rotating frame, ω is the synchronous 
speed, thus in [pu] ω= ωs= 1 and (ω–ωr) = (ωs–ωr) = sωs where s is the slip. In 
eqn.3.9-3.12, Lss=Lself,s+Lleak,s–Lmut,s and Lm= Lsr. 

3.3 DFIG dq-Equations for Stability Studies 
 
In a system to study stability, machines are represented as a voltage source behind 
transient impedance. Equations (3.5)-(3.12) can be rewritten so that the DFIG is 
represented as shown in fig.3.2. To this end, stator and rotor fluxes in (3.5)-(3.8) 
are eliminated with (3.9)-(3.12), and the following new variables are defined:  

௤ܸ
ᇱ = (Lm/Lrr) ωs ψdr          (3.13) 

ௗܸ
ᇱ  = - (Lm/Lrr) ωs ψqr         (3.14) 
௦ܺ
ᇱ  = ωs (LssLrr-ܮ௠ଶ )/Lrr         (3.15) 
଴ܶ
ᇱ = ωsLrr/Rr           (3.16) 

 
Fig.3.3 DFIG model for stability studies 
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After some derivations the DFIG-model in [pu] becomes: 
 
 ଡ଼౩ᇲ

ன౏ னా

ୢ
ୢ୲

iqs = - (Rs + ଡ଼ୱିଡ଼౩
ᇲ

୘బ
ᇲ )iqs + ܺ௦ᇱ݅ௗ௦ + (1-s)ݒ௤ᇱ  - 

ଵ
୘బ
ᇲ vୢᇱ  – vqs + (Lm/Lrr)vqr                   (3.17) 

 
 ଡ଼౩ᇲ

ன౏ னా

ୢ
ୢ୲

ids = - (Rs + ଡ଼ୱିଡ଼౩
ᇲ

୘బᇲ
)ids – ܺ௦ᇱ݅௤௦ + (1-s)ݒௗᇱ  + ଵ

୘బᇲ
v୯ᇱ  – vds + (Lm/Lrr)vdr                   (3.18) 

 
ଵ

ன౏ னా

ୢ
ୢ୲
௤ᇱݒ  =  ଡ଼౩ିଡ଼౩

ᇲ

୘బ
ᇲ  ids - 

ଵ
୘బ
ᇲ ௤ᇱݒ ௗᇱݒݏ +   – ୐୫

୐୰୰
vdr            (3.19) 

 
ଵ

ன౏ னా

ୢ
ୢ୲
ௗᇱݒ  = - ଡ଼౩ିଡ଼౩

ᇲ

୘బᇲ
 iqs - 

ଵ
୘బᇲ

vୢᇱ ௤ᇱݒݏ –   + ୐ౣ
୐౨౨

vqr          (3.20) 
 
iqr = -(1/ ωsLm)ݒௗᇱ  – (Lm/Lrr)iqs              (3.21) 
idr = -(1/ ωsLm)ݒ௤ᇱ  – (Lm/Lrr)ids                   (3.22) 
ψqs = -(1/ωs)ݒௗᇱ  + (ܺ௦ᇱ/ωs)iqs               (3.23) 
ψds =  (1/ωs)ݒ௤ᇱ  + (ܺ௦ᇱ/ωs)ids                   (3.24) 

3.4 Electromagnetic Torque 

The instantaneous total active power produced by the DFIG is the sum of stator 
and rotor active powers:  

஽ܲிூீ = ௦ܲ + ௥ܲ            (3.25) 

Where Ps and Pr are the real parts of vqds.iqds
* and vqdr.iqdr

* respectively. With       
vqds= vqs+jvds, iqds= iqs+jids, vqdr= vqr+jvdr and iqdr= iqr+jidr, we have:  

௦ܲ = ௤௦݅௤௦ݒ +  ௗ௦݅ௗ௦          (3.26)ݒ
௥ܲ = ௤௥݅௤௥ݒ +  ௗ௥݅ௗ௥          (3.27)ݒ 

Substituting eqn. (3.5)-(3.8) in eqn. (3.26)-(3.27), gives: 

஽ܲிூீ =  −ܴ௦൫݅௤௦ଶ + ݅ௗ௦ଶ ൯ − ܴ௥൫݅௤௥ଶ + ݅ௗ௥ଶ ൯ 

−݅௤௦
1
߱஻ 

݀ѱ௤௦
ݐ݀

− ݅ௗ௦
1
߱஻ 

݀ѱௗ௦
ݐ݀

− ݅௤௥
1
߱஻  

݀ѱ௤௥
ݐ݀

− ݅ௗ௥
1
߱஻ 

݀ѱௗ௥
ݐ݀

 

+߱௦ѱௗ௦݅௤௦ −߱௦ѱ௤௦݅ௗ௦ + ௦ѱௗ௥݅௤௥߱ݏ −  ௦ѱ௤௥݅ௗ௥     (3.28)߱ݏ

The first two terms correspond to the machine losses, the second four terms to the 
power associated with flux variation, and the last four terms to the air gap power, 
i.e. the power converted from mechanical to electrical form.  
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The electromagnetic torque Te is obtained by dividing the air gap power by the 
mechanical speed of the DFIG rotor. Doing this and using (3.9)-(3.12), gives in 
[pu]: 

௘ܶ = ௠(݅௤௦݅ௗ௥ܮ − ݅ௗ௦݅௤௥)         (3.29) 

Adding and subtracting the term (ܮ௠ܮ௥௥/ܮ௥௥)iqsids gives the expression of Te [pu] 
to be used with the DFIG model (3.5)-(3.12): 

௘ܶ = ቀ௅೘
௅ೝೝ
ቁ (݅௤௦ѱௗ௥ − ݅ௗ௦ѱ௤௥)         (3.30) 

Substituting (3.13)-(3.14) in (3.30) gives another equivalent expression of Te to be 
used with the DFIG model (3.17)-(3.24): 

௘ܶ = ቀ௩೏
ᇲ

ఠೞ
ቁ ݅ௗ௦ + ቀ௩೜

ᇲ

ఠೞ
ቁ ݅௤௦          (3.31) 

3.5 Drive Train Model 

If the turbine, gearbox, generator, shafts and other transmission components are 
modeled as two masses Ht and Hg(with Ht> Hg) at the extremities of an equivalent 
common shaft, it follows from mechanics theory, that:  

௧ܪ2
ௗఠ೟

ௗ௧
= ௠ܶ − ௦ܶ௛          (3.32) 

௚ܪ2
ௗఠೝ

ௗ௧
= ௦ܶ௛ − ௘ܶ           (3.33) 

ௗఏ೟ೢ
ௗ௧

= (߱௧ − ߱௥)߱஻          (3.34) 

Where Ht and Hg [s] are the turbine and generator inertia, ωt and ωr [pu] are the 
turbine and DFIG rotor speed, and Tsh [pu] is the shaft torque:  

௦ܶ௛ = ௧௪ߠܭ + ܦ ௗఏ೟ೢ
ௗ௧

          (3.35) 

௠ܶ =  ௉೟
ఠ೟

            (3.36) 

Where θtw [rad] is the shaft twist angle, K [pu/rad] the shaft stiffness, Pt [pu] is the 
turbine input power (here assumed as constant) and D [pu.s/rad] the damping 
coefficient. And Te [pu] is generator torque that is given in eqn. (3.31). 
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3.6 Converter 

The ac–dc–ac converter comprises of two pulse width modulation inverters 
connected back-to-back via a dc link. The rotor-side converter operates as a 
controlled voltage source since it injects an ac voltage at slip frequency to the 
DFIG rotor. The grid-side converter operates as a controlled current source since. 
It maintains the dc-link voltage constant and injects an ac current at grid frequency 
to the network [3]. 
The ac voltage of the rotor-side converter depends on the control objectives. For 
grid-connected WECS applications, a sensible choice is to impose a constraint for 
maximum power capture (equivalent to air gap power, electromagnetic torque, or 
speed constraint) and another for the voltage control (reactive power constraint). 
These two objectives determine the DFIG rotor voltage. 

ref

r rV V  So that ௘ܶ = ௘ܶ
௥௘௙(߱௥),       ௦ܸ = ௦ܸ

௥௘௙.      (3.37) 

For the grid-side converter, the control has to be coordinated so that the dc-link 
voltage is constant and the desired sharing of reactive power with stator is 
achieved. The reactive power sharing between the stator- and grid-side converters 
can be chosen arbitrarily. For minimum converter rating, as assumed in this pa-per, 
no sharing is done, and the reactive power delivered to the grid comes only from 
the stator. Hence, the grid-side converter ac current is such that the active power 
injected to the mains matches that of the rotor-side converter at unity power factor. 

2 2

ref

C CI I  So that ஼ܲଶ = ௥ܲ,       ܳ஼ଶ =  0        (3.38) 

3.7 External Grid 

To complete the model of the grid-connected DFIG, two more equations are 
required, namely the equations of the active and reactive power exchange between 
the grid and the generator. The external system is the infinite bus. Hence, the 
network algebraic equations are simply 

௧ܲ௢௚௥௜ௗ = ௏ೞ௏್௦௜௡ఊ೐
௑೐

          (3.39) 

ܳ௧௢௚௥௜ௗ = ௏ೞమି௏ೞ௏್௖௢௦ఊ೐
௑೐

          (3.40) 

Where the active and reactive powers delivered by the generator are Ptogrid =Ps+PC2 
and Qtogrid=Qs+QC2 with PC2 = Pr and QC2 = 0; Vs is the DFIG stator voltage 
magnitude; Vb and γe are the magnitude and angle of the infinite bus voltage; and 
Xe is the reactance of the external line. 
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3.8 DAE of the grid-connected DFIG 
Initialization of the power system model is the starting point for both time-domain 
and frequency-domain analyses. This is done in two steps. First, the load flow 
calculation is done in order to obtain the voltage magnitude, voltage angle, and 
injected active and reactive powers at each bus. Then, with the obtained load flow 
solution, the generator is initialized by solving its set of differential algebraic 
equations (DAE) with all time derivatives set equal to zero.  

3.8.1 Linearized Dynamic Model  
The mathematical model of a power system can be written as a set of DAE 
ௗ௫
ௗ௧

= ,ݔ)݂  (3.41)           (ݑ,ݖ

0 = ,ݔ)݃ ,ݖ  (3.42)           (ݑ
Where x, z, and u are the state, algebraic, and input variables; f and g are the 
vectors of differential and algebraic equations, respectively. In small-signal 
analysis studies, (3.39) and (3.40) are linearized by a Taylor series expansion 
around an operating point(x0, z0, u0). Neglecting the terms of order two and 
above, and eliminating the algebraic variable z, the system state matrix is obtained 
as 

0 0 0

1

, ,

sys

x z u

f f g gA
x z z x

              
        (3.43) 

The system dynamics is studied by examining the eigen-values of Asys. 
Here,  ݔ = ൣ݅௤௦  ݅ௗ௦  ݒ௤ᇱ ௗᇱݒ     ߱௥ ௧௪ ߱௧൧ߠ 

ᇱ,  ݖ = [ ௦ܸ  ߛ௘]ᇱ, ݑ = ௗ௥  ௧ܲ൧ݒ  ௤௥ݒൣ
ᇱ, f is 

contained in (3.17)–(3.20) and (3.32)–(3.34), and g is contained in (3.39) and 
(3.40). And , , ,f f g g

x z x z
   
   

matrices are derived as below: 

0 0 0 0 0

0 0 0 0 0

qr m dr m
qs ds

rr rr

qr mdr m
ds qs

rr rr

v L v Lv v
L Lg

v Lx v Lv v
L L

 
  

  
 

    
 

 

sin cossin cos cos sin

2 cos
sin

b s b
ds qs ds s qs s

e e

s b b s

e e e
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Chapter 4 
Results 

4.1 Base-Case Modes  
The SMIB system shown in Fig. 4.1 is studied. In the base case, the terminal 
voltage is 1 p.u., the total active power is 1 p.u., and the speed is at its rated value, 
which is assumed to be the synchronous speed. It is also assumed that the DFIG is 
directly connected to the infinite bus, i.e., the reactive power output is zero, and the 
terminal voltage remains constant. The effect of finite grid strength is investigated 
later. The base-case eigenvalues and their labeling are shown in Table 4.1(A). The 
modal oscillation frequency, damping ratio, and participation factors are shown in 
Table 4.1(B).The labeling of the modes are determined by observing the 
participation factors, as explained later. 
 
 

 
 

 
Fig.4.1 Power flows of the grid connected DFIG 

 j     Nature of the Mode 
λ1 -0.31±j3.38 Mechanical mode 

λ2 -8.01±j63.57 Electro-mechanical mode 

λ3 -16.16±j313.31 Stator mode 

λ4 -17.44 Non-oscillating mode 
 

Table 4.1(A) Base case modes (Eigenvalue λ and nature of the mode) 
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 ௢݂௦௖   ఠ௧݌ ఏ௧௪݌ ఠ௥݌ ௩ௗᇲ݌ ௩௤ᇲ݌ ௜ௗ௦݌ ௜௤௦݌ 

λ1 0.54 0.092 .00 .00 .00 .01 .00 .49 .50 
λ2 10.12 0.125 .02 .01 .01 .47 .46 .01 .00 

λ3 49.86 0.052 .48 .46 .02 .03 .00 .00 .00 
λ4 0 1 .00 .01 .98 .01 .00 .00 .00 
 

Table 4.1(B) Oscillation frequency, damping ration and participation factors 
 
The base case has four stable modes, three of which are oscillating. The 
participation factors show the physical nature of the modes: λ1 is a mechanical 
mode associated with the turbine and shaft dynamics (turbine speed and torsion 
angle); λ2 is an electromechanical mode associated with the rotor electrical and 
mechanical dynamics (q-axis flux and generator speed); λ3 is an electrical mode 
associated with the stator dynamics; and λ4 is a non oscillating mode associated 
with the rotor electrical dynamics (d-axis flux). The participation factors also show 
that the modes are decoupled since a particular state variable participates 
significantly in only one of the modes. The mechanical mode is the dominant 
mode. It has a very low frequency (∼0.5 Hz) with a reasonable damping ratio 
(∼10%). The electromechanical mode has a higher frequency (∼10 Hz) and a 
slightly better damping ratio. The stator mode has the lowest damping ratio. 
However, its time constant is small (large real-part magnitude) and its frequency is 
much higher and out of the range of interest. 
4.2 Effect of parameters 

4.2.1 Drive Train Parameters 

Varying the values of stiffness and inertia while keeping all other parameters at 
their base-case values does not cause significant eigenvalue displacement of the 
electrical modes (stator and non-oscillating modes). 

 j     ௢݂௦௖  ௩ௗᇲ݌  ఠ௥݌   ఠ௧݌ ఏ௧௪݌ 

NT -8.23±j26.4 4.20 0.298 .47 .22 .03 .26 

T -0.48±j128.6 20.47 0.004 .03 .27 .47 .22 

Table 4.2 NT and T modes for k = 50pu/el.rad, Hg = 1s, Ht = 1s 
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4.2.2 Generator parameters  

Varying the stator resistance Rs while keeping all other parameters constant causes 
noticeable displacements for all eigenvalues. Fig. 4.2 shows the eigenvalue loci for 
Rs/Xm=1/800 to 1/100. As the stator resistance increases, all the oscillatingmodes 
are better damped since they move further away from the imaginary axis. 

 

 
 

Fig 4.2 Eigenvalue loci for stator, electromechanical, non-oscillating and 
mechanical modes for increasing stator resistance (Rs/Xm = 1/800 to 1/100) 
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 j     Nature of the mode 
λ1 -8.66±j4.69 Mechanical mode 

λ2 -50.61±j162.09 Electrical mode 
λ3 -469.59±j151.11 Electrical mode 

λ4 -2.60 Mechanical mode 
 

Table 4.3 Eigenvalues and modes for very resistive machine (Rs/Xm = 1/50) 

4.3 effect of the operating point 

In this section, the effects of power production at non synchronous speeds, non 
unity power factors, and non unity terminal voltages are investigated. 

4.3.1 Variation of Initial rotor speed and active power loading 

The effect of initial rotor speed on the stator mode is not significant. For the non 
oscillating mode, the eigenvalue is the furthest away from the imaginary axis at 
synchronous speeds, while its absolute value decreases dramatically at non 
synchronous speeds. In fact, at large slip, the real eigenvalue is the dominant mode 
as shown in Table 4.4 for the operating point ωr=0.7 p.u., Ptogrid =0.35 p.u. In such a 
case, the system is over damped, and the oscillations are not an issue. 

 j     Nature of the mode 

λ1 -3.66±j8.55 Electro-mechanical mode 

λ2 -12.62±j112.43 Electro-mechanical mode 

λ3 -16.29±j312.94 Stator mode 

λ4 -1.21 Non-oscillating mode 

 

Table 4.4 Modes for synchronous speed operation 
(ωr = 0.7 p.u. , Ptogrid = 0.35 p.u.) 
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Fig 4.3 Eigenvalue loci of the electromechanical and mechanical modes for 

increasing rotor speed (ωr = 0.67-1.3 pu). 

 

Fig. 4.3 shows the eigenvalue displacement of the electro mechanical and 
mechanical modes. From a stability view point, small-slip speed (operating points 
around B) is the region of least stability. This also means that assuming the rated 
speed as synchronous is a more conservative approach. For the mechanical mode, 
the operating points A and C are the most stable for sub- and super synchronous 
speed operations, respectively. This means that in both the MPT and CPT regimes, 
there is an optimal speed for the stability of the critical mode. 

A 

B 

C 

A 

B 

C 
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4.3.2 Variation of Initial terminal voltage 

The effect of voltage level is different in CPT and MPT conditions. Fig. 4.4 shows 
the eigenvalue displacement for in-creasing terminal voltages in the CPT regime 
(Ptogrid =1p.u and ωr=ωs). The stator and the non oscillating modes are not 
significantly affected. For both electromechanical and mechanical modes, the 
oscillation frequency increases with the voltage as the magnitude of the imaginary 
part increases. In the CPT regime, the system is less stable for the overvoltage 
condition as the dominant mode (mechanical mode) moves closer to the imaginary 
axis. 

Fig 4.4 eigenvalue loci for increasing terminal voltage (Vs=0.5-1.5 pu) with 

Ptogrid = 1 pu and Qtogrid = 0 pu. 
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And Fig. 4.5 shows the eigenvalue displacement for increasing terminal voltages in 
the MPT regime (Ptogrid <1p.u. and ωr<ωs). The stator mode is not significantly 
affected. The electro mechanical and mechanical modes move toward the imaginary 
axis in an overvoltage condition indicating a less stable condition. For the depressed 
voltage condition (Vs≤0.5p.u.), the system is over damped. 

 
Fig. 4.5 Eigenvalue loci for increasing terminal voltage (Vs=0.5-1.5 pu) with  

Ptogrid = 0.5 pu, Qtogrid = 0 pu. 
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4.3.3 Variation of External reactance  

Fig. 4.6 shows the eigenvalue displacement for increasing external reactance Xe 
from 0 to 0.15 pu. 

 
Fig. 4.6 Eigenvalue loci of the stator and non-oscillating 

modes for different values of 
external reactance (Xe = 0-0.15 pu) 
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4.4 Conclusion 

This thesis presented the modal analysis of an SMIB system with DFIG. A seventh 
order model has been used with four state variables for the DFIG (stator and rotor 
dynamics) and three for the drive train (two-mass model). The results give the 
machine local modes, i.e., oscillations of the DFIG against the external system. The 
small-signal behavior is characterized by four modes, three of which are oscillating. 
The slowest mode (which is the dominant mode) is the drive-train non torsional 
mode. Oscillating at∼0.5Hz, it is a mechanical mode associated with shaft and 
turbine dynamics. The second slowest mode is the drive-train torsional mode. 
Oscillating at∼10Hz, it is an electromechanical mode associated with rotor 
dynamics (generator speed and rotor q-axis flux). The third oscillating mode is an 
electrical mode. Oscillating at∼50Hz, it is associated with the stator dynamics. The 
non oscillating mode has a small time constant of∼0.05s and is associated with the 
rotor d-axis flux dynamics. The effects of several parameters (drive-train inertias, 
stiffness, generator mutual inductance, and stator resistance), operating points (rotor 
speed, reactive power loading, and terminal-voltage level), and grid strength 
(external line reactance value) on the system modes have been studied.  

The conditions for which stator dynamics can be neglected have also been provided. 
The results of this study offer a good starting point for the small-signal analysis of 
multi machine power systems with both conventional SG and wind-driven DFIG. 
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APPENDIX-A 

A.1 Base case DFIG parameters 

Turbine  Drive train DFIG 

Pt = 1 pu k = 0.3 pu/el.rad Vs = 1 pu 

c = 0 Rs = Xm/800 

Ht = 4s Rr =1.1Rs 

Hg = 0.1Ht Xm = 4 pu 

 Lss = 1.01Lm 

Lrr = 1.005Lss 

 

 
 

 
  
  
  
 
 
  
  
  
 
 
  
  
  
 
 

  
  
  
 
 



 48 

References 
[1] F. Mei, Bikash C. Pal,  “Modeling and small-signal analysis of a grid connected 
doubly fed induction generator” in Power Engineering Society General Meeting, 
2005, IEEE, 2101-2108 Vol.3.    

[2] F. Mei, Bikash C. Pal, “Modal Analysis of Grid Connected doubly Fed 
Induction Generators” in IEEE transactions on energy conversion, Vol.22, No.3, 
September 2007. 

[3] R. S. Pena, “vector control strategies for a doubly-fed induction generator     
driven by wind turbine” Ph.D. dissertation, Univ. Nottingham, Nottingham, U.K., 
1996. 

[4] J.G. Slootweg, H. Polinder, W.L. Kling, “Dynamic modelling of a wind turbine 
with doubly-fed induction generator,” in Proc. 2001 IEEE Power Eng. Soc. 
Summer Meeting, vol. 1, pp 644-649. 

[5] J.G. Slootweg, H. Polinder, W.L. Kling, “Initialization of Wind Turbine 
Models in Power System Dynamics Simulations” at PPT 2001 2001 IEEE Porto 
Power Tech Conference l0th  -13th September, Porto, Portugal. 

[6] Power system dynamics - Stability and control by K.R. Padiyar 
[7] Power system stability and control by P. Kundur 
[8] Elements of power system analysis by William D. Stevenson 
[9] Power Systems Analysis by T.K. Nagsarkar, M.S. Sukhija 
[10] Wind Power in Power Systems by Thomas Ackermann 
[11] Renewable energy technologies – A practical guide for beginners by Chetan 
Singh Solanki. 
 


