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Abstract
SPP Propagation using FDTD Method
Electrical and Electronic Engineering

by
Md. Azmot Ullah Khan

Md. Hosne Mobarok Shamim
Faisal Mahmud Fuad

Now a days Surface Plasmon Polariton (SPP) has become a very attractive field of study for its
extraordinary confinement of light at optical frequencies and its ability to overcome the diffrac-
tion limit. It is a very useful tool for the miniaturization of photonic devices. Keeping that in
mind we have tried to discuss some of the basic ideas related to the SPP propagation. At first
from various computational techniques FDTD has been taken for presenting the distribution of
the electric and the magnetic field. With the help of FDTD 1-dimensional and 2-dimensinal sim-
ulations we get an idea how the signal behave within the dielectric at different frequencies. Next
simulations related to SPP propagation are performed by forming the interface between metal
and dielectric. Both the single and double interfaces are investigated with the help of Gaussian
pulse signal. Lorentz model and Lorentz drude model are used for material modeling. Our aim
was to enhance the power of the propagating signal. To do that grating has been considered. It
is the periodic arrangement of different medium so that the propagating signal can be obstructed
to couple with the main signal to enhance the power. We have tried to implement the grating
structure with the help some numerical calculations taken from the published research papers.
In our whole research work mainly two dielectrics (AlGaAs & GLS) have been used. For different
metallic strip thickness transmission power has been shown. Lastly a comparison between the
two dielectrics has been presented in terms of their transmission and loss properties.



Contents

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Computational Electromagnetic Technique . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 SPP Propagation Theory 4
2.1 The EM wave propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Surface Plasmon Polariton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 At Single Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Double Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Material Modeling 11
3.1 The Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 The Lorentz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 The Lorentz-Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 The Debye Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Material modeling using FDTD method 17
4.1 Introduction to FDTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Yee’s mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Dispersion of the Material in FDTD . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Auxiliary differential method . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 The General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.3 Absorbing Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Brag Grating 27
5.1 Metal insulator relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Grating structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Numerical Results 30
6.1 SPP Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Conclusion 46
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



List of Figures

2.1 Fields Profile of SPPs at the Metal and Dielectric Interface. . . . . . . . . . . . . . 7
2.2 Field Profile in a Double Interface Metal-Dielectric-Metal. . . . . . . . . . . . . . . 10

4.1 Yee’s Spatial Grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Leapfrog scheme: the temporal scheme of the FDTD method. . . . . . . . . . . . 19
4.3 PML Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 FDTD Algorithm Taking Care of PML . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 MIPML FDTD Algorithm: PML is applied on the B-D level instead of E-H level. In

this way, constants in the simulation space are responsible for material properties,
and constants in the PML walls are responsible for PML action. . . . . . . . . . . 26

5.1 Grating structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Signal propagation in 1 dimensional FDTD: (a) After 0.83 ns (b) After 1.6 ns (c)
After 2.4 ns (d) After 3.3 ns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 ADE-FDTD study of temporal soliton formation in a nonphysical nonlinear disper-
sive medium: (a) Calculated optical carrier pulse after propagating 126 µm (b)
Similar figure using our own developed simulator. . . . . . . . . . . . . . . . . . 32

6.1 Signal propagation in 1 dimensional FDTD.: (a) After 0.41 ns (b) After 0.83 ns (c)
After 1.24 ns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 A Metal Dielectric Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Profile of the Metal Dielectric interface. . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Signal propagation in Metal Dielectric interface: (a) After 35.525 fs (b) After

177.625 fs (c) After 106.56 fs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 A Dielectric Metal Dielectric Interface. . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Signal propagation in Dielectric Metal Dielectric interface: (a) After 180.26 fs (b)

After 360.53 fs (c) After 288.42 fs . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Metal Dielectric Metal Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Signal propagation in Metal Dielectric Metal Interface: (a) After 87 fs (b)After

175 fs (c) After 263 fs (d) After 307 fs . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Comparison of power transmission for different material width. . . . . . . . . . . 43
6.4 Comparison of power transmission for different dielectrics (GLS and Cu2O). . . . 44
6.5 Comparison of power loss for different dielectrics (GLS and Cu2O). . . . . . . . . 45

vii



List of Tables

4.1 General Algorithm Constants Using ADE . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Parameters for Different Dielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



Chapter 1

Introduction

Matter is a fundamental property of the material and light is a common source of energy. For
thousands of years scientists are studying about these things to get something which is going to
change the world. Einstein’s photoelectric effect was a milestone in this regard. For thousands
of years electron is ruling the world from the device point of view. Scientists are trying to create
new dimensions using photons instead of electrons. It will miniaturize our devices as well as
make it faster. They already have shown some of the results of their intellectual persuasion
about Photonics. Still they are not satisfied. In the last decade the word SPP has evolved. It
is a coupled state of electron and photon which has an extraordinary confinement of light. It
is certainly better than photons but still have some challenging issues. The main problem is
the distance of the power propagation and quick power dissipation. It has a huge prospect in
communication, sensing and computing.

1.1 Literature Review

SPP requires some special computational technique for its efficient propagation. There are so
many computational techniques through which electric and magnetic field can be designed
within the material. The performance of a particular method depends on how accurately it can
solve the differential equation. FDTD can be a good choice for its efficiency and cost effective-
ness. Because of the ability to propagate in sub wavelength range SPP can be used extensively in
nanoparticle propagation, nanowire propagation and Nano gap propagation. T. Onuki et al [23]
investigated the propagation of SPP in Nanowires and Plasmon wave guides. For increasing the
power the concept of coupling is very important. M. Hochberg et al [15] studied that light can be
efficiently coupled between silicon wave guides and plasmonic waveguide with compact coupler.
Bragg’s grating plays a vital role in coupling the signals. Here in this thesis work Bragg’s grating
has been analyzed to enhance the power of the signal. The placement of grating should require
a definite calculation to locate the fundamental local mode. In this research work a theoretical
analysis of grating has been performed to calculate the grating length. The power transmission
has also been analyzed for different metallic strip thicknesses and it is found maximum at 50nm
strip length.
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Chapter 1

1.2 Computational Electromagnetic Technique

Electromagnetic analysis takes a lot of effort, money and time .Now a days simulation has become
very popular because of the high costing on apparatus and other necessary staffs for the real time
experiment. The simulations are almost accurate. Therefore the costing of the experiment can
be reduced by reducing trial and error based experiment. Now we can do our experiment after
being sure about the result.
There are two major computational techniques:

1. Analytical methods.

2. Numerical methods.

There are several analytical methods such as separation of variables, series expansion, con for-
mal mapping, integration solution and perturbation. Numerical methods are consisting of some
differential equation solver. We get approximate solution using this method.

1.2.1 Numerical Methods

From the ancient time people are using numerical analysis. Rhind Papyrus(1650 B.C) of ancient
Egypt describes a root finding method for solving simple equation[6].Archimedes of Syearus(287-
212 B.C) created much new mathematics, including the method of exhaustion for calculating
lengths, areas and volumes of geometric figures[10].When used as a method to find approxi-
mate, it is in much the spirit of modern numerical integration and it was an important precursor
to the development of the calculus by Isaac newton and Gott Fried Leibnitz.
In electromagnetic by numerical method we mean solving differential equation. There are a lot
of efficient and cost effective ways of numerical techniques. The more accurate result gives a
better performance. The performance of a method depends on it. There are several methods
such as

1. Finite Difference Time Domain (FDTD)

2. Method of line (MOL)

3. The Beam Propagation Method (BPM)

4. Finite Element Method (FEM)

5. Transmission-Line-Matrix

6. Monte Carlo Method [20]

Method of line is a partial differential equation (PDE) solving technique [28],[12], and [27],.Here
only one dimension is discretized. Scientist and Mathematician have worked hard to increase
the accuracy and stability of this method.
Beam propagation method was introduced in the 1970’s.It is a computational technique used in
electromagnetic. It is used to solve Helmholtz equation under consideration of a time harmonic
wave. It is an approximate technique. It simulates the propagation of light in a wave guide.
Finite element method is used to find the solution to the boundary value problem for differential
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CHAPTER 1. INTRODUCTION

equations. The calculus of variations is used to minimize an error function and give a satisfactory
solution. In this method the computational object is discretized into sub domain, named finite
elements to approximate a more complex equation over a larger domain.
Transmission-line matrix (TLM) method is one of the most powerful time domain methods. It is
based on the analogy between the electromagnetic field and a mesh of transmission lines. This
method allows the 3-dimensional electromagnetic structures.
Finite Difference Time Domain Method was developed in 1966 by Kane Yee. His paper was pub-
lished in IEEE transactions on Antennas and propagation. Now a days, this method is very much
popular to compute electromagnetic equation. It is a time domain process. That is why it can
compute a wide range of frequency. FDTD uses Maxwell’s differential equation and implement
it directly. For last two decade scientists and mathematicians are trying to improve the algo-
rithm. With this method both linear and nonlinear material can be modeled. Different shapes
of the materials can be modeled with this method. It is applicable in a wide range of spectrum
(from microwave to visible light). We can model any problem related to radar signal technol-
ogy, antennas, wireless communication devices, digital interconnects, Bio medical imaging or
treatment, photonic crystals, nano Plasmonics etc. The results of the calculation done by this
method are more accurate and robust. Now a days this method is a demanding computational
electromagnetic technique.

1.3 Thesis Objective

Surface Plasmon Polariton has the extraordinary ability to confine light at optical frequencies
[4],[7] , [11],[18], and [6] and its ability to overcome the diffraction limit [4],[7] , [11],[18],
[19], and [10]. For SPP propagation a wave guide is required. Wave guide is created by forming
the metal dielectric interface. Metal is very lossy in nature and for that reason the signal die out
very quickly. Our objective is to increase the propagation distance of the signal by minimizing
the loss when it propagates through the wave guide.

1.4 Thesis Organization

In Chapter 2 Theory of SPP propagation will be discussed. Basic Electromagnetic (EM) wave
equation and its application in the single and double interface of metals and dielectrics will be
elaborated as well. Chapter 3 deals with the different material modeling technique used to design
the material. Here the modeling techniques will be explained mathematically. Among these
techniques we used only Lorentz and Lorentz-Drude technique. In Chapter 4 FDTD method and
its algorithm will be discussed. We will get to know the necessity of FDTD and its vast application
in Electromagnetic modeling from the next chapter. FDTD method has been developed day by
day. We will try to focus on the development of this method as well. We have used grating in
some of the experiment we did so far. We will show the calculations related to it and its purpose
in the material modeling in Chapter 5. We used different materials in our simulations. Finally
we will compare those materials in different aspect of their properties in Chapter 6.

3



Chapter 2

SPP Propagation Theory

When light rays fall on any material then the electrons within the material excited. This ex-
citation creates oscillation of electron within the metal. This collective oscillation is known as
Plasmon and the coupled state between Plasmon and photon is known as Polariton. When Po-
lariton travels through the interface between a conductor and a dielectric then the incident is
called surface Plasmon Polariton. To visualize the propagation nature of SPP we have to get a
clear understanding about the electromagnetic wave as SPP is considered as the electromagnetic
excitation within the material. As the electromagnetic wave is characterized by the Maxwell’s
equation at the metal dielectric interface. The general form of Maxwell’s equations are

∂B

∂t
= −∇× E (2.1)

∂D

∂t
= ∇×H (2.2)

∇ ·D = 0 (2.3)

∇ ·B = 0 (2.4)

The electric and magnetic fields are related to the polarization (P ) and magnetization (M) re-
spectively. The relation between them are presented below

D = εE (2.5)

B = µH (2.6)

For linear, isotropic and non-dispersive materials(materials having field independent, direction
independent and frequency independent electric and magnetic properties) the relations between
D to E and B to H can be simplified to

∂H

∂t
= − 1

µ
∇×H (2.7)

∂E

∂t
=

1

ε
∇×H (2.8)

4



CHAPTER 2. SPP PROPAGATION THEORY

2.1 The EM wave propagation

Electromagnetic (EM) wave equation is mainly derived from the Maxwell’s equation. Consider-
ing all the equations above let us take the curl operation for Faraday’s law

∇× (−µ∂H
∂t

) = ∇×∇× E (2.9)

Considering time derivative operation

− µ ∂
∂t

(∇×H) = ∇×∇× E (2.10)

Upon substitution of equation (2.8) in (2.10) we obtain

− µ ∂
∂t

(ε
∂E

∂t
) = ∇×∇× E (2.11)

− µε(∂
2E

∂t2
) = ∇×∇× E (2.12)

By applying the rule we can simplify the right side of the above equation as

∇×∇× E = ∇(∇ · E)−∇2E (2.13)

By the Gauss’s law it can be stated as the divergence of electric flux density for a charge free
region is equal to zero.

∇ ·D = ∇ · εE = ε(∇ · E) = 0⇒ ∇ · E = 0 (2.14)

Therefore,

∇×∇× E = 0−∇2E (2.15)

Substituting this in equation (2.12) gives

− µε(∂
2E

∂t2
) = −∇2E (2.16)

The equation can be simplified to

∇2E − µε(∂
2E

∂t2
) = 0 (2.17)

In case of magnetic field the equation can be written as

∇2H − µε(∂
2H

∂t2
) = 0 (2.18)

For deriving the expression of electric field and magnetic field let us consider phase velocity
which is defined as

νp =
λ

T
(2.19)

5



Chapter 2

Phase velocity can be defined as the velocity at which wave propagates in space or simply the
speed of the wave

νp =
1
√
µε

(2.20)

The general solution of EM wave that is harmonic in time and propagating in X direction is given
in complex form

ψ(t, x) = Ae−jωtejβx (2.21)

Angular oscillation constant omega can be expressed as

ω =
2π

T
(2.22)

Angular phase constant beta can be expressed as

β =
2π

λ
(2.23)

As the phase velocity Vp is related to both beta and omega.it can be written as

νp =
λ

T
=
ω

β
(2.24)

Considering the Cartesian coordinate system electric and magnetic field can be expressed in three
component i.e.

E = Ex.
−→ax+ Ey.

−→ay + Ez.
−→az (2.25)

H = Hx.
−→ax+Hy.

−→ay +Hz
−→az (2.26)

If we calculate the partial derivative of the three components for the electric field and magnetic
field then the components will be

∂Ex
∂t

=
1

ε
(
∂Hz

∂y
− ∂Hy

∂z
) (2.27)

∂Ey
∂t

=
1

ε
(
∂Hx

∂z
− ∂Hz

∂x
) (2.28)

∂Ez
∂t

=
1

ε
(
∂Hy

∂x
− ∂Hx

∂y
) (2.29)

∂Hx

∂t
=

1

µ
(
∂Ey
∂z
− ∂Ez

∂y
) (2.30)

∂Hy

∂t
=

1

µ
(
∂Ez
∂x
− ∂Ex

∂z
) (2.31)

∂Hz

∂t
=

1

µ
(
∂Ex
∂y
− ∂Ey

∂x
) (2.32)
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CHAPTER 2. SPP PROPAGATION THEORY

Figure 2.1: Fields Profile of SPPs at the Metal and Dielectric Interface.

2.2 Surface Plasmon Polariton

2.2.1 At Single Interface

The simplest geometry for SPP propagation can be presented by forming a single interface of
a metal and a dielectric. The dielectric constant will have two parts: real part (signifying the
propagation of the signal) and imaginary part (signifying loss of the signal).the generalized figure
is shown by figure 2.1.

From faraday’s law and Ampere’s law we can get the two sets of equation for TE and TM wave.
Those are:

1. For TE field equations are
∂Ex
∂t

=
1

ε

∂Hz

∂y
(2.33)

∂Ey
∂t

= −1

ε

∂Hz

∂x
(2.34)

∂Hz

∂t
=

1

µ
(
∂Ex
∂y
− ∂Ey

∂x
) (2.35)

2. For TM field equations are
∂Hx

∂t
= − 1

µ

∂Ez
∂y

(2.36)

7



Chapter 2

∂Hy

∂t
=

1

µ

∂Ez
∂x

(2.37)

∂Ez
∂t

=
1

ε
(
∂Hy

∂x
− ∂Hx

∂y
) (2.38)

In case of TE model let us assume Hz field propagating in x direction and decaying in y direction.
The general solution for Hz will be

Hz = Ae−jωtejβxek|y| (2.39)

The relation between Ex and Hz can be stated as(2.32)

∂Ex
∂t

=
1

ε

∂Hz

∂y
(2.40)

To solve the derivative we have to multiply −jω to the time derivative and k with the derivative
in y direction. The result is

− jωEx =
k

ε
Hz (2.41)

After rearranging the equation for Ex will be

Ex =
Ak

−jωε
e−jωtejβxeky (2.42)

Similarly, Ey can be written as

Ey =
Aβ

−jωε
e−jωtejβxeky (2.43)

The tangential field of the dielectric will be

Ex =
Adkd
−jωεd

e−jωtejβxekdy (2.44)

Hz = Ade
−jωtejβxekdy (2.45)

Similarly, the tangential field of the metal will be

Ex =
Amkm
−jωεm

e−jωtejβxekmy (2.46)

Hz = Ame
−jωtejβxekmy (2.47)

Considering Ad = Am
At the interface Exwill be equal to

kd
km

= − εd
εm

(2.48)

It is clear from the above discussion that the permittivity will have different sign to propagate
and the wave equation should satisfy in both the media. Substituting the value of Hz in (2.18)
for dielectric gives

− β2Hz + k2
dHz + µεdω

2Hz = 0 (2.49)

8



CHAPTER 2. SPP PROPAGATION THEORY

β2 = k2
d + µεdω

2 (2.50)

For the metal result will be

β2 = k2
m + µεmω

2 (2.51)

Substituting (2.48) in (2.50) gives

β2 = (
εd
εm

)2k2
m + µεdω

2 (2.52)

Multiplying equation (2.52) by the constant εd
εm

gives

− (
εd
εm

)2β2 = −(
εd
εm

)2k2
m − (

εd
εm

)2µεmω
2 (2.53)

Combining (2.52) and (2.53) together gives

β2(1− (
εd
εm

)2) = (εd − (
εd
εm

)2εm)µω2 (2.54)

This equation can be reduced to

β2(1− εd
εm

)(1 +
εd
εm

) = (1− εd
εm

)µεdω
2 (2.55)

Rearranging the equation gives

β2 =
µεdω

2

1 + εd
εm

(2.56)

β2 = ω2µ
εdεm
εd + εm

(2.57)

Taking the square root gives the following

β = ω

√
µ

εdεm
εd + εm

(2.58)

For the TM case, where we have the fields Ez,Hx and Hy, we start with Ez going by

Ez = Ae−jωtejβxek|y| (2.59)

Magnetic component can be stated as

Hx =
k

jωµ
Ez (2.60)

Hy =
β

ωµ
Ez (2.61)

Hx and Ez are tangential to the interface and in the dielectric side they are equal to

Hx =
Adkd
jωµ

e−jωtejβxekdy (2.62)

Ez = Ae−jωtejβxekdy (2.63)

9



Chapter 2

Figure 2.2: Field Profile in a Double Interface Metal-Dielectric-Metal.

In the metal side, they are

Hx = −Amkm
jωµ

e−jωtejβxekmy (2.64)

Ez = Ame
−jωtejβxekmy (2.65)

Considering Ad = Am

Akd = −Akm (2.66)

A(kd + km) = 0 (2.67)

Value of k has to be greater than zero to have a decaying field at the interface and the amplitude
of the field is equal to zero. Therefore no SPP is there for TM mode.

2.3 Double Interface

For efficient transmission to overcome the decay of the signal more than one interface can be
formed. Two types of structures can be formed such as MDM and DMD. Here fields from both
sides interact to form the coupled mode. The structure for double interface is presented by figure
2.2.

10



Chapter 3

Material Modeling

Metals are good conductors at low frequency. At high frequency they exhibit some dispersion
property. With the increase of the frequency the metal turns into a dielectric. SPP is produced
at the interface of the metal and dielectric. Therefore it is vital that we study the material. The
material can be modeled using different modeling techniques.
Inside any material, the relationship between the three vectors D (electrical flux density), E (elec-
tric field intensity) and P (polarization density) can determine its behavior in the presence of an
oscillating external electromagnetic field. For any material, the following equations apply [3].

D = εE (3.1)

P = ε0χE (3.2)

D = ε0E + P (3.3)

where,ε is the permittivity, which is a physical quantity that describes the material’s ability to
transmit an electric field. In SI units, the permittivity is measured in Farads per meter (F/m).
χ is the susceptibility, which is a physical quantity of a dielectric material that measures how
easily it is polarized in response to an applied electric field, and it is a dimensionless quantity.
The relationship between permittivity and susceptibility can be found by substituting P in equa-
tions (3.2) and (3.3).

D = ε0E + ε0χE (3.4)

Taking E as a common factor

D = ε0(1 + χ)E (3.5)

and combining (3.5) and (3.1) yields

ε = ε0(1 + χ) (3.6)

The final relation between ε and χ is also valid in the frequency domain

ε(ω) = ε0(1 + χ(ω)) (3.7)
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The relative permittivity is given as

εr(ω) = 1 + χ(ω) (3.8)

For a dispersive material, the frequency dependent permittivity and susceptibility are to be mod-
eled perfectly in order to get the perfect response of the material for certain electromagnetic
excitation. To model a dispersive material, different models such as the Drude model, Lorentz
model, Debye model and Lorentz-Drude model are widely used. In the following subsections
these models are briefly described.

3.1 The Drude Model

The Drude model was given by Paul Drude in 1900 [8] [9]. In Drude’s model the metal is
described as a volume filled with stationary positive ions immersed in a gas of electrons following
the kinetic theory of gases. These electrons can travel inside metal freely without any interaction
with each other. It happens due to the charge shielding effect. There are two forces acting on
the metals;

1. Driving force Fd,

2. Damping force Fg.

The driving force and the damping force can be expressed as

Fd = qE = −eE (3.9)

Fg = Γυ (3.10)

Their direction of action is opposite to each other. Therefore the resultant force becomes,

F = Fd − Fg (3.11)

Using Newton’s first law of motion,

mr′′ = −eE + Γr′ (3.12)

where,

m: mass of an electron.
Γ: damping constant in Newton second per meter.
r: displacement in meter.
υ: velocity of the electron.
q: electron’s charge.
The time harmonic electric field and displacement can be expressed as

E(t) = E0e
−jωt ⇔ E(ω) (3.13)

r(t) = R0e
−jωt ⇔ R(ω) (3.14)

12
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The Fourier transform of (3.12)is

mR′′(ω)− ΓmR′(ω) + eE = 0 (3.15)

Writing the derivatives of the above equation in the frequency domain

−mR′′(ω) + jmΓR(ω) + eE = 0 (3.16)

Simplifying the above equation and solving for R gives

R(ω) =
−e

m(jΓω − ω2)
E(ω) (3.17)

The polarization for n electrons can be expressed as

P (ω) = −neR(ω) (3.18)

So from (3.17) and (3.18) we can write

P (ω) =
ne2

m(jΓω − ω2)
E(ω) (3.19)

From the above equation an expression for the susceptibility can be obtained as

P (ω)

ε0E(ω)
=

ne2

ε0m(jΓω − ω2)
= χ(ω) (3.20)

Substituting equation (3.20) in equation (3.8) yields

εr = 1 +
ne2

ε0m(jΓω − ω2)
(3.21)

As the plasma frequency ωp is given by ω2
p = ne2

ε0m
the above equation can be written as

εr(ω) = 1 +
ω2
p

jΓω − ω2
E(ω) (3.22)

So from equation (3.1) the frequency dependent electric flux density becomes

D(ω) = ε0(1 +
ω2
p

jΓω − ω2
)E(ω) (3.23)

For low frequencies Γω << 1. So equation (3.23) is reduced to

D(ω) = ε0(1−
ω2
p

ω2
)E(ω) (3.24)

The above relationship is known as the Drude Model.
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3.2 The Lorentz Model

The Lorentz model is a simpler representation of atom. Using this model we can visualize the
interaction between atom and field. Lorentz showed here a connection between the nucleus and
electron. Here both of them are masses. Therefore there is a force acting between them. This
force is denoted by Fr.

Fr = −kr (3.25)

where, k is the spring constant (N/m).
So (3.15) can be written as

mr′′ + Γmr′ +mkr + eE = 0 (3.26)

By doing Fourier analysis we get,

R(ω)(mω2
0 + jωmΓ−mω2) = eE(ω) (3.27)

where, ω0 =
√

k
m

(3.27) can be used to find R(ω) in terms of E(ω)

R(ω) =
−e

m(ω2
0 + jωΓ− ω2)

E(ω) (3.28)

Using equation (3.18) and equation (3.28) the susceptibility is found to be

P (ω)

ε0E(ω)
=

ne2

ε0m(ω2
0 + jωΓ− ω2)

= χ(ω) (3.29)

Combining equation (3.1) and equation (3.8), the expression for D in the frequency domain be-
comes

D(ω) = ε0(1 +
ω2
p

ω2
0 + jωΓ− ω2

)E(ω) (3.30)

The above relationship is known as the Lorentz model.

3.3 The Lorentz-Drude Model

When an EM field is applied to a metal, the electrons oscillate inside the metal. There are two
electrons here. One is the free electron and other one is the bound electron. Free electrons
cause the permittivity in the Drude model and the bound electrons causes the permittivity in the
Lorentz model. The permittivity in the LD model is given by

ε = εfree + εbound (3.31)

For the free electrons, permittivity is

εfree = 1 +
ωp

jωΓ + ω2
(3.32)
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and for bound electrons, permittivity is

εbound =
ωp

ω0 + jωΓ + ω2
(3.33)

Combining both models together yields

D(ω) = ε0(1 +
ωp

jωΓ− ω2
+

ωp
ω0 + jωΓ− ω2

) (3.34)

3.4 The Debye Model

The Debye model was first developed by Peter Debye in the year 1912. According to the Debye
model, materials are assumed to have electric dipoles and when the electric field is applied, these
dipoles follow the behavior of the field having some relaxation time. The polarization will have
greater strength if the electric field oscillates at a slow frequency, whereas a fast oscillating field
causes low polarization. Since metals have very short relaxation times, the polarization in metals
is strong.
If a DC electric field is applied to a dielectric, the polarization takes some time to follow the
electric field. The instantaneous polarization P (t)is given by

P (t) = P∞(1− e−t/τ ) (3.35)

where, P∞ is the polarization in DC steady state and τ is the time constant.
The derivative of equation (3.35) is

dP (t)

dt
=

1

τ
P∞e

−t/τ (3.36)

Combining equation (3.35) and equation (3.36) yields

P (t) = P∞ −
dP (t)

dt
(3.37)

Since P∞ = ε0(ε− 1)E(t), equation (3.37) reduced to

P (t) = ε0(ε− 1)E(t)− τ dP (t)

dt
(3.38)

The Fourier analysis of equation (3.38) is

ε0(ε− 1)E(ω) = P (ω) + jωτP (ω) (3.39)

The linear susceptibility is expressed as

(ε− 1)

1 + jωτ
=

P (ω)

ε0E(ω)
= χ(ω) (3.40)

From equation (3.8) the permittivity becomes

εr(ω) = χ(ω) + 1 =
(ε− 1)

1 + jωτ
+ 1 (3.41)
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εr(ω) = ε∞ +
εs − ε∞
1 + jωτ

(3.42)

Another term related to the conductivity of metal is added to the above equation. Equation
(3.42) can be expanded as

εr(ω) = ε∞ +
εs − ε∞
1 + jωτ

− j σ

ωε0
(3.43)

If the model is represented in terms of its real and imaginary parts, then,

εr(ω) = ε′(ω)− jε′′(ω) (3.44)
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Material modeling using FDTD
method

4.1 Introduction to FDTD

FDTD stands for Finite Difference Time Domain method. It is a widely used and most popular
electromagnetic equation solution technique. In this method the object is splitted into numerous
parts and then integrated together. It is a time domain method. That is why it can work with
a wide range of frequency. In our case we are dealing with high frequency propagation which
becomes very much easy in FDTD method. It does not require a lot of memory to store the data.
It has a recursive algorithm which makes it possible to store the whole data in a small memory.
FDTD follows the Yee’s mesh. This method was first established by Kane Yee in 1966.
FDTD method is formulated from the Maxwell’s equation. For a non-dispersive and linear
isotropic material the Maxwell’s equation can be showed as follows,

∂H

∂t
= − 1

µ
∇× E (4.1)

∂E

∂t
=

1

ε
∇×H (4.2)

From (4.1) and (4.2) we get
∂Ez
∂y
− ∂Ey

∂z
= jωµ0Hx (4.3)

∂Ex
∂z
− ∂Ez

∂x
= jωµ0Hy (4.4)

∂Ey
∂x
− ∂Ex

∂y
= jωµ0Hz (4.5)

∂Hz

∂y
− ∂Hy

∂z
= −jωεrEx (4.6)

∂Hx

∂z
− ∂Hz

∂x
= −jωεrEy (4.7)
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Figure 4.1: Yee’s Spatial Grid.

∂Hy

∂x
− ∂Hx

∂y
= −jωεrEz (4.8)

FDTD method is based on these six equations (4.3) to (4.8).
This method calculates the electric field and magnetic fields in both time and space, rather than
by solving the wave equation for either the electric field or the magnetic field alone.
Yee’s FDTD scheme splits Maxwell’s curl equations. It approximates the time and Space first order
partial derivatives with central differences, and then solves the resulting Equations by using a
leapfrog scheme [13].

4.2 Yee’s mesh

From 4.1 we can understand that there are both Ampere’s law and Faraday’s law contour are
present. E and H components are positioned at the centers of the grid lines and surfaces such
that each component is surrounded by four components. This gives a simple picture of three
dimensional space being filled by interlinked arrays of Faraday’s law and Ampere’s law contours.
Thus, it is possible to identify the E components related with the displacement of the current
flux linking with the H loops and, correspondingly, the H components related with the magnetic
flux are linked with the E loops, as shown by 4.2.
Assuming only two dimensional space there is no component in z direction. Therefore we have,

∂Hy

∂z
= 0,

∂Hx

∂z
= 0,

∂Ex
∂z

= 0,
∂Ey
∂z

= 0 (4.9)

From equation (4.3) to (4.8), we can write two independent sets of coupled equations.
For TM polarized field,

∂Ex
∂t

=
1

ε

∂Hz

∂y
(4.10)

∂Ey
∂t

= −1

ε

∂Hz

∂x
(4.11)

∂Hz

∂t
=

1

µ
(
∂Ex
∂y
− ∂Ey

∂x
) (4.12)
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Figure 4.2: Leapfrog scheme: the temporal scheme of the FDTD method.

For TE polarized field,

∂Hx

∂t
= − 1

µ

∂Ez
∂y

(4.13)

∂Hy

∂t
= − 1

µ

∂Ez
∂x

(4.14)

∂Ez
∂t

=
1

ε
(
∂Hy

∂x
− ∂Hx

∂y
) (4.15)

Utilizing Yee’s spatial grid scheme, the partial spatial derivatives in (4.10) and (4.12) can be ap-
proximated by a central difference approximation in space. For example, equations (4.10) and
(4.12) respectively become

∂Ex
∂t

=
1

ε

Hz(i, j)−Hz(i, j − 1)

∆y
(4.16)

∂Ey
∂t

= −1

ε

Hz(i, j)−Hz(i− 1, j)

∆x
(4.17)

∂Hz

∂t
=

1

µ
(
Ex(i, j + 1)− Ex(i, j)

∆y
− Ey(i+ 1, j)− Ey(i, j)

∆x
) (4.18)

Yee’s algorithm also utilizes central difference in time for the E andH components. The E andH
components are solved by using a leapfrog algorithm as shown in 4.2. All of the E components
in the modeled space are computed and stored in memory by using the previously computed val-
ues of E and the newly computed H field data. At the next step, H is recomputed based on the
previously obtained H and the newly updated E. This process continues until the time-stepping
is terminated.
Applying central difference approximation equation (4.16) and (4.18) respectively, become

En+1
x (i+ 1

2 , j)− E
n
x (i+ 1

2 , j)

∆t
=

1

ε

H
n+ 1

2
z (i+ 1

2 , j + 1
2 )−Hn+ 1

2
z (i+ 1

2 , j −
1
2 )

∆y
(4.19)
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En+1
y (i, j + 1

2 )− Eny (i, j + 1
2 )

∆t
=

1

ε

H
n+ 1

2
z (i+ 1

2 , j + 1
2 )−Hn+ 1

2
z (i− 1

2 , j + 1
2 )

∆y
(4.20)

H
n+ 1

2
z (i+ 1

2 , j + 1
2 )−Hn− 1

2
z (i+ 1

2 , j + 1
2 )

∆t
=

1

µ

Enx (i+ 1
2 , j + 1)− Enx (i+ 1

2 , j)

∆y
−
Eny (i+ 1, j + 1

2 )− Eny (i, j + 1
2 )

∆x
(4.21)

In three dimensions Courant Friedrich Levy (CFL) stability condition is

∆t ≤ tmax =
1

c
√

1
∆x2 + 1

∆y2 + 1
∆z2

(4.22)

4.3 Dispersion of the Material in FDTD

The FDTD method, which is a robust numerical modeling technique, has been commonly used
for modeling electromagnetic wave interaction with complex materials. One of the most ma-
jor developments in the FDTD method is its ability to model dispersive materials. As most of
the dielectrics and metals are dispersive, modeling materials in FDTD requires the knowledge of
modeling dispersive materials, which were discussed in chapter 3. There are three main methods
to model dispersive materials in the FDTD:

1. The recursive convolution (RC) method.

2. The auxiliary differential equation (ADE) method.

3. The Z-transform method.

In this chapter, the ADE dispersive FDTD method will be discussed in detail and applied to model
metals and dielectric materials.

4.3.1 Auxiliary differential method

The auxiliary differential method was first introduced by Allen Taflove [26]. The idea was to
convert the frequency domain relationship into time domain relationship. This method is very
popular because of its high flexibility to fit the permittivity function. To get the time domain
representation between D and E we can start with the frequency domain relationship

D(ω) = ε0
σ

jω
E(ω) (4.23)

Which can be simplified to

jωD(ω) = ε0σE(ω) (4.24)

With the application of inverse Fourier transform the above equation becomes

dD(t)

dt
= ε0σE(t) (4.25)
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Discretizing the above relation using forward difference scheme

Dn+1 −Dn

∆t
= ε0σE

n+1 (4.26)

The updated equation of E will be

En+1 =
Dn+1 −Dn

ε0σ∆t
(4.27)

4.3.2 The General Algorithm

There are different algorithms to design different materials. Deriving of FDTD equation for one
term and one pole dispersion is easy. For multi pole dispersion relation such as LD 6 pole it is very
difficult to derive FDTD equation because of its long derivation and larger memory requirement.
Allen Taflove proposed matrix inversion technique to solve the multiple poles. This technique
is also impractical. When there are two or more different materials with different dispersion
relation present within the space then separate algorithm is required to describe each dispersion
relation [29]. For this reason a separate algorithm has been presented by Dr. Mohammad A.
Al-Sunaidi and Ahmad Ali Al Jabr [2] based on the ADE method. The dispersion relation takes
the general form as

D(ω) = ε(ω)E(ω) (4.28)

Which can also be expressed as

D(ω) = ε0ε∞E(ω) +

N∑
i

Pi(ω) (4.29)

The equation is in frequency domain. Upon application of Fourier transform we get

Dn = ε0ε∞E
n +

N∑
i

Pni (4.30)

Solving for electric field (E)
In case of Lorentz pole the dispersion relation can be stated as

P (ω) =
a

b+ jcω − dω2
E(ω) (4.31)

Multiplying by denominator, the equation becomes

.(b+ jcω − dω2)P (ω) = aE(ω) (4.32)

Converting in time domain from frequency domain we get

.bP (t) + cP ′(t) + dP ′′(t) = aE(t) (4.33)

Considering time derivative of equation (4.28) at any time instant n, the updated equation of
polarization can be obtained. The resulting discretized equation will be

bPn + c
Pn+1 − Pn−1

2∆t
+ d

Pn+1 − 2Pn + Pn−1

∆t2
= aEn (4.34)

21



Chapter 4

Table 4.1: General Algorithm Constants Using ADE

Dispersion term in C1 C2 C3

frequency domain
Lorentz Pole

P = a
b+jcω−dω2E

4d−2b∆t2

2d+c∆t
−2d+c∆t
2d+c∆t

2a∆t2

2d+c∆t

Drude Pole
P = a

jcω−dω2E
4d

2d+c∆t
−2d+c∆t
2d+c∆t

2a∆t2

2d+c∆t

Plasma Frequency
P = a

ω2E 2 -1 2a∆t2

Debye term
P = a

b+jcωE − 2b∆t
c 1 2a∆t

c

Conductivity term
P = a

jcωE 0 1 2a∆t
c

The above equation can be solved for Pn+1in terms of Pn,Pn+1 ,En

Pn+1 = 4d−2b∆t2

2d+c∆t P
n + −2d+c∆t

2d+c∆t P
n−1 + 2a∆t2

2d+c∆tE
n (4.35)

Which can be represented in simpler form as

Pn+1 = C1P
n + C2P

n−1 + C3E
n (4.36)

Where,

C1 =
4d− 2b∆t2

2d+ c∆t
, C2 =

−2d+ c∆t

2d+ c∆t
, C3 =

2a∆t2

2d+ c∆t
(4.37)

These C1,C2 and C3 values will differ from material to material. The values of these constants
for different models are presented in table 4.1.

4.3.3 Absorbing Boundary Conditions

When the simulation is performed then the computational domain needs to be terminated other-
wise it is not possible to simulate the propagation to infinity. Terminating the propagation means
that the electric field will be zero. So there should be some arrangement so that the electric field
can be forced to stop propagating at certain distance.
For this purpose Berenger [5] proposed a model which is known as perfectly matched layer
(PML). With the help of this layer electric field can be attenuated very rapidly until it becomes
zero. Two quantities have been introduced which are sigma and sigma∗ to describe the equa-
tions inside the PML. The equations are

ε0
∂Ex
∂t

+ σEx =
∂Hz

∂y
(4.38)

ε0
∂Ey
∂t

+ σEy = −∂Hz

∂x
(4.39)

µ0
∂Hz

∂t
+ σ∗Hz = (

∂Ex
∂y
− ∂Ey

∂x
) (4.40)
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Figure 4.3: PML Setup

When the wave travels from one medium to another medium, no reflection will occur if the
impedance of the two mediums are equal. This is known as the impedance matching. Following
equation can be obtained from this condition

σ

ε0
=
σ∗

µ0
(4.41)

However the problem is concerning only with the normal incidence but we have to consider all
forms of incidence. So the Hz field is distributed into two components Hzx and Hzy where one
is normal and another one is tangential to the PML. If we apply this to FDTD, it means to split
sigma∗ into sigma∗xand sigma∗y where the first deal with Hzy and Hzx. If we split equation
(4.40) three components of the equation wiil be evolved

µ0
∂Hzx

∂t
+ σ∗xHzx = −∂Ey

∂x
(4.42)

µ0
∂Hzy

∂t
+ σ∗yHzy = −∂Ex

∂y
(4.43)

Hz = Hzx +Hzy (4.44)

In the computational domain sigma∗x, sigma∗y, sigma∗x and sigma∗y equal to zero for TE wave
but these are non-zero inside the PML.

This implementation of the PML adds an extra step to the FDTD algorithm, as illustrated in figure
4.4. PML works well in homogeneous media. Problems are caused when there is both dispersive
and non-dispersive material at the PML wall. A. P. Zhao [30] introduced a PML algorithm that
is material independent and he called it material independent PML. Problem occurs when PML
is applied to E and H field because the constant involving this quantity are affected by the ma-
terial in the simulation space. Therefore in MIPML electric flux density (D) and magnetic flux
density(B) are considered for the PML wall for its material independent property. For this reason
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Figure 4.4: FDTD Algorithm Taking Care of PML
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new electric and magnetic conductivity are introduced in Maxwells equation.

∂Dx

∂t
+ σDx =

∂Hz

∂y
(4.45)

∂Dy

∂t
+ σDy = −∂Hz

∂x
(4.46)

∂Bz
∂t

+ σ∗Bz =
∂Ex
∂y
− ∂Ey

∂x
(4.47)

The condition for impedance matching reduces to sigma = sigma∗.
This relation satisfies that electrical conductivity is equal to magnetic conductivity. Moreover the
splitting of the fields should also be performed on the D-B layer. Figure 4.5 will describe this
phenomena.
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Figure 4.5: MIPML FDTD Algorithm: PML is applied on the B-D level instead of E-H level. In this
way, constants in the simulation space are responsible for material properties, and constants in
the PML walls are responsible for PML action.
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Bragg Grating

One of the major disadvantages of SPP is that during propagation when it comes to the metal
the signal decays very rapidly. From the beginning of the research based on SPP propagation sci-
entists are trying to hold power of the signal when it propagates through the waveguide. Among
all the techniques Braggs grating is the most efficient one. The first in-fiber Bragg grating was
demonstrated by Ken Hill in 1978. Bragg grating is a device with a periodic variation of the re-
fractive index, so that a large reflectivity may be reached in some wavelength range (bandwidth)
around a certain wavelength which fulfills the Bragg condition. The Bragg condition is

2d sin θ = nλ (5.1)

It is a type of reflector constructed in a short segment which can reflect the propagated signal
to couple it in phase with the forward propagating signal to enhance the signal power i.e. to
regain the missing momentum of the SPP. This is achieved by creating a periodic variation in
the refractive index by changing the medium of propagation. Bragg grating is often called as
Bragg reflector. In this paper Bragg reflector has been analyzed using Metal-Insulator-Metal
(MIM) structure at sub wavelength range to increase the propagation distance of the signal
[16][17]. Periodic grating scatters light in the homogeneous media which leads to the concept of
Photonic Band Gap (PBG). Photonic Band gap is a term applicable to the dielectric media which
possesses alternate region of low and high refractive index such that transmission of photons
or light energy of certain frequencies is forbidden. Thus it is a photon forbidden region in the
case of electron band gap of the semiconductor. Here, we have used AlgaAs as the background
material. Because of the ultrafast nonlinear property, we have used GLS [14] and Cu2O for
forming gratings. It can be coupled with silver to propagate SPP more efficiently.

5.1 Metal insulator relation

The values of the dielectric constant can be taken from the fitted curve which has already been
published in different journals or papers. The other way is to calculate it using mathematical
formula. It can be calculated from the refractive index of different dielectric materials. The di-
electric constant for any material can be expressed as,

ε1 = n2 − k2 (5.2)

27



Chapter 5

Table 5.1: Parameters for Different Dielectrics

Insulators ε0 ε∞ ω0 Delta
AlGaAs 2.882 1.242 0.65171016 6171013
Cu2O 2.492 1.412 0.53171016 6.1171010
GLS 2.2572 2.7 0.7171016 8171011

ε2 = 2nk (5.3)

Where ε1 and ε2 are the real and imaginary parts of the dielectric constant. n and k are the real
and imaginary parts of the refractive index. The dispersion relation of the dielectric material
used in this paper is incorporated in the FDTD simulator using Auxiliary Differential Equation
(ADE) technique. The frequency dependent refractive index of silver has been taken from [25].
Using the dispersion relation mentioned in [24], the complex effective refractive index, Neffcan
be expressed as,

Neff =
β

β0
=

√
εdεm
εd + εm

(5.4)

Where, εdand εm are the dielectric constants of the dielectric and metal respectively. β is the
complex propagation constant of the wave guide and β0 is the complex propagation constant
of the free space. The dielectric parameters to fit the single pole Lorentz model for different
dielectrics are given in table 5.1.

5.2 Grating structure

We considered a metal thin film sandwiched between two dielectric layers with different di-
electric grating. Figure 5.1 shows the resulting geometry of the proposed structure, which is
considered to be infinite along the y -direction.

The guided SPP propagates along the metal-dielectric interface. A transverse magnetic (TM) po-
larized mode modulated by a Gaussian pulse is pumped at x = 0 and time t = 0. The thickness
(tp) of the metal thin film has been varied to observe the propagation efficiencies for different
dielectric materials. The reason of using this grating structure in this paper is to produce an
efficient SPP mode with low loss. The grating is characterized by the insulation section length
(∆1,2) which can be obtained by the Bragg condition [22] ,

∆1,2 =
λ

4Re(Neff1,2)
(5.5)

Where Neff1,2 is the Effective Refractive Index (ERI) and λ is the central wavelength. The role
of the grating is to provide the missing momentum of the SPP. Complex mode matching method
[21] is used to investigate the grating structure where the boundary is determined by a perfectly
matched layer (PML). An efficient SPP propagation is expected provided that the SPP wave sat-
isfies the complex mode matching conditions.
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Figure 5.1: Grating structure
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Numerical Results

During the time of our thesis we have performed several simulations to enhance our knowledge
on the coding scheme and as well as to familiarize with the fabrication based research work. In
our thesis for computation purpose we choose FDTD for its various advantages. With the help
of those simulations we have got the idea of different signals behavior when they propagate
through the dielectric medium. At the first part we have simulated 1-dimensional FDTD and
then two dimensional FDTD. In both the cases air was used as the dielectric medium and the
signal has been generated at the middle of the computational window. In the simulation Gaus-
sian pulse has been used because it does not produce any side lobe in the frequency domain as
compared with the rectangular pulse. For 1-dimensional case at first we have simulated without
considering the polarization. Simulation results are presented by figure 6.1.

Now we have to consider the loss properties inside the material. To describe loss property let
us introduce the term polarization. Polarization is described as the orientation of the oscillation
of waves inside the material when external electric field is applied. So when the polarization
is considered then we can observe how the signal decays when it is propagating through the
medium. Simulation results after considering polarization is presented by figure 6.2a.
In order to test our simulation for one dimensional FDTD we used the data given by Allen Taflove
[1]. The simulated results using our developed simulator, give a very good agreement with the
published results. The simulated results from Tafloves book [1] and our simulator is given by
figure 6.2.
For 2-dimensional FDTD the simulation results are shown by figure 6.1.
We pumped a Gaussian pulse at the middle of the dielectric. When the signal propagates, it

reflects back due to the absence of Perfectly Matched Layer (PML). Figure 6.2c shows the re-
flected signal from the boundary of the computational window. In the above figures different
colors are demonstrating the strength of the signal at different places. Red color is representing
the maximum power and the blue color is representing the minimum power of the signal.
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(a) Figure a (b) Figure b

(c) Figure c (d) Figure d

Figure 6.1: Signal propagation in 1 dimensional FDTD: (a) After 0.83 ns (b) After 1.6 ns (c)
After 2.4 ns (d) After 3.3 ns
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(a) Figure a

(b) Figure b

Figure 6.2: ADE-FDTD study of temporal soliton formation in a nonphysical nonlinear dispersive
medium: (a) Calculated optical carrier pulse after propagating 126 µm (b) Similar figure using
our own developed simulator.
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(a) Figure a

(b) Figure b
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(c) Figure c

Figure 6.1: Signal propagation in 1 dimensional FDTD.: (a) After 0.41 ns (b) After 0.83 ns (c)
After 1.24 ns
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Figure 6.2: A Metal Dielectric Interface.

6.1 SPP Simulation

In the second phase SPP simulations are performed by forming the interface between dielectric
and metal. PML has been used to terminate the propagating signal within the computational
window. For better understanding of SPP the concept of waveguide is very important. It plays a
very vital role to transmit the signal at sub wavelength range. At first a very simple waveguide
has been designed by forming an interface between metal and dielectric. Silver has been used
for the metal and Lorentz-Drude 6 pole model has been used to design it. All the parameters for
the dielectric have been taken from the published research papers. The simulation results are
shown by figures 6.2, 6.3, and 6.2.

Figure 6.3: Profile of the Metal Dielectric interface.
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(a) Figure a

(b) Figure b
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(c) Figure c

Figure 6.2: Signal propagation in Metal Dielectric interface: (a) After 35.525 fs (b) After 177.625
fs (c) After 106.56 fs
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Figure 6.3: A Dielectric Metal Dielectric Interface.

Here, figure 6.3 represents the profile of the signal. The profile of the signal represents the signal
decaying in a material.
Metal dielectric Metal (MDM) and Dielectric Metal Dielectric (DMD) have also been simulated to
see the propagation through the double interface. For both the structure AlGaAs has been used
as the dielectric material and Silver has been used as the metal. The simulation results for the
DMD are shown by figures 6.3 and 6.2.

The simulation result for the MDM are shown by figures 6.3 and 6.2

In our consideration the signal propagates along the z direction. During transmission, part of
the signal is transmitted and others are reflected. There will be absorption and radiation loss of
the signal during transmission through grating structure.
In the final phase of our work we have focused on Braggs grating because of its ability to enhance
power. We have experimented on GLS and AlGaAs to show the enhancement of the power.
We have calculated power transmission for different metallic strip thicknesses as a function
of transmission distance. Figure 6.3 represents the transmitted power at different distances:
d1 = 500nm, d2 = 1000nm,d3 = 1500nm and d4 = 2000nm for different metallic strip thick-
nesses tp. It is seen from the graph that the power decreases as the distance increases and in
every case it is maximum for 50nm metallic strip. Observation reveals that the field penetration
decreases with the increase of the metal width within the dielectric grating structure as shown
by figure 5.1. For 50nm metallic strip resonance is created by the signal which causes the power

38



CHAPTER 6. NUMERICAL RESULTS

(a) Figure a

(b) Figure b

39



Chapter 6

(c) Figure c

Figure 6.2: Signal propagation in Dielectric Metal Dielectric interface: (a) After 180.26 fs (b)
After 360.53 fs (c) After 288.42 fs

Figure 6.3: Metal Dielectric Metal Interface.
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(a) Figure a

(b) Figure b
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(c) Figure c

(d) Figure d

Figure 6.2: Signal propagation in Metal Dielectric Metal Interface: (a) After 87 fs (b)After 175
fs (c) After 263 fs (d) After 307 fs
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Figure 6.3: Comparison of power transmission for different material width.

to enhance during propagation. Grating helps the metal strip to select an appropriate mode for
efficient propagation of the signal. The results have been taken for a fixed wavelength 1550nm.

Next, the comparison of the power transmission and loss between the two dielectrics, Gallium
Lanthanum Sulphide (GLS) and Cuprous Oxide (Cu2O) has been investigated. We have taken
(Cu2O) to compare with GLS in order to find dielectric which gives low loss property. Here the
transmission and loss properties have been calculated numerically with graphical representation.
The analysis is performed for a constant metallic strip thickness (50nm) because of its maximum
transmission rate in figure 6.3. In figure 6.4 it is observed that Cuprous Oxide can transmit more
power during transmission of the signal. In 6.5 it is shown that with the increase of the wave-
length the loss for GLS gradually increases compared to (Cu2O).The results have been taken for
different wavelength starting from 1400nm to 1600nm.

Because of the low loss property (Cu2O) can hold more power and this result is convenient for
all other wavelengths.
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Figure 6.4: Comparison of power transmission for different dielectrics (GLS and Cu2O).
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Figure 6.5: Comparison of power loss for different dielectrics (GLS and Cu2O).
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Conclusion

7.1 Conclusion

Our research is based on the investigation of efficient SPP propagation. Before starting with the
SPP we have studied theoretical analysis of the different computational technique. Summary of
the thesis work is presented below:

1. An investigation has been performed on the efficient algorithm to design the material.
Different models have been analyzed out of which Lorentz model has been taken to design
the dielectric and Lorentz Drude 6 pole models has been used to design the metal. To
avoid the complex mathematics ADE based algorithm has been used to design the multiple
dispersion relation.

2. In our simulations we have created SPP at the metal dielectric interface and observe the
signal behavior for single and double interfaces. FDTD based simulations have also been
performed to observe the propagation of signal within the dielectric material.

3. Grating structure has been analyzed with a view to hold signal power for longer distance.
We have also investigated the structure numerically and graphically to get a clear idea how
grating increase power within the computational window.

7.2 Future Work

1. Due to the high loss property of the metal at high frequency the propagating signal cannot
sustain so long. Up to now maximum possible distance used for scientific research is 6-7
µm. Grating is one of the good solution to do this. So our future plan is to increase the
propagation distance by investigating the nature of the grating. Grating structure will be
improved if new dielectric with low loss is used to design it.

2. Material modeling is a very important aspect in Plasmonics. If new material can be devel-
oped then it will be possible to sustain the signal for long duration.
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3. As photon has the advantages over electron in terms of high speed and low heat gener-
ation capacity this research work will be highly efficient for miniaturization of photonic
devices. Increasing propagation distance can also be a great contribution to the field of
communication especially in optically controlled devices.
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