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Abstract 
 

Community detection algorithm tries to find the densely connected units in a large network. 

For this objective different matrices have come into light. Most of them assume all the vertices 

in a community belong equally to the community. But these matrices identify the communities 

as whole, these doesn’t give any information at which content the nodes are connected in a 

community. Moreover these also face resolution limit for larger networks. For resolving this 

issue, another matrices named permanence has been applied. But this metric is not defined for 

weighted and directed graph. Our approach will be to implement the permanence on directed 

and weighted graph.    
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Chapter 1 

 
Introduction 

 

 

1.1  Background 
 

 

Many real-world systems can be represented as complex networks such as Protein Interaction 

Network [Ref], Indian Railway Network [ref], and Coauthor Ship Network [ref]. In this real 

world networks, community structure is frequently being observed.  

 

By the term community structure, we mean that a network can be decomposed into its 

constituent sub graphs where within each sub graph the vertices are densely connected and 

between sub graphs the vertices are sparsely connected. Each constituent sub graph is called 

community. Now a day, detecting this community in a network is a major issue. 

 

 

1.2  Motivation 
 

Community Detection Metrics is also a top of the topics in current days. Earlier several metrics 

such as Modularity (Newman M. E., Modularity and community structure in networks, 2006), 

Conductance (Jure Leskovec, 2009), and Cut-Ratio (Fortunato S. , 2010) has been proposed. 

But this metrics suffers from resolution limit and degeneracy of solutions (Barthelemy, 2007) 

and more ever from this metrics we cannot know to what extent a vertex belongs to its 

community. We can only get the community metric value over the network as a whole.  

 

Then another metric Permanence (Tanmoy Chakraborty, 2016) has been proposed which 

mitigates this problem. But this metric does not provide the information of how the value of 

permanence will be affected if the graph is weighted and directed. But in real world some 

graphs are weighted in nature and their unweighted version loses some important information. 

For example, if users of social networking sites are represented as vertices and their interaction 

as edges then from weighted version we can easily derive how intimate the two users is but in 

case of unweighted version this information is lost. Some graphs are also directed in nature 
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such that map of a city where one way road exists, dependencies in a software module, 

hyperlink connecting webpages etc. So, in this paper, we propose a metric which shows how 

permanence value is affected in case of weighted and directed graph. 

 

 

 

 

Figure 1: A graph with community substructure(Left), After Detecting Community (Right) 

  

 

In this article the background information about community detection has been described and 

different matrices were discussed. After discussing every matric there limitations were also 

defined and then the permanence definition and its performance were discussed. After 

discussing about permanence and the community detection algorithms, we discussed about our 

proposal and implementation.  

 

 

1.3  Problem Statement  
 

The best metric till now called the permeance is not define for sighted and directed graph. But 

what can be done on detection the community when the substructure will be based on a 

weighted and directed graph? That is our concern to solve.  

 

1.3  Our Approach  

 
We tried to modify the permeance and its definition according to weighted and directed graphs. 

We modified the MaxPerm based on the enhanced metrics. 
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Chapter 2 

 
Related Works 

 

 

 

In the past there are two types of work that has been done in the field of Community Detection. 

There are two parts in the related works done in this area of community detection-  

 

1. Community Detection algorithms and  

2. Evaluation metric for obtained community. 

  

Several community evaluations metric has been proposed. The most widely used one is 

Modularity (Barthelemy, 2007). It is defined as difference between the actual fraction of edges 

that lies with in communities and the expected fraction of the same thing.  

 

At first it was defined for the unweighted and undirected graph. Later it was defined for the 

weighted (Newman M. E., Analysis of weighted networks, 2004) and directed graph (Newman 

E. A., 2008).But modularity suffers from resolution limit (Newman M. E., Modularity and 

community structure in networks, 2006) and degeneracy solutions (Benjamin H Good, 

2004).Multi-view modularity (Peter J Mucha, 2010) was also proposed for multi-view network.  

 

Many other metric for evaluation was also proposed like Conductance (Fortunato S. , 2010), 

Cut ratio (Jure Leskovec, 2009), weighted conductance (Zongqing Lu, 2013). In the past years 

several algorithms has been proposed for detecting communities. Algorithm proposed by 

Blonde (Vincent D Blondel, 2008) is based on local optimization of modularity (Barthelemy, 

2007). There are several other approaches like label propagation (Usha Nandini Raghavan, 

2007), random-walk based approach (Pasquale De Meo, 2013), spectral graph-partitioning 

algorithm (Newman., 2013). Most of the algorithms are highly dependent on vertex ordering 

(Fortunato A. L., 2012) (i.e., the order in which the vertices are processed). To mitigate this 

problem MaxPerm (Tanmoy Chakraborty, 2016) which is based on Permanence Maximization 

is proposed. 

 

Most of the research in community detection algorithms are based on the idea that a community 

is a set of nodes that has more and/or better links between its members than with the remainder 
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of the network.Work in this area encompasses many different approaches including, modularity 

optimization [Blondel et al. 2008; Clauset et al.2004; Guimera and Amaral 2005; Newman 

2004b, 2006], spectral graph-partitioning algorithm [Newman 2013; Richardson et al. 2009], 

clique percolation [Farkas et al. 2007; Palla et al. 2005], local expansion [Baumes et al. 2005; 

Lancichinetti et al. 2009], fuzzy clustering [Psorakis et al. 2011; Sun et al. 2011], link 

partitioning [Ahn et al.2010; Evans and Lambiotte 2009], random-walk-based approach [De 

Meo et al. 2013; Pons and Latapy 2006], information theoretic approach [Rosvall and 

Bergstrom 2007, 2008], diffusion-based approach [Raghavan et al. 2007], significance-based 

approach [Lancichinetti et al. 2010], and label propagation [Raghavan et al. 2007; Xie and 

Szymanski 2011, 2012].  

 

However, most of these algorithms produce different community assignments if certain 

algorithmic factors, such as the order in which the vertices are processed, change. Lancichinetti 

and Fortunato [2012] proposed consensus clustering by re-weighting the edges based on how 

many times the pair of vertices were allocated to the same community, for different 

identification methods. Several pre-processing techniques [Bader et al. 2013; Riedy et al. 2011] 

have been developed to improve the quality of the solution. These methods form an initial 

estimate of the community allocation over a small percentage of the vertices and then refine 

this estimate over successive steps. Recently, Chakraborty et al. [2013] pointed out how vertex 

ordering influences the results of the community detection algorithms. They identified 

invariant groups of vertices (named as “constant communities”) whose assignment to 

communities is not affected by vertex ordering. 

 

Now, from this works some related works will be described in brief. At first, modularity will 

be explained.  

 

 

 

2.1  Community Detection Metrics:  
 

Modularity: 

Modularity Defines as ratio between sum of weight of internal edge and sum of weight of 

edges. It is calculated using following formula. 

 

 

 

 

 

Here, Auv denotes the value of Adjacency matrix of the graph. δ(cu, cv) returns 1 when node 

u and node v is in same community and 0 when different. 

 

∑ 𝐴𝑢𝑣    𝛿(𝑐𝑢, 𝑐𝑣)𝑢𝑣

∑ 𝐴𝑢𝑣        𝑢𝑣
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This general modularity has some limitations. If we make all the vertices in a single community 

then the modularity gives the highest value. But that is misleading. Because that fails the 

purpose of community detecting. 

 

 
Figure 2 Gives the highest value 1 if we include all the nodes in a single community 

 

In (Newman M. E., Analysis of weighted networks, 2004), the modularity has been modified. 

It resolves the problem of previous modularity which gives the highest modularity when all the 

vertices are considered to be in a single community. 

 

It is defined as the difference between the actual and the expected sum of weight of edges inside 

a given community. It is calculated using following formula: 

 

 

 

 

 

 

Here, Auv denotes the value of Adjacency matrix of the graph. δ(cu, cv) returns 1 when node 

u and node v is in same community and 0 when different.Kv is the sum of weight of edges 

incident upon node v. 

 

This modularity can be used for only undirected graph. But there is a slight modification in it 

which has been expanded to directed graph. It is calculated using following formula: 

 

 

 

 

 

Here, Auv denotes the value of Adjacency matrix of the graph.  δ(cu, cv) returns 1 when node 

u and node v is in same community and 0 when different. ku
in

 is the sum of weight of edges 

that has direction towards node u. kv
out

 is the sum of weight of edges that has direction from 

node v to outside?  

 

∑  (𝐴𝑢𝑣 −  
𝐾𝑢𝐾𝑣

  ∑ 𝐴𝑢𝑣        𝑢𝑣

 ) 𝛿(𝑐𝑢, 𝑐𝑣)𝑢𝑣

∑ 𝐴𝑢𝑣        𝑢𝑣

 

∑  (𝐴𝑢𝑣 −  
𝑘𝑢

𝑖𝑛𝑘𝑣
𝑜𝑢𝑡

  ∑ 𝐴𝑢𝑣        𝑢𝑣

 ) 𝛿(𝑐𝑢, 𝑐𝑣)𝑢𝑣

∑ 𝐴𝑢𝑣        𝑢𝑣
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Limitations of modularity: 

 

1. The optimal score of modularity can only be obtained over the network as a whole 

because the algorithm notions that all the vertices in a community belong equally to the 

community. 

 

2. The information about how placement of vertices affects the community structure is 

lost using these current measurements. 

 

 

Conductance: 

 

Conductance [Leskovec et al. 2009] is the ratio between the number of edges inside the cluster 

and the number of edges leaving the cluster [Kannan et al. 2000; Shi and Malik 2000]. More 

formally, conductance _(S) of a set of nodes S is defined as follows: 

 

 

 
 

 

Cut Ratio: 

 

Cut-ratio is a standard metric in graph clustering [Fortunato 2010;Leskovec et al. 2010], which 

is defined as the fraction of all possible edges leaving the cluster S. Formally, given an 

undirected graph G(u, v), the cut-ratio θ(S) of a set of nodes S is defined as follows: 

 

 
 

Note that the higher is the value of modularity, the better is the quality of the community 

structure; however, for conductance and cut-ratio, the opposite argument is applicable. 

Therefore, to make these two measures comparable to modularity and permanence, we measure 

(1-Con) and (1-Cut) for conductance and cut-ratio, respectively. 
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Permanence: 

 

Permanence is also another community detection metric which resolves the problems and 

limitations of modularity. The main point to be noted about permanence is that it quantifies a 

vertex’s propensity to remain in its assigned community and the extent to which it is “pulled” 

by the neighboring communities. 

 

There are two concepts behind the permanence metric. They are:  

 

1. A vertex should have more number of internal connections than the number of 

connections to any of the external neighboring communities. 

 

Most optimization metrics consider the total number of external neighbors of the vertex. 

However, in our earlier experiment [Chakraborty et al. 2014; Chakraborty 2015; Chakraborty 

et al. 2016b], we empirically demonstrated that a group of vertices are likely to be placed 

together so long as the number of internal connections is larger than the number of connections 

to any one single external community. In other words, a vertex that has connections to some 

external communities experiences a separate “pull” from each of these external communities. 

In formulating permanence, we consider the maximum pull, which is proportional to the 

maximum number of connections to an external community. 

 

2. Within the substructure of a community, the internal neighbors of the vertex should be 

highly connected among each other. 

 

Most optimization metrics only consider the internal connections of a vertex within its own 

community. However, how strongly a vertex is connected also depends on whether its internal 

neighbors are connected with each other. To measure this connectedness of a vertex, we 

compute the clustering coefficient of the vertex with respect to its internal neighbors. For a 

vertex v belonging to community c, it is measured by the ratio between the actual number of 

edges among the neighbors (which also belong to c) of v and the total number of possible edges 

among the neighbors [Holland and Leinhardt 1971]. The higher this internal clustering 

coefficient, the more tightly the vertex is connected to its community 

 

Combining these two criteria permanence of a vertex v is formulated as follows: 

 

𝑃𝑒𝑟𝑚(𝑣) = [
𝐼(𝑣)

𝐸𝑚𝑎𝑥(𝑣)
×

1

𝐷(𝑣)
] − [1 − 𝑐𝑖𝑛(𝑣)] 

 

where I (v) is the number of internal (in its own community) neighbors of v, Emax (v) is the 

maximum number of connections of v to any one of the external communities, D(v) is the 

degree of v and cin(v) is the clustering coefficient among the internal neighbors of v.  
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There is some unique strength of permanence in the field of community detection. These are- 

 

 Strengthening community structure 

 Determining initial selector for message spreading. 

 Can detect position from center of a community as farness centrality. 

 

 

Strengthening community structure 

 

The value of permanence of a vertex signifies its propensity to remain in its own community. 

Therefore, vertices having low permanence in a community are loosely connected to the 

community. We explore whether we can strengthen the community structure by deleting 

vertices with low permanence. Note that when a vertex is deleted from its community, it would 

also affect the permanence value of the remaining vertices. 

 

 

Determining initial selector for message spreading 

 

Since vertices with higher permanence form the core of the community, we posit that initiator 

selection based on permanence would help in faster dissemination of the message. Note that 

the message spreading algorithms are based on only the local view of the vertices; therefore, 

global methods such as those described in Kempe et al. [2003] will not be applicable under this 

formulation. We observe that the permanence-based initiator selection from ground-truth 

communities requires minimum timestamps to spread the message compared to the degree-

based selection. 

 

 

 

Heterogeneity and Core-Periphery Organization of Community Structure 

 

Within a community, the extent of involvement and activity may not be same for all members 

permanence can capture this heterogeneity. The permanence of a node v belonging to a 

community c indicates the extent to which the node belongs to the community. The next 

investigation reveals the manner in which the permanence value of vertices decreases from the 

core. A smooth decrease in value would indicate that the nodes in a community are arranged 

in layers with each layer of vertices roughly having similar permanence. 

 

Limitations of permanence: 

 

This is not defined for weighted and directed graph. 
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2.2  Community Detection algorithms: 
 

 

There are so many community detection algorithms which have been cited before. Here two of 

them are described. They are: 

 

■ Generalized Louvain method  

■ MaxPerm Algorithm 

 

Louvain is defined upon the modularity optimization and Maxperm is based on the permanence 

value.  

 

 

Generalized Louvain method  

 

This is a community detection algorithm based on modularity optimization. It has two stages. 

Stage 1: 

 Initially each node is assigned in new community. 

 Then, each node is removed from its own community and places it in another 

community. 

 If none of these modularity changes are positive, we keep the node in its current 

community. 

 If some of the modularity changes are positive, we move the node into the 

community for which the modularity change is most positive.  

 

Stage 2: 

 Now each community is considered as a node. 

 Internal connections of a community are considered as self-loop of that 

corresponding node. 

 Sum of weight of external connections between the communities is considered 

as edges between the corresponding nodes. 

 Then, stage 1 is repeated until there is no positive change in modularity.  

 

 

There is a limitation of this algorithm. That is resolution limit. It can’t work for larger 

community. It merges the smaller communities and so those small communities can never be 

found as a result of modularity optimization 
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Maxperm Algorithm  

 

 Community detection algorithm based on permanence optimization. 

 Initially nodes are assigned in seed community. 

 Then, each node and its neighbor’s permanence are calculated. 

 Then each node is placed into other communities and again permanence of the 

node and its neighbors is calculated. 

 If both increases then we keep the changed state otherwise previous state is 

preserved. 

 

The maxperm algorithm can mitigate the problem of modularity optimization which was 

resolution limit. But this algorithm has some limitations also. It can’t detect community in large  

networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 After first stage Figure 5 After second stage 
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Our Proposal 

 

■ Some graph are weighted and directed. As we have seen that permanence just works 

for unweighted and undirected graph so we want to modify it to apply in this field. 

■ For example, World Wide Web. Where one site can give reference to another website 

by hyperlink but that targeted website may or may not redirect to previous website. This 

causes the graph to be directed graph where websites are nodes and references are links 

between them and number of links between the website defines the weight of the edge. 

■ We will extend the definition of permanence such that it can be applied on weighted 

      and directed graph.  

 

 

 

 

 

 

 

Example of WWW 

 

 

Future Work 

 

■ We have implemented MaxPerm and Louvain algorithm for our future use in the 

modified permenance. 

■ In the future we will try to implement the MaxPerm based on modified 

permanence. 

■ We will analyze the result of Modified MaxPerm algorithm along with Louvain 

method. 

■ Necessary dataset like Railway Network[4], Co-authorship Network[4] has been 

collected for our work. 
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Chapter 3   

 

Implementation 

 

 

 

3.1   Enhanced Metric  

 

We have considered the weight and direction of the nodes of a network. For this in the place 

of internal connection numbers we have taken the total weight of the in and outgoing vertices 

weight. In the place of maximum number of external connections, we considered the maximum 

weight of the edges to external communities. And we have modified the clustering coefficient 

also. We have defined it as the ratio of total weight of edges between neighboring vertices and 

the total number of possible connections can be made. And before the denominator was n(n-

1)/2 but this time it is n(n-1) as in the directed graph edges can be on both sides 
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Enhanced permanence in working: 

 

 

 

 

 

 

 

Equation for calculating weighted and directed permanence of a vertex 
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             WD𝑷𝒆𝒓𝒎(𝑽) = [
𝑰𝑾𝒊𝒏(𝑽)+𝑰𝑾𝒐𝒖𝒕(𝑽)

𝑴𝒂𝒙(𝑬𝒊𝒏(𝑽)+𝑬𝒐𝒖𝒕(𝑽))
×

𝟏

𝑾𝒊𝒏(𝑽)+𝑾𝒐𝒖𝒕(𝑽)
] + [𝒘𝒄𝒊𝒏(𝑽)] 

 

𝒘𝒄𝒊𝒏(𝑽) =
𝑻𝒐𝒕𝒂𝒍 𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒊𝒏𝒈 𝒏𝒐𝒅𝒆𝒔 

𝒏(𝒏 − 𝟏)
 

 Here, 𝐼𝑊𝑖𝑛(𝑉) + 𝐼𝑊𝑜𝑢𝑡(𝑉) denotes the total internal weight of vertex V  

 

 𝑀𝑎𝑥(𝐸𝑖𝑛(𝑉) + 𝐸𝑜𝑢𝑡(𝑉)) denotes the maximum weight of external connections to any 

external communities 

 

 𝑊𝑖𝑛(𝑉) +𝑊𝑜𝑢𝑡(𝑉) is the total weight of in and outgoing edges of v and 

  

 wcin(v) is the weighted clustering coefficient. 
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3.2  Enhanced Algorithm 
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Code implementation in C: 

 

#include<bits/stdc++.h> 

#define maxN 20 

 

using namespace std; 

 

 

int n; 

 

int *array; 

int input[maxN+5][maxN+5]; 

 

int degree[maxN+2]; 

 

int indegree[maxN+2]; 

int outdegree[maxN+2]; 

int index[maxN+2]; 

int community[maxN][maxN]; 

int tempComm[maxN][maxN]; 

int comsize[maxN]; 

int tempsize[maxN]; 

bool flag[maxN+2]; 

int comm=0; 

 

int serach(int vertex) 

{ 

    for(int i=0; i<comm; i++) 

    { 

        for(int j=0; j<comsize[i]; j++) 

        { 

            if(community[i][j]==vertex) 

            { 

                return i; 

 

            } 

        } 

 

    } 

 

 

} 

 

double permanence(int vertex) 

{ 
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    double iv=0; 

    double emaxv=0; 

    double cinv; 

    int com; 

 

    com=serach(vertex); 

 

    for(int i=0; i<comsize[com]; i++) 

    { 

        if(input[vertex][community[com][i]]>=1) 

        { 

            iv+=input[vertex][community[com][i]]; 

        } 

 

        if(input[community[com][i]][vertex]>=1) 

        { 

            iv+=input[community[com][i]][vertex]; 

        } 

    } 

 

 

    for(int i=0; i<comm ; i++) 

    { 

        if(i==com) continue; 

 

        double temp=0; 

        for(int j=0; j<comsize[i]; j++) 

        { 

            if(input[vertex][community[i][j]]>=1) 

            { 

                temp+=input[vertex][community[i][j]]; 

            } 

 

            if(input[community[i][j]][vertex]>=1) 

            { 

                temp+=input[community[i][j]][vertex]; 

            } 

        } 

 

        if(temp>emaxv) 

            emaxv=temp; 

 

    } 

 

//    else 

    //{ 

        double num=0; 

        double denom; 
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        double neigh=0; 

 

        for(int i=0; i<comsize[com]; i++) 

        { 

            if(community[com][i]==vertex) continue; 

 

            if(input[vertex][community[com][i]]>=1 || 

input[community[com][i]][vertex]>=1) 

                neigh+=1; 

 

        } 

 

 

 

        for(int i=0; i<comsize[com]-1; i++) 

        { 

            if(community[com][i]==vertex) continue; 

 

            for(int j=i+1; j<comsize[com]; j++) 

            { 

                if(community[com][j]==vertex) continue; 

 

 

                if( ( input[vertex][community[com][i]]>=1 || 

input[community[com][i]][vertex]>=1 ) && ( 

input[vertex][community[com][j]]>=1 || 

input[community[com][j]][vertex]>=1 ) ){ 

 

                if(input[ community[com][i] ][ community[com][j] 

]>=1) 

                { 

                    num+=input[ community[com][i] ][ 

community[com][j] ]; 

                } 

 

 

                if(input[ community[com][j] ][ community[com][i] 

]>=1) 

                { 

                    num+=input[ community[com][j] ][ 

community[com][i] ]; 

                } 

 

                } 

 

            } 

        } 
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        denom= neigh*(neigh-1) ; 

 

        if(denom<1) cinv=0; 

        else 

            cinv=(double)num/(double)denom; 

 

    double perm; 

    if(emaxv==0.0) perm= ( (double)iv/ ( 

indegree[vertex]+outdegree[vertex] ) )  + cinv; 

    else perm= ( (double)iv/(emaxv * ( 

indegree[vertex]+outdegree[vertex] ) ) ) /*- (1-*/ + cinv; 

    return perm; 

 

} 

 

int cmp(const void *a, const void *b) 

{ 

    int ia = *(int *)a; 

    int ib = *(int *)b; 

    return array[ia] > array[ib] ? -1 : array[ia] < array[ib]; 

} 

 

 

void seedComm() 

{ 

 

 

    comm=n; 

 

    for(int i=0;i<n;i++) 

    { 

            community[i][0]=i; 

            comsize[i]=1; 

    } 

 

} 

 

double detectCommnity() 

{ 

 

    double sum=0; 

    int itern=0; 

    double old_sum=-1; 

    double curpne,curp; 

    int maxItr=2; 

 

    while (sum != old_sum && itern < maxItr) 
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    { 

        itern+=1; 

        old_sum=sum; 

        sum=0; 

        for(int i=0; i<n; i++) 

        { 

             

            curp=permanence(i); 

 

            curpne=0; 

 

            for(int j=0; j<n; j++) 

            { 

                if(input[i][j]>=1 || input[j][i]>=1) 

                { 

                    curpne+=permanence(j); 

                } 

            } 

 

            int com=serach(i),oldcom; 

            int com1,oldcom1; 

 

 

            for(int j=0; j<comsize[com]; j++) 

            { 

                if(community[com][j]==i) 

                { 

                    com1=j; 

                    break; 

                } 

            } 

 

 

            oldcom=com; 

            oldcom1=com1; 

 

 

            for(int j=0; j<comm; j++) 

            { 

                if(j==oldcom){ 

                   // printf("\nCom\n"); 

                    continue; 

                } 

 

 

            bool glaf=false; 

 

            for(int kk=0;kk<comsize[j];kk++) 
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            { 

                if(input[i][community[j][kk]]>0 || 

input[community[j][kk]][i]>0) 

                { 

                    glaf=true; 

                    break; 

                } 

            } 

 

                for(int x=0; x<comm; x++) 

                { 

                    for(int z=0; z<comsize[x]; z++) 

                    { 

                        tempComm[x][z]=community[x][z]; 

                    } 

 

                    tempsize[x]=comsize[x]; 

                } 

 

 

                for(int k=com1; k<comsize[com]; k++) 

                { 

                    community[com][k]=community[com][k+1]; 

                } 

 

                comsize[com]-=1; 

 

               

                community[j][comsize[j]]=i; 

                comsize[j]+=1; 

 

 

 

                double np=permanence(i); 

                double npne=0; 

 

                for(int k=0; k<n; k++) 

                { 

                    if(input[i][k]>=1 || input[k][i]>=1 ) 

                        npne+=permanence(k); 

                } 

 

 

                if (curp< np && curpne < npne) 

                { 

 

                    curp=np; 
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                    com=j; 

                    com1=comsize[j]-1; 

                } 

                else 

                { 

                    //    

memcpy(community,tempComm,sizeof(community)); 

 

 

                    for(int x=0; x<comm; x++) 

                    { 

                        for(int z=0; z<tempsize[x]; z++) 

                        { 

                            community[x][z]=tempComm[x][z]; 

                        } 

 

                        comsize[x]=tempsize[x]; 

                    } 

 

 

 

                } 

 

            } 

 

            sum+=curp; 

 

        } 

 

    } 

 

 

    return sum/n; 

 

 

} 

 

 

 

 

int main() 

{ 

    FILE *fp=fopen("ds1.txt","r"); 

    

    fscanf(fp,"%d",&n); 

 

    int i,j,w; 

    memset(indegree,0,sizeof(indegree)); 
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    memset(outdegree,0,sizeof(outdegree)); 

 

    memset(flag,0,sizeof(flag)); 

 

    while(fscanf(fp,"%d %d %d",&i,&j,&w)!=EOF){ 

 

            input[i][j]=w; 

 

            if(input[i][j]>=1){ 

                outdegree[i]+=w; 

                indegree[j]+=w; 

            } 

 

    } 

        seedComm(); 

 

    printf("Initial Community:\n\n"); 

 

    for(int i=0; i<comm; i++) 

    { 

        for(int j=0; j<comsize[i]; j++) 

        { 

            printf("%d ",community[i][j]); 

        } 

        printf("\n"); 

    } 

    double result=detectCommnity(); 

 

 

    printf("Detected Community:\n\n"); 

 

    for(int i=0; i<comm; i++) 

    { 

        for(int j=0; j<comsize[i]; j++) 

        { 

            printf("%d ",community[i][j]); 

        } 

        printf("\n"); 

    } 

 

 

 

    printf("\n\nTotal Permanence %lf\n\n\n",result); 

 

    return 0; 

} 
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