
1

AN ENHANCED COMMUNITY DETECTION METRIC FOR

WEIGHTED AND DIRECTED GRAPH-BASED NETWORK

AUTHORS

Md. Hasibul Kabir - 134409

Md. Anower Jahan -134412

A Thesis Submitted to the Academic Faculty in Partial Fulfillment of the Requirements

for the Degree of

BACHELOR OF SCIENCE

IN COMPUTER SCIENCE AND ENGINEERING

2

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND

ENGINEERING

AN ENHANCED COMMUNITY DETECTION METRIC FOR

WEIGHTED AND DIRECTED GRAPH-BASED NETWORK

AUTHORS

Md. Hasibul Kabir - 134409

Md. Anower Jahan -134412

Department of Computer Science and Engineering (CSE)

Islamic University of Technology (IUT)

Organization of Islamic Cooperation (OIC)

Board Bazar, Gazipur-1704

Bangladesh

3

Declaration of Authorship

This is to certify that the work presented in this thesis is the outcome of the analysis and

experiments carried out by Hasibul Kabir Emon and Md. Anower Jahan bearing Student No.

134409 and 134412 respectively of Academic Year 2016–2017 under the supervision of Dr.

Abu Raihan Mosotofa Kamal, Associate Professor of Department of Computer Science and

Engineering (CSE), Islamic University of Technology (IUT), Gazipur, Bangladesh. It is also

declared that neither of this thesis nor any part of this thesis has been submitted anywhere else

for any degree or diploma. Information derived from the published and unpublished work of

others has been acknowledged in the text and a list of references is given.

Authors

__________________________ ________________________

 Hasibul Kabir Emon Md. Anower Jahan

Approved by

Dr. Abu Raihan Mostofa Kamal

Associate Professor

Department of Computer Science and Engineering

Islamic University of Technology

Board Bazar, Gazipur-1704, Bangladesh.

4

Acknowledgement

First of all, We would like express our heartiest gratitude to the Almighty Allah for providing me the

strength to complete this thesis work. After the Almighty, it is my great pleasure to express gratitude to

the people who made this thesis possible.

We would like to express our grateful appreciation to Dr. Abu Raihan Mostofa Kamal, Associate

Professor, Department of CSE, IUT for being our advisor and mentor. His motivation, suggestions and

insights for this thesis have been invaluable. Without his support and proper guidance this research

would not have been possible. His valuable opinion, time and input provided throughout the thesis

work, from first phase of thesis topics introduction, subject selection, proposing algorithms,

modifications till the project implementation and finalization which helped us to do our thesis work in

a proper way. We are really grateful to him.

Our deep appreciation extends to all the respected jury members of our thesis committee for their

insightful comments and constructive criticism of our research work. Surely, they have helped us to

improve this research work greatly. Lastly, we would like to thank the faculty members of CSE

Department, IUT who have helped to make our working environment a pleasant one, by providing a

helpful set of eyes and ears when problems arose.

5

Abstract

Community detection algorithm tries to find the densely connected units in a large network.

For this objective different matrices have come into light. Most of them assume all the vertices

in a community belong equally to the community. But these matrices identify the communities

as whole, these doesn’t give any information at which content the nodes are connected in a

community. Moreover these also face resolution limit for larger networks. For resolving this

issue, another matrices named permanence has been applied. But this metric is not defined for

weighted and directed graph. Our approach will be to implement the permanence on directed

and weighted graph.

6

Contents

Declaration of Authorship 3

Acknowledgement 4

Abstract 5

1. Introduction 8

1.1. Background …………………………………………………………………………….. 8

1.2. Motivation ………………………………………………………………………………. 8

1.3. Problem Statement ………………………………………………………………...…... 9

1.4. Our Approach …………………………………………………………………….......... 9

2. Related Works 10

2.1. Community detection metrices …………………………………………………………. 11

2.2. Community detection algorithms ……………………………...………………………... 16

3. Implementation 18

3.1. Enhanced Metric……………………………………………….………………………… 19

3.2. Enhanced Algorithm …………………………………………………………….………… 21

3.3. Implementation in code………………………………………………………………….… 23

4. References 32

7

Chapter 1

Introduction

1.1 Background

Many real-world systems can be represented as complex networks such as Protein Interaction

Network [Ref], Indian Railway Network [ref], and Coauthor Ship Network [ref]. In this real

world networks, community structure is frequently being observed.

By the term community structure, we mean that a network can be decomposed into its

constituent sub graphs where within each sub graph the vertices are densely connected and

between sub graphs the vertices are sparsely connected. Each constituent sub graph is called

community. Now a day, detecting this community in a network is a major issue.

1.2 Motivation

Community Detection Metrics is also a top of the topics in current days. Earlier several metrics

such as Modularity (Newman M. E., Modularity and community structure in networks, 2006),

Conductance (Jure Leskovec, 2009), and Cut-Ratio (Fortunato S. , 2010) has been proposed.

But this metrics suffers from resolution limit and degeneracy of solutions (Barthelemy, 2007)

and more ever from this metrics we cannot know to what extent a vertex belongs to its

community. We can only get the community metric value over the network as a whole.

Then another metric Permanence (Tanmoy Chakraborty, 2016) has been proposed which

mitigates this problem. But this metric does not provide the information of how the value of

permanence will be affected if the graph is weighted and directed. But in real world some

graphs are weighted in nature and their unweighted version loses some important information.

For example, if users of social networking sites are represented as vertices and their interaction

as edges then from weighted version we can easily derive how intimate the two users is but in

case of unweighted version this information is lost. Some graphs are also directed in nature

8

such that map of a city where one way road exists, dependencies in a software module,

hyperlink connecting webpages etc. So, in this paper, we propose a metric which shows how

permanence value is affected in case of weighted and directed graph.

Figure 1: A graph with community substructure(Left), After Detecting Community (Right)

In this article the background information about community detection has been described and

different matrices were discussed. After discussing every matric there limitations were also

defined and then the permanence definition and its performance were discussed. After

discussing about permanence and the community detection algorithms, we discussed about our

proposal and implementation.

1.3 Problem Statement

The best metric till now called the permeance is not define for sighted and directed graph. But

what can be done on detection the community when the substructure will be based on a

weighted and directed graph? That is our concern to solve.

1.3 Our Approach

We tried to modify the permeance and its definition according to weighted and directed graphs.

We modified the MaxPerm based on the enhanced metrics.

9

Chapter 2

Related Works

In the past there are two types of work that has been done in the field of Community Detection.

There are two parts in the related works done in this area of community detection-

1. Community Detection algorithms and

2. Evaluation metric for obtained community.

Several community evaluations metric has been proposed. The most widely used one is

Modularity (Barthelemy, 2007). It is defined as difference between the actual fraction of edges

that lies with in communities and the expected fraction of the same thing.

At first it was defined for the unweighted and undirected graph. Later it was defined for the

weighted (Newman M. E., Analysis of weighted networks, 2004) and directed graph (Newman

E. A., 2008).But modularity suffers from resolution limit (Newman M. E., Modularity and

community structure in networks, 2006) and degeneracy solutions (Benjamin H Good,

2004).Multi-view modularity (Peter J Mucha, 2010) was also proposed for multi-view network.

Many other metric for evaluation was also proposed like Conductance (Fortunato S. , 2010),

Cut ratio (Jure Leskovec, 2009), weighted conductance (Zongqing Lu, 2013). In the past years

several algorithms has been proposed for detecting communities. Algorithm proposed by

Blonde (Vincent D Blondel, 2008) is based on local optimization of modularity (Barthelemy,

2007). There are several other approaches like label propagation (Usha Nandini Raghavan,

2007), random-walk based approach (Pasquale De Meo, 2013), spectral graph-partitioning

algorithm (Newman., 2013). Most of the algorithms are highly dependent on vertex ordering

(Fortunato A. L., 2012) (i.e., the order in which the vertices are processed). To mitigate this

problem MaxPerm (Tanmoy Chakraborty, 2016) which is based on Permanence Maximization

is proposed.

Most of the research in community detection algorithms are based on the idea that a community

is a set of nodes that has more and/or better links between its members than with the remainder

10

of the network.Work in this area encompasses many different approaches including, modularity

optimization [Blondel et al. 2008; Clauset et al.2004; Guimera and Amaral 2005; Newman

2004b, 2006], spectral graph-partitioning algorithm [Newman 2013; Richardson et al. 2009],

clique percolation [Farkas et al. 2007; Palla et al. 2005], local expansion [Baumes et al. 2005;

Lancichinetti et al. 2009], fuzzy clustering [Psorakis et al. 2011; Sun et al. 2011], link

partitioning [Ahn et al.2010; Evans and Lambiotte 2009], random-walk-based approach [De

Meo et al. 2013; Pons and Latapy 2006], information theoretic approach [Rosvall and

Bergstrom 2007, 2008], diffusion-based approach [Raghavan et al. 2007], significance-based

approach [Lancichinetti et al. 2010], and label propagation [Raghavan et al. 2007; Xie and

Szymanski 2011, 2012].

However, most of these algorithms produce different community assignments if certain

algorithmic factors, such as the order in which the vertices are processed, change. Lancichinetti

and Fortunato [2012] proposed consensus clustering by re-weighting the edges based on how

many times the pair of vertices were allocated to the same community, for different

identification methods. Several pre-processing techniques [Bader et al. 2013; Riedy et al. 2011]

have been developed to improve the quality of the solution. These methods form an initial

estimate of the community allocation over a small percentage of the vertices and then refine

this estimate over successive steps. Recently, Chakraborty et al. [2013] pointed out how vertex

ordering influences the results of the community detection algorithms. They identified

invariant groups of vertices (named as “constant communities”) whose assignment to

communities is not affected by vertex ordering.

Now, from this works some related works will be described in brief. At first, modularity will

be explained.

2.1 Community Detection Metrics:

Modularity:

Modularity Defines as ratio between sum of weight of internal edge and sum of weight of

edges. It is calculated using following formula.

Here, Auv denotes the value of Adjacency matrix of the graph. δ(cu, cv) returns 1 when node

u and node v is in same community and 0 when different.

∑ 𝐴𝑢𝑣 𝛿(𝑐𝑢, 𝑐𝑣)𝑢𝑣

∑ 𝐴𝑢𝑣 𝑢𝑣

11

This general modularity has some limitations. If we make all the vertices in a single community

then the modularity gives the highest value. But that is misleading. Because that fails the

purpose of community detecting.

Figure 2 Gives the highest value 1 if we include all the nodes in a single community

In (Newman M. E., Analysis of weighted networks, 2004), the modularity has been modified.

It resolves the problem of previous modularity which gives the highest modularity when all the

vertices are considered to be in a single community.

It is defined as the difference between the actual and the expected sum of weight of edges inside

a given community. It is calculated using following formula:

Here, Auv denotes the value of Adjacency matrix of the graph. δ(cu, cv) returns 1 when node

u and node v is in same community and 0 when different.Kv is the sum of weight of edges

incident upon node v.

This modularity can be used for only undirected graph. But there is a slight modification in it

which has been expanded to directed graph. It is calculated using following formula:

Here, Auv denotes the value of Adjacency matrix of the graph. δ(cu, cv) returns 1 when node

u and node v is in same community and 0 when different. ku
in

 is the sum of weight of edges

that has direction towards node u. kv
out

 is the sum of weight of edges that has direction from

node v to outside?

∑ (𝐴𝑢𝑣 −
𝐾𝑢𝐾𝑣

 ∑ 𝐴𝑢𝑣 𝑢𝑣

) 𝛿(𝑐𝑢, 𝑐𝑣)𝑢𝑣

∑ 𝐴𝑢𝑣 𝑢𝑣

∑ (𝐴𝑢𝑣 −
𝑘𝑢

𝑖𝑛𝑘𝑣
𝑜𝑢𝑡

 ∑ 𝐴𝑢𝑣 𝑢𝑣

) 𝛿(𝑐𝑢, 𝑐𝑣)𝑢𝑣

∑ 𝐴𝑢𝑣 𝑢𝑣

12

Limitations of modularity:

1. The optimal score of modularity can only be obtained over the network as a whole

because the algorithm notions that all the vertices in a community belong equally to the

community.

2. The information about how placement of vertices affects the community structure is

lost using these current measurements.

Conductance:

Conductance [Leskovec et al. 2009] is the ratio between the number of edges inside the cluster

and the number of edges leaving the cluster [Kannan et al. 2000; Shi and Malik 2000]. More

formally, conductance _(S) of a set of nodes S is defined as follows:

Cut Ratio:

Cut-ratio is a standard metric in graph clustering [Fortunato 2010;Leskovec et al. 2010], which

is defined as the fraction of all possible edges leaving the cluster S. Formally, given an

undirected graph G(u, v), the cut-ratio θ(S) of a set of nodes S is defined as follows:

Note that the higher is the value of modularity, the better is the quality of the community

structure; however, for conductance and cut-ratio, the opposite argument is applicable.

Therefore, to make these two measures comparable to modularity and permanence, we measure

(1-Con) and (1-Cut) for conductance and cut-ratio, respectively.

13

Permanence:

Permanence is also another community detection metric which resolves the problems and

limitations of modularity. The main point to be noted about permanence is that it quantifies a

vertex’s propensity to remain in its assigned community and the extent to which it is “pulled”

by the neighboring communities.

There are two concepts behind the permanence metric. They are:

1. A vertex should have more number of internal connections than the number of

connections to any of the external neighboring communities.

Most optimization metrics consider the total number of external neighbors of the vertex.

However, in our earlier experiment [Chakraborty et al. 2014; Chakraborty 2015; Chakraborty

et al. 2016b], we empirically demonstrated that a group of vertices are likely to be placed

together so long as the number of internal connections is larger than the number of connections

to any one single external community. In other words, a vertex that has connections to some

external communities experiences a separate “pull” from each of these external communities.

In formulating permanence, we consider the maximum pull, which is proportional to the

maximum number of connections to an external community.

2. Within the substructure of a community, the internal neighbors of the vertex should be

highly connected among each other.

Most optimization metrics only consider the internal connections of a vertex within its own

community. However, how strongly a vertex is connected also depends on whether its internal

neighbors are connected with each other. To measure this connectedness of a vertex, we

compute the clustering coefficient of the vertex with respect to its internal neighbors. For a

vertex v belonging to community c, it is measured by the ratio between the actual number of

edges among the neighbors (which also belong to c) of v and the total number of possible edges

among the neighbors [Holland and Leinhardt 1971]. The higher this internal clustering

coefficient, the more tightly the vertex is connected to its community

Combining these two criteria permanence of a vertex v is formulated as follows:

𝑃𝑒𝑟𝑚(𝑣) = [
𝐼(𝑣)

𝐸𝑚𝑎𝑥(𝑣)
×

1

𝐷(𝑣)
] − [1 − 𝑐𝑖𝑛(𝑣)]

where I (v) is the number of internal (in its own community) neighbors of v, Emax (v) is the

maximum number of connections of v to any one of the external communities, D(v) is the

degree of v and cin(v) is the clustering coefficient among the internal neighbors of v.

14

There is some unique strength of permanence in the field of community detection. These are-

 Strengthening community structure

 Determining initial selector for message spreading.

 Can detect position from center of a community as farness centrality.

Strengthening community structure

The value of permanence of a vertex signifies its propensity to remain in its own community.

Therefore, vertices having low permanence in a community are loosely connected to the

community. We explore whether we can strengthen the community structure by deleting

vertices with low permanence. Note that when a vertex is deleted from its community, it would

also affect the permanence value of the remaining vertices.

Determining initial selector for message spreading

Since vertices with higher permanence form the core of the community, we posit that initiator

selection based on permanence would help in faster dissemination of the message. Note that

the message spreading algorithms are based on only the local view of the vertices; therefore,

global methods such as those described in Kempe et al. [2003] will not be applicable under this

formulation. We observe that the permanence-based initiator selection from ground-truth

communities requires minimum timestamps to spread the message compared to the degree-

based selection.

Heterogeneity and Core-Periphery Organization of Community Structure

Within a community, the extent of involvement and activity may not be same for all members

permanence can capture this heterogeneity. The permanence of a node v belonging to a

community c indicates the extent to which the node belongs to the community. The next

investigation reveals the manner in which the permanence value of vertices decreases from the

core. A smooth decrease in value would indicate that the nodes in a community are arranged

in layers with each layer of vertices roughly having similar permanence.

Limitations of permanence:

This is not defined for weighted and directed graph.

15

2.2 Community Detection algorithms:

There are so many community detection algorithms which have been cited before. Here two of

them are described. They are:

■ Generalized Louvain method

■ MaxPerm Algorithm

Louvain is defined upon the modularity optimization and Maxperm is based on the permanence

value.

Generalized Louvain method

This is a community detection algorithm based on modularity optimization. It has two stages.

Stage 1:

 Initially each node is assigned in new community.

 Then, each node is removed from its own community and places it in another

community.

 If none of these modularity changes are positive, we keep the node in its current

community.

 If some of the modularity changes are positive, we move the node into the

community for which the modularity change is most positive.

Stage 2:

 Now each community is considered as a node.

 Internal connections of a community are considered as self-loop of that

corresponding node.

 Sum of weight of external connections between the communities is considered

as edges between the corresponding nodes.

 Then, stage 1 is repeated until there is no positive change in modularity.

There is a limitation of this algorithm. That is resolution limit. It can’t work for larger

community. It merges the smaller communities and so those small communities can never be

found as a result of modularity optimization

16

Maxperm Algorithm

 Community detection algorithm based on permanence optimization.

 Initially nodes are assigned in seed community.

 Then, each node and its neighbor’s permanence are calculated.

 Then each node is placed into other communities and again permanence of the

node and its neighbors is calculated.

 If both increases then we keep the changed state otherwise previous state is

preserved.

The maxperm algorithm can mitigate the problem of modularity optimization which was

resolution limit. But this algorithm has some limitations also. It can’t detect community in large

networks.

Figure 3 After first stage Figure 5 After second stage

17

Our Proposal

■ Some graph are weighted and directed. As we have seen that permanence just works

for unweighted and undirected graph so we want to modify it to apply in this field.

■ For example, World Wide Web. Where one site can give reference to another website

by hyperlink but that targeted website may or may not redirect to previous website. This

causes the graph to be directed graph where websites are nodes and references are links

between them and number of links between the website defines the weight of the edge.

■ We will extend the definition of permanence such that it can be applied on weighted

 and directed graph.

Example of WWW

Future Work

■ We have implemented MaxPerm and Louvain algorithm for our future use in the

modified permenance.

■ In the future we will try to implement the MaxPerm based on modified

permanence.

■ We will analyze the result of Modified MaxPerm algorithm along with Louvain

method.

■ Necessary dataset like Railway Network[4], Co-authorship Network[4] has been

collected for our work.

18

Chapter 3

Implementation

3.1 Enhanced Metric

We have considered the weight and direction of the nodes of a network. For this in the place

of internal connection numbers we have taken the total weight of the in and outgoing vertices

weight. In the place of maximum number of external connections, we considered the maximum

weight of the edges to external communities. And we have modified the clustering coefficient

also. We have defined it as the ratio of total weight of edges between neighboring vertices and

the total number of possible connections can be made. And before the denominator was n(n-

1)/2 but this time it is n(n-1) as in the directed graph edges can be on both sides

19

Enhanced permanence in working:

Equation for calculating weighted and directed permanence of a vertex

20

 WD𝑷𝒆𝒓𝒎(𝑽) = [
𝑰𝑾𝒊𝒏(𝑽)+𝑰𝑾𝒐𝒖𝒕(𝑽)

𝑴𝒂𝒙(𝑬𝒊𝒏(𝑽)+𝑬𝒐𝒖𝒕(𝑽))
×

𝟏

𝑾𝒊𝒏(𝑽)+𝑾𝒐𝒖𝒕(𝑽)
] + [𝒘𝒄𝒊𝒏(𝑽)]

𝒘𝒄𝒊𝒏(𝑽) =
𝑻𝒐𝒕𝒂𝒍 𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒊𝒏𝒈 𝒏𝒐𝒅𝒆𝒔

𝒏(𝒏 − 𝟏)

 Here, 𝐼𝑊𝑖𝑛(𝑉) + 𝐼𝑊𝑜𝑢𝑡(𝑉) denotes the total internal weight of vertex V

 𝑀𝑎𝑥(𝐸𝑖𝑛(𝑉) + 𝐸𝑜𝑢𝑡(𝑉)) denotes the maximum weight of external connections to any

external communities

 𝑊𝑖𝑛(𝑉) +𝑊𝑜𝑢𝑡(𝑉) is the total weight of in and outgoing edges of v and

 wcin(v) is the weighted clustering coefficient.

21

3.2 Enhanced Algorithm

22

23

Code implementation in C:

#include<bits/stdc++.h>

#define maxN 20

using namespace std;

int n;

int *array;

int input[maxN+5][maxN+5];

int degree[maxN+2];

int indegree[maxN+2];

int outdegree[maxN+2];

int index[maxN+2];

int community[maxN][maxN];

int tempComm[maxN][maxN];

int comsize[maxN];

int tempsize[maxN];

bool flag[maxN+2];

int comm=0;

int serach(int vertex)

{

 for(int i=0; i<comm; i++)

 {

 for(int j=0; j<comsize[i]; j++)

 {

 if(community[i][j]==vertex)

 {

 return i;

 }

 }

 }

}

double permanence(int vertex)

{

24

 double iv=0;

 double emaxv=0;

 double cinv;

 int com;

 com=serach(vertex);

 for(int i=0; i<comsize[com]; i++)

 {

 if(input[vertex][community[com][i]]>=1)

 {

 iv+=input[vertex][community[com][i]];

 }

 if(input[community[com][i]][vertex]>=1)

 {

 iv+=input[community[com][i]][vertex];

 }

 }

 for(int i=0; i<comm ; i++)

 {

 if(i==com) continue;

 double temp=0;

 for(int j=0; j<comsize[i]; j++)

 {

 if(input[vertex][community[i][j]]>=1)

 {

 temp+=input[vertex][community[i][j]];

 }

 if(input[community[i][j]][vertex]>=1)

 {

 temp+=input[community[i][j]][vertex];

 }

 }

 if(temp>emaxv)

 emaxv=temp;

 }

// else

 //{

 double num=0;

 double denom;

25

 double neigh=0;

 for(int i=0; i<comsize[com]; i++)

 {

 if(community[com][i]==vertex) continue;

 if(input[vertex][community[com][i]]>=1 ||

input[community[com][i]][vertex]>=1)

 neigh+=1;

 }

 for(int i=0; i<comsize[com]-1; i++)

 {

 if(community[com][i]==vertex) continue;

 for(int j=i+1; j<comsize[com]; j++)

 {

 if(community[com][j]==vertex) continue;

 if((input[vertex][community[com][i]]>=1 ||

input[community[com][i]][vertex]>=1) && (

input[vertex][community[com][j]]>=1 ||

input[community[com][j]][vertex]>=1)){

 if(input[community[com][i]][community[com][j]

]>=1)

 {

 num+=input[community[com][i]][

community[com][j]];

 }

 if(input[community[com][j]][community[com][i]

]>=1)

 {

 num+=input[community[com][j]][

community[com][i]];

 }

 }

 }

 }

26

 denom= neigh*(neigh-1) ;

 if(denom<1) cinv=0;

 else

 cinv=(double)num/(double)denom;

 double perm;

 if(emaxv==0.0) perm= ((double)iv/ (

indegree[vertex]+outdegree[vertex])) + cinv;

 else perm= ((double)iv/(emaxv * (

indegree[vertex]+outdegree[vertex]))) /*- (1-*/ + cinv;

 return perm;

}

int cmp(const void *a, const void *b)

{

 int ia = *(int *)a;

 int ib = *(int *)b;

 return array[ia] > array[ib] ? -1 : array[ia] < array[ib];

}

void seedComm()

{

 comm=n;

 for(int i=0;i<n;i++)

 {

 community[i][0]=i;

 comsize[i]=1;

 }

}

double detectCommnity()

{

 double sum=0;

 int itern=0;

 double old_sum=-1;

 double curpne,curp;

 int maxItr=2;

 while (sum != old_sum && itern < maxItr)

27

 {

 itern+=1;

 old_sum=sum;

 sum=0;

 for(int i=0; i<n; i++)

 {

 curp=permanence(i);

 curpne=0;

 for(int j=0; j<n; j++)

 {

 if(input[i][j]>=1 || input[j][i]>=1)

 {

 curpne+=permanence(j);

 }

 }

 int com=serach(i),oldcom;

 int com1,oldcom1;

 for(int j=0; j<comsize[com]; j++)

 {

 if(community[com][j]==i)

 {

 com1=j;

 break;

 }

 }

 oldcom=com;

 oldcom1=com1;

 for(int j=0; j<comm; j++)

 {

 if(j==oldcom){

 // printf("\nCom\n");

 continue;

 }

 bool glaf=false;

 for(int kk=0;kk<comsize[j];kk++)

28

 {

 if(input[i][community[j][kk]]>0 ||

input[community[j][kk]][i]>0)

 {

 glaf=true;

 break;

 }

 }

 for(int x=0; x<comm; x++)

 {

 for(int z=0; z<comsize[x]; z++)

 {

 tempComm[x][z]=community[x][z];

 }

 tempsize[x]=comsize[x];

 }

 for(int k=com1; k<comsize[com]; k++)

 {

 community[com][k]=community[com][k+1];

 }

 comsize[com]-=1;

 community[j][comsize[j]]=i;

 comsize[j]+=1;

 double np=permanence(i);

 double npne=0;

 for(int k=0; k<n; k++)

 {

 if(input[i][k]>=1 || input[k][i]>=1)

 npne+=permanence(k);

 }

 if (curp< np && curpne < npne)

 {

 curp=np;

29

 com=j;

 com1=comsize[j]-1;

 }

 else

 {

 //

memcpy(community,tempComm,sizeof(community));

 for(int x=0; x<comm; x++)

 {

 for(int z=0; z<tempsize[x]; z++)

 {

 community[x][z]=tempComm[x][z];

 }

 comsize[x]=tempsize[x];

 }

 }

 }

 sum+=curp;

 }

 }

 return sum/n;

}

int main()

{

 FILE *fp=fopen("ds1.txt","r");

 fscanf(fp,"%d",&n);

 int i,j,w;

 memset(indegree,0,sizeof(indegree));

30

 memset(outdegree,0,sizeof(outdegree));

 memset(flag,0,sizeof(flag));

 while(fscanf(fp,"%d %d %d",&i,&j,&w)!=EOF){

 input[i][j]=w;

 if(input[i][j]>=1){

 outdegree[i]+=w;

 indegree[j]+=w;

 }

 }

 seedComm();

 printf("Initial Community:\n\n");

 for(int i=0; i<comm; i++)

 {

 for(int j=0; j<comsize[i]; j++)

 {

 printf("%d ",community[i][j]);

 }

 printf("\n");

 }

 double result=detectCommnity();

 printf("Detected Community:\n\n");

 for(int i=0; i<comm; i++)

 {

 for(int j=0; j<comsize[i]; j++)

 {

 printf("%d ",community[i][j]);

 }

 printf("\n");

 }

 printf("\n\nTotal Permanence %lf\n\n\n",result);

 return 0;

}

31

References

Barthelemy, S. F. (2007). Resolution limit in community detection. Proceedings of the National Academy of

Sciences.

Benjamin H Good, Y.-A. d. (2004). Performance of modularity maximization in practical contexts. Physical

Review.

Fortunato, A. L. (2012). Consensus clustering in complex networks.

Fortunato, S. (2010). Community detection in graphs. Physics reports.

Jure Leskovec, K. J. (2009). Community structure in large networks: Natural cluster sizes. Internet Mathematics.

Newman, E. A. (2008). Community structure in directed networks. Physical review letters.

Newman, M. E. (2004). Analysis of weighted networks. Physical review E.

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national academy

of sciences.

Newman., M. E. (2013). Community detection and graph partitioning. Europhysics Letters.

Pasquale De Meo, E. F. (2013). Enhancing community detection using a network weighting strategy. Information

Sciences.

Peter J Mucha, T. R. (2010). Community structure in time-dependent,Community structure in time-dependent,.

Science.

Tanmoy Chakraborty, S. S. (2016). Permanence and community structure in complex networks. ACM

Transactions on Knowledge Discovery from Data (TKDD).

Usha Nandini Raghavan, R. A. (2007). Near Linear time algorithm to detect community structures in large-scale

networks.

Vincent D Blondel, J.-L. G. (2008). Fast unfolding of communities in large networks. Journal of statistical

mechanics: theory and experiment.

Zongqing Lu, Y. W. (2013). Community detection in weighted networks: Algorithms and applications. In

Pervasive Computing and Communications (PerCom).

Yong-Yeol Ahn, James P. Bagrow, and Sune Lehmann. 2010. Link communities reveal multiscale complexityin

networks. Nature 466, (August 2010), 761–764.A. Arenas, A. Fern´andez, and S. G´omez. 2008. Analysis of the

structure of complex networks at differentresolution levels. New Journal of Physics 10, 5 (2008), 053039.

David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner (Eds.). 2013. Graph partitioningand

graph clustering. In Proceedings of the10th DIMACS Implementation Challenge Workshop.Contemporary

Mathematics, vol. 588. American Mathematical Society.

Jeffrey Baumes, Mark Goldberg, and Malik Magdon-Ismail. 2005. Efficient identification of overlapping

communities. In Proceedings of the 2005 IEEE International Conference on Intelligence and Security Informatics

(ISI’05). Springer-Verlag, Berlin, 27–36.

32

Jonathan W. Berry, Bruce Hendrickson, Randall A. LaViolette, and Cynthia A. Phillips. 2011. Tolerating the

community detection resolution limit with edge weighting. Physical Review E 83, 5 (May 2011), 056119.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of

communities in large networks. Journal of Statistical Mechanics 2008 (2008), P10008.

Tanmoy Chakrabort, Sandipan Sikdar, Vihar Tammana, Niloy Ganguly, and Animesh Mukherjee. 2013.

Computer science fields as ground-truth communities: Their impact, rise and fall. In Proceedings of the 2013

IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining(ASONAM’13). ACM,

New York, NY, 426–433.

Tanmoy Chakraborty. 2015. Leveraging disjoint communities for detecting overlapping community structure.

Journal of Statistical Mechanics: Theory and Experiment 2015, 5 (2015), P05017.

Tanmoy Chakraborty, Ayushi Dalmia, Animesh Mukherjee, and Niloy Ganguly. 2016a. Metrics for community

analysis: A survey. CoRR abs/1604.03512 (2016).

Tanmoy Chakraborty, Suhansanu Kumar, Niloy Ganguly, Animesh Mukherjee, and Sanjukta Bhowmick. 2016b.

GenPerm: A unified method for detecting non-overlapping and overlapping communities. CoRR abs/1604.03454

(2016).

Tanmoy Chakraborty, Sriram Srinivasan, Niloy Ganguly, Sanjukta Bhowmick, and Animesh Mukherjee. 2013.

Constant communities in complex networks. Scientific Reports 3, (May 2013). DOI:10.1038/srep01825

Tanmoy Chakraborty, Sriram Srinivasan, Niloy Ganguly, Animesh Mukherjee, and Sanjukta Bhowmick. 2014.

On the permanence of vertices in network communities. In Proceedings of the 20th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD’14). ACM, New York, NY, 1396–1405.

DOI:http://dx.doi.org/10.1145/2623330.2623707.

	Code implementation in C:
	References

