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Abstract 
 

Image classification is the task of taking an input image and outputting a class (a cat, dog, 

etc.) or a probability of classes that best describes the image. For humans, this task of 

recognition is one of the first skills we learn from the moment we are born and is one that 

comes naturally and effortlessly as adults. Without even thinking twice, we’re able to 

quickly and seamlessly identify the environment we are in as well as the objects that 

surround us. When we see an image or just when we look at the world around us, most of 

the time we are able to immediately characterize the scene and give each object a label, 

all without even consciously noticing. These skills of being able to quickly recognize 

patterns, generalize from prior knowledge, and adapt to different image environments are 

ones that we do not share with our fellow machines. Convolutional neural networks, 

Sounds like a weird combination of biology and math with a little CS sprinkled in, but 

these networks have been some of the most influential innovations in the field of 

computer vision. 2012 was the first year that neural nets grew to prominence as Alex 

Krizhevsky used them to win that year’s ImageNet competition (basically, the annual 

Olympics of computer vision), dropping the classification error record from 26% to 15%, 

an astounding improvement at the time. Ever since then, a host of companies have been 

using deep learning at the core of their services.  

In our research we experimentd on image classification using different deep learning 

frameworks. The following sections describes basics of deep learning and how it can be 

used in case of image classification and convolutional neural networks. We have also 

discussed the different deep learning frameworks and current applications. Finally we 

shared our gained results and knowledge. This will help the researchers to get a clear idea 

about getting knowledge in the field of image classification with deep convolutional 

neural networks. 
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Chapter 1 

1 Introduction 

 
In this chapter, we first present an overview of our thesis that includes the significance of the problem and 

the problem statement in detail. Besides, we also discuss about the different research challenges what we 

are going to face in the whole scenario.  

1.1 Overview 
When a computer sees an image (takes an image as input), it will see an array of pixel values. 

Depending on the resolution and size of the image, it will see a 32 x 32 x 3 array of numbers 

(The 3 refers to RGB values). Just to drive home the point, let's say we have a color image in 

JPG form and its size is 480 x 480. The representative array will be 480 x 480 x 3. Each of these 

numbers is given a value from 0 to 255 which describes the pixel intensity at that point. These 

numbers, while meaningless to us when we perform image classification, are the only inputs 

available to the computer.  The idea is that we give the computer this array of numbers and it will 

output numbers that describe the probability of the image being a certain class (.80 for cat, .15 

for dog, .05 for bird, etc.). 

Now that the problem as well as the inputs and outputs are known, let’s think about how to 

approach this. What we want the computer to do is to be able to differentiate between all the 

images it’s given and figure out the unique features that make a dog a dog or that make a cat a 

cat. This is the process that goes on in our minds subconsciously as well. When we look at a 

picture of a dog, we can classify it as such if the picture has identifiable features such as paws or 

4 legs. In a similar way, the computer is able perform image classification by looking for low 

level features such as edges and curves, and then building up to more abstract concepts through a 

series of convolutional layers. This is a general overview of what a CNN does. 

1.2 Problem Statement: 

Deep learning in image classification problem is a relatively new field. A lot of ongoing research 

is taking place in improving the use of deep learning to classify images with further accuracy [2]. 

Giant tech companies are using huge amount of data present at their disposal to train complex 
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models. So basically our task is the same as classifying images based on set of categories after 

the network has been trained on a dataset. 

1.3 Research Challenges 

Deep learning is now a very attractive field and vastly used by the giant tech companies around 

the world for various applications. Although deep learning ensures huge promise in the field of 

image processing, it comes with some basic problems which requires attention. To get the best 

out of deep learning a large amount of data is required, if only thousands of data is available then 

deep learning is highly unlikely to outperform other approaches. [8] 

Deep learning is computationally expensive to train. Even with high end GPUs, complex models 

take weeks to train using hundreds of machines. 

Coming to a particular decision in deep learning is quite confusing. Determining the 

topology/flavor/training method/ hyper parameters for deep learning is a black art with no proper 

theory for guidance. 

1.4 Applications of Deep Learning 

There is a lot of excitement around artificial intelligence, machine learning and deep learning at 

the moment. It is also an amazing opportunity to get on the ground floor of some really powerful 

technology. The following discussion includes some of the attractive applications of deep 

learning: 

1.4.1  Automatic Colorization of Black and White Images 

Image colorization is the problem of adding color to black and white photographs. Traditionally 

this was done by hand with human effort because it is such a difficult task. 

Deep learning can be used to use the objects and their context within the photograph to color the 

image, much like a human operator might approach the problem. [1] 

A visual and highly impressive feat. This capability leverages of the high quality and very large 

convolutional neural networks trained for ImageNet and co-opted for the problem of image 

colorization. Generally the approach involves the use of very large convolutional neural 

networks and supervised layers that recreate the image with the addition of color. 
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Figure 1.1: Automatic Colorization of Black and White Images [14] 

1.4.2 Automatically Adding Sounds to Silent Movies 

In this task the system must synthesize sounds to match a silent video. 

The system is trained using 1000 examples of video with sound of a drum stick striking different 

surfaces and creating different sounds. A deep learning model associates the video frames with a 

database of pre-rerecorded sounds in order to select a sound to play that best matches what is 

happening in the scene. [2] 

 

Figure 1.2: Automatically Adding Sounds to Silent Movies [14] 

1.4.3 Automatic Machine Translation 

This is a task where given words, phrase or sentence in one language, automatically translate it into 

another language. [3] 

Automatic machine translation has been around for a long time, but deep learning is achieving top 

results in two specific areas: Automatic Translation of Text, Automatic Translation of Images. [7] 
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Figure 1.3: Automatic Machine Translation [14] 

1.4.4 Object Classification and Detection in Photographs 

This task requires the classification of objects within a photograph as one of a set of previously 

known objects. 

State-of-the-art results have been achieved on benchmark examples of this problem using very large 

convolutional neural networks. [4]  

 A breakthrough in this problem by Alex Krizhevsky et al. results on the ImageNet classification 

problem called AlexNet. 

 

Figure 1.3: Object Classification and Detection in Photographs [14] 

A more complex variation of this task called object detection involves specifically identifying one or 

more objects within the scene of the photograph and drawing a box around them. 

1.4.5 Automatic Handwriting Generation 

This is a task where given a corpus of handwriting examples, generate new handwriting for a given 

word or phrase. [5] 
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The handwriting is provided as a sequence of coordinates used by a pen when the handwriting 

samples were created. From this corpus the relationship between the pen movement and the letters is 

learned and new examples can be generated ad hoc. 

 

Figure 1.4: Automatic Handwriting Generation [14] 

1.4.6 Automatic Image Caption Generation 

Automatic image captioning is the task where given an image the system must generate a 

caption that describes the contents of the image. In 2014, there were an explosion of deep learning 

algorithms achieving very impressive results on this problem, leveraging the work from top models 

for object classification and object detection in photographs. [6] 

Once the object is deleted from the photograph, the next step can be assigning a coherent sentence 

description to the image. Generally, the systems involve the use of very large convolutional neural 

networks for the object detection in the photographs and then a recurrent neural network like an 

LSTM to turn the labels into a coherent sentence. 
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Figure 1.6: Automatic Image Caption Generation [14] 

1.5 Challenges in Deep Learning: 

Deep Learning has become one of the primary research areas in developing intelligent machines. 

Most of the well-known applications (such as Speech Recognition, Image Processing and NLP) of 

AI are driven by Deep Learning. Deep Learning algorithms mimic human brains using artificial 

neural networks and progressively learn to accurately solve a given problem. But there are 

significant challenges in Deep Learning systems which we have to look out for. 

1.5.1 Lots and Lots of data: 

Deep learning algorithms are trained to learn progressively using data. Large data sets are 

needed to make sure that the machine delivers desired results. As human brain needs a lot of 

experiences to learn and deduce information, the analogous artificial neural network requires 

copious amount of data. The more powerful abstraction, the more parameters need to be tuned 

and more parameters require more data. 

1.5.2 Overfitting in Neural Networks 

At times, the there is a sharp difference in error occurred in training data set and the error 

encountered in a new unseen data set. It occurs in complex models, such as having too many 

parameters relative to the number of observations. The efficacy of a model is judged by its 

ability to perform well on an unseen data set and not by its performance on the training data fed 

to it 
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Figure 1.7: Challenges in Deep Learning (1) [18] 

1.5.3 Hyperparameter Optimization: 

Hyperparameters are the parameters whose value is defined prior to the commencement of 

the learning process. Changing the value of such parameters by a small amount can invoke a large 

change in the performance of your model. 

Relying on the default parameters and not performing Hyperparameter Optimization can have a 

significant impact on the model performance. Also, having too few hyperparameters and hand 

tuning them rather than optimizing through proven methods is also a performance driving aspect. 

1.5.4 Requires High Performance Hardware 

Training a data set for a Deep Learning solution requires a lot of data. To perform a task to 

solve real world problems, the machine needs to be equipped with adequate processing power. To 

ensure better efficiency and less time consumption, data scientists switch to multi-core high 

performing GPUs and similar processing units. These processing units are costly and consume a 

lot of power. 

Industry level Deep Learning systems require high-end data centers while smart devices such as 

drones, robots other mobile devices require small but efficient processing units. Deploying Deep 

Learning solution to the real world thus becomes a costly and power consuming affair. 

 

1.5.5 Neural Networks are essentially a blackbox:  

We know our model parameters, we feed known data to the neural networks and how they 

are put together. But we usually do not understand how they arrive at a particular solution. Neural 

networks are essentially Balckboxes and researchers have a hard time understanding how they 

deduce conclusions. 
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Figure 1.8: Challenges in Deep Learning (2) [18] 

The lack of ability of neural networks for reason on an abstract level makes it difficult to 

implement high-level cognitive functions. Also, their operation is largely invisible to humans, 

rendering them unsuitable for domains in which verification of process is important. 
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Chapter 2 

2 Literature Review 
 
In this chapter, we first present a discussion on different geometric and appearance-based facial feature 

representation, which is followed by a review on different appearance-based methods. Finally, we end the 

literature review with the description of some pattern recognition methods used for the facial expression 

recognition system. 

2.1 Convolutional Neural Network (CNN) Background 
CNNs takes a biological inspiration from the visual cortex. The visual cortex has small 

regions of cells that are sensitive to specific regions of the visual field. This idea was expanded 

upon by a fascinating experiment by Hubel and Wiesel in 1962, where they showed that some 

individual neuronal cells in the brain responded (or fired) only in the presence of edges of a 

certain orientation.[8] For example, some neurons fired when exposed to vertical edges and some 

when shown horizontal or diagonal edges. Hubel and Wiesel found out that all of these neurons 

were organized in a columnar architecture and that together, they were able to produce visual 

perception. This idea of specialized components inside of a system having specific tasks (the 

neuronal cells in the visual cortex looking for specific characteristics) is one that machines use as 

well, and is the basis behind CNNs. 

 

2.1.1 Structure 

A more detailed overview of what CNNs do would be that we take the image, pass it 

through a series of convolutional, nonlinear, pooling (down sampling), and fully connected 

layers, and get an output. As we said earlier, the output can be a single class or a probability of 

classes that best describes the image. Now, the hard part is understanding what each of these 

layers do. 

 

2.1.2 First Layer – Math Part 

The first layer in a CNN is always a Convolutional Layer. First thing to make sure we 

remember is what the input to this convolution layer is. Like we mentioned before, the input is a 

32 x 32 x 3 array of pixel values. Now, the best way to explain a convolution layer is to imagine 
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a flashlight that is shining over the top left of the image. Let’s say that the light this flashlight 

shines covers a 5 x 5 area. And now, let’s imagine this flashlight sliding across all the areas of 

the input image. In machine learning terms, this flashlight is called a filter (or sometimes 

referred to as a neuron or a kernel) and the region that it is shining over is called the receptive 

field. Now this filter is also an array of numbers (the numbers are 

called weights or parameters). A very important note is that the depth of this filter has to be the 

same as the depth of the input (this makes sure that the math works out), so the dimensions of 

this filter is 5 x 5 x 3. Now, let’s take the first position the filter is in for example.  It would be 

the top left corner. As the filter is sliding, or convolving, around the input image, it is 

multiplying the values in the filter with the original pixel values of the image (aka 

computing element wise multiplications). These multiplications are all summed up 

(mathematically speaking, this would be 75 multiplications in total). So now we have a single 

number. Remember, this number is just representative of when the filter is at the top left of the 

image. Now, we repeat this process for every location on the input volume. (Next step would be 

moving the filter to the right by 1 unit, then right again by 1, and so on). Every unique location 

on the input volume produces a number. After sliding the filter over all the locations, you will 

find out that what you’re left with is a 28 x 28 x 1 array of numbers, which we call an activation 

map or feature map. The reason you get a 28 x 28 array is that there are 784 different locations 

that a 5 x 5 filter can fit on a 32 x 32 input image. These 784 numbers are mapped to a 28 x 28 

array. 

 

Figure 2.1: 5*5 filter convolving around image for producing activation [19] 

Image from the book “Neural Networks and Deep learning” by Michael Nielsen. (Nielsen) 
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Let’s say now we use two 5 x 5 x 3 filters instead of one. Then our output volume would be 28 x 

28 x 2. By using more filters, we are able to preserve the spatial dimensions better. 

Mathematically, this is what’s going on in a convolutional layer. 

 

 

2.1.3 First Layer – High Level Perspective 

Let’s talk about what this convolution is actually doing from a high level. Each of these filters 

can be thought of as feature identifiers. Here features means things like straight edges, simple 

colors, and curves. Think about the simplest characteristics that all images have in common with 

each other. Let’s say our first filter is 7 x 7 x 3 and is going to be a curve detector. (In this 

section, let’s ignore the fact that the filter is 3 units deep and only consider the top depth slice of 

the filter and the image, for simplicity.)As a curve detector, the filter will have a pixel structure 

in which there will be higher numerical values along the area that is a shape of a curve 

(Remember, these filters that we’re talking about as just numbers!).

 

Figure 5: Visualizing activation after first layer [19] 

Now, let’s go back to visualizing this mathematically. When we have this filter at the top left 

corner of the input volume, it is computing multiplications between the filter and pixel values at 

that region. Now let’s take an example of an image that we want to classify, and let’s put our 

filter at the top left corner. 
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Figure 2.2: Visualizing activation in convolutional layer [19] 

Remember, what we have to do is multiply the values in the filter with the original pixel values 

of the image. 

 

Figure 2.3: Visualizing activation in convolutional layer (2) [19] 

Basically, in the input image, if there is a shape that generally resembles the curve that this filter 

is representing, then all of the multiplications summed together will result in a large value! Now 

let’s see what happens when we move our filter. 
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Figure 2.4: Visualizing activation in convolutional layer (3) [19] 

The value is much lower! This is because there wasn’t anything in the image section that 

responded to the curve detector filter. Remember, the output of this convolution layer is an 

activation map. So, in the simple case of a one filter convolution (and if that filter is a curve 

detector), the activation map will show the areas in which there at mostly likely to be curves in 

the picture. In this example, the top left value of our 28 x 28 x 1 activation map will be 6600. 

This high value means that it is likely that there is some sort of curve in the input volume that 

caused the filter to activate. The top right value in our activation map will be 0 because there 

wasn’t anything in the input volume that caused the filter to activate (or more simply said, there 

wasn’t a curve in that region of the original image). Remember, this is just for one filter. This is 

just a filter that is going to detect lines that curve outward and to the right. We can have other 

filters for lines that curve to the left or for straight edges. The more filters, the greater the depth 

of the activation map, and the more information we have about the input volume. [8] 

 

 

2.2 Going Deeper Through the Network 

Now in a traditional convolutional neural network architecture, there are other layers that are 

interspersed between these convolution layers. A classic CNN architecture would look like this. 

[9] 

 

Let’s just take a step back and review what we’ve learned so far. We talked about what the filters 

in the first conv layer are designed to detect. They detect low level features such as edges and 

curves. As one would imagine, in order to predict whether an image is a type of object, we need 

the network to be able to recognize higher level features such as hands or paws or ears. So let’s 
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think about what the output of the network is after the first conv layer. It would be a 28 x 28 x 3 

volume (assuming we use three 5 x 5 x 3 filters).  When we go through another convolution 

layer, the output of the first conv layer becomes the input of the 2
nd

 convolution layer.  Now, this 

is a little bit harder to visualize. When we were talking about the first layer, the input was just the 

original image. However, when we’re talking about the 2
nd

 conv layer, the input is the activation 

map(s) that result from the first layer. So each layer of the input is basically describing the 

locations in the original image for where certain low level features appear. Now when we apply a 

set of filters on top of that (pass it through the 2
nd

 convolution layer), the output will be 

activations that represent higher level features. Types of these features could be semicircles 

(combination of a curve and straight edge) or squares (combination of several straight edges). As 

we go through the network and go through more convolution layers, we get activation maps that 

represent more and more complex features. By the end of the network, we may have some filters 

that activate when there is handwriting in the image, filters that activate when they see pink 

objects, etc. More information about visualizing filters in ConvNets, can be found in the paper 

written by Matt Zeiler and Rob Fergus. (Visualizing and Understanding Convolutional Neural 

Networks, 2014) 

 

2.2.1 Fully Connected Layer 

Now that we can detect these high level features, the icing on the cake is attaching a fully 

connected layer to the end of the network. This layer basically takes an input volume (whatever 

the output is of the convolution layer or ReLU or pool layer preceding it) and outputs an N 

dimensional vector where N is the number of classes that the program has to choose from. For 

example, if you wanted a digit classification program, N would be 10 since there are 10 digits. 

Each number in this N dimensional vector represents the probability of a certain class. For 

example, if the resulting vector for a digit classification program is [0 .1 .1 .75 0 0 0 0 0 .05], 

then this represents a 10% probability that the image is a 1, a 10% probability that the image is a 

2, a 75% probability that the image is a 3, and a 5% probability that the image is a 9. The way 

this fully connected layer works is that it looks at the output of the previous layer (which as we 

remember should represent the activation maps of high level features) and determines which 

features most correlate to a particular class. For example, if the program is predicting that some 

image is a dog, it will have high values in the activation maps that represent high level features 

like a paw or 4 legs, etc. Similarly, if the program is predicting that some image is a bird, it will 

have high values in the activation maps that represent high level features like wings or a beak, 

etc. Basically, a FC layer looks at what high level features most strongly correlate to a particular 

class and has particular weights so that when you compute the products between the weights and 

the previous layer, you get the correct probabilities for the different classes. 
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2.2.2 Training 

How do the filters in the first conv layer know to look for edges and curves? How does the fully 

connected layer know what activation maps to look at? How do the filters in each layer know 

what values to have? The way the computer is able to adjust its filter values (or weights) is 

through a training process called backpropagation. 

Before we get into backpropagation, we must first take a step back and talk about what a neural 

network needs in order to work. At the moment we all were born, our minds were fresh. We 

didn’t know what a cat or dog or bird was. In a similar sort of way, before the CNN starts, the 

weights or filter values are randomized. The filters don’t know to look for edges and curves. The 

filters in the higher layers don’t know to look for paws and beaks. As we grew older however, 

our parents and teachers showed us different pictures and images and gave us a corresponding 

label. This idea of being given an image and a label is the training process that CNNs go through. 

Before getting too into it, let’s just say that we have a training set that has thousands of images of 

dogs, cats, and birds and each of the images has a label of what animal that picture is containing. 

Now, getting back to backpropagation. 

So backpropagation can be separated into 4 distinct sections, the forward pass, the loss function, 

the backward pass, and the weight update. During the forward pass, we take a training image 

which as we remember is a 32 x 32 x 3 array of numbers and pass it through the whole network. 

On our first training example, since all of the weights or filter values were randomly initialized, 

the output will probably be something like [.1 .1 .1 .1 .1 .1 .1 .1 .1 .1], basically an output that 

doesn’t give preference to any number in particular. The network, with its current weights, isn’t 

able to look for those low level features or thus isn’t able to make any reasonable conclusion 

about what the classification might be. This goes to the loss function part of backpropagation. 

Remember that what we are using right now is training data. This data has both an image and a 

label. Let’s say for example that the first training image inputted was a 3. The label for the image 

would be [0 0 0 1 0 0 0 0 0 0]. A loss function can be defined in many different ways but a 

common one is MSE (mean squared error), which is ½ times (actual - predicted) squared. 

 

Let’s say the variable L is equal to that value. As you can imagine, the loss will be extremely 

high for the first couple of training images. Now, let’s just think about this intuitively. We want 

to get to a point where the predicted label (output of the ConvNets) is the same as the training 

label (This means that our network got its prediction right).In order to get there, we want to 

minimize the amount of loss we have. Visualizing this as just an optimization problem in 

calculus, we want to find out which inputs (weights in our case) most directly contributed to the 

loss (or error) of the network. 
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Figure 2.5: Visualizing Error [19] 

This is the mathematical equivalent of a dL/dW where we are the weights at a particular layer. 

Now, what we want to do is perform a backward pass through the network, which is 

determining which weights contributed most to the loss and finding ways to adjust them so that 

the loss decreases. Once we compute this derivative, we then go to the last step which is 

the weight update. This is where we take all the weights of the filters and update them so that 

they change in the opposite direction of the gradient. 

 

The learning rate is a parameter that is chosen by the programmer. A high learning rate means 

that bigger steps are taken in the weight updates and thus, it may take less time for the model to 

converge on an optimal set of weights. However, a learning rate that is too high could result in 

jumps that are too large and not precise enough to reach the optimal point. 
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Figure 2.6: Learning rate [19] 

The process of forward pass, loss function, backward pass, and parameter update is one training 

iteration. The program will repeat this process for a fixed number of iterations for each set of 

training images (commonly called a batch). Once you finish the parameter update on the last 

training example, hopefully the network should be trained well enough so that the weights of the 

layers are tuned correctly. 

 

2.2.3 Testing 

Finally, to see whether or not our CNN works, we have a different set of images and labels (can’t 

double dip between training and test!) and pass the images through the CNN. We compare the 

outputs to the ground truth and see if our network works. 

 

2.2.4 Stride and Padding 

There are 2 main parameters that we can change to modify the behavior of each layer. After we 

choose the filter size, we also have to choose the stride and the padding. 

Stride controls how the filter convolves around the input volume. In the example previously 

given, the filter convolves around the input volume by shifting one unit at a time. The amount by 

which the filter shifts is the stride. In that case, the stride was implicitly set at 1. Stride is 

normally set in a way so that the output volume is an integer and not a fraction. 
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Figure 2.7: Stride and padding [19] 

Now, let’s take a look at padding. Before getting into that, let’s think about a scenario. What 

happens when you apply three 5 x 5 x 3 filters to a 32 x 32 x 3 input volume? The output volume 

would be 28 x 28 x 3. Notice that the spatial dimensions decrease. As we keep applying conv 

layers, the size of the volume will decrease faster than we would like. In the early layers of our 

network, we want to preserve as much information about the original input volume so that we 

can extract those low level features. Let’s say we want to apply the same conv layer but we want 

the output volume to remain 32 x 32 x 3. To do this, we can apply a zero padding of size 2 to that 

layer. Zero padding pads the input volume with zeros around the border. If we think about a zero 

padding of two, then this would result in a 36 x 36 x 3 input volume. 

 

Figure 2.8: Stride and padding (2) [19] 

If you have a stride of 1 and if you set the size of zero padding to 
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Where K is the filter size, then the input and output volume will always have the same spatial 

dimensions. 

The formula for calculating the output size for any given convolution layer is 

 

Where O is the output height/length, W is the input height/length, K is the filter size, P is the 

padding, and S is the stride. 

 

2.2.5 Choosing hyper parameters 

How do we know how many layers to use, how many conv layers, what are the filter sizes, or the 

values for stride and padding? These are not trivial questions and there isn’t a set standard that is 

used by all researchers. This is because the network will largely depend on the type of data that 

we have. Data can vary by size, complexity of the image, type of image processing task, and 

more. When looking at our dataset, one way to think about how to choose the hyperparameters is 

to find the right combination that creates abstractions of the image at a proper scale. 

 

2.2.6 ReLU (Rectified Linear Units) Layers 

After each conv layer, it is convention to apply a nonlinear layer (or activation layer) 

immediately afterward. The purpose of this layer is to introduce nonlinearity to a system that 

basically has just been computing linear operations during the conv layers (just element wise 

multiplications and summations).In the past, nonlinear functions like tanh and sigmoid were 

used, but researchers found out that ReLU layers work far better because the network is able to 

train a lot faster (because of the computational efficiency) without making a significant 

difference to the accuracy. It also helps to alleviate the vanishing gradient problem, which is the 

issue where the lower layers of the network train very slowly because the gradient decreases 

exponentially through the layers. The ReLU layer applies the function f(x) = max (0, x) to all of 

the values in the input volume. In basic terms, this layer just changes all the negative activations 

to 0.This layer increases the nonlinear properties of the model and the overall network without 

affecting the receptive fields of the convolution layer. [10] 

A paper is present related to ReLU by Geoffrey Hinton. (Rectified Linear Units Improve 

Restricted Boltzmann Machines, 2014) 
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2.2.7 Pooling Layers 

After some ReLU layers, programmers may choose to apply a pooling layer. It is also referred to 

as a downsampling layer. In this category, there are also several layer options, with maxpooling 

being the most popular. This basically takes a filter (normally of size 2x2) and a stride of the 

same length. It then applies it to the input volume and outputs the maximum number in every sub 

region that the filter convolves around. [11] 

 

Figure 2.9: Pooling layer [19] 

Other options for pooling layers are average pooling and L2-norm pooling. The intuitive 

reasoning behind this layer is that once we know that a specific feature is in the original input 

volume (there will be a high activation value), its exact location is not as important as its relative 

location to the other features. As you can imagine, this layer drastically reduces the spatial 

dimension (the length and the width change but not the depth) of the input volume. This serves 

two main purposes. The first is that the amount of parameters or weights is reduced by 75%, thus 

lessening the computation cost. The second is that it will control overfitting. This term refers to 

when a model is so tuned to the training examples that it is not able to generalize well for the 

validation and test sets. A symptom of overfitting is having a model that gets 100% or 99% on 

the training set, but only 50% on the test data. 

 

2.2.8 Dropout Layers 

The idea of dropout is simplistic in nature. This layer “drops out” a random set of activations in 

that layer by setting them to zero in the forward pass. Simple as that. Now, what are the benefits 

of such a simple and seemingly unnecessary and counterintuitive process? Well, in a way, it 

forces the network to be redundant. By that we mean the network should be able to provide the 

right classification or output for a specific example even if some of the activations are dropped 

out. It makes sure that the network isn’t getting too “fitted” to the training data and thus helps 
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alleviate the overfitting problem. An important note is that this layer is only used during training, 

and not during test time. 

Another paper by Geoffrey Hinton discusses on the subject matter. (Dropout: A Simple Way to 

Prevent Neural Networks from Overfitting, 2014) 

 

2.3 Classification, Localization, Detection, Segmentation 
In the example mentioned previously we looked at the task of image classification. This is the 

process of taking an input image and outputting a class number out of a set of categories. 

However, when we take a task like object localization, our job is not only to produce a class 

label but also a bounding box that describes where the object is in the picture. 

 

Figure 2.10: Object classification and Localization 

We also have the task of object detection, where localization needs to be done on all of the 

objects in the image. Therefore, you will have multiple bounding boxes and multiple class labels. 

Finally, we also have object segmentation where the task is to output a class label as well as an 

outline of every object in the input image. [11] 
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Figure 2.11: Object Detection and Segmentation 

2.4 Transfer Learning 

Now, a common misconception in the DL community is that without a Google-esque amount of 

data, you can’t possibly hope to create effective deep learning models. While data is a critical 

part of creating the network, the idea of transfer learning has helped to lessen the data 

demands. Transfer learning is the process of taking a pre-trained model (the weights and 

parameters of a network that has been trained on a large dataset by somebody else) and “fine-

tuning” the model with our own dataset. The idea is that this pre-trained model will act as a 

feature extractor. We will remove the last layer of the network and replace it with your own 

classifier (depending on what your problem space is). We then freeze the weights of all the other 

layers and train the network normally (Freezing the layers means not changing the weights 

during gradient descent/optimization). 

 

2.5 Data Augmentation Techniques 

By now, we’re all probably numb to the importance of data in ConvNets, so let’s talk about ways 

that you can make your existing dataset even larger, just with a couple easy transformations. 

Like we’ve mentioned before, when a computer takes an image as an input, it will take in an 

array of pixel values. Let’s say that the whole image is shifted left by 1 pixel. To us, this change 

is imperceptible. However, to a computer, this shift can be fairly significant as the classification 

or label of the image doesn’t change, while the array does. Approaches that alter the training data 

in ways that change the array representation while keeping the label the same are known as data 

augmentation techniques. They are a way to artificially expand your dataset. Some popular 

augmentations people use are grayscales, horizontal flips, vertical flips, random crops, color 

jitters, translations, rotations, and much more. By applying just a couple of these transformations 

to your training data, you can easily double or triple the number of training examples. 
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2.6 ImageNet Classification 

This paper, titled “ImageNet Classification with Deep Convolutional Networks”, has been cited a 

total of 6,184 times and is widely regarded as one of the most influential publications in the field. 

Alex Krizhevsky, IlyaSutskever, and Geoffrey Hinton created a “large, deep convolutional 

neural network” that was used to win the 2012 ILSVRC (ImageNet Large-Scale Visual 

Recognition Challenge). For those that aren’t familiar, this competition can be thought of as the 

annual Olympics of computer vision, where teams from across the world compete to see who has 

the best computer vision model for tasks such as classification, localization, detection, and more. 

2012 marked the first year where a CNN was used to achieve a top 5 test error rate of 15.4% 

(Top 5 error is the rate at which, given an image, the model does not output the correct label with 

its top 5 predictions). The next best entry achieved an error of 26.2%, which was an astounding 

improvement that pretty much shocked the computer vision community. Safe to say, CNNs 

became household names in the competition from then on out. 

In the paper, the group discussed the architecture of the network (which was called AlexNet). 

They used a relatively simple layout, compared to modern architectures. The network was made 

up of 5 conv layers, max-pooling layers, dropout layers, and 3 fully connected layers. The 

network they designed was used for classification with 1000 possible categories. 

Main Points: 

 Trained the network on ImageNet data, which contained over 15 million annotated images from a 

total of over 22,000 categories. 

 Used ReLU for the nonlinearity functions (Found to decrease training time as ReLUs are 

several times faster than the conventional tanh function). 

 Used data augmentation techniques that consisted of image translations, horizontal 

reflections, and patch extractions. 

 Implemented dropout layers in order to combat the problem of overfitting to the training 

data. 

 Trained the model using batch stochastic gradient descent, with specific values for 

momentum and weight decay. 

 Trained on two GTX 580 GPUs for five to six days. 

 

The neural network developed by Krizhevsky, Sutskever, and Hinton in 2012 was the coming 

out party for CNNs in the computer vision community. This was the first time a model 

performed so well on a historically difficult ImageNet dataset. Utilizing techniques that are still 

used today, such as data augmentation and dropout, this paper really illustrated the benefits of 

CNNs and backed them up with record breaking performance in the competition. [11] 

 

 

 

2.7 Visualizing Convolutional Neural Networks  

In this paper titled “Visualizing and Understanding Convolutional Neural Networks”, Zeiler and 

Fergus[12] begin by discussing the idea that this renewed interest in CNNs is due to the 
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accessibility of large training sets and increased computational power with the usage of GPUs. 

They also talk about the limited knowledge that researchers had on inner mechanisms of these 

models, saying that without this insight, the “development of better models is reduced to trial and 

error”. While we do currently have a better understanding than 3 years ago, this still remains an 

issue for a lot of researchers! The main contributions of this paper are details of a slightly 

modified AlexNet model and a very interesting way of visualizing feature maps. 

Main Points: 

 Very similar architecture to AlexNet, except for a few minor modifications. 

 AlexNet trained on 15 million images, while ZF Net trained on only 1.3 million images. 

 Instead of using 11x11 sized filters in the first layer (which is what AlexNet 

implemented), ZF Net used filters of size 7x7 and a decreased stride value. The reasoning 

behind this modification is that a smaller filter size in the first conv layer helps retain a 

lot of original pixel information in the input volume. A filtering of size 11x11 proved to 

be skipping a lot of relevant information, especially as this is the first conv layer. 

 As the network grows, we also see a rise in the number of filters used. 

 Used ReLUs for their activation functions, cross-entropy loss for the error function, and 

trained using batch stochastic gradient descent. 

 Trained on a GTX 580 GPU for twelve days. 

 Developed a visualization technique named Deconvolutional Network, which helps to 

examine different feature activations and their relation to the input space. Called 

“deconvnet” because it maps features to pixels (the opposite of what a convolutional 

layer does). 

 

2.7.1 DeConvNet 

The basic idea behind how this works is that at every layer of the trained CNN, you attach a 

“deconvnet” which has a path back to the image pixels. An input image is fed into the CNN and 

activations are computed at each level. This is the forward pass. Now, let’s say we want to 

examine the activations of a certain feature in the 4
th

 conv layer. We would store the activations 

of this one feature map, but set all of the other activations in the layer to 0, and then pass this 

feature map as the input into the deconvnet. This deconvnet has the same filters as the original 

CNN. This input then goes through a series of unpool (reverse maxpooling), rectify, and filter 

operations for each preceding layer until the input space is reached. [12] 

 

The reasoning behind this whole process is that we want to examine what type of structures 

excite a given feature map. Let’s look at the visualizations of the first and second layers. 

 

ZF Net was not only the winner of the competition in 2013, but also provided great intuition as 

to the workings on CNNs and illustrated more ways to improve performance. The visualization 

approach described helps not only to explain the inner workings of CNNs, but also provides 

insight for improvements to network architectures. 
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Figure 2.12: DeConvolutional Network [12] 

 

Figure 2.13: Deconvolutional Network (2) [12] 
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Chapter 3 

 

3 Deep learning frameworks 
Currently a limited variety of tools are available in terms of deep learning frameworks since 

they implement algorithms which are used in bleeding edge applications such as computer vision 

and machine translation. It is necessary to select the proper framework for proper modelling of 

deep neural networks. Following section discusses the overview of deep learning and open source 

frameworks such as TensorFlow, CNTK, Theano, Torch, Caffe, MXnet and Neon. 

 

 

 

Figure 3.1: GitHub star count of different deep learning frameworks [20] 
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3.1 Theano: 

Developed at the LISA lab at the University of Montreal, Theano consists of a Python 

library which allows users to define, optimize, and evaluate mathematical expressions on arrays 

and tensors. It also generates customized C code for various mathematical operations. In terms of 

architecture, when compared to other deep learning frameworks available the popular consensus 

is that Theano is difficult to use. Theano also has multiple GPU support and provides support for 

convolutional neural networks and recurrent neural networks. Theano has been deployed in 

production in AI services companies such as Parallel Dots serving up to a few 1000 concurrent 

news recommendations and multiple client Deep Learning as a service calls. 

3.2 TensorFlow 

TensorFlow was originally developed by researchers and engineers whom worked on the 

Google Brain Team within Google’s Machine Intelligence research organization for the purposes 

of conducting machine learning and deep neural networks research and over time the framework 

has been found to be general enough to be applicable in a wide variety of other domains as well. 

[Deng&Yu] TensorFlow is implemented in Python and uses data flow graphs for numerical 

computation. When compared to other deep learning frameworks it can be seen that TensorFlow 

is considered to currently be the best documented open source framework available TensorFlow 

also boasts of an easy to use and modular front-end in terms of architecture. TensorFlow also 

provides supports for Convolutional Neural Networks and Recurrent Neural Networks. It should 

also be noted that there are implementations for Restricted Boltzmann Machines, Deep 

Autoencoders and Long Short-Term models utilizing TensorFlow architecture as well. In 

addition, TensorFlow also contains TensorBoard which is a suite of visualization tools which 

make it easier to understand, debug and optimize programs which run on TensorFlow code. 

 

3.3 Torch: 

Torch is a deep learning framework with support for algorithms that give priority to 

GPUs. Torch provides faster performance compared to other deep learning frameworks due to the 

use of the fast scripting language LuaJIT and its underlying C/CUDA implementation. Torch also 

possesses a large ecosystem of community driven packages and is also embeddable with iOS and 

Android backends. Torch also possesses Recurrent Neural Network and Convolution Neural 

Network modelling capability with a relatively easy to use modular front end. Torch is in use in 

companies such as Facebook, Google and Twitter as well as across research labs such as NYU, 

IDIAP and Purdue. 
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3.4 Caffe: 

Caffe is a deep learning framework developed by Berkeley AI Research (BAIR) as well as 

community collaborators. It is implemented in C++. Caffe is released under the BSD 2- Clause 

license. [caff01] While Caffe supports Convolutional Neural Networks, it does not currently 

support Recurrent Neural Networks. Furthermore, even after extensive review of literature it was 

not possible to find any reference of many major players in the AI space deploying Caffe in a 

production environment. However Facebook recently released Caffe2 in April, which is a 

production ready cross-platform network and has been declared the successor to Caffe. 

 

3.5 MXNet: 

MXNet is a deep learning framework developed by collaborators from various companies 

and universities including the likes of Microsoft, Nvidia, Baidu, Intel, Carnegie Mellon 

University, University of Alberta and University of Washington. [mxne01] MXNet supports a 

plethora of programming languages including R, Python, Julia and Scala. It also has advanced 

GPU support compared to the other frameworks and also is relatively fast with regard to run time 

of deep learning algorithms. MXNet also has Convolutional Neural Network and Recurrent 

Neural Network modelling capabilities as well. MXNet is also Amazon Web Services (AWS)’s 

deep learning framework of choice. 

 

3.6 NEON: 

Neon is Intel Nervana’s reference deep learning framework which has been designed for 

extensibility and ease of use. [neon01] Neon supports Python and supports deep learning models 

such as Convolutional Neural Networks, Recurrent Neural Networks, Long Short-Term Memory 

(LSTM) Models and Deep Autoencoders. Furthermore, Neon is also tightly integrated with Intel’s 

GPU kernel library. 
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Figure 3.2: Comparison of existing frameworks [20] 
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Chapter 4  

 

4 Experimental Analysis 
 

4.1 Implementer Systems: 
 

4.1.1 TensorFlow 

TensorFlow is an open source software library for numerical computation using data flow 

graphs. Nodes in the graph represent mathematical operations, while the graph edges represent 

the multidimensional data arrays (tensors) communicated between them. The flexible 

architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, 

server, or mobile device with a single API. TensorFlow was originally developed by researchers 

and engineers working on the Google Brain Team within Google's Machine Intelligence research 

organization for the purposes of conducting machine learning and deep neural networks research, 

but the system is general enough to be applicable in a wide variety of other domains as well. 

TensorFlow relies on a highly efficient C++ backend to do its computation. The connection to 

this backend is called a session. The common usage for TensorFlow programs is to first create a 

graph and then launch it in a session. 

Here we instead use the convenient Interactive Session class, which makes TensorFlow more 

flexible about how you structure your code. It allows you to interleave operations which build a 

computation graph with ones that run the graph. This is particularly convenient when working in 

interactive contexts like IPython. If you are not using an InteractiveSession, then you should build 

the entire computation graph before starting a session and launching the graph. 

4.1.1.1 Computation Graph 

To do efficient numerical computing in Python, we typically use libraries like NumPy that do 

expensive operations such as matrix multiplication outside Python, using highly efficient code 

implemented in another language. Unfortunately, there can still be a lot of overhead from 

switching back to Python every operation. This overhead is especially bad if you want to run 

computations on GPUs or in a distributed manner, where there can be a high cost to transferring 

data. 

http://www.numpy.org/


39 
 

TensorFlow also does its heavy lifting outside Python, but it takes things a step further to avoid 

this overhead. Instead of running a single expensive operation independently from Python, 

TensorFlow lets us describe a graph of interacting operations that run entirely outside Python. 

This approach is similar to that used in Theano or Torch. 

The role of the Python code is therefore to build this external computation graph, and to dictate 

which parts of the computation graph should be run. 

 

4.1.1.2 Placeholders 

We start building the computation graph by creating nodes for the input images and target output 

classes. Here x and y_ aren't specific values. Rather, they are each a placeholder -- a value that we'll 

input when we ask TensorFlow to run a computation. 

The input images x will consist of a 2d tensor of floating point numbers. Here we assign it 

a shape of [None, 784], where 784 is the dimensionality of a single flattened 28 by 28 pixel MNIST 

image, and none indicates that the first dimension, corresponding to the batch size, can be of any 

size. The target output classes y_ will also consist of a 2d tensor, where each row is a one-hot 10-

dimensional vector indicating which digit class (zero through nine) the corresponding MNIST 

image belongs to. 

The shape argument to placeholder is optional, but it allows TensorFlow to automatically catch 

bugs stemming from inconsistent tensor shapes. 

4.1.1.3 Variables 

We now define the weights W and biases b for our model. We could imagine treating these like 

additional inputs, but TensorFlow has an even better way to handle them: Variable. A Variable is a 

value that lives in TensorFlow's computation graph. It can be used and even modified by the 

computation. In machine learning applications, one generally has the model parameters 

be Variables. 

We pass the initial value for each parameter in the call to tf.Variable. In this case, we initialize 

both W and bas tensors full of zeros. W is a 784x10 matrix (because we have 784 input features 

and 10 outputs) and b is a 10-dimensional vector (because we have 10 classes). 

Before Variables can be used within a session, they must be initialized using that session. This 

step takes the initial values (in this case tensors full of zeros) that have already been specified, 

and assigns them to each Variable.  

4.1.1.4 Predicted Class and Loss Function 

We can now implement our regression model. It only takes one line! We multiply the vectorized 

input images xby the weight matrix W, add the bias b. 
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We can specify a loss function just as easily. Loss indicates how bad the model's prediction was 

on a single example; we try to minimize that while training across all the examples. Here, our 

loss function is the cross-entropy between the target and the softmax activation function applied 

to the model's prediction. 

Note that tf.nn.softmax_cross_entropy_with_logits internally applies the softmax on the model's 

unnormalized model prediction and sums across all classes, and tf.reduce_mean takes the average 

over these sums. 

4.1.1.5 Train the Model 

Now that we have defined our model and training loss function, it is straightforward to train 

using TensorFlow. Because TensorFlow knows the entire computation graph, it can use 

automatic differentiation to find the gradients of the loss with respect to each of the variables. 

TensorFlow has a variety of built-in optimization algorithms. For this example, we will use 

steepest gradient descent, with a step length of 0.5, to descend the cross entropy. 

What TensorFlow actually did in that single line was to add new operations to the computation 

graph. These operations included ones to compute gradients, compute parameter update steps, 

and apply update steps to the parameters. 

The returned operation train_step, when run, will apply the gradient descent updates to the 

parameters. Training the model can therefore be accomplished by repeatedly running train_step. 

We load 100 training examples in each training iteration. We then run the train_step operation, 

using feed_dict to replace the placeholder tensors x and y_ with the training examples. Note that you 

can replace any tensor in your computation graph using feed_dict -- it's not restricted to 

just placeholders. 

4.1.1.6 Evaluate the Model 

First we'll figure out where we predicted the correct label. tf.argmax is an extremely useful 

function which gives you the index of the highest entry in a tensor along some axis. For 

example, tf.argmax(y, 1) is the label our model thinks is most likely for each input, while tf.argmax 

(y_, 1) is the true label. We can use tf.equal to check if our prediction matches the truth. 

That gives us a list of Booleans. To determine what fraction are correct, we cast to floating point 

numbers and then take the mean. For example, [True, False, True, True] would become [1, 0, 1, 

1] which would become 0.75. 

Finally, we can evaluate our accuracy on the test data. This should be about 92% correct. 

4.1.1.7 Build a Multilayer Convolutional Network 

Getting 92% accuracy on MNIST is bad. It's almost embarrassingly bad. In this section, we'll fix 

that, jumping from a very simple model to something moderately sophisticated: a small 

convolutional neural network. This will get us to around 99.2% accuracy -- not state of the art, 

but respectable. 

https://www.tensorflow.org/api_guides/python/train#optimizers
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Here is a diagram, created with TensorBoard, of the model we will build: 

 

Figure 4.1: TensorFlow architecture [21] 

4.1.1.8 Weight Initialization 

To create this model, we're going to need to create a lot of weights and biases. One should 

generally initialize weights with a small amount of noise for symmetry breaking, and to prevent 

0 gradients. Since we're using ReLU neurons, it is also good practice to initialize them with a 

slightly positive initial bias to avoid "dead neurons". Instead of doing this repeatedly while we 

build the model, let's create two handy functions to do it for us. 

4.1.1.9 Convolution and Pooling 

TensorFlow also gives us a lot of flexibility in convolution and pooling operations. How do we 

handle the boundaries? What is our stride size? In this example, we're always going to choose the 

vanilla version. Our convolutions uses a stride of one and are zero padded so that the output is 

the same size as the input. Our pooling is plain old max pooling over 2x2 blocks. 

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
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4.1.1.10 First Convolutional Layer 

We can now implement our first layer. It will consist of convolution, followed by max pooling. 

The convolution will compute 32 features for each 5x5 patch. Its weight tensor will have a shape 

of [5, 5, 1, and 32]. The first two dimensions are the patch size, the next is the number of input 

channels, and the last is the number of output channels. We will also have a bias vector with a 

component for each output channel. 

To apply the layer, we first reshape x to a 4d tensor, with the second and third dimensions 

corresponding to image width and height, and the final dimension corresponding to the number 

of color channels. 

We then convolve x_image with the weight tensor, add the bias, apply the ReLU function, and 

finally max pool. The max_pool_2x2 method will reduce the image size to 14x14. 

4.1.1.11 Second Convolutional Layer 

In order to build a deep network, we stack several layers of this type. The second layer will have 

64 features for each 5x5 patch. 

4.1.1.12 Densely Connected Layer 

Now that the image size has been reduced to 7x7, we add a fully-connected layer with 1024 

neurons to allow processing on the entire image. We reshape the tensor from the pooling layer 

into a batch of vectors, multiply by a weight matrix, add a bias, and apply a ReLU. 

4.1.1.13 Dropout 

To reduce overfitting, we will apply dropout before the readout layer. We create a placeholder for 

the probability that a neuron's output is kept during dropout. This allows us to turn dropout on 

during training, and turn it off during testing. TensorFlow's tf.nn.dropout op automatically handles 

scaling neuron outputs in addition to masking them, so dropout just works without any additional 

scaling.
1
 

4.1.1.14 Readout Layer 

Finally, we add a layer, just like for the one layer softmax regression above. 

4.1.1.15 Train and Evaluate the Model 

To train and evaluate it we will use code that is nearly identical to that for the simple one layer 

SoftMax network above. 

The differences are that: 

 We will replace the steepest gradient descent optimizer with the more sophisticated 

ADAM optimizer. 

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://www.tensorflow.org/get_started/mnist/pros#f1
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 We will include the additional parameter keep_prob in feed_dict to control the dropout 

rate. 

 We will add logging to every 100th iteration in the training process. 

We will also use tf.Session rather than tf.InteractiveSession. This better separates the process of 

creating the graph (model specification) and the process of evaluating the graph (model fitting). 

It generally makes for cleaner code. The tf.Session is created within a with block so that it is 

automatically destroyed once the block is exited. 

The final test set accuracy after running this code should be approximately 99.2%. 

 

4.1.2 YOLO: Real Time Object Detection 

You only look once (YOLO) is a state-of-the-art, real-time object detection system. On a 

Titan X it processes images at 40-90 FPS and has a mAP on VOC 2007 of 78.6% and a mAP of 

48.1% on COCO test-dev. Prior detection systems repurpose classifiers or localizers to perform 

detection. They apply the model to an image at multiple locations and scales. High scoring 

regions of the image are considered detections.[14] 

4.1.2.1 Description: 

A single neural network is used to the full image. This network divides the image into regions 

and predicts bounding boxes and probabilities for each region. These bounding boxes are 

weighted by the predicted probabilities. 

Compared to other region proposal classification networks (fast RCNN) which perform detection 

on various region proposals and thus end up performing prediction multiple times for various 

regions in an image, Yolo architecture is more like FCNN (fully convolutional neural network) 

and passes the image (nxn) once through the FCNN and output is (mxm) prediction. This the 

architecture is splitting the input image in mxm grid and for each grid generation 2 bounding 

boxes and class probabilities for those bounding boxes. Note that bounding box is more likely to 

be larger than the grid itself. From paper: 

We reframe object detection as a single regression problem, straight from image pixels to 

bounding box coordinates and class probabilities. 

A single convolutional network simultaneously predicts multiple bounding boxes and class 

probabilities for those boxes. YOLO trains on full images and directly optimizes detection 

performance. This unified model has several benefits over traditional methods of object detection. 

First, YOLO is extremely fast. Since we frame detection as a regression problem we don’t need a 

complex pipeline. We simply run our neural network on a new image at test time to predict 

detections. Our base network runs at 45 frames per second with no batch processing on a Titan X 

GPU and a fast version runs at more than 150 fps. This means we can process streaming video in 

real-time with less than 25 milliseconds of latency. 

Second, YOLO reasons globally about the image when making predictions. Unlike sliding 

window and region proposal-based techniques, YOLO sees the entire image during training and 

test time so it implicitly encodes contextual information about classes as well as their appearance. 

Fast R-CNN, a top detection method, mistakes background patches in an image for objects 

https://docs.python.org/3/whatsnew/2.6.html#pep-343-the-with-statement
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because it can’t see the larger context. YOLO makes less than half the number of background 

errors compared to Fast R-CNN. [14] 

Third, YOLO learns generalizable representations of objects. When trained on natural images and 

tested on artwork, YOLO outperforms top detection methods like DPM and R-CNN by a wide 

margin. Since YOLO is highly generalizable it is less likely to break down when applied to new 

domains or unexpected inputs. 

Our network uses features from the entire image to predict each bounding box. It also predicts all 

bounding boxes across all classes for an image simultaneously. This means our network reasons 

globally about the full image and all the objects in the image. The YOLO design enables end-to-

end training and real-time speeds while maintaining high average precision. 

Our system divides the input image into an S × S grid. If the center of an object falls into a grid 

cell, that grid cell is responsible for detecting that object. 

Each grid cell predicts B bounding boxes and confidence scores for those boxes. These 

confidence scores reflect how confident the model is that the box contains an object and also how 

accurate it thinks the box is that it predicts. Formally we define confidence as Pr (Object) ∗ IOU . 

If no object exists in that cell, the confidence scores should be zero. Otherwise we want the 

confidence score to equal the intersection over union (IOU) between the predicted box and the 

ground truth. 

Each bounding box consists of 5 predictions: x, y, w, h, and confidence. The (x, y) coordinates 

represent the center of the box relative to the bounds of the grid cell. The width and height are 

predicted relative to the whole image. Finally the confidence prediction represents the IOU 

between the predicted box and any ground truth box. Each grid cell also predicts C conditional 

class probabilities, Pr (Classi |Object). These probabilities are conditioned on the grid cell 

containing an object. We only predict one set of class probabilities per grid cell, regardless of the 

number of boxes B. 

At test time we multiply the conditional class probabilities and the individual box confidence 

predictions, which gives us class-specific confidence scores for each box. These scores encode 

both the probability of that class appearing in the box and how well the predicted box fits the 

object 

Changes to loss functions for better results is interesting. Two things stand out: 

1. Differential weight for confidence predictions from boxes that contain object and boxes that 

don’t contain object during training. 

2. Predict the square root of the bounding box width and height to penalize error in small object 

and large object differently. 

Our network has 24 convolutional layers followed by 2 fully connected layers. Instead of the 

inception modules used by GoogLeNet, we simply use 1 × 1 reduction layers followed by 3 × 3 

convolutional layers 

Fast YOLO uses a neural network with fewer convolutional layers (9 instead of 24) and fewer 

filters in those layers. Other than the size of the network, all training and testing parameters are 

the same between YOLO and Fast YOLO. 

 

We optimize for sum-squared error in the output of our model. We use sum-squared error because 

it is easy to optimize, however it does not perfectly align with our goal of maximizing average 
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precision. It weights localization error equally with classification error which may not be ideal. 

Also, in every image many grid cells do not contain any object. This pushes the “confidence” 

scores of those cells towards zero, often overpowering the gradient from cells that do contain 

objects. This can lead to model instability, causing training to diverge early on. To remedy this, 

we increase the loss from bounding box coordinate predictions and decrease the loss from 

confidence predictions for boxes that don’t contain objects. We use two parameters, λcoord and 

λnoobj to accomplish this. We set λcoord = 5 and λnoobj = .5. 

Sum-squared error also equally weights errors in large boxes and small boxes. Our error metric 

should reflect that small deviations in large boxes matter less than in small boxes. To partially 

address this we predict the square root of the bounding box width and height instead of the width 

and height directly.[14] 

YOLO predicts multiple bounding boxes per grid cell. At training time we only want one 

bounding box predictor to be responsible for each object. We assign one predictor to be 

“responsible” for predicting an object based on which prediction has the highest current IOU with 

the ground truth. This leads to specialization between the bounding box predictors. Each predictor 

gets better at predicting certain sizes, aspect ratios, or classes of object, improving overall recall. 

 

 Pascal 2007 mAP Speed 

DPM v5 33.7 .07 FPS 14 s/img 

R-CNN 66.0 .05 FPS 20 s/img 

Fast R-CNN 70.0 .5 FPS 2 s/img 

Faster R-CNN 73.2 7 FPS 140 ms/img 

YOLO 63.4 45 FPS 22 ms/img 

 

 

First of all it puts an overlay grid on the image and tries to find that if there is any object within 

the box or not. If it can find object, it puts high confidence value to that and low confidence 

value if no object. Along with this the model classifies the selected objects parallel. It then takes 

the similarly classified boxes in a cluster and takes a bigger boundary. In this way it can classify 

object along detecting the boundary just by a single pass. 
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Figure 4.2: YOLO explanation [16] 

By default, YOLO only displays objects detected with a confidence of .25 or higher. Putting the 

threshold to 0, we can see the defined object of all the possible boxes like the picture below. 
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4.2 Results: 

4.2.1 TensorFlow 
Two type of network models were used so that a comparative study could be possible. One was 

of the Convolutional Neural Network type and the other was a Simple 2-Layer model. The 

models were given shape through weight initialization, convolution and pooling, dropout and a 

classifier. Their compared accuracy is shown in the figure 

 

Figure 4.3: Accuracy CNN Model 

 

Figure 4.4: Accuracy Simple 2 Layer Mode 

The goal of a loss function is to minimize the loss rate of a model as much as possible. We can 

easily understand the credibility of any particular model by looking at its loss function graph.  A 

figure showing their loss functions is given below: 
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Figure 4.5: Loss Function Simple 2 layer model 

 

Figure 4.6: Loss Function CNN model 

Again the comparisons were done by varying the parameters such as the number of 

convolutional network, the number of fully connected network and the learning rate. A figure 

to show the comparisons is given below: 

 

Figure 4.7: Accuracy Comparison by using different values of parameters 
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 It is clear from the above figure that using 2 convolutional layers and two fully 

connected layers outputs a good result. 

4.2.2 YOLO: DARKNET 

DarkNet is an open source neural network framework written in C and CUDA. It is fast, easy to 

install and supports CPU and GPU computation.  

Using this network we worked on object detection and classification together. To detect the object 

we used the pre trained weight values using Microsoft VOC 2007 dataset. For object classification, 

pretrained weight values of the model using ImageNet dataset were used. Using this framework the 

results could be generated very fast using very few commands and predictions were given using 

softmax approach.  

 

Figure 4.8: DarkNet performance on object detection & classification (1) 

The objects were detected in the following manner: 
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Figure 4.9:; Darknet performance on object detection & classification(2) 

The model worked fine in detecting objects which were not collided. But if the object were collided 

it didn’t produce perfect detection of the object. 

 

Figure 4.10: DarkNet performance on object detection & classification (3) 
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 For example in the above image there are two birds in collided manner. The model can detect 

the bird in front, but it can’t detect the second bird separately and detects two birds in a single box. 

 

 

Figure 4.11: YOLO performance using zero threshold [16] 

 

 

 

4.2.2.1 Biggest advantages: 

 Speed (45 frames per second — better than real-time) 

 Network understands generalized object representation (This allowed them to train the 

network on real world images and predictions on artwork was still fairly accurate). 

 Faster version (with smaller architecture) — 155 frames per sec but is less accurate. 

 open source 
 

4.2.2.2 Limitations of YOLO 

YOLO imposes strong spatial constraints on bounding box predictions since each grid cell only 

predicts two boxes and can only have one class. This spatial constraint limits the number of 

nearby objects that our model can predict. The model struggles with small objects that appear in 

groups, such as flocks of birds. Since the model learns to predict bounding boxes from data, it 

struggles to generalize to objects in new or unusual aspect ratios or configurations. Again the 
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model also uses relatively coarse features for predicting bounding boxes since the proposed 

architecture has multiple downsampling layers from the input image. Finally, while training on a 

loss function that approximates detection performance, the loss function treats errors the same in 

small bounding boxes versus large bounding boxes.  
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Chapter 5 

5 Conclusion 
 

5.1 Summary 

Upon working with deep learning we can come to a conclusion that, it is a very promising 

branch of machine learning. It can be utilized to implement image processing systems that can 

output state of the art results. Although the internal architecture and work flow might seem a 

bit tedious and complex, using deep learning to create neural network models is gradually 

becoming the go to solution for modern image classification, objection classification and other 

problems present in the image processing domain. Throughout of thesis we came across 

various applications of deep learning ranging from recognizing handwriting to colorization of 

black and white images. Our thesis domain was limited to the problem of image classification 

using convolutional neural network. A convolutional neural network contains a series of layers 

performing relevant tasks of identifying features and give out a certain probability specifying an 

objects class. Such a network is considered to be a ‘deep’ network if there are more than 3 

layers. In our thesis research we worked with such networks implementing them with the help 

of deep learning libraries: TensorFlow and Yolo. Our research rested mainly on experimenting 

with the parameters of such a network and compare the results.  

5.2 Future Work 

▸ Focusing on a particular image classification field and compare the results of previous 

approaches with Deep Learning methods.  

▸ Use transfer learning method to use pre-trained models and propose possible 

improvements for specific image classification task 
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