

MUSIC BASED MOOD DETECTION

A Thesis Submitted to the Academic Faculty in Partial Fulfillment of the Requirements for the Degree of

BACHELOR OF SCIENCE IN COMPUTER SCIENCE \& ENGINEERING

Prepared by,

Shahid Ishraq (Student No-134408)
 Zia Uddin Kamal (Student No-134430)

Supervised by,

Hasan Mahmud
Assistant Professor
Department of Computer Science and Engineering, Islamic University of Technology (IUT)

A thesis submitted to the Department of CSE
in partial fulfillment of the requirements for the degree of B.Sc.
Engineering in CSE
Academic Year: 2016-17
November - 2017

Declaration of Authorship

This is to certify that the work presented in this thesis is the outcome of the analysis and experiments carried out by Shahid Ishraq and Zia Uddin Kamal under the supervision of Hasan Mahmud, Assistant Professor, Department of Computer Science and Engineering (CSE), Islamic University of Technology (IUT), Dhaka, Bangladesh. It is also declared that neither of this thesis nor any part of this thesis has been submitted anywhere else for any degree or diploma. Information derived from the published and unpublished work of others has been acknowledged in the text and a list of references is given.

Authors:

Shahid Ishraq
Student ID - 134408

Zia Uddin Kamal
Student ID - 134430

Approved By:

Hasan Mahmud

Supervisor and Assistant Professor
Department of Computer Science and Engineering,
Islamic University of Technology (IUT)

Acknowledgement

We would like to express our grateful appreciation for Hasan Mahmud, Assistant Professor, Department of Computer Science \& Engineering, IUT for being our advisor and mentor. His motivation, suggestions and insights for this thesis have been invaluable. Without his support and proper guidance this research would not have been possible. His valuable opinion, time and input provided throughout the thesis work, from first phase of thesis topics introduction, subject selection, proposing algorithm, modification till the project implementation and finalization which helped us to do our thesis work in proper way. We are really grateful to him. We are also grateful to Dr. Kamrul Hasan, Associate Professor, Department of Computer Science \& Engineering, Islamic University of Technology for his valuable suggestion.

Abstract

: Music mood describes the inherent emotional expression of a music clip. It is helpful in music understanding, music retrieval, and some other music-related applications. In this paper, a hierarchical framework is presented to automate the task of mood detection from acoustic music data, by following some music psychological theories in western cultures. The hierarchical framework has the advantage of emphasizing the most suitable features in different detection tasks. Three feature sets, including intensity, timbre, and rhythm are extracted to represent the characteristics of a music clip. The intensity feature set is represented by the energy in each sub-band, the timbre feature set is composed of the spectral shape features and spectral contrast features, and the rhythm feature set indicates three aspects that are closely related with an individual's mood response, including rhythm strength, rhythm regularity, and tempo. Furthermore, since mood is usually changeable in an entire piece of classical music, the approach to mood detection is extended to mood tracking for a music piece, by dividing the music into several independent segments, each of which contains a homogeneous emotional expression. Preliminary evaluations indicate that the proposed algorithms produce satisfactory results. On our testing database composed of 8oo representative music clips, the average accuracy of mood detection achieves up to 86.3%. We can also on average recall 84.1% of the mood boundaries from nine testing music pieces.

A method is proposed for detecting the emotions of song lyrics based on an affective lexicon. The lexicon is composed of words translated from ANEW and words selected by other means. For each lyric sentence, emotion units, each based on an emotion word in the lexicon, are found out, and the influences of modifiers and tenses on emotion units are taken into consideration. The emotion of a sentence is calculated from its emotion units. Tofigure out the prominent emotions of a lyric, a fuzzy clustering method is used to group the lyric's sentences according to their emotions. The emotion of a cluster is worked out from that of its sentences considering the individual weight of each sentence. Clusters are weighted according to the weights and confidences of their sentences and singing speeds of sentences are considered as the adjustment of the weights of clusters. Finally, the emotion of the cluster with the highest weight is selected from the prominent emotions as the main emotion of the lyric. The performance of our approach is evaluated through an experimentof emotion classification of 400 song lyrics.

Therefore, the main idea is to merge the two ideas altogether.
CONTENTS

1. INTRODUCTION 06
1.1. The Context. 07
1.2. The Problem 07
1.3. The Solution 07
1.4. Innovation Aspects. 09
1.5. Structures of the thesis 09
2. State of the Art. 10
3. The Problem 12
4. Proposed Method 14
4.1. Audio Based 14
4.2. Lyrics Based 31
5. Experimental Results. 48
6. Related Work 57
7. Conclusion 58
References 58

1. Introduction

"Music heals everything." - Hermeto Pascoal
Nowadays, music is everywhere. From small television commercials, music videos and shopping centers to the more traditional music sell (albums, both on physical or digital format, and tickets), radio play or live events (concerts, gigs, festivals, etc), we cannot help consider now it as an industry. This can be explained through economical reasons but also through emotional ones: why some concerts get sold out in just a few minutes1, even when the tickets price is high?1 Why are there true fan communities online which create means to bring some of their most beloved artists to their countries or cities (petitions, organizing gigs/concerts, etc)2 ? And why big part of humanitarian and charity events are based in (or incorporate) music (e.g., Live 8)? 3 Certainly not only because of temporary fashions or trends. Even some of the most popular social networks on the web are music-oriented: MySpace4 (with more than 110 million active users5) and Last.fm6 (with more than 30 million users7). People need to relate to the way they feel (or want to feel), and music is one of the most utilized means to achieve it. This is done not only by relating to the instrumental part of the songs, but in the case of the existence of voice, the analysis of the lyrical content.

1.1. The Context

These are only some points that relate music to mood and emotions. Later it will be defined and discussed in what the concepts of emotion and mood resemble, differ and relate to each other.
In this context, it is easy to understand that mood analysis has gained increased notoriety in the last few years, with increasing popularity coming from research in the Music
Information Retrieval (MIR) field in the last decade (where the Music Emotion Retrieval (MER) area emerged).
was the inclusion, since 2007, of a Music Mood Classification evaluation contest in the 3rd Music Information Retrieval Evaluation eXchange (MIREX)8, a part of the 8th International Conference on Music Information Retrieval (ISMIR) (ISMIR 2007)9. ISMIR is the most important conference dedicated to MIR in the world.

Possible MIR applications include automatic music recognition, automatic cataloging of musical pieces and automatic generation of music playlists based in a similarity criterion (mood, style, etc). The term "automatic" is used explicitly to underline the fact that these playlists and cataloging are produced based entirely on the extraction and analysis of songs features, without the use of any kind of descriptive text tags (typical ones are artist, album, genre, etc.).

In the more specific context of this thesis (mood analysis), the applications can be extended to the generation of music playlists based in certain moods, without bothering the user with the task of browsing his personal musical collection (which can easily reach (dozens of) thousands of songs) to manually choose the songs. This will simultaneously be both more comfortable and time sparing to the user. For instance, if the user wants music to play while he is jogging or doing sports (imagining the application is being used in a portable music player) he may want to hear some joyful, "happy" songs, beat-driven and/or with rhythm. On the other hand, if someone is driving he may want to be presented with some quiet, relaxing music. The same would apply to a stressful situation, where the user just wants to sit and calm down, or a psychological treatment. Even a shop owner or a DJ could benefit from this type of application, by
automatically selecting cheerful music to serve as his store's background music or selecting music based on the mood of the venue he is playing in (excitement for a club where rock tunes are played traditionally, for instance), respectively. Finally, another possible daily situation where this type of software could be applied in a useful way is the selection of music for a party, where the user could choose the input mood based on the theme (or even dress code) of it.

1.2. The Problem

Although at first glance mood and emotion can be easily confused, the two concepts are considered to be different. As a subjective theme, everyone knows what an emotion is, but rarely one can define it. Since then, psychologists have made several attempts to achieve definitions of emotion and mood and a reliable model of human emotion in the mind.

In the BSc thesis "A Mood-Based Music Classification and Exploration System" by Meyers (Meyers, 2007), emotion is defined as:
> "Emotion is a complex set of interactions among subjective and objective factors, mediated by neural/hormonal systems, which can (a) give rise to affective experiences such as feelings of arousal, pleasure/displeasure; (b) generate cognitive processes such as perceptually relevant effects, appraisals, labeling processes; (c) activate widespread physiological adjustments to the arousing conditions; and (d) lead to behavior that is often, but not always, expressive, goaloriented, and adaptive."

In the same thesis, mood is interpreted as something more specific, shorter emotional state and that can be (indirectly) influenced by the surroundings, the "environment" around the individual, so to speak. It can be attributed to a particular stimulus and usually has a prolonged effect.

1.3. The Solution

The main objective of this thesis is, as the title suggests, the design and implementation of an application that provides the user with an automatically generated playlist of songs based on the mood of a song specified by the user and given as input. In another perspective, it can be used to generate a playlist to complement the mood of the user e.g., the user introduces that his mood is anxious, it will be expected that the playlist will include some relaxing music. The song given as input will be an existing song in the application's database (through a query). The selection would be done based on a database consisting of several music files/musical pieces. The pieces that would fit the mood specified by the user (or the pieces that would complement the specified mood) would be added to the final playlist presented to it. The user would then be presented with several options to customize these operations. Details about how this will be done are referred to and discussed later in this document.

1.4. Innovative Aspects

The approach carried out on this thesis involves two aspects: it is both an engineering and a research problem. It is a typical engineering problem in what concerns both to the paradigm (a client-server application, with a backoffice for database/application management) and to the software development process used - in this case, the waterfall
process, with the typical phases associated to it: requirements specification, design, implementation, model validation and testing/debugging. The investigation started with the bibliographic search that was made and that will be detailed later on this report. The research also focused on the choice of the framework to be used to extract features from songs. From the three frameworks analyzed (jAudio10, Music Analysis, Retrieval and Synthesis for Audio Signals (MARSYAS) 11 and MIRtoolbox12, a toolbox for MATLAB), the one that proved to be faster was MARSYAS (performance results in the MIREX 2008 context prove it) 13 , since it is implemented in highly optimized C++ code. It is also important to underline that although both MARSYAS and jAudio are open source, the latter one, as the name suggests, is implemented in Java, which must certainly be the main factor for not being as fast as MARSYAS.
On the other hand, MIRtoolbox uses MATLAB, which is also partially implemented in Java, making it heavy in what concerns to computational requirements and also much slower than MARSYAS. Also, from the three frameworks compared, only MATLAB is not open source. So, MARSYAS was naturally chosen as the framework to be used within this project. Since it is open source, it is possible to add other functionalities to the application in the future (for instance, new features to extract, new classifiers, etc). The application also has a Graphical User Interface (GUI), which was implemented in Qt14 (a fast and open source application for creating interfaces). This decision was basically based on the fact that Qt is a cross-platform application and UI framework. Also, MARSYAS is natively prepared for seamless integration with Qt.

In this work, we follow a classification-based song similarity analysis. A classifier is first trained and then song similarity is calculated based on the distance between songs in Thayer's arousal-valence plane. Here, Support Vector Machines (SVM) are employed. Moreover, an extensive research of the features available in the three frameworks analyzed was conducted. This research is presented later in the document. As mentioned, the emotional model to be used is the Thayer model, which will also be discussed in detail later.

In what concerns to the GUI, the application presents the user with a graphical representation of the Thayer's model, where songs are represented as dots in the arousal / valence plane, and each of the four quadrants has an appropriated color (e.g. blue for depression and green for contentment, with a color gradient inside each quadrant). Also, for the creation of the playlist, a playlist path in the Thayer's plane is drawn by the user, from which songs are obtained.

The application that is the subject of this thesis was co-developed with a colleague, Renato Panda. The core of the application is similar, although Renato's thesis is focused on automatic mood tracking in audio music (mood change analysis during one song), opposed to this thesis theme (automatic playlist generation via music mood analysis). The main core of the application was developed in team work, while the functionalities related to playlist generation were the subject of this thesis and functionalities related to mood tracking were implemented by Renato.

A method is proposed for detecting the emotions of song lyrics based on an affective lexicon. The lexicon is composed of words translated from ANEW and words selected by other means. For each lyric sentence, emo-tion units, each based on an emotion word in the lexicon, are found out, and the influences of modifiers and tenses on emotion units are taken into consideration. The emo-tion of a sentence is calculated from its emotion units. To figure out the prominent emotions of a lyric, a fuzzy clus-tering method is used to group the lyric's sentences accord-ing to their emotions. The emotion of a cluster is worked out from that of its
sentences considering the individual weight of each sentence. Clusters are weighted according to the weights and confidences of their sentences and singing speeds of sentences are considered as the adjust-ment of the weights of clusters. Finally, the emotion of the cluster with the highest weight is selected from the promi-nent emotions as the main emotion of the lyric. The perfor-mance of our approach is evaluated through an experiment of emotion classification of song lyrics.

1.5. Structure of the Thesis

AUDIO BASED APPROACH:

The planning and schedule of this thesis is now presented. It suffered some changes, basically due to the inclusion of new elements on the project and to the update on the application requirements (the project grew in dimension over time). It is important to notice that the time that was initially planned for the state of the art document revealed short, since the bibliographic research and reading proved to be more time consuming. Also, some delay was introduced due to software experimentation (more specifically MARSYAS) - although its open source nature, documentation is almost inexistent (some manuals exist, but they are still incomplete). So, on the final planning Gantt diagram some of the phases of the project became overlapped in some degree.

The second part (semester) consisted mainly in the application implementation, evaluation and testing. Also, some evaluation tests were performed, in what concerns to classification accuracy and playlist generation.

LYRIC BASED APPROACH:

In order to organize and search large song collections by emotions, we need automatic methods for detecting the emotions of songs. Especially, they should work in small devices such as iPod and PDA. At present, much, if not most, research work on song emotion detection was con-centrated on the audio signals of songs. For example, a number of algorithms [2,7,9] that classify songs from their acoustic properties were developed.

The lyric of a song, which will be heard and understood by listeners, plays an important part in determining the emotion of the song. Therefore, detecting the emotions of the lyric effectively contributes to detecting the emotions of the song. However, there is now comparatively less research done on methods for detecting the emotions of songs based on lyrics. There has been indeed a very large

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
literature already out there on emotion analysis or opinion analysis of text. But, nearly all of them $[1,3,6]$ use a one-dimensional model of emotions, such as positive-negative, which is not fine enough to represent lyric emotions which need more dimensions. Lyrics are much smaller in size than other kinds of text, such as Weblogs and reviews, and this makes it hard
to detect lyrics' emotions. Being more challenging, lyrics are often abstract and in lyrics, emotions are expressed implicitly.

We propose an approach to detecting the emotions of lyrics based on an affective lexicon. The lexicon is orig-inated from a translated version of ANEW and then ex-tended. According to the lexicon, emotion units(EUs) [13] of a sentence are extracted and the emotion of the sentence is calculated from those EUs.

A lyric generally consists of several sentences and those sentences usually expresses more than one emotions. In order to figure out all the prominent emotions of a lyric, we use a fuzzy clustering method on the sentences of the lyric. The method is robust enough to sustain the noises induced in previous processing steps.

In our approach, Russell's model of mood [11] is adopted, as shown in Figure 1, in which emotions are represented by two dimensions, valence and arousal. The lyric files we use are in LRC format ${ }^{1}$ which have time tags in them and we got the LRC files from the Web. The framework of our approach is illustrated in Figure 2. It consists of three

main steps: (i) building the affective lexicon (ANCW); (ii) detecting the emotion of a sentence; (iii) integrating the emotions of all sentences.

The rest of this paper is organized as follows. In Section 2, the method for building an affective lexicon is presented. Section 3 describes the method for detecting the emotions of sentences. The approach to integrating the emotions of sentences is described in Section 4. Experiments and dis-cussion are presented in Section 5. Finally, we conclude our work in Section 6.

2. State of the Art

2.1.1. Mood taxonomies

Among the several papers addressed in the last paragraphs, many distinct mood categories and taxonomies where proposed. One typical and common problem in this area is the existence of dozens (even hundreds or thousands) of different words or terms to describe moods, most them describing somewhat similar and redundant ones. Usually these words are adjectives, but there is the need of normalizing the terms used, since there is not a standard mood taxonomy. Mood taxonomies can be grouped in two main approaches: categorical and dimensional.

A popular and more recent approach is based on the simple Robert Thayer's Model ((Meyers, 2007), (Lu, Liu, \& Zhang, 2006), (Laar, 2005)), a dimensional model where a musical piece can be classified in one of four categories mapped into a four-quadrant, bidimensional space, as seen in Figure below:

Figure 4: Thayer's dimensional model (Lu, Liu, \& Zhang, 2006)
This approach has its advantages, since although simple it relates two different dimensions effectively, and so each category could be the result of some combination of the valence and arousal components. In the horizontal axis (valence) the quantity of stress is measured, while the vertical axis (arousal) denotes the quantity of energy. Although the model consists of four basic moods, the relation between the two amounts (coordinates in each axis) can determine an exact position in the model, which then can be represented by a point (x, y).

Russel's Model:

Arousal	
Anxious Angry Terrified Disgusted $-\mathrm{V}+\mathrm{A}$	(more energetic) Exhilarated Excited Нарру Pleasure $+\mathbf{V}+\mathbf{A}$ Valence
-V-A Sad Despairin g Depressed Bored	(more $+\mathbf{V}-\mathrm{A}$ Relaxed Serene Tranquil Clam

Figure 1. Russell's model of mood

2.2. Mood analysis in MIR research

The present work has as its main goal, as the title suggests, the ability to automatically generate a music playlist according to the mood specified by the user (or, in another perspective, it can be used to generate a playlist to complement the mood of the user e.g., the user introduces that his mood is anxious, it will be expected that the playlist will include some relaxing music). This selection would be done based on a database consisting of several music files/musical pieces. The pieces that would fit the mood specified by the user (or the pieces that would complement the specified mood) would be added to the final playlist presented to the user.

In particular, this section will analyze the state of art in what concerns to MIR platforms, software tools, feature identification, similarity analysis, playlist creation and algorithm evaluation methods, comparing results and presenting features.

3. The Problem

Although this project operates in a relatively recent field, where the investigation record is still small, there are already some interesting papers and results regarding this subject. The following paragraphs will analyze current investigation in what concerns to mood analysis, similarity and playlist generation, three key concepts in this project.

Mood

As written before, this area, although recent, has already produced new, fresh information. Much is to be found, but also much has already been achieved by now. Some of the papers that inspire this thesis are mentioned in the next paragraphs in what concerns to the mood categories, features and classification used. The results presented in these papers are also discussed.

One of them is "Automatic Mood Detection and Tracking of Music Audio Signals" (Lu, Liu, \& Zhang, 2006). It proposes music mood classification with four main clusters: anxious/frantic, depression, contentment and exuberance (based on Thayer's model of mood). In what concerns to features extraction, it proposes the use of three different feature sets: intensity, timbre and rhythm. The paper experiments with two different frameworks for mood detection: hierarchical and non-hierarchical. In both cases, it is used a GMM along with training data. The results presented showed better results for the hierarchical framework.

Another paper (Laar, 2005) discusses and collects information from different papers, regarding different aspects from mood detection in musical pieces. Regarding to mood categories, they range from the four proposed in the paper above to more complex systems (positive/negative affect as one dimension and the pleasantness/unpleasantness versus engagement/disengagement as the other). Another algorithm categorized the songs in two classes (Hostility, Sadness, Guilt and

Love, Excitement, Pride). The paper addresses timbral texture features (centroid, roll off, spectral flux, zero crossings and average silence ratio), tonality coefficient, spectral crest factor, Mel Frequency Cesptral Coefficients (MFCC), Daubechies Wavelet Coefficient Histogram (DWCH), beat and tempo detection, genre information, lyrics, pitch content features, Beats per Minute (BPM) detection and Sum of Absolute Values of the Normalized Fast Fourier Transform (FFT). Classification methods include the use of a neural network with three layers, a GMM (as explained above). The results achieved here showed that there is not "an absolute winner", ranging from medium to high precision, depending on the relation between granularity (number of categories) and diversity of the music database.

The paper "A Regression Approach to Music Emotion Recognition ", by Yang et al. (Yang, Lin, Su, \& Chen, 2006) addresses mood categories with the innovation of introducing coordinates in the Thayer's model (arousal and valence axis), making it from a continuous perspective. The features extracted were divided into 2 feature sets, one with 114 and another one with a selection of 15 of them. In what concerns to classification, it is addressed in a representative way, and so the system trains 3 different regression algorithms to directly predict arousal and valence values (a, v): multiple linear regression (MLR), support vector regression (SVR) and AdaBoost.RT (BoostR). The results presented in this paper are based in the R2 statistics, where the best combination of data and feature space reaches 58.3% for arousal and 28.1% for valence.

Finally, in the BSc thesis "A Mood-Based Music Classification and Exploration System", the objective was to analyze not only mood on audio signal of musical pieces but also add mood analysis of the song's lyrics. The output would be a playlist featuring music with similar mood. The author opted to implement categories based on Russell's circumplex model of emotion. Features were extracted in conjunction with Hevner's original mapping of musical features to an emotional space, with slight differences (4 of the 6 features were used - mode, tempo, rhythm and harmony were used, melody and pitch were discarded), plus loudness. Music classification is performed in two steps: a preliminary classification of the song database is made through a decision tree and then it is used the k-NN classifier. The results achieved were reasonable, although the author did not revealed classification statistics: instead, some information about the classification of the music database, lyrics classification, classification vs. music classification experts, classification vs. social tagging services and user evaluation was provided.

Similarity

In what concerns to similarity (basically, the computation of audio and web-based music similarity), two main documents were approached. They are summarized in the next paragraphs.

The tutorial "Music Similarity", by Elias Pampalk (Pampalk, 2005), refers that music similarity is not only subjective but also context-dependent, with important dimensions such as instrumentation, timbre, melody, harmony, rhythm, tempo, mood, lyrics and social background. The basic schema for this evaluation between two songs consists in the input given - the representation of the song (e. g. Pulse Code Modulation (PCM)), where feature extraction is made. Then the distances between the two songs are computed and compared, using a specified metric (typically Euclidean distance). The tutorial refers experimentation with different features: Zero Crossing Rate (ZCR), MFCC, spectral similarity, fluctuation patterns, chroma complexity and harmony (higher level). The author also points out limitations - or how 100% accuracy is impossible to achieve,
because even human experts do not agree always, and some of the aspects pointed out in the article are almost or totally impossible to extract, like sociocultural background, lyrics, mood. It is also pointed out that maybe a perfect similarity measure for applications, at least, is not desirable.

Another paper is "Music Similarity Measures: What's The Use?", by Autocourier et al. (Aucouturier \& Pachet, 2002), which proposes a timbral similarity measure (applied to a whole song), based on a Gaussian model of cepstral coefficients (basically, using MFCC modeled with GMM). The application folds in two parts: a timbre extractor (an algorithm that creates a representation of the timbre of a song) and a descriptor, which outputs the proposed timbral similarity measure. The aforementioned timbral measure between two songs can be obtained in two ways: likelihood (matching the probability that the MFCCs of the first song can be generated by the model of the second one, using GMM) or sampling (in the case of not being possible to access the MFCCs of a song while computing the distance, sampling of both GMMs are compared, applying the first method - likelihood - to the mentioned models; Consequently, this method is much more efficient memory-wise). Conducted benchmarking experimentations included the comparison between duplicated songs, songs from the same artist or genre. Then, for each song in the database its timbral distances to all the other songs were computed, comparing these results to textual data (the genre of the titles). These results revealed very poor, and that led to a subjective test, where users were presented with a target song S and 2 songs, A (more closer to S) and B (more distant), and had to order the songs in what concerns to distance to S . The test was performed resorting to ten users and the results showed that about 80% of the songs were well ordered by the application.

4. The Proposed Approach

4.1.AUDIO BASED APPROACH

1. Audio features

In this section all the features addressed in the research conducted throughout three different feature extraction software tools (jAudio, MARSYAS and MIR toolbox) and some papers, which include the ones referenced in the previous part of this section, will be presented and explained with some detail. As mentioned before, this is an extensive list since it is unknown at this point which musical features are going to be used in this project or which ones are dispensable.

Features were divided into four categories: intensity, pitch, rhythm and timbre.

1.1. Intensity

Root Mean Square

Root Mean Square (RMS) returns the power of a signal over a window (McKay, 2005). It can be computed simply by taking the root average of the square of the amplitude, (RMS) (Lartillot)

Root Mean Square derivative

This feature measures the window-to-window change in RMS, serving as an indication of change in signal power (McKay, 2005).

Root Mean Square variability

This feature outputs the standard deviation of the RMS of the last 100 windows (McKay, 2005).

Less-than-average energy

An assessment of the temporal distribution of energy can be obtained through the energy curve, in order to see if it remains constant throughout the signal, or if some frames are more contrastive than others. One way to estimate this consists in computing the low energy rate, i.e. the percentage of frames showing less-than-average energy (Lartillot, 2008). Figure 6 shows the visualization of this feature (Lartillot, 2008):

Figure 6: Selected part of the energy curve sows a high value for less-than-average energy feature value (Lartillot, 2008)

Fraction of low energy frames

The fraction of the last 100 windows where the RMS value is less than the mean RMS of the last 100 windows. This can indicate how much of a signal section is quiet relative to the rest of the signal section (McKay, 2005).

1.2. Pitch

Pitch (Fo)

Pitch (as an audio feature) typically refers to the fundamental frequency of a monophonic sound signal and can be calculated using various different techniques. It is a subjective property of sound that can be used to order sounds from low to high and is typically related to the fundamental frequency (Tzanetakis, 2002). One of the methods employed in MARSYAS to estimate pitch uses the YIN algorithm, which is based on the autocorrelation method with a number of modifications that combine to prevent errors (de Cheveigné \& Kawahara, 2002).

Strongest frequency via FFT Maximum

An estimate of the strongest frequency component of a signal, in Hz , achieved via finding the FFT bin with the highest power (McKay, 2005).
1.3. Rhythm

Beat sum

This feature consists in the sum of all bins in the beat histogram. This is a good measure of the importance of regular beats in a signal (McKay, 2005).

Rhythmic fluctuation

One way to estimate the rhythmic content of a signal is based on spectrogram computation transformed by auditory modeling and then spectrum estimation in each band (Lartillot, 2008). The result of the three phases is illustrated in Figure 7:

Figure 7: Spectrum summary showing the global repartition of rhythmic periodicities

Strength of strongest beat

This feature measures how strong the strongest beat (the strongest beat in a signal is, in BPM, achieved by finding the highest bin in the beat histogram) is compared to other potential beats (McKay, 2005).

Tempo

This feature consists in the speed (or pace) of a given musical piece - in modern music is indicated in BPM. Its value is estimated by detecting periodicities from the onset detection curve, as exemplified in Figure 8 (Lartillot, 2008):

Figure 8: Tempo curve t (Lartillot, 2008)

Attack time

Attack time is the estimation of temporal duration for a signal to rise to its peak (e.g., in amplitude). One simple way of describing and compute this feature consists in estimating the attack phase temporal duration

Figure 9: Attack time example through temporal duration (Lartillot, 2008)

Attack slope

This feature can be calculated as a ratio between the magnitude difference at the beginning and the ending of the attack period, and the corresponding time difference (Figure 10) (Lartillot, 2008):

Figure 10: Example of attack slope, given by arrows (Lartillot, 2008)

Spectral roll off

One way to estimate the amount of high frequency in the signal consists in finding the frequency such that a certain fraction of the total energy is contained below that frequency. This ratio is typically fixed by default to 0.85 . An example of this is given in Figure 11 (Lartillot, 2008):

Figure 11: Example of spectral roll off point

High frequency energy (brightness)

This feature is achieved by fixing this time the cut-off frequency, and measuring the amount of energy above that frequency. An example (1500 Hz) is shown in Figure 12:

Figure 12: Example of high frequency energy (Lartillot, 2008)

Mel Frequency Cepstral Coefficients

MFCC returns a description of the spectral shape of the sound. The computation of the cepstral follows the scheme present in Figure 13 (Lartillot, 2008)

MFCC are perceptually motivated features that are also based on the Short-time Fourier Transform (STFT). After taking the logamplitude of the magnitude spectrum, the FFT bins are grouped and smoothed according to the perceptually motivated Mel-frequency scaling. Finally, in order to decorrelate the resulting feature vectors, a Discrete Cosine Transform (DCT) is performed. Although typically 13 coefficients are used for speech representation, it was found that the first five coefficients are adequate for music representation (Tzanetakis, 2002).

Linear Prediction Reflection Coefficients

Linear Prediction Reflection coefficients are used in speech research as an estimate of the speech vocal tract filter (Tzanetakis, 2002). They are also usually used in musical signals.

Sensory dissonance

Also known as roughness, this feature is related to the beating phenomenon whenever a pair of sinusoids is close in frequency. It can be estimated on the frequency ratio of each pair of sinusoids represented in Figure 14 (Lartillot, 2008):

Figure 14: A representation of roughness (Lartillot, 2008)

Spectral centroid

The spectral centroid is defined as the center of gravity of the magnitude spectrum of the STFT.
$M t[n]$ is the magnitude of the Fourier transform at frame t and frequency bin n. The centroid is a measure of spectral shape and higher centroid values are related to "brighter" textures with more high frequencies. The spectral centroid has been shown by user experiments to be an important perceptual attribute in the characterization of musical instrument timbre (Tzanetakis, 2002).

Inharmonicity

This feature measures the amount of partials that are not multiples of the fundamental frequency fo (Figure 15).

Figure 15: Graphical view for a given fundamental frequency $f 0$ and its multiples (Lartillot, 2008)

Spectral flux

It is defined as the squared difference between the normalized magnitudes of successive spectral distributions:
$N t[n], N t-1[n]$ stand for the normalized magnitude of the Fourier transform at the current frame t, and the previous frame $t-1$, respectively. This feature is a measure of the amount of local spectral change. It has also been shown by user experiments to be an important perceptual attribute in the characterization of musical instrument timbre (Tzanetakis, 2002).

Strongest frequency via spectral centroid

An estimate of the strongest frequency component of a signal, found via the spectral centroid (McKay, 2005).

Zero-crossing rate

Indicates the number of times the waveform changed sign in a window (the number of times the signal crosses the X -axis), it can be used as an indication of frequency as well as noisiness (McKay, 2005). Figure 16 exemplifies this feature (Lartillot, 2008):

Figure 16: Zero crossing rate example (Lartillot, 2008)
Zero-crossing derivative

This feature can be defined as the absolute value of the window to window change in zero crossings. It can also be considered an indication of change of frequency as well as noisiness (McKay, 2005).
1.5. Tonality

Tonal centroid

The Tonal Centroid is a six-dimensional feature vector based on the Harmonic Network or Tonnetz, which is a planar representation of pitch relations where pitch classeshaving close harmonic relations such as fifths, major/minor thirds have smaller Euclidean distances on the plane, represented in Figure 17 (Lee \& Slaney, 2007).

Figure 17: Visualization of the 6-D Tonal Space as three circles: fifths, minor thirds, and major thirds (from left to right) (Lee \& Slaney, 2007)
It can be seen in Figure 17 that numbers on the circles correspond to pitch classes and represent nearest neighbors in each circle. Tonal Centroid for A major triad (pitch class 9, 1, and 4) is shown at point A (Lee \& Slaney, 2007).

Harmonic change detection function

The Harmonic Change Detection function is the flux of the tonal centroid (Lartillot, 2008).

Key (tonal center positions)

The key feature gives a broad estimation of tonal center positions and their respective clarity, as seen in Figure 18 (Lartillot, 2008)

Figure 18: Key graphic example (Lartillot, 2008)

Modality

This feature returns the mode of a key (major or minor, for instance).

2. Musical content features

Musical content features are a set of both rhythmic and pitch content features introduced by George Tzanetakis (Tzanetakis, 2002). This set (and each of the 2 subsets) is based in features extracted previously.

Rhythmic content features

This subset is based on the BH (Beat Histogram) of a song:
\square Ao, A1: relative amplitude (divided by the sum of amplitudes) of the first, and second histogram peak;
\square RA: ratio of the amplitude of the second peak divided by the amplitude of the first peak;

- P1, P2: Period of the first, second peak in BPM;
\square SUM: overall sum of the histogram (indication of beat strength);

Pitch content features

The following features are computed from the Unfolded Histogram (UPH) and Folded Histogram (FPH) in order to represent pitch content:
\square FAO: Amplitude of maximum peak of the folded histogram. This corresponds to the most dominant pitch class of the song. For tonal music this peak will typically correspond to the tonic or dominant chord. This peak will be higher for songs that do not have many harmonic changes;

- UPo: Period of the maximum peak of the unfolded histogram. This corresponds to the octave range of the dominant musical pitch of the song;
- FPo: Period of the maximum peak of the folded histogram. This corresponds to the main pitch class of the song;

IPO1: Pitch interval between the two most prominent peaks of the folded histogram. This corresponds to the main tonal interval relation. For pieces with simple harmonic structure this feature will have value 1 or -1 corresponding to fifth or fourth interval (tonic-dominant);
\square SUM: The overall sum of the histogram. This is feature is a measure of the strength of the pitch detection;

3. Statistical features

Finally, it is important to underline that is possible to extract statistical information (typically first and second order statistics: e. g. mean and standard deviation) from almost every single feature, as well as higher-order statistics (like skewness, kurtosis, etc.).

This is the main reason for the higher number of features presented by jAudio compared to other frameworks like MARSYAS (as it will be discussed later on this document, sections 2.6.1. jAudio and 2.6.4. Frameworks comparison), since many of them are statistical features obtained from basic features (again, mean and standard deviation, for instance).

4. Support Vector Machines

This classifier uses a support vector algorithm that simply looks for the largest margin (distance) from the separating hyperplane to avoid overfitting as maximum as possible. The support vectors play a key role as the critical elements of the training set. If other training points are changed (or removed) and the training repeated, the same separating hyperplane would be found. All these concepts are visible in Figure 19: SVM example with optimal separating hyperplane Figure 19:

Figure 19: SVM example with optimal separating hyperplane (Ribeiro, 2009)
The separating hyperplane can be linear or non-linear, according to the problem to be solved. The SVM classifier is considered a good solution in what concerns to classification performance achieved / execution time rate, also due to its sophisticated kernel functions and possibility of multiclass classification (Ribeiro, 2009).

5. Euclidean distance in Thayer's mode

This distance metric was proposed in (Yang, Lin, Su, \& Chen, 2006) and basically considers that the similarity between two songs can be reached by the Euclidean distance of the songs (points represented as pair of coordinates, x and y) in the Thayer's model, arousal-valence plane.

The Euclidean distance (also known as the Pythagorean metric) is the most common distance metric used, since it is the "ordinary" distance between two points that one would measure with a ruler.

We'll now remember the formula that gives us the Euclidean distance between two points. The Euclidean distance between point p and point q is the length of the line segment. In Cartesian coordinates, if $p=(\mathrm{p} 1, \mathrm{p} 2, \ldots, \mathrm{pn})$ and $q=(\mathrm{q} 1, \mathrm{q} 2, \ldots, \mathrm{qn})$ are two points in Euclidean n space, then the distance from p to q is given by (Euclidean distance):

6. Existent frameworks and platforms

The most important and known platforms / frameworks available do perform feature extraction are now presented with more detail (jAudio, MARSYAS and MIRtoolbox).

6.1. jAudio

jAudio is a open source feature extraction system that can be used both with a GUI or in command line mode or as a library. jAudio uses a modular plugin interface that avoids core code modification or recompilation when new features are added.

One advantage of jAudio is automated "metafeature" extraction. Metafeatures are template-derived features that can be extracted from one or more other features. Examples of metafeatures implemented in jAudio include Running Mean, Running Standard Deviation and Derivative.

The software includes a wide set of features (28), which can be used with metafeatures and aggregators to expand this number, although a great part of this features are statistical results calculated from other basic features (mean, standard deviation, etc.). However, as mentioned
before, this framework (as it is written in Java) is slower and computationally heavy. A screenshot of the application is now presented in Figure 20 (jAudio):

Figure 20: jAudio screenshot, modified artificially to show two menus simultaneously (jAudio)

6.2. MARSYAS

MARSYAS is another open source software framework for audio processing with specific emphasis on MIR applications, being one of the first frameworks built in the area. It has been designed and written by George Tzanetakis, one the most well known and experienced names in the field, with help from students and researchers from around the world. MARSYAS has been used for a variety of projects in both academia and industry (Marsyas).

The basic goal of this framework is to provide a general, extensible and flexible architecture that allows easy experimentation with algorithms and provides fast performance that is useful in developing real time audio analysis and synthesis tools (Overview).

It is written in $\mathrm{C}++$ (with several algorithms) and offers excellent classification times (Audio Music Mood Classification Results), as mentioned earlier. Although it does not come with a GUI it has base support for integration with Qt. These two advantages were crucial for choosing MARSYAS as the framework to be used in this project.

The main disadvantage of this framework is the fact that it apparently has less implemented features than the other two. Although, this flaw can be surpassed with the implementation of the lacking features, if necessary.

4.6.3. MIRtoolbox

MIRtoolbox offers an integrated set of functions written in MATLAB, dedicated to the extraction from audio files of musical features, with the objective of offering an overview of computational approaches in the MIR area. The design is based on a modular framework: the different algorithms are decomposed into stages, formalized using a minimal set of elementary mechanisms. These building blocks form the basic vocabulary of the toolbox, which can then be freely articulated in new original ways. These elementary mechanisms integrate all the different variants proposed by alternative approaches that users can select and parameterize. This synthetic digest of feature extraction tools enables a capitalization of the originality offered by all the alternative strategies. Additionally to the basic computational processes, the toolbox also includes higher-level musical feature extraction tools, whose alternative strategies, and their multiple combinations, can be selected by the user (Lartillot, Toiviainen, \& Eerola, Department of Music: MIRtoolbox).

Briefly, it can be said that the main advantages of this toolbox are the integration with MATLAB (which can mean vast documentation, community help and in a sort of way ease of use) and the number of features implemented. However, the MATLAB dependency can also be a disadvantage, mainly because despite the toolbox is open source, MATLAB is not, and so dependency to the application is needed. Also, like jAudio, MATLAB is heavily based and implemented in the Java language, which makes it computationally heavy and slow when it comes to extract features / classify musical pieces.

6.4. Frameworks comparison

The three mentioned frameworks are now compared in what concerns to features, classifiers and distance metrics.

Features

Is now time to make a framework comparison (jAudio, MARSYAS and MIR toolbox and some papers / documentation) in what concerns to implemented features (Table 1).

Feature	Feature class	jAudio	MARSYAS	MIR toolbox	Others
Fraction Of Low Energy Frames	intensity	\checkmark			
Less-Than-Average Energy	intensity	\checkmark		\checkmark	

Root Mean Square Derivative	intensity	$\sqrt{ }$			
Root Mean Square	intensity	$\sqrt{ }$		\checkmark	
Root Mean Square Variability	intensity	\checkmark			
Pitch (Fo)	pitch		\checkmark	\checkmark	\checkmark
Strongest Frequency Via FFT Maximum	pitch	$\sqrt{ }$			
Beat Sum	rhythm	\checkmark	$\sqrt{ }$		
Rhythmic Fluctuation	rhythm			$\sqrt{ }$	\checkmark
Strength Of Strongest Beat	rhythm	$\sqrt{ }$		$\sqrt{ }$	
Tempo	rhythm	\checkmark		$\sqrt{ }$	\checkmark
Attack Slope	timbre			$\sqrt{ }$	
Attack Time	timbre			$\sqrt{ }$	
High Frequency Energy (Brightness)	timbre			$\sqrt{ }$	$\sqrt{ }$
Inharmonicity	timbre			$\sqrt{ }$	
Linear Prediction Reflection Coefficients	timbre	$\sqrt{ }$	15		
Mel-Frequency Cepstral Coefficients	timbre	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$
Sensory Dissonance	timbre			$\sqrt{ }$	$\sqrt{ }$
Spectral Centroid	timbre	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
Spectral Flux	timbre	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$
Spectral Peaks Variability (Irregularity)	timbre	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$
Spectral Roll Off	timbre	\checkmark	\checkmark	\checkmark	\checkmark
Strongest Frequency Via Spectral Centroid	timbre	$\sqrt{ }$			
Zero Crossing Rate	timbre	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
Zero Crossing Derivative	timbre	\checkmark	\checkmark		
Harmonic Change Detection Function	tonality			$\sqrt{ }$	
Key (Tonal Center Positions)	tonality			$\sqrt{ }$	
Modality	tonality			$\sqrt{ }$	
Tonal Centroid	tonality			\checkmark	
Musical Content Features	-		$\sqrt{ }$		

Table 1: List of features available in each framework (and papers)

Classification methods

Classfier	jAudio	MARSYAS	MIR toolbox
k-Nearest Neighbor		$\sqrt{ }$	$\sqrt{ }$

Gaussian Mixture Model		\checkmark	\checkmark
Support Vector Machines		\checkmark	

Table 2: Classification methods overview
15 Linear Prediction Reflection Coefficients are estimated based on Linear Prediction Cepstral Coefficients, which are supported by MARSYAS

Distance metrics

Metric	jAudio	MARSYAS	MIR toolbox	Others
Euclidean distance		\checkmark	\checkmark	
Manhattan distance			\checkmark	
Euclidean distance in Thayer's model16				\checkmark
Membership feature vector distance17				\checkmark

Table 3: Distance metrics overview

7. Test collection

The musical dataset that is to be used in the application to be developed was kindly provided by Yi-Hsuan Yang, one of the authors of (Yang, $\mathrm{Lin}, \mathrm{Su}, \&$ Chen, 2006), after a personal request. The dataset is the same used in the mentioned paper, and consists of 194 musical pieces from popular japanese, chinese and western albums. Also, two MATLAB .m files (one with the arousal values and the other with valence values for each song in the dataset) were provided.

The musical pieces have common properties: all of the 194 samples have 25 seconds length, and were converted to a uniform format ($22,050 \mathrm{~Hz}, 16$ bits, and mono channel PCM WAV) and normalized to the same volume level. The 25 second segment was manually chosen to be representative of the dominant mood in the song (mostly the chorus part) (Yang, Lin, Su, \& Chen, 2006).

It is important to notice that this is a provisory dataset, which can be modified and/or expanded in the future if proved necessary.

8. Followed approach

In this project, several approaches were studied and considered, some of them with similar aspects to this application main goal of this application: an automatic playlist generation system, based on mood analysis of a musical database
Options were made in order to achieve this, some by choice, others due to limitations, notably time constraints. As planned, Thayer's mood model, based on a continuous arousal-valence plan, was used.

Also as planned, feature extraction stage was developed using the MARSYAS framework. Although complex, poorly documented and sometimes unstable from version to version, this framework proved to be fast and powerful.

The approach developed in this thesis outputs a "continuous" classification, since it maps each song with a coordinate system (x, y), with values ranging from -1 to 1 in each axis, according to Thayer's model, as pointed out earlier. This implied training a regression model, since it's not a discrete classifier. To achieve this (and since MARSYAS only supports discrete classifiers), an additional classification library was used libSVM18, in conjunction with MARSYAS.

This way, after a train phase, similarity between two songs is calculated based on the Euclidean distance between the songs coordinates (points) in the Thayer's graphic model, as specified earlier in this document. This is done during the test phase and then playlist generation is achieved computing the closer songs to the one used as query. Both annotations and predicted values for arousal and valence coordinates in the test set are compared to evaluate the accuracy of the generated playlists.

- HEIRARCHICAL MUSIC MOOD DETECTION ALGORITHM
* Based on Thayer's Mood Model
* Used for classifying a music clip into either of the 4 categories: G1(Exuberance, Anxious),G2(Contentment \& depression).
- Algorithm:

1. Start.
2. Convert Music clip into uniform format.
3. Divide Music clip into plurality of frames.
4. Extract Audio features: Spectral features, Beat histogram, Mel-frequency coefficients.
5. Calculate average frame intensities.
6. Classify Music clip into a mood group based on intensity feature.
a) Determine probabilities of $1^{\text {st }} \mathrm{n} 2^{\text {nd }}$ group based on intensity.
b) If $\mathrm{P}(\mathrm{G} 1)>\mathrm{P}(\mathrm{G} 2)$ then select G .

Else select G2.

7. Classify Music clip into exact Music mood based on timbral, pitch, tonal \& rhythm features.
a) Determine probabilities of $1^{\text {st }} \mathrm{n} 2^{\text {nd }}$ group based on intensity.
b) If $\mathrm{P}(\mathrm{M} 1)>\mathrm{P}(\mathrm{M} 2)$ then select M1

Else select M2.

4.2.LYRIC BASED APPROACH:

4.2.1 Translating the Words in ANEW

For analyzing the emotion of Chinese song lyrics, an af-fective lexicon called ANCW (Affective Norms for Chi-nese Words) is built from the Bradley's ANEW [4]. The ANEW list was constructed during psycholinguistic exper-iments and contains 1,031 words of all four open classes. As described in it, humans assigned scores to each word according to dimensions such as pleasure, arousal, and dominance. The emotional words in ANEW were translated into Chinese and these constitute the basis of ANCW. 10 people took part in the translation work. Each of them was asked to translate all the words in ANEW into Chi-nese words that he/she thought to be unambiguous and used often in lyrics. The Chinese word that was chosen by the largest number of translators for an ANEW word was picked and added into ANCW. A word may have more than one part of speech(POS), namely performs different functions in different context, and each may have a differ-ent emotion. Therefore, the part of speech of an ANCW word must be indicated. The words, the emotions of which in English culture are different from that in Chinese cul-ture, are simply excluded from ANCW. To see if ANCW is consistent with ANEW, we use Meyers's method [10] to extend ANCW based on a corpus of People's Daily and the extended ANCW includes 18819 words. Meyers extends ANEW to a word list including 73157 words. The distri-butions of the emotion classes of the words in the extended ANCW is illustrated in Figure 3. We find that the emo-tion class distribution of the words in the extended ANCW is similar to the distribution of the words in the extended ANEW. This proves that ANCW is consistent with ANEW and is reasonable.

Table 1. The origins of the words in ANCW

Origin	Translated from ANEW	Synonym s	Added by lyrics corpus
\# of words	985	2995	71

4.2.2. Extending ANEW

However, the words translated from ANEW are not suffi-cient for the purpose of detecting emotions of lyrics so it is necessary to extend ANCW. We extend ANCW in two ways. In one way, with each word in ANCW as a seed, we find out all of its synonyms in TONG YI CI CI LIN ${ }^{2}$. Then, only synonyms with the same part of speech as that of their seed are added to ANCW. In the other way, we extract all constructions of apposition and coordination in a corpus of lyrics(containing 1800 lyrics) by an off-the-shelf natural language processing tool [8]. If either word in such a construction is in ANCW, its counterpart is added to ANCW. The origins of the words in ANCW is shown in Table 1 and valence-arousal distribution of the words in ANCW is illustrated in Figure 4. To indi-cate whether a word in ANCW is a translated word from ANEW or a later added word, we attach an origin property to each word. Therefore, terms in the affect lexicon have the following form: < word, origin, POS, valence, arousal >

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
abduction	621	2.76	(2.06)	5.53	(2.43)	3.49	(2.38)	1	anguished	19	2.12	(1.56)	5.33	(2.69)	3.45	(2.37)	2
abortion	622	3.50	(2.30)	5.39	(2.80)	4.59	(2.54)	6	ankle	638	5.27	(1.54)	4.16	(2.03)	4.77	(1.74)	8
absurd	623	4.26	(1.82)	4.36	(2.20)	4.73	(1.72)	17	annoy	20	2.74	(1.81)	6.49	(2.17)	5.09	(2.04)	2
abundance	624	6.59	(2.01)	5.51	(2.63)	5.80	(2.16)	13	answer	639	6.63	(1.68)	5.41	(2.43)	5.85	(1.88)	152
abuse	1	1.80	(1.23)	6.83	(2.70)	3.69	(2.94)	18	anxious	21	4.81	(1.98)	6.92	(1.81)	5.33	(1.82)	29
acceptance	625	7.98	(1.42)	5.40	(2.70)	6.64	(1.91)	49	applause	640	7.50	(1.50)	5.80	(2.79)	6.48	(2.11)	14
accident	2	2.05	(1.19)	6.26	(2.87)	3.76	(2.22)	33	appliance	641	5.10	(1.21)	4.05	(2.06)	5.05	(1.34)	5
ace	626	6.88	(1.93)	5.50	(2.66)	6.39	(2.31)	15	arm	642	5.34	(1.82)	3.59	(2.40)	5.07	(1.50)	94
ache	627	2.46	(1.52)	5.00	(2.45)	3.54	(1.73)	4	army	23	4.72	(1.75)	5.03	(2.03)	5.03	(2.45)	132
achievement	3	7.89	(1.38)	5.53	(2.81)	6.56	(2.35)	65	aroused	24	7.97	(1.00)	6.63	(2.70)	6.14	(1.97)	20
activate	4	5.46	(0.98)	4.86	(2.56)	5.43	(1.84)	2	arrogant	25	3.69	(2.40)	5.65	(2.23)	5.14	(2.71)	2
addict	581	2.48	(2.08)	5.66	(2.26)	3.72	(2.54)	1	art	643	6.68	(2.10)	4.86	(2.88)	5.30	(2.33)	208
addicted	628	2.51	(1.42)	4.81	(2.46)	3.46	(2.23)	3	assassin	26	3.09	(2.09)	6.28	(2.53)	4.33	(2.68)	6
admired	5	7.74	(1.84)	6.11	(2.36)	7.53	(1.94)	17	assault	27	2.03	(1.55)	7.51	(2.28)	3.94	(3.10)	15
adorable	6	7.81	(1.24)	5.12	(2.71)	5.74	(2.48)	3	astonished	28	6.56	(1.61)	6.58	(2.22)	5.16	(1.79)	6
adult	546	6.49	(1.50)	4.76	(1.95)	5.75	(2.21)	25	astronaut	501	6.66	(1.60)	5.28	(2.11)	5.20	(1.95)	2
advantage	629	6.95	(1.85)	4.76	(2.18)	6.36	(2.23)	73	athletics	644	6.61	(2.08)	6.10	(2.29)	6.12	(2.12)	9
adventure	630	7.60	(1.50)	6.98	(2.15)	6.46	(1.67)	14	autumn	29	6.30	(2.14)	4.51	(2.50)	5.15	(1.85)	22
affection	7	8.39	(0.86)	6.21	(2.75)	6.08	(2.22)	18	avalanche	645	3.29	(1.95)	5.54	(2.37)	3.61	(2.00)	1
afraid	8	2.00	(1.28)	6.67	(2.54)	3.98	(2.63)	57	avenue	646	5.50	(1.37)	4.12	(2.01)	5.40	(1.53)	46
aggressive	9	5.10	(1.68)	5.83	(2.33)	5.59	(2.40)	17	awed	30	6.70	(1.38)	5.74	(2.31)	5.30	(2.03)	5
agility	22	6.46	(1.57)	4.85	(1.80)	5.87	(1.52)	3	baby	31	8.22	(1.20)	5.53	(2.80)	5.00	(2.80)	62
agony	10	2.43	(2.17)	6.06	(2.67)	4.02	(2.49)	9	bake	647	6.17	(1.71)	5.10	(2.30)	5.49	(1.88)	12
agreement	631	7.08	(1.59)	5.02	(2.24)	6.22	(1.85)	106	bandage	648	4.54	(1.75)	3.90	(2.07)	4.52	(1.89)	4
air	632	6.34	(1.56)	4.12	(2.30)	5.10	(1.56)	257	bankrupt	32	2.00	(1.31)	6.21	(2.79)	3.27	(2.39)	5
alcoholic	582	2.84	(2.34)	5.69	(2.36)	4.45	(2.56)	3	banner	649	5.40	(0.83)	3.83	(1.95)	4.80	(1.57)	8
alert	11	6.20	(1.76)	6.85	(2.53)	5.96	(2.24)	33	bar	650	6.42	(2.05)	5.00	(2.83)	5.47	(1.94)	82
alien	633	5.60	(1.82)	5.45	(2.15)	4.64	(2.07)	16	barrel	651	5.05	(1.46)	3.36	(2.28)	4.89	(1.57)	24
alimony	634	3.95	(2.00)	4.30	(2.29)	4.63	(2.30)	2	basket	547	5.45	(1.15)	3.63	(2.02)	5.76	(1.45)	17
alive	635	7.25	(2.22)	5.50	(2.74)	6.39	(2.15)	57	bastard	33	3.36	(2.16)	6.07	(2.15)	4.17	(2.40)	12
allergy	636	3.07	(1.64)	4.64	(2.34)	3.21	(1.77)	1	bath	502	7.33	(1.45)	4.16	(2.31)	6.41	(1.87)	26
alley	637	4.48	(1.97)	4.91	(2.42)	4.00	(1.70)	8	bathroom	548	5.55	(1.36)	3.88	(1.72)	5.65	(1.59)	18
alone	12	2.41	(1.77)	4.83	(2.66)	3.70	(2.42)	195	bathtub	652	6.69	(1.57)	4.36	(2.59)	5.76	(1.76)	4
aloof	13	4.90	(1.92)	4.28	(2.10)	4.69	(1.92)	5	beach	34	8.03	(1.59)	5.53	(3.07)	5.44	(2.52)	61
ambition	14	7.04	(1.98)	5.61	(2.92)	6.93	(2.07)	19	beast	653	4.23	(2.41)	5.57	(2.61)	4.89	(2.29)	7
ambulance	15	2.47	(1.50)	7.33	(1.96)	3.22	(2.29)	6	beautiful	654	7.60	(1.64)	6.17	(2.34)	6.29	(1.81)	127
angel	16	7.53	(1.58)	4.83	(2.63)	4.97	(2.34)	18	beauty	35	7.82	(1.16)	4.95	(2.57)	5.53	(2.10)	71
anger	17	2.34	(1.32)	7.63	(1.91)	5.50	(2.82)	48	bed	549	7.51	(1.38)	3.61	(2.56)	6.88	(1.78)	127
angry	18	2.85	(1.70)	7.17	(2.07)	5.55	(2.74)	45	bees	583	3.20	(2.07)	6.51	(2.14)	4.16	(2.11)	15

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valen Mean		Arou Mean		Dom Mean	$\begin{aligned} & \text { inance } \\ & \text { (SD) } \end{aligned}$	Word Frequency
beggar	36	3.22	(2.02)	4.91	(2.45)	4.09	(2.38)	2	brutal	53	2.80	(1.90)	6.60	(2.36)	4.59	(2.70)	7
bench	655	4.61	(1.40)	3.59	(2.07)	4.68	(1.38)	35	building	550	5.29	(1.15)	3.92	(1.94)	5.25	(1.57)	160
bereavement	656	4.57	(1.70)	4.20	(2.15)	4.33	(1.73)	4	bullet	673	3.29	(2.06)	5.33	(2.48)	3.90	(2.61)	28
betray	37	1.68	(1.02)	7.24	(2.06)	4.92	(2.97)	4	bunny	54	7.24	(1.32)	4.06	(2.61)	4.97	(2.18)	1
beverage	657	6.83	(1.48)	5.21	(2.46)	5.63	(2.17)	5	burdened	55	2.50	(1.32)	5.63	(2.07)	5.03	(2.35)	4
bird	38	7.27	(1.36)	3.17	(2.23)	4.42	(2.26)	31	burial	56	2.05	(1.41)	5.08	(2.40)	3.55	(1.95)	11
birthday	39	7.84	(1.92)	6.68	(2.11)	5.89	(2.61)	18	burn	586	2.73	(1.72)	6.22	(1.91)	4.22	(1.83)	15
black	543	5.39	(1.80)	4.61	(2.24)	5.14	(1.79)	203	bus	541	4.51	(1.57)	3.55	(1.80)	4.84	(1.75)	34
blackmail	40	2.95	(1.95)	6.03	(2.70)	3.54	(2.67)	2	busybody	674	5.17	(2.02)	4.84	(2.41)	5.45	(1.97)	
bland	658	4.10	(1.08)	3.29	(1.89)	4.88	(1.27)	3	butter	57	5.33	(1.20)	3.17	(1.84)	4.67	(1.69)	27
blase	41	4.89	(1.16)	3.94	(1.76)	4.57	(1.44)	7	butterfly	58	7.17	(1.20)	3.47	(2.39)	4.65	(2.27)	2
blasphemy	659	3.75	(2.26)	4.93	(2.34)	4.75	(1.59)	4	cabinet	675	5.05	(0.31)	3.43	(1.85)	4.73	(1.66)	17
bless	42	7.19	(1.69)	4.05	(2.59)	5.52	(2.22)	9	cake	59	7.26	(1.27)	5.00	(2.37)	5.16	(2.05)	9
blind	43	3.05	(1.99)	4.39	(2.36)	3.28	(1.91)	47	cancer	60	1.50	(0.85)	6.42	(2.83)	3.42	(2.99)	25
bliss	660	6.95	(2.24)	4.41	(2.95)	6.12	(2.15)	4	candy	61	6.54	(2.09)	4.58	(2.40)	5.33	(1.91)	16
blister	661	2.88	(1.75)	4.10	(2.34)	3.98	(1.90)	3	cane	677	4.00	(1.80)	4.20	(1.93)	4.27	(1.95)	12
blond	662	6.43	(2.04)	5.07	(2.70)	5.74	(1.67)	11	cannon	678	4.90	(2.20)	4.71	(2.84)	5.17	(2.29)	7
bloody	584	2.90	(1.98)	6.41	(2.00)	3.96	(1.89)	8	capable	62	7.16	(1.39)	5.08	(2.07)	6.47	(1.94)	66
blossom	44	7.26	(1.18)	5.03	(2.65)	5.53	(2.21)	7	car	551	7.73	(1.63)	6.24	(2.04)	6.98	(2.06)	274
blubber	663	3.52	(1.99)	4.57	(2.38)	3.86	(1.97)	1	carcass	679	3.34	(1.92)	4.83	(2.07)	4.90	(1.79)	7
blue	544	6.76	(1.78)	4.31	(2.20)	5.63	(1.64)	143	carefree	63	7.54	(1.38)	4.17	(2.84)	5.78	(2.50)	9
board	664	4.82	(1.23)	3.36	(2.12)	4.98	(1.77)	239	caress	64	7.84	(1.16)	5.14	(3.00)	5.83	(2.13)	1
body	665	5.55	(2.37)	5.52	(2.63)	5.34	(2.12)	276	cash	503	8.37	(1.00)	7.37	(2.21)	6.96	(2.39)	36
bold	45	6.80	(1.61)	5.60	(2.21)	6.67	(1.81)	21	casino	680	6.81	(1.66)	6.51	(2.12)	5.12	(2.15)	2
bomb	46	2.10	(1.19)	7.15	(2.40)	4.54	(2.88)	36	cat	504	5.72	(2.43)	4.38	(2.24)	6.16	(2.05)	
book	47	5.72	(1.54)	4.17	(2.49)	5.30	(2.05)	193	cell	587	3.82	(1.70)	4.08	(2.19)	4.12	(2.13)	65
bored	48	2.95	(1.35)	2.83	(2.31)	4.11	(1.70)	14	cellar	681	4.32	(1.68)	4.39	(2.33)	4.66	(1.61)	26
bottle	666	6.15	(1.49)	4.79	(2.44)	4.78	(1.65)	76	cemetery	65	2.63	(1.40)	4.82	(2.66)	4.27	(2.14)	15
bouquet	667	7.02	(1.84)	5.46	(2.47)	6.15	(1.80)	4	chair	66	5.08	(0.98)	3.15	(1.77)	4.56	(1.60)	66
bowl	49	5.33	(1.33)	3.47	(2.12)	4.69	(1.67)	23	champ	682	7.18	(1.97)	6.00	(2.43)	6.77	(2.00)	1
boxer	585	5.51	(1.80)	5.12	(2.26)	5.10	(1.64)	1	champion	67	8.44	(0.90)	5.85	(3.15)	6.50	(2.85)	23
boy	50	6.32	(1.60)	4.58	(2.37)	5.34	(2.20)	242	chance	683	6.02	(1.77)	5.38	(2.58)	4.64	(1.93)	131
brave	668	7.15	(1.64)	6.15	(2.45)	7.22	(1.86)	24	chaos	684	4.17	(2.36)	6.67	(2.06)	3.86	(1.95)	17
breast	51	6.50	(1.78)	5.37	(2.39)	5.39	(2.27)	11	charm	68	6.77	(1.58)	5.16	(2.25)	5.57	(2.25)	26
breeze	669	6.85	(1.71)	4.37	(2.32)	5.54	(1.67)	14	cheer	69	8.10	(1.17)	6.12	(2.45)	6.00	(2.06)	8
bride	670	7.34	(1.71)	5.55	(2.74)	5.74	(2.36)	33	child	70	7.08	(1.98)	5.55	(2.29)	5.10	(2.30)	213
bright	671	7.50	(1.55)	5.40	(2.33)	6.34	(1.82)	87	chin	685	5.29	(1.27)	3.31	(1.98)	5.26	(1.48)	27
broken	672	3.05	(1.92)	5.43	(2.42)	4.14	(1.62)	63	chocolate	505	6.88	(1.89)	5.29	(2.55)	5.18	(1.97)	9
brother	52	7.11	(2.17)	4.71	(2.68)	5.12	(2.31)	73	christmas	686	7.80	(1.55)	6.27	(2.56)	5.37	(2.09)	27

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
church	71	6.28	(2.31)	4.34	(2.45)	5.00	(2.42)	348	cozy	88	7.39	(1.53)	3.32	(2.28)	4.89	(2.28)	1
circle	687	5.67	(1.26)	3.86	(2.13)	5.03	(1.46)	60	crash	89	2.31	(1.44)	6.95	(2.44)	3.44	(2.21)	20
circus	72	7.30	(1.84)	5.97	(2.59)	5.39	(2.25)	7	crime	704	2.89	(2.06)	5.41	(2.69)	4.12	(2.24)	34
city	73	6.03	(1.37)	5.24	(2.53)	5.74	(2.08)	393	criminal	705	2.93	(1.66)	4.79	(2.51)	3.34	(1.73)	24
cliff	553	4.67	(2.08)	6.25	(2.15)	4.35	(2.11)	11	crisis	706	2.74	(2.23)	5.44	(3.07)	3.60	(2.47)	82
clock	688	5.14	(1.54)	4.02	(2.54)	4.67	(1.97)	20	crown	90	6.58	(1.42)	4.28	(2.53)	6.06	(2.15)	19
clothing	74	6.54	(1.85)	4.78	(2.88)	5.33	(2.14)	20	crucify	91	2.23	(1.72)	6.47	(2.47)	3.74	(2.48)	2
clouds	533	6.18	(2.18)	3.30	(2.08)	5.22	(1.66)	38	crude	707	3.12	(1.65)	5.07	(2.37)	4.27	(1.94)	15
clumsy	689	4.00	(2.22)	5.18	(2.40)	3.86	(1.79)	6	cruel	92	1.97	(1.67)	5.68	(2.65)	4.24	(2.84)	15
coarse	690	4.55	(1.42)	4.21	(1.84)	5.00	(1.43)	10	crushed	93	2.21	(1.74)	5.52	(2.87)	3.36	(2.69)	10
coast	691	5.98	(1.86)	4.59	(2.31)	5.67	(1.71)	61	crutch	708	3.43	(1.62)	4.14	(2.05)	3.91	(1.79)	1
cockroach	75	2.81	(2.11)	6.11	(2.78)	4.74	(2.58)	2	cuddle	94	7.72	(1.92)	4.40	(2.67)	5.85	(2.42)	
coffin	76	2.56	(1.96)	5.03	(2.79)	4.08	(2.54)	7	cuisine	709	6.64	(1.48)	4.39	(1.99)	5.41	(1.19)	1
coin	692	6.02	(1.96)	4.29	(2.48)	5.66	(1.68)	10	curious	95	6.08	(1.63)	5.82	(1.64)	5.42	(1.60)	46
cold	693	4.02	(1.99)	5.19	(2.23)	4.69	(1.73)	171	curtains	710	4.83	(0.83)	3.67	(1.83)	5.05	(1.56)	8
color	694	7.02	(1.57)	4.73	(2.64)	6.17	(1.82)	141	custom	96	5.85	(1.53)	4.66	(2.12)	5.00	(1.87)	14
column	695	5.17	(0.85)	3.62	(1.91)	4.81	(1.58)	71	cut	711	3.64	(2.08)	5.00	(2.32)	4.70	(1.98)	192
comedy	77	8.37	(0.94)	5.85	(2.81)	5.44	(2.08)	39	cute	97	7.62	(1.01)	5.53	(2.71)	4.86	(2.32)	5
comfort	696	7.07	(2.14)	3.93	(2.85)	5.70	(2.05)	43	cyclone	98	3.60	(2.38)	6.36	(2.89)	4.89	(2.56)	
computer	552	6.24	(1.61)	4.75	(1.93)	5.29	(1.99)	13	dagger	99	3.38	(1.77)	6.14	(2.64)	4.52	(2.27)	1
concentrate	78	5.20	(1.28)	4.65	(2.13)	4.97	(1.75)	11	damage	712	3.05	(1.65)	5.57	(2.26)	3.88	(1.86)	33
confident	79	7.98	(1.29)	6.22	(2.41)	7.68	(1.94)	16	dancer	507	7.14	(1.56)	6.00	(2.20)	6.02	(1.93)	31
confused	80	3.21	(1.51)	6.03	(1.88)	4.24	(1.91)	44	danger	713	2.95	(2.22)	7.32	(2.07)	3.59	(2.31)	70
consoled	81	5.78	(1.64)	4.53	(2.22)	4.44	(1.84)	2	dark	714	4.71	(2.36)	4.28	(2.21)	4.84	(2.15)	185
contempt	82	3.85	(2.13)	5.28	(2.04)	5.13	(1.73)	15	dawn	715	6.16	(2.33)	4.39	(2.81)	5.16	(2.23)	28
contents	83	4.89	(0.89)	4.32	(2.14)	4.85	(1.49)	16	daylight	716	6.80	(2.17)	4.77	(2.50)	5.48	(2.14)	15
context	84	5.20	(1.38)	4.22	(2.24)	5.17	(1.39)	2	dazzle	717	7.29	(1.09)	6.33	(2.02)	5.62	(1.81)	1
controlling	85	3.80	(2.25)	6.10	(2.19)	5.17	(3.15)	23	dead	588	1.94	(1.76)	5.73	(2.73)	2.84	(2.32)	174
cook	697	6.16	(1.89)	4.44	(1.96)	5.14	(1.49)	47	death	100	1.61	(1.40)	4.59	(3.07)	3.47	(2.50)	277
cord	698	5.10	(1.09)	3.54	(2.09)	5.00	(1.22)	6	debt	101	2.22	(1.17)	5.68	(2.74)	3.02	(2.16)	13
cork	699	5.22	(1.13)	3.80	(2.18)	4.98	(1.04)	9	deceit	718	2.90	(1.63)	5.68	(2.46)	3.95	(2.12)	2
corner	700	4.36	(1.21)	3.91	(1.92)	4.12	(1.66)	115	decompose	102	3.20	(1.81)	4.65	(2.39)	4.02	(1.91)	1
corpse	86	2.18	(1.48)	4.74	(2.94)	3.59	(2.44)	7	decorate	719	6.93	(1.30)	5.14	(2.39)	6.05	(1.86)	2
corridor	701	4.88	(1.14)	3.63	(2.41)	5.00	(1.48)	17	defeated	103	2.34	(1.66)	5.09	(3.00)	3.11	(2.34)	15
corrupt	702	3.32	(2.32)	4.67	(2.35)	4.64	(2.30)	8	defiant	104	4.26	(2.12)	6.10	(2.51)	5.77	(2.40)	3
cottage	87	6.45	(1.52)	3.39	(2.54)	5.39	(1.78)	19	deformed	720	2.41	(1.66)	4.07	(2.34)	3.95	(2.18)	
couple	506	7.41	(1.97)	6.39	(2.31)	6.02	(2.28)	122	delayed	721	3.07	(1.74)	5.62	(2.39)	3.64	(1.94)	25
cow	554	5.57	(1.53)	3.49	(2.13)	5.32	(1.61)	29	delight	105	8.26	(1.04)	5.44	(2.88)	5.79	(2.24)	29
coward	703	2.74	(1.64)	4.07	(2.19)	2.83	(1.61)	8	demon	106	2.11	(1.56)	6.76	(2.68)	4.89	(2.89)	9

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
dentist	589	4.02	(2.23)	5.73	(2.13)	3.80	(2.16)	12	dreadful	131	2.26	(1.91)	5.84	(2.62)	4.10	(2.36)	10
depressed	107	1.83	(1.42)	4.72	(2.95)	2.74	(2.13)	11	dream	132	6.73	(1.75)	4.53	(2.72)	5.53	(1.98)	64
depression	108	1.85	(1.67)	4.54	(3.19)	2.91	(2.27)	24	dreary	731	3.05	(1.58)	2.98	(2.18)	3.81	(1.64)	6
derelict	722	4.28	(1.84)	4.10	(1.94)	4.78	(1.56)	1	dress	133	6.41	(1.34)	4.05	(1.89)	5.00	(1.89)	67
deserter	109	2.45	(1.80)	5.50	(2.55)	3.77	(2.29)		drown	591	1.92	(1.48)	6.57	(2.33)	2.86	(1.99)	3
desire	508	7.69	(1.39)	7.35	(1.76)	6.49	(1.83)	79	dummy	732	3.38	(1.70)	4.35	(2.25)	3.67	(2.02)	3
despairing	110	2.43	(1.47)	5.68	(2.37)	3.43	(2.11)	4	dump	733	3.21	(1.87)	4.12	(2.36)	3.83	(1.87)	4
despise	111	2.03	(1.38)	6.28	(2.43)	4.72	(2.80)	7	dustpan	555	3.98	(1.68)	3.43	(2.00)	5.45	(1.81)	
destroy	112	2.64	(2.03)	6.83	(2.38)	4.94	(2.86)	48	earth	134	7.15	(1.67)	4.24	(2.49)	5.61	(2.30)	150
destruction	723	3.16	(2.44)	5.82	(2.71)	3.93	(2.29)	38	easy	734	7.10	(1.91)	4.48	(2.82)	7.00	(1.63)	125
detached	113	3.86	(1.88)	4.26	(2.57)	3.63	(2.15)	12	easygoing	135	7.20	(1.50)	4.30	(2.52)	5.25	(1.75)	1
detail	724	5.55	(1.58)	4.10	(2.24)	5.21	(1.60)	72	eat	136	7.47	(1.73)	5.69	(2.51)	5.60	(2.12)	61
detest	114	2.17	(1.30)	6.06	(2.39)	5.83	(2.60)	1	ecstasy	735	7.98	(1.52)	7.38	(1.92)	6.68	(2.08)	6
devil	115	2.21	(1.99)	6.07	(2.61)	5.35	(2.75)	25	education	137	6.69	(1.77)	5.74	(2.46)	6.15	(2.35)	214
devoted	116	7.41	(1.37)	5.23	(2.21)	6.18	(2.36)	51	egg	736	5.29	(1.82)	3.76	(2.39)	4.49	(2.16)	12
diamond	117	7.92	(1.20)	5.53	(2.96)	5.54	(2.28)	8	elated	138	7.45	(1.77)	6.21	(2.30)	5.53	(2.35)	3
dignified	118	7.10	(1.26)	4.12	(2.29)	6.12	(2.40)	7	elbow	737	5.12	(0.92)	3.81	(2.14)	4.88	(1.52)	10
dinner	509	7.16	(1.50)	5.43	(2.14)	6.10	(1.87)	91	elegant	139	7.43	(1.26)	4.53	(2.65)	5.95	(2.09)	14
diploma	119	8.00	(1.39)	5.67	(2.80)	6.76	(2.50)		elevator	738	5.44	(1.18)	4.16	(1.99)	4.32	(1.69)	12
dirt	725	4.17	(1.77)	3.76	(2.26)	4.83	(1.82)	43	embarrassed	140	3.03	(1.85)	5.87	(2.55)	2.87	(1.99)	8
dirty	590	3.08	(2.05)	4.88	(2.29)	4.70	(2.12)	36	embattled	141	4.39	(1.63)	5.36	(2.37)	4.81	(1.79)	1
disappoint	120	2.39	(1.44)	4.92	(2.64)	3.29	(2.32)		employment	147	6.47	(1.81)	5.28	(2.12)	5.73	(2.08)	47
disaster	121	1.73	(1.13)	6.33	(2.70)	3.52	(2.42)	26	engaged	143	8.00	(1.38)	6.77	(2.07)	6.49	(2.22)	47
discomfort	726	2.19	(1.23)	4.17	(2.44)	3.86	(2.26)	7	engine	148	5.20	(1.18)	3.98	(2.33)	5.00	(1.77)	50
discouraged	122	3.00	(2.16)	4.53	(2.11)	3.61	(2.01)	15	enjoyment	145	7.80	(1.20)	5.20	(2.72)	6.46	(1.77)	21
disdainful	123	3.68	(1.90)	5.04	(2.14)	4.55	(1.92)	2	ennui	146	5.09	(1.76)	4.40	(2.33)	4.67	(1.80)	
disgusted	124	2.45	(1.41)	5.42	(2.59)	4.34	(1.94)	6	enraged	149	2.46	(1.65)	7.97	(2.17)	6.33	(2.92)	1
disloyal	125	1.93	(1.61)	6.56	(2.21)	3.79	(2.75)	2	erotic	512	7.43	(1.53)	7.24	(1.97)	6.39	(2.16)	8
displeased	126	2.79	(2.23)	5.64	(2.48)	4.19	(2.19)	7	errand	150	4.58	(1.74)	3.85	(1.92)	4.78	(1.51)	7
distressed	127	1.94	(1.10)	6.40	(2.38)	3.76	(2.41)	4	event	740	6.21	(1.63)	5.10	(2.40)	5.52	(1.57)	81
disturb	727	3.66	(2.00)	5.80	(2.39)	4.55	(1.90)	10	evil	741	3.23	(2.64)	6.39	(2.44)	5.25	(2.60)	72
diver	510	6.45	(1.55)	5.04	(2.10)	5.04	(1.91)	1	excellence	151	8.38	(0.96)	5.54	(2.67)	7.28	(2.32)	15
divorce	128	2.22	(1.88)	6.33	(2.71)	3.26	(2.24)	29	excitement	152	7.50	(2.20)	7.67	(1.91)	6.18	(2.17)	32
doctor	129	5.20	(2.54)	5.86	(2.70)	4.89	(2.75)	100	excuse	153	4.05	(1.41)	4.48	(2.29)	4.07	(2.10)	27
dog	511	7.57	(1.66)	5.76	(2.50)	6.25	(2.10)	75	execution	154	2.37	(2.06)	5.71	(2.74)	4.11	(2.66)	15
doll	728	6.09	(1.96)	4.24	(2.43)	4.61	(2.07)	10	exercise	155	7.13	(1.58)	6.84	(2.06)	5.68	(2.44)	58
dollar	729	7.47	(1.72)	6.07	(2.67)	6.33	(2.42)	46	fabric	742	5.30	(1.20)	4.14	(1.98)	5.03	(1.61)	15
door	130	5.13	(1.44)	3.80	(2.29)	4.69	(1.72)	312	face	556	6.39	(1.60)	5.04	(2.18)	5.67	(1.58)	371
dove	730	6.90	(1.54)	3.79	(2.28)	5.48	(1.70)	4	failure	156	1.70	(1.07)	4.95	(2.81)	2.40	(2.18)	89

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
fall	743	4.09	(2.21)	4.70	(2.48)	4.00	(2.15)	147	friend	174	7.74	(1.24)	5.74	(2.57)	6.74	(1.89)	133
FALSE	744	3.27	(1.40)	3.43	(2.09)	4.10	(1.56)	29	friendly	175	8.43	(1.08)	5.11	(2.96)	5.92	(2.42)	61
fame	157	7.93	(1.29)	6.55	(2.46)	6.85	(2.14)	18	frigid	758	3.50	(1.85)	4.75	(2.56)	4.27	(1.98)	5
family	158	7.65	(1.55)	4.80	(2.71)	6.00	(1.87)	331	frog	176	5.71	(1.74)	4.54	(2.03)	5.34	(1.96)	1
famous	745	6.98	(2.07)	5.73	(2.68)	6.32	(2.18)	89	frustrated	177	2.48	(1.64)	5.61	(2.76)	3.50	(2.12)	10
fantasy	746	7.41	(1.90)	5.14	(2.82)	6.43	(2.05)	14	fun	759	8.37	(1.11)	7.22	(2.01)	6.80	(1.85)	44
farm	557	5.53	(1.85)	3.90	(1.95)	5.59	(1.81)	125	funeral	178	1.39	(0.87)	4.94	(3.21)	2.97	(2.55)	33
fascinate	159	7.34	(1.68)	5.83	(2.73)	6.15	(1.89)	3	fungus	179	3.06	(1.75)	4.68	(2.33)	4.06	(1.94)	2
fat	160	2.28	(1.92)	4.81	(2.80)	4.47	(3.06)	60	fur	180	4.51	(1.88)	4.18	(2.44)	4.32	(1.97)	13
father	161	7.08	(2.20)	5.92	(2.60)	5.63	(2.89)	383	game	760	6.98	(1.97)	5.89	(2.37)	5.70	(1.65)	123
fatigued	162	3.28	(1.43)	2.64	(2.19)	3.78	(1.97)	3	gangrene	181	2.28	(1.91)	5.70	(2.96)	3.36	(2.34)	
fault	747	3.43	(1.38)	4.07	(1.69)	4.02	(1.66)	22	garbage	182	2.98	(1.96)	5.04	(2.50)	4.24	(2.02)	7
favor	748	6.46	(1.52)	4.54	(1.86)	5.67	(1.76)	78	garden	761	6.71	(1.74)	4.39	(2.35)	6.02	(1.71)	60
fear	592	2.76	(2.12)	6.96	(2.17)	3.22	(2.20)	127	garment	762	6.07	(1.61)	4.49	(2.50)	5.30	(1.96)	6
fearful	163	2.25	(1.18)	6.33	(2.28)	3.64	(2.18)	13	garter	534	6.22	(1.59)	5.47	(2.15)	5.82	(1.62)	2
feeble	164	3.26	(1.47)	4.10	(2.07)	2.71	(1.64)	8	gender	763	5.73	(1.55)	4.38	(2.13)	5.60	(1.84)	2
festive	749	7.30	(2.26)	6.58	(2.29)	5.77	(2.34)	2	gentle	183	7.31	(1.30)	3.21	(2.57)	5.10	(2.16)	27
fever	750	2.76	(1.64)	4.29	(2.31)	3.52	(2.15)	19	germs	764	2.86	(1.39)	4.49	(2.24)	3.79	(1.59)	1
field	558	6.20	(1.37)	4.08	(2.41)	5.84	(1.94)	274	gift	184	7.77	(2.24)	6.14	(2.76)	5.52	(2.54)	33
fight	751	3.76	(2.63)	7.15	(2.19)	5.27	(2.69)	98	girl	185	6.87	(1.64)	4.29	(2.69)	5.80	(2.16)	220
filth	165	2.47	(1.68)	5.12	(2.32)	3.81	(2.06)	2	glacier	186	5.50	(1.25)	4.24	(2.29)	4.92	(2.12)	1
finger	752	5.29	(1.42)	3.78	(2.42)	5.05	(1.70)	40	glamour	187	6.76	(1.60)	4.68	(2.23)	5.76	(2.49)	5
fire	166	3.22	(2.06)	7.17	(2.06)	4.49	(2.49)	187	glass	765	4.75	(1.38)	4.27	(2.07)	5.00	(1.46)	99
fireworks	513	7.55	(1.50)	6.67	(2.12)	5.51	(1.98)	5	gloom	188	1.88	(1.23)	3.83	(2.33)	3.55	(2.07)	14
fish	559	6.04	(1.94)	4.00	(2.19)	6.02	(1.68)	35	glory	189	7.55	(1.68)	6.02	(2.71)	6.85	(2.23)	21
flabby	167	2.66	(1.87)	4.82	(2.81)	3.31	(1.90)		god	190	8.15	(1.27)	5.95	(2.84)	5.88	(2.89)	318
flag	753	6.02	(1.66)	4.60	(2.35)	5.50	(1.66)	16	gold	191	7.54	(1.63)	5.76	(2.79)	5.85	(2.46)	52
flirt	754	7.52	(1.19)	6.91	(1.69)	6.24	(2.33)	1	golfer	535	5.61	(1.93)	3.73	(2.26)	5.55	(1.79)	3
flood	755	3.19	(1.66)	6.00	(2.02)	3.24	(2.14)	19	good	766	7.47	(1.45)	5.43	(2.85)	6.41	(2.05)	807
flower	168	6.64	(1.78)	4.00	(2.44)	4.98	(2.17)	23	gossip	767	3.48	(2.33)	5.74	(2.38)	3.57	(2.26)	13
foam	756	6.07	(2.03)	5.26	(2.54)	5.24	(1.97)	37	graduate	192	8.19	(1.13)	7.25	(2.25)	6.94	(2.44)	30
food	514	7.65	(1.37)	5.92	(2.11)	6.18	(2.48)	147	grass	768	6.12	(1.44)	4.14	(2.11)	5.44	(1.36)	53
foot	757	5.02	(0.93)	3.27	(1.98)	4.98	(1.42)	70	grateful	193	7.37	(0.97)	4.58	(2.14)	6.18	(1.77)	25
fork	560	5.29	(0.97)	3.96	(1.94)	5.74	(1.52)	14	greed	769	3.51	(1.93)	4.71	(2.26)	4.88	(2.03)	3
foul	169	2.81	(1.52)	4.93	(2.23)	4.51	(1.89)	4	green	194	6.18	(2.05)	4.28	(2.46)	4.82	(2.05)	116
fragrance	170	6.07	(1.97)	4.79	(2.54)	5.14	(1.91)	6	greet	770	7.00	(1.52)	5.27	(2.31)	5.95	(2.07)	7
fraud	171	2.67	(1.66)	5.75	(2.45)	3.58	(2.50)	8	grenade	771	3.60	(1.88)	5.70	(2.52)	4.29	(2.50)	3
free	172	8.26	(1.31)	5.15	(3.04)	6.35	(2.40)	260	grief	195	1.69	(1.04)	4.78	(2.84)	3.50	(2.35)	10
freedom	173	7.58	(2.04)	5.52	(2.72)	6.76	(2.29)	128	grime	772	3.37	(1.34)	3.98	(2.29)	4.47	(1.28)	

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
grin	773	7.40	(1.87)	5.27	(2.64)	6.00	(1.86)	13	honest	210	7.70	(1.43)	5.32	(1.92)	6.24	(2.13)	47
gripe	774	3.14	(1.56)	5.00	(2.19)	4.67	(1.79)		honey	792	6.73	(1.70)	4.51	(2.25)	5.44	(1.47)	25
guillotine	196	2.48	(2.11)	6.56	(2.54)	4.64	(2.63)		honor	211	7.66	(1.24)	5.90	(1.83)	6.70	(2.04)	66
guilty	197	2.63	(1.98)	6.04	(2.76)	3.09	(2.22)	29	hooker	793	3.34	(2.31)	4.93	(2.82)	4.73	(2.48)	
gun	593	3.47	(2.48)	7.02	(1.84)	3.53	(2.72)	118	hope	794	7.05	(1.96)	5.44	(2.47)	5.52	(2.20)	178
gymnast	515	6.35	(1.79)	5.02	(2.20)	5.31	(1.79)	1	hopeful	212	7.10	(1.46)	5.78	(2.09)	5.41	(1.92)	12
habit	775	4.11	(1.77)	3.95	(2.11)	4.30	(1.79)	23	horror	213	2.76	(2.25)	7.21	(2.14)	4.63	(2.70)	17
hairdryer	561	4.84	(0.84)	3.71	(1.75)	5.57	(1.27)		horse	214	5.89	(1.55)	3.89	(2.17)	4.67	(1.60)	117
hairpin	776	5.26	(1.45)	3.27	(2.41)	5.05	(1.32)	1	hospital	215	5.04	(2.45)	5.98	(2.54)	4.69	(2.16)	110
hamburger	777	6.27	(1.50)	4.55	(2.14)	5.32	(1.21)	6	hostage	216	2.20	(1.80)	6.76	(2.63)	2.83	(2.32)	2
hammer	198	4.88	(1.16)	4.58	(2.02)	4.75	(1.88)	9	hostile	217	2.73	(1.50)	6.44	(2.28)	4.85	(2.58)	19
hand	778	5.95	(1.38)	4.40	(2.07)	5.35	(1.49)	431	hotel	795	6.00	(1.77)	4.80	(2.53)	5.12	(1.84)	126
handicap	779	3.29	(1.69)	3.81	(2.27)	4.00	(2.24)	6	house	563	7.26	(1.72)	4.56	(2.41)	6.08	(2.12)	591
handsome	199	7.93	(1.47)	5.95	(2.73)	5.19	(2.22)	40	hug	218	8.00	(1.55)	5.35	(2.76)	5.79	(2.41)	3
haphazard	780	4.02	(1.41)	4.07	(2.18)	4.29	(1.67)	2	humane	796	6.89	(1.70)	4.50	(1.91)	5.70	(1.91)	5
happy	200	8.21	(1.82)	6.49	(2.77)	6.63	(2.43)	98	humble	219	5.86	(1.42)	3.74	(2.33)	4.76	(2.25)	18
hard	781	5.22	(1.82)	5.12	(2.19)	5.59	(1.63)	202	humiliate	797	2.24	(1.34)	6.14	(2.42)	2.60	(1.94)	
hardship	782	2.45	(1.61)	4.76	(2.55)	4.22	(2.40)	9	humor	220	8.56	(0.81)	5.50	(2.91)	6.08	(2.14)	47
hat	783	5.46	(1.36)	4.10	(2.00)	5.39	(1.43)	56	hungry	221	3.58	(2.01)	5.13	(2.44)	4.68	(2.05)	23
hate	201	2.12	(1.72)	6.95	(2.56)	5.05	(2.95)	42	hurricane	798	3.34	(2.12)	6.83	(2.06)	3.07	(2.18)	8
hatred	202	1.98	(1.92)	6.66	(2.56)	4.30	(2.76)	20	hurt	222	1.90	(1.26)	5.85	(2.49)	3.33	(2.22)	37
hawk	536	5.88	(1.62)	4.39	(2.29)	5.50	(1.69)	14	hydrant	564	5.02	(0.93)	3.71	(1.75)	5.53	(1.30)	
hay	784	5.24	(1.24)	3.95	(2.58)	5.37	(1.64)	19	icebox	799	4.95	(1.00)	4.17	(2.11)	5.05	(1.05)	3
headache	203	2.02	(1.06)	5.07	(2.74)	3.60	(1.98)	5	idea	800	7.00	(1.34)	5.86	(1.81)	6.26	(2.00)	195
headlight	785	5.24	(1.51)	3.81	(2.22)	4.88	(1.47)		identity	801	6.57	(1.99)	4.95	(2.24)	6.40	(1.89)	55
heal	786	7.09	(1.46)	4.77	(2.23)	5.79	(1.80)	2	idiot	223	3.16	(1.91)	4.21	(2.47)	3.18	(2.13)	2
health	204	6.81	(1.88)	5.13	(2.35)	5.83	(1.91)	105	idol	802	6.12	(1.86)	4.95	(2.14)	5.37	(2.17)	7
heart	787	7.39	(1.53)	6.34	(2.25)	5.49	(2.11)	173	ignorance	803	3.07	(2.25)	4.39	(2.49)	4.41	(2.38)	16
heaven	205	7.30	(2.39)	5.61	(3.20)	6.15	(2.56)	43	illness	804	2.48	(1.40)	4.71	(2.24)	3.21	(1.85)	20
hell	788	2.24	(1.62)	5.38	(2.62)	3.24	(2.36)	95	imagine	805	7.32	(1.52)	5.98	(2.14)	7.07	(1.99)	61
helpless	206	2.20	(1.42)	5.34	(2.52)	2.27	(1.83)	21	immature	806	3.39	(1.70)	4.15	(1.96)	4.85	(2.20)	7
heroin	789	4.36	(2.73)	5.11	(2.72)	4.80	(2.54)	2	immoral	807	3.50	(2.16)	4.98	(2.48)	4.66	(2.33)	5
hide	207	4.32	(1.91)	5.28	(2.51)	3.40	(2.12)	22	impair	808	3.18	(1.86)	4.04	(2.14)	4.09	(2.18)	4
highway	562	5.92	(1.72)	5.16	(2.44)	5.66	(1.81)	40	impotent	224	2.81	(1.92)	4.57	(2.59)	3.43	(2.43)	2
hinder	790	3.81	(1.42)	4.12	(2.01)	4.21	(1.54)		impressed	225	7.33	(1.84)	5.42	(2.65)	5.51	(2.21)	30
history	208	5.24	(2.01)	3.93	(2.29)	4.83	(2.08)	286	improve	226	7.65	(1.16)	5.69	(2.15)	6.08	(2.25)	39
hit	594	4.33	(2.35)	5.73	(2.09)	4.88	(2.01)	115	incentive	809	7.00	(1.72)	5.69	(2.45)	5.93	(2.02)	12
holiday	791	7.55	(2.14)	6.59	(2.73)	6.30	(2.17)	17	indifferent	810	4.61	(1.28)	3.18	(1.85)	4.84	(1.67)	11
home	209	7.91	(1.63)	4.21	(2.94)	5.90	(2.30)	547	industry	227	5.30	(1.61)	4.47	(2.43)	4.91	(2.04)	171

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
infant	811	6.95	(2.08)	5.05	(2.66)	5.67	(2.48)	11	kettle	832	5.22	(0.91)	3.22	(2.23)	5.00	(1.40)	3
infatuation	516	6.73	(2.08)	7.02	(1.87)	4.90	(2.28)	4	key	833	5.68	(1.62)	3.70	(2.18)	4.98	(2.04)	88
infection	228	1.66	(1.34)	5.03	(2.77)	3.61	(2.64)	8	kick	834	4.31	(2.18)	4.90	(2.35)	5.50	(1.93)	16
inferior	812	3.07	(1.57)	3.83	(2.05)	2.78	(2.08)	7	kids	835	6.91	(1.99)	5.27	(2.36)	5.07	(2.03)	32
inhabitant	813	5.05	(1.34)	3.95	(1.97)	5.37	(1.43)		killer	244	1.89	(1.39)	7.86	(1.89)	4.54	(3.11)	21
injury	595	2.49	(1.76)	5.69	(2.06)	3.57	(1.62)	27	kind	245	7.59	(1.67)	4.46	(2.55)	5.95	(1.93)	313
ink	229	5.05	(0.81)	3.84	(1.88)	4.61	(2.13)	7	kindness	246	7.82	(1.39)	4.30	(2.62)	5.67	(2.63)	5
innocent	814	6.51	(1.34)	4.21	(1.99)	5.28	(2.08)	37	king	247	7.26	(1.67)	5.51	(2.77)	7.38	(2.10)	88
insane	815	2.85	(1.94)	5.83	(2.45)	4.12	(2.23)	13	kiss	248	8.26	(1.54)	7.32	(2.03)	6.93	(2.28)	17
insect	816	4.07	(2.16)	4.07	(2.46)	4.56	(2.47)	14	kitten	517	6.86	(2.13)	5.08	(2.45)	6.86	(2.01)	5
insecure	230	2.36	(1.33)	5.56	(2.34)	2.33	(1.95)	3	knife	596	3.62	(2.18)	5.80	(2.00)	4.12	(2.18)	76
insolent	231	4.35	(1.76)	5.38	(2.37)	4.50	(2.06)	2	knot	836	4.64	(1.36)	4.07	(2.15)	4.67	(1.65)	8
inspire	232	6.97	(1.91)	5.00	(2.53)	6.34	(2.11)	3	knowledge	249	7.58	(1.32)	5.92	(2.32)	6.78	(2.41)	145
inspired	233	7.15	(1.85)	6.02	(2.67)	6.67	(2.31)	25	lake	250	6.82	(1.54)	3.95	(2.44)	4.90	(2.10)	54
insult	817	2.29	(1.33)	6.00	(2.46)	3.62	(2.05)	7	lamb	837	5.89	(1.73)	3.36	(2.18)	4.91	(1.96)	7
intellect	818	6.82	(1.96)	4.75	(2.50)	6.30	(1.98)	5	lamp	838	5.41	(1.00)	3.80	(2.12)	5.27	(1.61)	18
intercourse	819	7.36	(1.57)	7.00	(2.07)	6.40	(1.78)	9	lantern	839	5.57	(1.19)	4.05	(2.28)	5.07	(1.82)	13
interest	234	6.97	(1.53)	5.66	(2.26)	5.88	(1.78)	330	laughter	251	8.45	(1.08)	6.75	(2.50)	6.45	(2.45)	22
intimate	821	7.61	(1.51)	6.98	(2.21)	5.86	(2.29)	21	lavish	840	6.21	(2.03)	4.93	(2.40)	5.64	(1.61)	3
intruder	822	2.77	(2.32)	6.86	(2.41)	4.00	(2.68)	1	lawn	841	5.24	(0.86)	4.00	(1.79)	5.37	(1.11)	15
invader	823	3.05	(2.01)	5.50	(2.40)	4.00	(2.60)	1	lawsuit	842	3.37	(2.00)	4.93	(2.44)	3.92	(2.02)	1
invest	824	5.93	(2.10)	5.12	(2.42)	5.88	(1.95)	3	lazy	843	4.38	(2.02)	2.65	(2.06)	4.07	(1.93)	9
iron	565	4.90	(1.02)	3.76	(2.06)	5.10	(1.27)	43	leader	844	7.63	(1.59)	6.27	(2.18)	7.88	(1.60)	74
irritate	235	3.11	(1.67)	5.76	(2.15)	5.03	(2.05)		learn	252	7.15	(1.49)	5.39	(2.22)	6.34	(2.17)	84
item	825	5.26	(0.86)	3.24	(2.08)	5.26	(1.67)	54	legend	845	6.39	(1.34)	4.88	(1.76)	5.54	(1.64)	26
jail	236	1.95	(1.27)	5.49	(2.67)	3.81	(2.71)	21	leisurely	253	6.88	(1.81)	3.80	(2.38)	5.15	(1.90)	5
jealousy	237	2.51	(1.83)	6.36	(2.66)	3.80	(2.41)	4	leprosy	254	2.09	(1.40)	6.29	(2.23)	4.00	(2.30)	1
jelly	238	5.66	(1.44)	3.70	(2.29)	4.53	(1.77)	3	lesbian	597	4.67	(2.45)	5.12	(2.27)	5.35	(2.20)	
jewel	239	7.00	(1.72)	5.38	(2.54)	5.59	(2.19)	1	letter	846	6.61	(1.59)	4.90	(2.37)	5.73	(1.48)	145
joke	826	8.10	(1.36)	6.74	(1.84)	6.15	(1.86)	22	liberty	255	7.98	(1.22)	5.60	(2.65)	6.29	(2.44)	46
jolly	827	7.41	(1.92)	5.57	(2.80)	6.39	(1.72)	4	lice	256	2.31	(1.78)	5.00	(2.26)	3.95	(2.29)	2
journal	828	5.14	(1.49)	4.05	(1.96)	5.26	(1.42)	42	lie	257	2.79	(1.92)	5.96	(2.63)	3.30	(2.42)	59
joy	240	8.60	(0.71)	7.22	(2.13)	6.28	(2.15)	40	life	258	7.27	(1.88)	6.02	(2.62)	5.72	(2.51)	715
joyful	241	8.22	(1.22)	5.98	(2.54)	6.60	(1.80)	1	lightbulb	566	5.61	(1.28)	4.10	(2.02)	5.82	(1.56)	
jug	829	5.24	(1.65)	3.88	(2.15)	5.05	(1.62)	6	lighthouse	847	5.89	(2.08)	4.41	(2.44)	5.25	(2.02)	
justice	242	7.78	(1.35)	5.47	(2.54)	6.47	(2.26)	114	lightning	598	4.57	(2.66)	6.61	(1.77)	3.67	(2.19)	14
kerchief	830	5.11	(1.33)	3.43	(2.08)	5.25	(1.28)	1	limber	848	5.68	(1.49)	4.57	(2.26)	5.34	(1.84)	2
kerosene	243	4.80	(1.59)	4.34	(2.51)	4.63	(1.99)	6	lion	518	5.57	(1.99)	6.20	(2.16)	4.12	(2.33)	17
ketchup	831	5.60	(1.35)	4.09	(2.08)	5.29	(1.81)	1	listless	259	4.12	(1.73)	4.10	(2.31)	4.14	(1.73)	1

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
lively	849	7.20	(1.97)	5.53	(2.90)	6.09	(1.95)	26	memories	871	7.48	(1.61)	6.10	(2.10)	5.88	(1.92)	15
locker	850	5.19	(1.31)	3.38	(2.13)	5.36	(1.87)	9	memory	274	6.62	(1.50)	5.42	(2.25)	5.11	(2.12)	76
Ioneliness	260	1.61	(1.02)	4.56	(2.97)	2.51	(2.27)	9	menace	275	2.88	(1.64)	5.52	(2.45)	4.98	(2.25)	9
lonely	261	2.17	(1.76)	4.51	(2.68)	2.95	(2.12)	25	merry	872	7.90	(1.49)	5.90	(2.42)	6.64	(1.66)	8
loser	851	2.25	(1.48)	4.95	(2.57)	3.02	(2.17)	1	messy	873	3.15	(1.73)	3.34	(2.37)	4.75	(2.15)	3
lost	852	2.82	(1.83)	5.82	(2.62)	2.86	(1.64)	173	metal	874	4.95	(1.17)	3.79	(1.96)	5.38	(1.40)	61
lottery	853	6.57	(2.04)	5.36	(2.45)	4.81	(2.11)	1	method	875	5.56	(1.76)	3.85	(2.58)	5.67	(1.58)	142
louse	262	2.81	(1.92)	4.98	(2.03)	3.57	(2.26)	3	mighty	276	6.54	(2.19)	5.61	(2.38)	7.23	(2.11)	29
love	263	8.72	(0.70)	6.44	(3.35)	7.11	(2.56)	232	mildew	277	3.17	(1.36)	4.08	(1.79)	4.40	(1.79)	1
loved	264	8.64	(0.71)	6.38	(2.68)	6.62	(2.53)	56	milk	876	5.95	(2.16)	3.68	(2.57)	5.83	(1.50)	49
loyal	265	7.55	(1.90)	5.16	(2.42)	6.91	(2.23)	18	millionaire	278	8.03	(1.42)	6.14	(2.70)	6.97	(2.40)	2
lucky	266	8.17	(1.06)	6.53	(2.34)	6.05	(2.25)	21	mind	877	6.68	(1.84)	5.00	(2.68)	6.37	(2.19)	325
lump	854	4.16	(2.34)	4.80	(2.82)	4.32	(2.18)	7	miracle	279	8.60	(0.71)	7.65	(1.67)	5.35	(2.58)	16
luscious	267	7.50	(1.08)	5.34	(2.51)	5.68	(1.84)	2	mischief	878	5.57	(2.05)	5.76	(1.95)	5.56	(1.88)	5
lust	519	7.12	(1.62)	6.88	(1.85)	5.49	(2.27)	5	misery	879	1.93	(1.60)	5.17	(2.69)	2.55	(1.45)	15
luxury	268	7.88	(1.49)	4.75	(2.91)	6.40	(2.45)	21	mistake	880	2.86	(1.79)	5.18	(2.42)	3.86	(2.42)	34
machine	855	5.09	(1.67)	3.82	(2.40)	5.23	(2.06)	103	mobility	881	6.83	(1.79)	5.00	(2.18)	6.43	(1.48)	8
mad	856	2.44	(1.72)	6.76	(2.26)	5.86	(2.20)	39	modest	280	5.76	(1.28)	3.98	(2.24)	4.96	(2.16)	29
madman	857	3.91	(2.49)	5.56	(2.78)	4.79	(2.55)	2	mold	882	3.55	(1.70)	4.07	(1.98)	4.33	(1.83)	45
maggot	269	2.06	(1.47)	5.28	(2.96)	4.03	(2.09)	2	moment	281	5.76	(1.65)	3.83	(2.29)	4.81	(1.92)	246
magical	858	7.46	(1.64)	5.95	(2.36)	5.73	(2.19)	12	money	282	7.59	(1.40)	5.70	(2.66)	6.25	(2.33)	265
mail	859	6.88	(1.74)	5.63	(2.36)	5.67	(1.79)	47	month	283	5.15	(1.09)	4.03	(1.77)	4.85	(1.14)	130
malaria	860	2.40	(1.38)	4.40	(2.54)	3.22	(1.90)	3	moody	883	3.20	(1.58)	4.18	(2.38)	4.39	(1.71)	5
malice	270	2.69	(1.84)	5.86	(2.75)	4.74	(2.72)	2	moral	884	6.20	(1.85)	4.49	(2.28)	5.90	(2.20)	142
man	537	6.73	(1.70)	5.24	(2.31)	5.53	(2.23)	1207	morbid	284	2.87	(2.14)	5.06	(2.68)	4.34	(2.50)	1
mangle	861	3.90	(2.01)	5.44	(2.10)	4.61	(1.84)		morgue	285	1.92	(1.32)	4.84	(2.96)	3.61	(1.94)	1
maniac	862	3.76	(2.00)	5.39	(2.46)	4.22	(2.07)	4	mosquito	885	2.80	(1.91)	4.78	(2.72)	4.51	(2.15)	1
manner	863	5.64	(1.34)	4.56	(1.78)	5.05	(1.83)	124	mother	286	8.39	(1.15)	6.13	(2.71)	5.74	(2.37)	216
mantel	864	4.93	(1.40)	3.27	(2.23)	4.95	(1.61)	3	mountain	287	6.59	(1.66)	5.49	(2.43)	5.46	(2.36)	33
manure	865	3.10	(1.74)	4.17	(2.09)	4.67	(1.36)	6	movie	288	6.86	(1.81)	4.93	(2.54)	5.00	(1.79)	29
market	866	5.66	(1.02)	4.12	(1.83)	5.27	(1.40)	155	mucus	886	3.34	(2.29)	3.41	(2.17)	4.80	(1.83)	2
massacre	867	2.28	(1.74)	5.33	(2.63)	3.50	(2.26)	1	muddy	887	4.44	(2.07)	4.13	(2.13)	4.73	(1.77)	10
masterful	271	7.09	(1.78)	5.20	(2.85)	7.18	(2.56)	2	muffin	888	6.57	(2.04)	4.76	(2.42)	5.51	(1.63)	
masturbate	599	5.45	(2.02)	5.67	(2.18)	5.63	(2.25)		murderer	289	1.53	(0.96)	7.47	(2.18)	3.77	(3.06)	19
material	868	5.26	(1.29)	4.05	(2.34)	5.12	(1.45)	174	muscular	290	6.82	(1.63)	5.47	(2.20)	6.58	(2.28)	16
measles	272	2.74	(1.97)	5.06	(2.44)	4.13	(2.16)	2	museum	889	5.54	(1.86)	3.60	(2.13)	5.32	(1.68)	32
medicine	869	5.67	(2.06)	4.40	(2.36)	4.70	(1.91)	30	mushroom	567	5.78	(2.22)	4.72	(2.33)	5.52	(2.10)	2
meek	273	3.87	(1.69)	3.80	(2.13)	3.67	(2.23)	10	music	291	8.13	(1.09)	5.32	(3.19)	6.39	(2.44)	216
melody	870	7.07	(1.79)	4.98	(2.52)	5.46	(1.78)	21	mutation	890	3.91	(2.44)	4.84	(2.52)	4.07	(2.10)	

Affective Norms for English Words. All Subjects
Table 1

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
mutilate	292	1.82	(1.45)	6.41	(2.94)	3.41	(2.71)	3	orchestra	299	6.02	(1.89)	3.52	(2.29)	5.17	(2.14)	60
mystic	891	6.00	(2.21)	4.84	(2.57)	5.52	(1.93)	3	orgasm	920	8.32	(1.31)	8.10	(1.45)	6.83	(2.18)	7
naked	892	6.34	(2.42)	5.80	(2.80)	6.00	(2.05)	32	outdoors	521	7.47	(1.80)	5.92	(2.55)	6.27	(2.24)	6
name	893	5.55	(2.24)	4.25	(2.47)	5.16	(2.08)	294	outrage	921	3.52	(2.12)	6.83	(2.26)	5.26	(2.72)	4
narcotic	894	4.29	(2.30)	4.93	(2.57)	4.44	(2.43)	2	outstanding	922	7.75	(1.75)	6.24	(2.59)	6.40	(2.29)	37
nasty	895	3.58	(2.38)	4.89	(2.50)	5.00	(2.17)	5	overcast	923	3.65	(1.61)	3.46	(1.92)	4.20	(1.79)	9
natural	896	6.59	(1.57)	4.09	(2.37)	5.57	(1.69)	156	overwhelmed	300	4.19	(2.61)	7.00	(2.37)	3.89	(2.58)	4
nature	293	7.65	(1.37)	4.37	(2.51)	4.95	(2.72)	191	owl	522	5.80	(1.31)	3.98	(1.87)	5.82	(1.62)	2
nectar	294	6.90	(1.53)	3.89	(2.48)	4.54	(2.06)	3	pain	301	2.13	(1.81)	6.50	(2.49)	3.71	(2.53)	88
needle	897	3.82	(1.73)	5.36	(2.89)	3.95	(2.17)	15	paint	924	5.62	(1.72)	4.10	(2.36)	5.75	(1.71)	37
neglect	898	2.63	(1.64)	4.83	(2.31)	3.85	(2.29)	12	palace	302	7.19	(1.78)	5.10	(2.75)	5.69	(2.17)	38
nervous	899	3.29	(1.47)	6.59	(2.07)	3.56	(1.73)	24	pamphlet	925	4.79	(1.05)	3.62	(2.02)	4.63	(1.48)	3
neurotic	900	4.45	(2.23)	5.13	(2.76)	4.41	(2.05)	10	pancakes	523	6.08	(1.83)	4.06	(2.13)	5.76	(1.61)	
news	901	5.30	(1.67)	5.17	(2.11)	4.60	(1.88)	102	panic	601	3.12	(1.84)	7.02	(2.02)	3.20	(1.67)	22
nice	902	6.55	(2.44)	4.38	(2.69)	5.58	(2.20)	75	paper	303	5.20	(1.21)	2.50	(1.85)	4.47	(1.67)	157
nightmare	295	1.91	(1.54)	7.59	(2.23)	3.68	(2.76)	9	paradise	304	8.72	(0.60)	5.12	(3.38)	6.03	(2.79)	12
nipple	903	6.27	(1.81)	5.56	(2.55)	5.57	(2.00)		paralysis	926	1.98	(1.44)	4.73	(2.83)	2.56	(1.82)	6
noisy	904	5.02	(2.02)	6.38	(1.78)	4.93	(1.76)	6	part	927	5.11	(1.78)	3.82	(2.24)	4.75	(1.59)	500
nonchalant	296	4.74	(1.11)	3.12	(1.93)	4.31	(1.54)	1	party	305	7.86	(1.83)	6.69	(2.84)	5.83	(2.46)	216
nonsense	905	4.61	(1.63)	4.17	(2.02)	4.90	(1.55)	13	passage	928	5.28	(1.44)	4.36	(2.13)	5.02	(1.62)	49
noose	906	3.76	(1.64)	4.39	(2.08)	4.17	(1.92)	3	passion	306	8.03	(1.27)	7.26	(2.57)	6.13	(2.24)	28
nourish	907	6.46	(1.69)	4.29	(2.51)	5.80	(1.62)		pasta	524	6.69	(1.64)	4.94	(2.04)	5.80	(1.47)	
nude	520	6.82	(1.63)	6.41	(2.09)	5.96	(2.29)	20	patent	307	5.29	(1.08)	3.50	(1.84)	4.90	(1.79)	35
nuisance	908	3.27	(1.86)	4.49	(2.69)	4.36	(1.73)	5	patient	929	5.29	(1.89)	4.21	(2.37)	4.90	(2.31)	86
nun	909	4.93	(1.89)	2.93	(1.80)	4.93	(1.69)	2	patriot	930	6.71	(1.69)	5.17	(2.53)	5.90	(1.54)	10
nurse	538	6.08	(2.08)	4.84	(2.04)	4.84	(2.20)	17	peace	308	7.72	(1.75)	2.95	(2.55)	5.45	(2.84)	198
nursery	910	5.73	(2.30)	4.04	(2.74)	5.18	(2.23)	13	penalty	931	2.83	(1.56)	5.10	(2.31)	3.95	(1.97)	14
obesity	911	2.73	(1.85)	3.87	(2.82)	3.74	(2.45)	5	pencil	309	5.22	(0.68)	3.14	(1.90)	4.78	(1.73)	34
obey	912	4.52	(1.88)	4.23	(1.72)	4.26	(2.40)	8	penis	932	5.90	(1.72)	5.54	(2.63)	5.92	(2.54)	
obnoxious	913	3.50	(2.18)	4.74	(2.42)	5.39	(2.20)	5	penthouse	933	6.81	(1.64)	5.52	(2.49)	6.52	(1.82)	1
obscene	914	4.23	(2.30)	5.04	(2.30)	4.48	(1.91)	2	people	525	7.33	(1.70)	5.94	(2.09)	6.14	(2.02)	847
obsession	915	4.52	(2.13)	6.41	(2.13)	4.77	(2.38)	5	perfection	310	7.25	(2.05)	5.95	(2.73)	6.71	(2.26)	11
ocean	297	7.12	(1.72)	4.95	(2.79)	5.53	(2.75)	34	perfume	934	6.76	(1.48)	5.05	(2.36)	5.93	(1.69)	10
odd	916	4.82	(2.04)	4.27	(2.46)	4.77	(1.89)	44	person	311	6.32	(1.74)	4.19	(2.45)	5.35	(2.02)	175
offend	917	2.76	(1.50)	5.56	(2.06)	3.73	(2.03)	4	pervert	312	2.79	(2.12)	6.26	(2.61)	4.72	(2.83)	1
office	568	5.24	(1.59)	4.08	(1.92)	5.59	(1.89)	255	pest	313	3.13	(1.82)	5.62	(2.15)	5.29	(2.13)	4
opinion	298	6.28	(1.45)	4.89	(2.46)	5.53	(1.93)	96	pet	935	6.79	(2.32)	5.10	(2.59)	5.85	(2.28)	8
optimism	918	6.95	(2.24)	5.34	(2.58)	6.61	(2.06)	15	phase	936	5.17	(0.79)	3.98	(1.82)	4.65	(1.72)	72
option	919	6.49	(1.31)	4.74	(2.23)	6.34	(1.80)	5	pie	314	6.41	(1.89)	4.20	(2.40)	5.35	(1.78)	14

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valen Mean		Arous Mean		Domi Mean	$\begin{gathered} \text { nance } \\ \text { (SD) } \end{gathered}$	Word Frequency
pig	937	5.07	(1.97)	4.20	(2.42)	5.34	(1.88)	8	quality	950	6.25	(1.59)	4.48	(2.12)	5.64	(1.59)	114
pillow	315	7.92	(1.40)	2.97	(2.52)	4.56	(2.17)	8	quarrel	338	2.93	(2.06)	6.29	(2.56)	4.02	(2.16)	20
pinch	938	3.83	(1.70)	4.59	(2.10)	4.76	(1.73)	6	quart	951	5.39	(2.01)	3.59	(2.51)	5.20	(1.86)	3
pistol	939	4.20	(2.58)	6.15	(2.19)	5.05	(2.77)	27	queen	952	6.44	(1.43)	4.76	(2.18)	5.49	(2.12)	41
pity	940	3.37	(1.57)	3.72	(2.02)	4.12	(1.82)	14	quick	953	6.64	(1.61)	6.57	(1.78)	6.57	(1.91)	68
pizza	526	6.65	(2.23)	5.24	(2.09)	5.69	(1.90)	3	quiet	339	5.58	(1.83)	2.82	(2.13)	4.42	(2.30)	76
plain	941	4.39	(1.46)	3.52	(2.05)	4.71	(1.68)	48	rabbit	527	6.57	(1.92)	4.02	(2.19)	6.08	(1.72)	11
plane	539	6.43	(1.98)	6.14	(2.39)	4.78	(2.19)	114	rabies	340	1.77	(0.97)	6.10	(2.62)	3.85	(2.34)	1
plant	316	5.98	(1.83)	3.62	(2.25)	4.71	(2.12)	125	radiant	954	6.73	(2.17)	5.39	(2.82)	5.61	(2.17)	8
pleasure	317	8.28	(0.92)	5.74	(2.81)	6.15	(2.31)	62	radiator	955	4.67	(1.05)	4.02	(1.94)	4.81	(1.38)	4
poetry	318	5.86	(1.91)	4.00	(2.85)	5.31	(1.81)	88	radio	341	6.73	(1.47)	4.78	(2.82)	5.28	(1.85)	120
poison	319	1.98	(1.44)	6.05	(2.82)	3.10	(2.44)	10	rage	342	2.41	(1.86)	8.17	(1.40)	5.68	(3.01)	16
politeness	320	7.18	(1.50)	3.74	(2.37)	5.74	(1.70)	5	rain	569	5.08	(2.51)	3.65	(2.35)	4.78	(1.68)	70
pollute	321	1.85	(1.11)	6.08	(2.42)	4.92	(2.51)	1	rainbow	343	8.14	(1.23)	4.64	(2.88)	4.72	(2.37)	4
poster	942	5.34	(1.75)	3.93	(2.56)	4.91	(1.87)	4	rancid	956	4.34	(2.28)	5.04	(2.27)	4.59	(1.86)	
poverty	322	1.67	(0.90)	4.87	(2.66)	3.21	(2.21)	20	rape	344	1.25	(0.91)	6.81	(3.17)	2.97	(2.94)	5
power	323	6.54	(2.21)	6.67	(1.87)	7.28	(2.35)	342	rat	345	3.02	(1.66)	4.95	(2.36)	4.55	(2.14)	6
powerful	324	6.84	(1.80)	5.83	(2.69)	7.19	(2.52)	63	rattle	346	5.03	(1.23)	4.36	(2.18)	4.17	(1.56)	5
prairie	325	5.75	(1.43)	3.41	(2.17)	4.62	(2.13)	21	razor	957	4.81	(2.16)	5.36	(2.44)	4.91	(1.95)	15
present	943	6.95	(1.85)	5.12	(2.39)	5.83	(1.78)	377	red	570	6.41	(1.61)	5.29	(2.04)	5.78	(1.59)	197
pressure	944	3.38	(1.61)	6.07	(2.26)	3.45	(2.07)	185	refreshment	347	7.44	(1.29)	4.45	(2.70)	5.00	(1.92)	2
prestige	945	7.26	(1.90)	5.86	(2.08)	6.90	(1.96)	29	regretful	348	2.28	(1.42)	5.74	(2.32)	3.43	(2.52)	1
pretty	326	7.75	(1.26)	6.03	(2.22)	5.50	(1.97)	107	rejected	349	1.50	(1.09)	6.37	(2.56)	2.72	(2.58)	33
prick	946	3.98	(1.73)	4.70	(2.59)	4.47	(1.88)	2	relaxed	350	7.00	(1.77)	2.39	(2.13)	5.55	(1.90)	14
pride	327	7.00	(2.11)	5.83	(2.48)	7.06	(2.15)	42	repentant	351	5.53	(1.86)	4.69	(1.98)	5.42	(2.06)	1
priest	328	6.42	(2.00)	4.41	(2.71)	4.88	(2.07)	16	reptile	958	4.77	(2.00)	5.18	(2.19)	4.77	(2.02)	
prison	329	2.05	(1.34)	5.70	(2.56)	4.20	(2.58)	42	rescue	352	7.70	(1.24)	6.53	(2.56)	6.45	(2.29)	15
privacy	330	5.88	(1.50)	4.12	(1.83)	5.66	(1.78)	12	resent	959	3.76	(1.90)	4.47	(2.12)	4.46	(2.09)	8
profit	331	7.63	(1.30)	6.68	(1.78)	5.85	(2.47)	28	reserved	353	4.88	(1.83)	3.27	(2.05)	4.30	(1.93)	27
progress	947	7.73	(1.34)	6.02	(2.58)	6.76	(2.05)	120	respect	354	7.64	(1.29)	5.19	(2.39)	6.89	(2.11)	125
promotion	332	8.20	(1.15)	6.44	(2.58)	6.79	(2.28)	26	respectful	355	7.22	(1.27)	4.60	(2.67)	5.67	(2.38)	4
protected	333	7.29	(1.79)	4.09	(2.77)	5.80	(2.54)	31	restaurant	960	6.76	(1.85)	5.41	(2.55)	5.73	(1.41)	41
proud	334	8.03	(1.56)	5.56	(3.01)	6.74	(2.73)	50	reunion	961	6.48	(2.45)	6.34	(2.35)	5.64	(1.95)	11
pungent	948	3.95	(2.09)	4.24	(2.17)	4.78	(1.52)	4	reverent	356	5.35	(1.21)	4.00	(1.60)	4.67	(1.68)	3
punishment	335	2.22	(1.41)	5.93	(2.40)	3.50	(2.43)	21	revolt	357	4.13	(1.78)	6.56	(2.34)	6.18	(2.11)	8
puppy	336	7.56	(1.90)	5.85	(2.78)	5.51	(2.39)	2	revolver	962	4.02	(2.44)	5.55	(2.39)	4.39	(2.47)	14
pus	602	2.86	(1.91)	4.82	(2.06)	4.35	(1.82)		reward	358	7.53	(1.67)	4.95	(2.62)	6.00	(2.14)	15
putrid	337	2.38	(1.71)	5.74	(2.26)	4.89	(2.09)		riches	359	7.70	(1.95)	6.17	(2.70)	6.74	(2.43)	2
python	949	4.05	(2.48)	6.18	(2.25)	4.52	(2.56)	14	ridicule	360	3.13	(2.24)	5.83	(2.73)	3.87	(2.70)	5

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
rifle	603	4.02	(2.76)	6.35	(2.04)	4.16	(2.71)	63	seat	380	4.95	(0.98)	2.95	(1.72)	4.84	(1.88)	54
rigid	963	3.66	(2.12)	4.66	(2.47)	4.61	(2.04)	24	secure	381	7.57	(1.76)	3.14	(2.47)	5.93	(2.57)	30
riot	361	2.96	(1.93)	6.39	(2.63)	4.18	(2.47)	7	selfish	382	2.42	(1.62)	5.50	(2.62)	4.64	(2.31)	8
river	362	6.85	(1.69)	4.51	(2.42)	5.10	(1.86)	165	sentiment	977	5.98	(1.71)	4.41	(2.30)	5.09	(1.46)	23
roach	363	2.35	(1.70)	6.64	(2.64)	4.82	(2.94)	2	serious	383	5.08	(1.59)	4.00	(1.87)	5.12	(1.65)	116
robber	964	2.61	(1.69)	5.62	(2.72)	3.62	(2.38)	2	severe	978	3.20	(1.74)	5.26	(2.36)	3.83	(1.91)	39
rock	965	5.56	(1.38)	4.52	(2.37)	5.15	(2.01)	75	sex	384	8.05	(1.53)	7.36	(1.91)	5.75	(2.25)	84
rollercoaster	528	8.02	(1.63)	8.06	(1.71)	5.10	(2.76)		sexy	530	8.02	(1.12)	7.36	(1.91)	6.82	(2.13)	2
romantic	364	8.32	(1.00)	7.59	(2.07)	6.08	(2.29)	32	shadow	385	4.35	(1.23)	4.30	(2.26)	4.19	(1.82)	36
rotten	365	2.26	(1.37)	4.53	(2.38)	4.32	(2.09)	2	shamed	386	2.50	(1.34)	4.88	(2.27)	2.98	(1.94)	1
rough	966	4.74	(2.00)	5.33	(2.04)	4.81	(1.70)	41	shark	606	3.65	(2.47)	7.16	(1.96)	2.63	(2.16)	
rude	366	2.50	(2.11)	6.31	(2.47)	4.91	(2.49)	6	sheltered	387	5.75	(1.92)	4.28	(1.77)	3.76	(1.91)	4
runner	571	5.67	(1.91)	4.76	(2.40)	5.47	(1.84)	1	ship	388	5.55	(1.40)	4.38	(2.29)	5.12	(2.31)	83
rusty	367	3.86	(1.47)	3.77	(2.16)	4.53	(1.62)	8	shotgun	979	4.37	(2.75)	6.27	(1.94)	5.29	(2.67)	8
sad	368	1.61	(0.95)	4.13	(2.38)	3.45	(2.18)	35	shriek	980	3.93	(2.22)	5.36	(2.91)	4.30	(1.86)	5
safe	967	7.07	(1.90)	3.86	(2.72)	5.81	(2.06)	58	shy	389	4.64	(1.83)	3.77	(2.29)	3.44	(1.96)	13
sailboat	529	7.25	(1.71)	4.88	(2.73)	5.86	(1.71)	1	sick	607	1.90	(1.14)	4.29	(2.45)	3.04	(1.65)	51
saint	968	6.49	(1.70)	4.49	(1.90)	5.37	(2.11)	16	sickness	390	2.25	(1.71)	5.61	(2.67)	3.84	(2.50)	6
salad	369	5.74	(1.62)	3.81	(2.29)	5.47	(1.68)	9	silk	391	6.90	(1.27)	3.71	(2.51)	4.81	(1.93)	12
salute	370	5.92	(1.57)	5.31	(2.23)	5.46	(2.05)	3	silly	981	7.41	(1.80)	5.88	(2.38)	6.00	(2.09)	15
sapphire	371	7.00	(1.88)	5.00	(2.72)	5.55	(2.24)		\sin	392	2.80	(1.67)	5.78	(2.21)	3.62	(2.29)	53
satisfied	372	7.94	(1.19)	4.94	(2.63)	6.14	(2.37)	36	sinful	393	2.93	(2.15)	6.29	(2.43)	4.24	(2.73)	3
save	969	6.45	(1.93)	4.95	(2.19)	6.00	(1.79)	62	sissy	394	3.14	(1.96)	5.17	(2.57)	3.58	(2.74)	
savior	373	7.73	(1.56)	5.80	(3.01)	6.64	(2.18)	6	skeptical	395	4.52	(1.63)	4.91	(1.92)	4.50	(1.61)	7
scalding	970	2.82	(2.12)	5.95	(2.55)	3.82	(2.30)	1	skijump	531	7.06	(1.73)	7.06	(2.10)	4.90	(2.32)	
scandal	971	3.32	(1.81)	5.12	(2.22)	4.34	(1.73)	8	skull	608	4.27	(1.83)	4.75	(1.85)	4.86	(1.62)	3
scapegoat	972	3.67	(1.65)	4.53	(2.13)	3.52	(1.70)	1	sky	572	7.37	(1.40)	4.27	(2.17)	5.16	(2.00)	58
scar	973	3.38	(1.70)	4.79	(2.11)	3.88	(1.71)	10	skyscraper	573	5.88	(1.87)	5.71	(2.17)	4.33	(2.36)	2
scared	604	2.78	(1.99)	6.82	(2.03)	2.94	(2.19)	21	slap	396	2.95	(1.79)	6.46	(2.58)	4.21	(2.29)	2
scholar	374	7.26	(1.42)	5.12	(2.46)	6.59	(2.02)	15	slaughter	397	1.64	(1.18)	6.77	(2.42)	3.82	(2.75)	10
scissors	974	5.05	(0.96)	4.47	(1.76)	5.16	(1.84)	1	slave	398	1.84	(1.13)	6.21	(2.93)	3.29	(2.76)	30
scorching	975	3.76	(1.83)	5.00	(2.74)	4.10	(2.01)		sleep	399	7.20	(1.77)	2.80	(2.66)	5.41	(2.41)	65
scorn	375	2.84	(2.07)	5.48	(2.52)	3.93	(2.64)	4	slime	400	2.68	(1.66)	5.36	(2.63)	4.17	(1.82)	1
scornful	376	3.02	(2.03)	5.04	(2.56)	4.59	(2.18)	5	slow	982	3.93	(1.60)	3.39	(2.22)	4.35	(1.61)	60
scorpion	976	3.69	(2.63)	5.38	(3.08)	3.98	(2.44)		slum	401	2.39	(1.25)	4.78	(2.52)	3.83	(2.18)	8
scream	605	3.88	(2.07)	7.04	(1.96)	4.75	(2.21)	13	slush	983	4.66	(1.88)	3.73	(2.23)	4.91	(1.48)	
scum	377	2.43	(1.56)	4.88	(2.36)	4.26	(1.99)		smallpox	402	2.52	(2.08)	5.58	(2.13)	4.29	(2.17)	2
scurvy	378	3.19	(2.00)	4.71	(2.72)	4.48	(2.48)	1	smooth	984	6.58	(1.78)	4.91	(2.57)	5.09	(2.09)	42
seasick	379	2.05	(1.20)	5.80	(2.88)	3.41	(2.39)		snake	609	3.31	(2.20)	6.82	(2.10)	3.78	(2.05)	44

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
snob	403	3.36	(1.81)	5.65	(2.36)	5.11	(2.25)	1	sun	532	7.55	(1.85)	5.04	(2.66)	6.16	(2.09)	112
snow	575	7.08	(1.83)	5.75	(2.47)	5.80	(1.97)	59	sunlight	1003	7.76	(1.43)	6.10	(2.30)	5.63	(2.15)	17
snuggle	404	7.92	(1.24)	4.16	(2.80)	5.66	(2.47)	4	sunrise	420	7.86	(1.35)	5.06	(3.05)	5.29	(2.41)	10
social	985	6.88	(1.82)	4.98	(2.59)	5.91	(2.07)	380	sunset	421	7.68	(1.72)	4.20	(2.99)	5.66	(2.08)	14
soft	986	7.12	(1.34)	4.63	(2.61)	6.00	(1.80)	61	surgery	612	2.86	(2.19)	6.35	(2.32)	2.75	(1.86)	6
solemn	405	4.32	(1.51)	3.56	(1.95)	4.61	(1.87)	12	surprised	422	7.47	(1.56)	7.47	(2.09)	6.11	(2.19)	58
song	987	7.10	(1.97)	6.07	(2.42)	5.85	(2.12)	70	suspicious	423	3.76	(1.42)	6.25	(1.59)	4.47	(1.99)	13
soothe	988	7.30	(1.85)	4.40	(3.08)	5.36	(2.24)	2	swamp	1004	5.14	(2.24)	4.86	(2.36)	5.29	(1.63)	5
sour	989	3.93	(1.98)	5.10	(1.95)	4.64	(1.50)	3	sweetheart	424	8.42	(0.83)	5.50	(2.73)	6.03	(2.24)	9
space	574	6.78	(1.66)	5.14	(2.54)	5.20	(2.44)	184	swift	1005	6.46	(1.76)	5.39	(2.53)	6.29	(1.85)	32
spanking	990	3.55	(2.54)	5.41	(2.73)	3.91	(2.51)		swimmer	576	6.54	(1.64)	4.82	(2.49)	5.96	(1.91)	
sphere	991	5.33	(0.87)	3.88	(1.99)	5.00	(0.92)	22	syphilis	425	1.68	(1.23)	5.69	(3.25)	3.33	(2.67)	
spider	610	3.33	(1.72)	5.71	(2.21)	4.75	(2.11)	2	table	426	5.22	(0.72)	2.92	(2.16)	4.47	(1.66)	198
spirit	406	7.00	(1.32)	5.56	(2.62)	5.82	(2.42)	182	talent	427	7.56	(1.25)	6.27	(1.80)	6.49	(1.75)	40
spouse	407	7.58	(1.48)	5.21	(2.75)	5.53	(1.97)	3	tamper	1006	4.10	(1.88)	4.95	(2.01)	4.58	(2.10)	1
spray	992	5.45	(1.63)	4.14	(2.28)	5.12	(1.43)	16	tank	613	5.16	(1.87)	4.88	(1.86)	4.78	(1.93)	12
spring	993	7.76	(1.51)	5.67	(2.51)	6.26	(1.98)	127	taste	1007	6.66	(1.57)	5.22	(2.38)	5.50	(1.65)	59
square	408	4.74	(1.02)	3.18	(1.76)	4.51	(1.45)	143	taxi	1008	5.00	(1.96)	3.41	(2.14)	4.64	(1.83)	16
stagnant	994	4.15	(1.57)	3.93	(1.94)	4.71	(1.36)	5	teacher	1009	5.68	(2.12)	4.05	(2.61)	5.11	(2.20)	80
star	409	7.27	(1.66)	5.83	(2.44)	4.68	(2.15)	25	tease	1010	4.84	(2.51)	5.87	(2.56)	4.67	(2.37)	6
startled	410	4.50	(1.67)	6.93	(2.24)	4.48	(1.57)	21	tender	1011	6.93	(1.28)	4.88	(2.30)	5.33	(1.75)	11
starving	611	2.39	(1.82)	5.61	(2.53)	3.63	(2.10)	6	tennis	540	6.02	(1.97)	4.61	(2.60)	5.61	(2.12)	15
statue	995	5.17	(0.70)	3.46	(1.72)	4.95	(1.40)	17	tense	428	3.56	(1.36)	6.53	(2.10)	5.22	(2.02)	15
stench	996	2.19	(1.37)	4.36	(2.46)	4.29	(1.91)	1	termite	429	3.58	(2.08)	5.39	(2.43)	3.87	(1.87)	
stiff	997	4.68	(1.97)	4.02	(2.41)	4.93	(2.04)	21	terrible	430	1.93	(1.44)	6.27	(2.44)	3.58	(2.34)	45
stink	411	3.00	(1.79)	4.26	(2.10)	4.16	(1.98)	3	terrific	431	8.16	(1.12)	6.23	(2.73)	6.60	(2.15)	5
stomach	998	4.82	(2.06)	3.93	(2.49)	4.68	(1.85)	37	terrified	432	1.72	(1.14)	7.86	(2.27)	3.08	(2.75)	7
stool	999	4.56	(1.72)	4.00	(2.14)	4.98	(1.85)	8	terrorist	614	1.69	(1.42)	7.27	(2.38)	2.65	(2.30)	
storm	1000	4.95	(2.22)	5.71	(2.34)	4.54	(2.04)	26	thankful	433	6.89	(2.29)	4.34	(2.31)	5.32	(2.00)	6
stove	1001	4.98	(1.69)	4.51	(2.14)	5.36	(1.87)	15	theory	434	5.30	(1.49)	4.62	(1.94)	4.88	(1.81)	129
street	412	5.22	(0.72)	3.39	(1.87)	4.81	(1.21)	244	thermometer	1012	4.73	(1.05)	3.79	(2.02)	4.39	(1.51)	
stress	413	2.09	(1.41)	7.45	(2.38)	3.93	(2.75)	107	thief	435	2.13	(1.69)	6.89	(2.13)	3.79	(2.55)	8
strong	414	7.11	(1.48)	5.92	(2.28)	6.92	(2.43)	202	thorn	436	3.64	(1.76)	5.14	(2.14)	4.45	(1.50)	3
stupid	415	2.31	(1.37)	4.72	(2.71)	2.98	(2.18)	24	thought	1013	6.39	(1.58)	4.83	(2.46)	6.02	(1.70)	515
subdued	416	4.67	(1.31)	2.90	(1.81)	4.08	(1.56)	8	thoughtful	437	7.65	(1.03)	5.72	(2.30)	5.61	(2.11)	11
success	417	8.29	(0.93)	6.11	(2.65)	6.89	(2.40)	93	thrill	438	8.05	(1.48)	8.02	(1.65)	6.54	(2.30)	5
suffocate	418	1.56	(0.96)	6.03	(3.19)	3.44	(2.81)	1	tidy	1014	6.30	(1.56)	3.98	(2.22)	5.49	(1.93)	1
sugar	1002	6.74	(1.73)	5.64	(2.18)	5.50	(1.50)	34	time	439	5.31	(2.02)	4.64	(2.75)	4.63	(2.24)	1599
suicide	419	1.25	(0.69)	5.73	(3.14)	3.58	(3.02)	17	timid	440	3.86	(1.55)	4.11	(2.09)	3.09	(1.91)	5

Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
tobacco	441	3.28	(2.16)	4.83	(2.90)	4.08	(2.27)	19	useful	466	7.14	(1.60)	4.26	(2.47)	5.93	(2.10)	58
tomb	442	2.94	(1.88)	4.73	(2.72)	3.72	(2.05)	11	useless	467	2.13	(1.42)	4.87	(2.58)	3.92	(2.62)	17
tool	1015	5.19	(1.27)	4.33	(1.78)	5.67	(1.62)	40	utensil	1024	5.14	(1.39)	3.57	(1.98)	5.40	(1.47)	
toothache	443	1.98	(1.15)	5.55	(2.51)	3.90	(1.85)		vacation	468	8.16	(1.36)	5.64	(2.99)	6.80	(2.08)	47
tornado	444	2.55	(1.78)	6.83	(2.49)	4.30	(2.42)	1	vagina	1025	6.14	(1.77)	5.55	(2.55)	5.88	(1.74)	10
torture	445	1.56	(0.79)	6.10	(2.77)	3.33	(2.37)	3	valentine	469	8.11	(1.35)	6.06	(2.91)	5.81	(2.45)	2
tower	1016	5.46	(1.75)	3.95	(2.28)	5.78	(2.14)	13	vampire	470	4.26	(1.86)	6.37	(2.35)	5.05	(2.27)	1
toxic	446	2.10	(1.48)	6.40	(2.41)	4.42	(2.51)	3	vandal	471	2.71	(1.91)	6.40	(1.88)	3.91	(2.49)	1
toy	1017	7.00	(2.01)	5.11	(2.84)	6.09	(1.84)	4	vanity	472	4.30	(1.91)	4.98	(2.31)	4.80	(2.03)	7
tragedy	447	1.78	(1.31)	6.24	(2.64)	3.50	(2.34)	49	vehicle	473	6.27	(2.34)	4.63	(2.81)	5.77	(2.61)	35
traitor	448	2.22	(1.69)	5.78	(2.47)	4.61	(2.71)	2	venom	474	2.68	(1.81)	6.08	(2.44)	3.94	(2.23)	2
trash	615	2.67	(1.45)	4.16	(2.16)	5.24	(1.85)	2	vest	1026	5.25	(1.33)	3.95	(2.09)	5.09	(1.24)	4
trauma	616	2.10	(1.49)	6.33	(2.45)	2.84	(1.87)	1	victim	618	2.18	(1.48)	6.06	(2.32)	2.69	(2.04)	27
travel	1018	7.10	(2.00)	6.21	(2.51)	6.31	(2.08)	61	victory	475	8.32	(1.16)	6.63	(2.84)	7.26	(2.14)	61
treasure	449	8.27	(0.90)	6.75	(2.30)	6.36	(2.42)	4	vigorous	476	6.79	(1.54)	5.90	(2.66)	5.41	(2.22)	29
treat	1019	7.36	(1.38)	5.62	(2.25)	5.78	(1.82)	26	village	477	5.92	(1.34)	4.08	(1.87)	4.94	(1.74)	72
tree	450	6.32	(1.56)	3.42	(2.21)	5.08	(2.29)	59	violent	478	2.29	(1.78)	6.89	(2.47)	5.16	(2.86)	33
triumph	451	7.80	(1.83)	5.78	(2.60)	6.98	(2.20)	22	violin	579	5.43	(1.98)	3.49	(2.26)	5.18	(2.01)	11
triumphant	452	8.82	(0.73)	6.78	(2.58)	6.95	(2.55)	5	virgin	1027	6.45	(1.76)	5.51	(2.06)	6.24	(2.48)	35
trophy	453	7.78	(1.22)	5.39	(2.44)	6.44	(2.32)	8	virtue	479	6.22	(2.06)	4.52	(2.52)	6.13	(2.09)	30
trouble	454	3.03	(2.09)	6.85	(2.03)	4.85	(2.39)	134	vision	480	6.62	(1.84)	4.66	(2.43)	6.02	(1.96)	56
troubled	455	2.17	(1.21)	5.94	(2.36)	3.91	(2.33)	31	volcano	619	4.84	(2.14)	6.33	(2.21)	3.25	(1.97)	2
truck	577	5.47	(1.88)	4.84	(2.17)	5.33	(1.83)	57	vomit	481	2.06	(1.57)	5.75	(2.84)	3.58	(2.45)	3
trumpet	456	5.75	(1.38)	4.97	(2.13)	4.57	(1.72)	7	voyage	1028	6.25	(1.91)	5.55	(2.23)	5.18	(1.98)	17
trunk	1020	5.09	(1.57)	4.18	(2.19)	5.14	(1.90)	8	wagon	1029	5.37	(0.97)	3.98	(2.04)	5.05	(1.20)	55
trust	457	6.68	(2.71)	5.30	(2.66)	6.61	(2.04)	52	war	482	2.08	(1.91)	7.49	(2.16)	4.50	(3.00)	464
truth	458	7.80	(1.29)	5.00	(2.77)	6.47	(2.11)	126	warmth	483	7.41	(1.81)	3.73	(2.40)	5.61	(1.67)	28
tumor	459	2.36	(2.04)	6.51	(2.85)	3.58	(2.42)	17	wasp	484	3.37	(1.63)	5.50	(2.17)	3.76	(1.82)	2
tune	1021	6.93	(1.47)	4.71	(2.09)	5.74	(1.82)	10	waste	485	2.93	(1.76)	4.14	(2.30)	4.72	(1.94)	35
twilight	1022	7.23	(1.80)	4.70	(2.41)	5.59	(1.82)	4	watch	580	5.78	(1.51)	4.10	(2.12)	5.37	(1.75)	81
ugly	460	2.43	(1.27)	5.38	(2.23)	4.26	(2.33)	21	water	486	6.61	(1.78)	4.97	(2.49)	5.08	(1.99)	442
ulcer	461	1.78	(1.17)	6.12	(2.68)	4.17	(2.22)	5	waterfall	487	7.88	(1.03)	5.37	(2.84)	5.20	(2.18)	2
umbrella	578	5.16	(1.57)	3.68	(1.99)	5.42	(1.91)	8	wealthy	488	7.70	(1.34)	5.80	(2.73)	6.77	(2.57)	12
unfaithful	462	2.05	(1.55)	6.20	(2.70)	3.02	(2.54)	1	weapon	489	3.97	(1.92)	6.03	(1.89)	5.19	(2.61)	42
unhappy	463	1.57	(0.96)	4.18	(2.50)	3.34	(2.35)	26	weary	490	3.79	(2.12)	3.81	(2.29)	4.00	(1.91)	17
unit	1023	5.59	(1.87)	3.75	(2.49)	5.11	(1.74)	103	wedding	491	7.82	(1.56)	5.97	(2.85)	6.68	(2.08)	32
untroubled	464	7.62	(1.41)	3.89	(2.54)	5.53	(2.54)		whistle	1030	5.81	(1.21)	4.69	(1.99)	5.27	(1.87)	4
upset	465	2.00	(1.18)	5.86	(2.40)	4.08	(2.31)	14	white	542	6.47	(1.59)	4.37	(2.14)	5.98	(1.73)	365
urine	617	3.25	(1.71)	4.20	(2.18)	5.24	(1.86)	1	whore	492	2.30	(2.11)	5.85	(2.93)	4.61	(2.73)	2

Affective Norms for English Words. All Subjects
Table 1
Bradley, M.M., \& Lang, P.J. (1999)

Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency	Description	Word No.	Valence Mean(SD)		Arousal Mean(SD)		Dominance Mean (SD)		Word Frequency
wicked	493	2.96	(2.37)	6.09	(2.44)	4.36	(2.65)	9	world	500	6.50	(2.03)	5.32	(2.39)	5.26	(2.47)	787
wife	1031	6.33	(1.97)	4.93	(2.22)	5.57	(1.68)	228	wounds	620	2.51	(1.58)	5.82	(2.01)	3.92	(1.57)	8
win	494	8.38	(0.92)	7.72	(2.16)	7.39	(2.36)	55	writer	1036	5.52	(1.90)	4.33	(2.45)	4.73	(1.84)	73
windmill	1032	5.60	(1.65)	3.74	(2.13)	5.24	(1.04)	1	yacht	1037	6.95	(1.79)	5.61	(2.72)	6.10	(2.13)	4
window	495	5.91	(1.38)	3.97	(2.01)	4.91	(1.60)	119	yellow	545	5.61	(1.94)	4.43	(2.05)	5.47	(1.58)	55
wine	496	5.95	(2.19)	4.78	(2.34)	5.31	(2.15)	72	young	1038	6.89	(2.12)	5.64	(2.51)	5.30	(2.49)	385
wink	1033	6.93	(1.83)	5.44	(2.68)	5.70	(1.77)	7	youth	1039	6.75	(2.29)	5.67	(2.52)	5.11	(2.55)	82
wise	497	7.52	(1.23)	3.91	(2.64)	6.70	(2.39)	36	zest	1040	6.79	(2.04)	5.59	(2.66)	6.00	(1.99)	5
wish	1034	7.09	(2.00)	5.16	(2.62)	5.28	(2.09)	110									
Wit	1035	7.32	(1.90)	5.42	(2.44)	6.38	(2.01)	20									
Woman	498	6.64	(1.76)	5.32	(2.59)	6.33	(1.52)	224									
Wonder	499	6.03	(1.58)	5.00	(2.23)	5.32	(2.17)	67									

3. DETECTING THE EMOTION OF A SENTENCE

First, word segmentation, POS annotation and NE recog-nition are performed for lyrics, with the help of the NLP tool. After stop words removed, the remaining words of a sentence are examined to see if they appear in ANCW, and each of the words that do appear in ANCW constitutes an EU. If there is an adverb that modifies or negates an emotion word, it is included in the corresponding EU as a modifier. We recognize the modifiers of EUs by using the NLP tool. The emotion of an EU is determined as follows:

$$
\begin{align*}
& v u=v W \operatorname{ord}(u) \cdot \\
& m M o d i f i e r(u), v \tag{1}\\
& a u=a W \operatorname{ord}(u) . \\
& m M o d i f i e r(u), a \tag{2}
\end{align*}
$$

The lexicon of synonyms is manually built and includes 77,343 terms
Where v_{u} and a_{u} denote the valence and arousal value
of $\mathrm{EU} u$ respectively, $v_{W \operatorname{ord}(u)}$ and $a_{W \operatorname{ord}(u)}$ denote the valence and arousal value of the EU's emotion word re-
spectively, $m_{\text {Modifier }(u), v}$ and $m_{\text {Modifier }(u), a}$ denote modifying factors to represent the effect of the EU's modifier
on the EU's valence and arousal
respectively.
and $a_{W \text { ord }(u)}$, the valence and arousal value of the
emo-
tion word are obtained through looking up in ANCW.
Sen-
tences that have not any emotion unit are discarded.
We have collected 276 individual modifier words, which
cover all the occurrences in the lyric corpus we use, and a table of modifiers has been set up.
According to
the polarities and degrees to which modifiers
influence the
emotions of EUs, we assign each modifier a modifying
fac-
tor on valence and a modifying factor on arousal. The
val-
ues of the modifying factors are in the range of $[-1.5$, 1.5].

For a negative modifier adverb, $m_{\text {Modifier }(u), v}$ is set to a
value in $[-1.5,0]$ and for a positive modifier
adverb, it is
set to a value in [0 ,
1.5].

14 INTEGRATING THE EMOTIONS OF ALL SENTENCES

4.1 Challenges

3. Reduce the effect of errors in sentence emotions on the result of the emotions of lyrics.
4. Recognize all the emotions of a lyric on the condi-tion that the lyric has more than one emotion.
5. Select one emotion as the main emotion, if needed, or give a probability to each of the emotions.
4.2 Methodology

In recent years, spectral clustering based on graph parti-tion theories decomposes a document corpus into a num-ber of disjoint clusters which are optimal in terms of some predefined criteria functions. If the sentences of a lyric are considered as documents and the lyric is regarded as the document set, the document clustering technology can conquer the above three challenges. We define an emotion vector space model, where each sentence of a lyric is con-sidered as a node with two dimensions that represent the valence and arousal of an emotion respectively. We choose Wu's fuzzy clustering method [12] because it can cluster the sentences without the need to specify the number of clusters, which meets our demands. Wu's fuzzy cluster-ing method includes three steps: building a fuzzy similar-ity matrix, generating a maximal tree using Prim algorithm and cutting tree's edges whose weight is lower than a given threshold.

A song usually repeat some sentences. Sometimes the repeated sentences are placed in one line, with each sen-tence having its own time tag. In other cases, each repeated sentence occupies one line and the line has one time tag. If the repeated sentences are placed in more than one lines, these sentences are bound to form a cluster in the later clustering processing. If the emotions of those repeated sentences were not recognized correctly, subsequent processing will be ruined definitely. Hence, before sentences are clustered, lyrics should be compressed so as to place the iterative sentences in one line, with each sentence hav-ing its own time tag.

Having examined hundreds of lyrics, we find that sen-tences in a lyric always fall into several groups. The sen-tences of a group have similar emotions which can be unified to a prominent emotion of the lyric. Therefore, the isolated sentences are mostly noises and will be removed.

There are a dozen of means to measure the similarity be-tween two nodes in vector space. After experiment those means, we select the following means to measure the sim-ilarity of the sentences' emotions i, j.

$$
\operatorname{Sim}_{i j}=1-\sigma\left(\left|v_{i}-v_{j}\right|+\left|a_{i}-a_{j}\right|\right)
$$

where v_{i}, v_{j}, a_{i}, and a_{j} denote the valence and arousal of sentences i and j respectively, and σ is set to 0.3 .

The center of a survived cluster is calculated as the weighted mean of emotions of all members of the cluster. The weighted mean is defined as follows:

where S_{c} denotes the set of sentences in cluster c, v_{c} and a_{c} denote the valence and arousal respectively of cluster c, and v_{s}, a_{s} and w_{s} denote the valence, arousal and weight respectively of sentence $s\left(s \in S_{c}\right)$.

The weight of cluster c is calculated as follows:

$$
w_{c}=\begin{array}{cc}
\mathrm{X} & \left(\alpha \cdot w_{s}+\beta\right. \\
& \operatorname{Loop}(s)) \\
s c & -\gamma \cdot r_{s}+1 \\
\epsilon &
\end{array}
$$

where $\operatorname{Loop}(s)$ denotes the number of times sentence $s\left(s \in S_{c}\right)$ repeats, α, β and γ are set to $2,1,1$, respec-tively. These constant parameters are adjusted through ex-perimentation and the set of values resulting in the highest F -measure was chosen.

Lyrics we got have time tags and we use these tags to compute the singing speed of sentences in lyrics, which is defined in milliseconds per word. Although, singing speed is not the only determinant of the emotions of lyrics, there is correlation between the singing speed of a song and its emotions, as shown in Figured 5. Hence, we use singing speeds of sentences to reweight each clustering center. Having analyzed the singing speeds and emotions of the songs in the corpus, we think that Gaussian Model is suit-able for expressing the degrees to which different singing speeds influence emotions.

5. Experimental Result

In this section we present the main decisions taken throughout the development of this project. In what concerns to MARSYAS, this covers aspects related to feature extraction, data normalization, classification, playlist generation and evaluation. It also includes the back office part of the application, developed in Qt.

AUDIO BASED APPROACH:

5.1. Feature extraction

To achieve the main purpose of the developed application, the first step was clearly to extract the features of the all the songs on the dataset (the 194 songs samples annotated
by Yang). All the features sets provided by MARSYAS were used (13 features sets), without selection, which comprises 454 features in total for each song to be extracted. This number includes statistical features derived from the core ones (means, standard deviations, etc), among others:

```
    Tempo
```

- Stereo Panning Spectrum Features
- Mel Frequency Cepstral Coefficients
\square Chroma
- Spectral Flatness Measure
- Spectral Crest Factor
- Spectral Centroid
- Spectral Rolloff
\square Spectral Flux
- Line Spectral Pair
- Linear Prediction Cepstral Coefficients
- Zero Crossings
- Beat

Since the objective was to classify each aforementioned sample with a single AV (arousal/valence) pair (which would represent the value for the whole song segment), and consequently a unique value for each feature depicting the entire song, a single feature of values was used (MARSYAS provides the possibility of using other kind of networks, which can extract many values for a given song feature - for instance, for mood tracking purposes, among others).

5.2. Data normalization

Between feature extraction and classification, classification data (i.e. feature extraction values) was normalized, to ensure that all values ranged between the same boundaries, preventing the classification results to become corrupted. where is the normalized value, l and u are respectively the upper and lower limits between which the features values will be scaled. In this case, the chosen feature normalization interval was $[0,1](u=0$ and $l=1)$.

5.3. Classification

To properly classify the songs and estimate distances between them, both arousal and valence values needed to be known simultaneously. With this in mind, the initial method developed by my colleague Renato Panda was improved - so that the mentioned pair values could be predicted at the same time. Once again (as in Renato's thesis), the SVM classifier was used for this, through the libSVM library, on the Yang dataset (as referred earlier in this report, 194 samples of songs, annotated with arousal and valence values).

It was chosen to use K-fold cross-validation, with $K=4$, which means that 3 folds were used for the training phase (75% of the dataset), while the last fold was used for testing (25% of the dataset). This means that each fold would have 48 or 49 songs (considering the 194 that comprised the whole dataset). As this cross-validation method implies, all the 4 folds were rotated, to ensure that all of them were used for both training and testing purposes.

The aforementioned process was repeated 50 times, which means that 200 folds (4×50) were generated. It is also important to underline that all the folds were randomly generated.

5.4. Database

A SQL database is used by server, which stores all the information about classification and the songs. The server does all the operations required on the database (e.g. querying, update and addition of data). The use of Qt SQL libraries provides support for different database management systems, also supporting different engines, from a simple SQLite file to MySQL, PostgreSQL, Oracle or Acess DB files or any other Open Data Base Connectivity (ODBC) protocol. Currently, the prototype supports SQLite, with preliminary support for MySQL.

The database was planned and designed in a general and expandable way. It supports the current needs but also allows different mood models, including different types (both categorical and dimensional), user accounts, lists of artists, albums, genres, features and classification profiles, saving different classification and tracking values for the same song, based on different combinations of features and classifiers, for instance.

5.5. Song Details

After selecting one song in the database map, a request for its details is made to the server. The information is then received and displayed on the "Song details" dialog (Figure 24), which displays all the ID3 tag information data available for the specified song, as long as the correspondent soundwave graph and mood tracking data (based on Renato's work). The song can be played and a vertical black line marks the progress of it, with different colors representing different mood quadrants identified in the song.

5.6.Song annotations

As pointed out in previous sections of this report, the song dataset used was kindly provided by Yi-Hsuan Yang, one of the authors of (Yang, Lin, $\mathrm{Su}, \&$ Chen, 2006), along with the arousal and valence annotations values for each one of the dataset songs. This dataset was the one use for training and testing purposes, and consisted of 194 songs from several genres and provenances, spanning different arousal and valence values, from all four Thayer's model quadrants.

However, as my colleague Renato Panda pointed out in his thesis, the annotations values revealed that they aren't 100% accurate and not as diverse as one would expect, which of course can negatively influence the final results. This will be addressed below.

5.7. Proximity to Thayer's model origin

After mapping the dataset annotations to the Thayer's model, it is obvious that the majority of the songs are close to the origin of both axes, which suggests that they don't denote very marked moods (if that was the case they would be much more distant from
 below:

Figure 29: Yang annotations mapped into Thayer's model ${ }^{19}$

Distance from the origin	Number of songs	Percentage in the dataset	Sum
$[0,0.25]$	47	24.23%	47
]0.25, 0.5]	93	47.94%	140
]0.5, 0.75]	47	24.23%	187
$[0.75,1]$	7	3.61%	194

Table 5: Yang annotations distances to the model's origin ${ }^{20}$
As it can be seen in Table 5, nearly 25% of the songs annotations are within a distance of 0.25 of the center (red circumference in Figure 29), while nearly 75% of the dataset is at most at a distance of 0.5 from the graph's origin (orange circumference in Figure 29). This means that the majority of the songs are placed near the model's origin, which obviously leads to somewhat ambiguous moods.

5.8. Unbalanced song distribution

The Yang dataset aimed to achieve a balanced distribution of songs in the four quadrants that compose the Thayer's Model. Since the dataset has 194 songs, this would mean about 48 or 49 songs for each quadrant. After analyzing the annotations values, it is quite evident that this differ much from the initial quadrants (expressed in each song filename), which results in an unbalanced dataset.

Again, looking to Figure 29 (where each one of the four colors represents one of the four quadrants), it was expected to see the points with the same color (the initial annotation) together in the same quadrant. However, as it can be seen in Figure 29 and analyzed in Table 6, it is quite obvious that the songs are scattered all over the model's quadrants, which makes the dataset completely unbalanced. This is another issue that can also lead to distorted results

Quadrant	Yang	Real	Real (\%)	Matching	Matching (\%)
1	48	54	27.84%	36	75.00%
2	48	22	11.34%	17	35.42%
3	49	51	26.29%	16	32.65%
4	49	49	25.26%	9	18.37%
Other	0	18	9.28%	-	-
Total	194	194	100.0%	78	40.21%

Table 6: Songs per quadrant (Yang's vs. real annotations) ${ }^{\mathbf{2 0}}$

In Table 6, the "Yang" column shows the number of songs in each quadrant, according to Yang's initial annotations, while the "Real" column shows how many songs were indeed in each quadrant, after the analysis of the annotated values (in this particular case, the "Other" row shows 18 songs where one of the values for arousal or valence was equal to zero, therefore not belonging to any particular quadrant). The "Matching" column shows how many songs were indeed correct (matching in both Yang's initial annotations and the annotated values).

In a quick glance, it can be seen that only nearly 40% of the songs (78 songs) match both annotations, and that the second quadrant actually only has 22 songs in it.

Song Title	Artist	Emotion
1. LDN	Lily Allen	Exuberance
2. Dancing Queen	ABBA	Exuberance
3. Shiny Happy People	R.E.M.	Exuberance
4. Love Shack	B52S	Exuberance
5. She Loves You	Beatles	Exuberance
6. Crazy in Love	Beyoncé	Exuberance
7. Baby One More Time	Britney Spears	Exuberance
8. Ive had the Time of my Life	Bill Medley	Exuberance
9. Spice Up Your Life	Spice Girl	Exuberance
10. Spinning Around	Kylie Minogue	Anxious
11. Fight Song	Rachel Pattern	Anxious
12. Mad Hatter	Melaine Martinez	Anxious
13. Home	Meg Hutchinson	Anxious
14. Unwell	Matchbox Twenty	Anxious
15. Warrior	Demi Lovato	Anxious
16. The Middle	Jimmy Eat World	Anxious
17. Breathe Me	Sia	Anxious
18. About Today	The National	Anxious
19. Shake It Out	Florence + Machine	Anxious
20. Drown	Bring Me the Horizon	Anxious
21. Migraine	21 Pilots	Contentment
22. Amazing Day	Coldplay	Contentment
23. Be my Forever	Christina Perri	Contentment
24. Best of Joy	Michel Jackson	Contentment
25. Brighter than the Sun	Colbie	Contentment
26. Do Everything	Steven Curtis Chapman	Contentment
27. Everybody Have Fun Tonight	Wong Chong	Contentment
28. For Once in My Life	Stevie Wonder	Contentment
29. Good Time	Owl City	Contentment
30. If You Wanna be Happy	Jimmy Soul	Contentment
31. It Was a Good Day	Ice Cube	Depression
32. Angels	Robbie Willams	Depression
33. Wish You Were Here	Pink Floyd	Depression
34. Breathe	Ana Nalick	Depression
35. Under the Bridge	Red Hot Chili Peppers	Depression
36. Creep	Radiohead	Depression
37. Wicked Gone	Chris Isaak	Depression
38. Brick	Ben Folds Five	Depression
39.SomeThing in the Way	Rirvana	Depression
40. Time After	Righteous Brothers	
41. Unchanged Melody		

5.9. Global results

The results obtained by the tests specified in section 3.1.5. Playlist evaluation are presented in Table 7. It is important to know that these results are the arithmetic means of each one of the metrics specified, based on all the measures made (9700 songs $=50$
repetitions $\times 4$ folds \times all songs on each test fold -2 folds have always 49 songs, while the other 2 have always 48):

Metric	Results (arithmetic mean)
Playlist first song match (size 20)	4.11%
Percentage of playlist songs match (size 5)	19.03%
Percentage of playlist songs match (size 10)	35.35%
Percentage of playlist songs match (size 20)	58.73%

Table 7: Experimental results

From this table, it is easy to understand why the exposed metrics tests results grow in percentage.

The first metric has undoubtedly a really low result, but that can be somewhat understand if we have in mind that it measures the average percentage of times the closest song in a top distance list of 48 or 49 songs is the same in the annotation and prediction ones.

The other three metrics are similar among themselves, the only variable being the playlist size. Since these three metrics measure the average percentage of common songs (therefore ignoring the order of appearance of them) between the top annotation and top prediction lists (with playlists sizes of 5,10 and 20 songs), it is easy to understand that, the bigger the playlist size is, the most probable is to find common songs in the two top lists. To a playlist of size 20 , in these conditions, the results are reasonable, with an average matching of almost 60%.

However, these results also predict that if the dataset (and consequently the fold) size is increased, these four metrics values will probably drop. The limitations that helped led to his results were already pointed out and some suggestions are made abaixo (section 5 Future work).

5.10. Classification results

However, it is noteworthy that the fact that feature selection was not performed was another factor that contributed to the somewhat low results achieved. In his thesis, using all the features available in MARSYAS, my colleague Renato Panda concluded that, as previous studies pointed out, valence values are easier to predict, in comparison with the valence ones. His tests used R2 and RMSE statistics (see section 3.1.3. Classification for their definition) to verify this and indeed they revealed that the R2 value for arousal reached 57.9% but only 3.24% for valence (Table 8). The arousal values are similar to the ones observed in (Yang, Lin, $\mathrm{Su}, \&$ Chen, 2006), but in what concerns with the valence values, they reached 28.1% in the same paper, much more than the ones obtained here. This discrepancy is probably due to the fact that, in the aforementioned paper, several
feature extraction frameworks were used, which provided the authors with a wider range of features, some of them not present in MARSYAS. This is underlined by the fact that three out of the four most important features pointed out by Yang in his paper are no present in MARSYAS.

We also conducted a pilot study with MIR Toolbox, which led to a R2 value of 25% for valence, which confirms the absence of some meaningful features in MARSYAS. Another cause to this low R2 results for valence probably had to do with the use of the entire MARSYAS feature set. If feature selection had been made, some features (with uninteresting results for mood classification) would be discarded, thus increasing both the results (especially for valence) and the model accuracy.

Arousal				Valence			
SSE	SST	RMSE	R^{2}	SSE	SST	RMSE	R^{2}
0.996816	2.34311	0.220108	0.57985	1.15312	1.1943	0.241297	0.0324472

Table 8: Global classification results (using all features)
Also, looking at the placement of the predictions on Thayer's model it is easy to conclude that all songs are gathered within the 0.50 distance limit (orange circumference, see Figure 30) and that the valence values practically do not change (a very small variation almost places them all over the arousal axis).

Figure 30: Global predictions in Thayer's model (using all features) ${ }^{19}$
As previously pointed out, improvements to these results can be achieved by adding meaningful features, such as tonality, multiplicity, spectral dissonance and chord, as
mentioned in (Yang, Lin, Su, \& Chen, 2006) (other suggestions are exposed in section 5.1. Future work).

LYRIC BASED APPROACH:

Our ultimate goal is to compute the valence and arousal value of lyrics, not to do classification. We do classification for broad classes for the purpose of evaluating our emotion detecting method and comparing the performance of our method with that of other classification methods proposed in the literatures, many of which were for the same broad classes.

5.11 Data Sets

To evaluate the performance of our approach, we collected 42 songs from the classified catalogue accord-ing to emotion in www.koook.com. These songs are up-loaded by netizens and their genres include pop, rock \& roll and rap. These songs were labeled by 7 people whose ages are from 23 to 48 . Two of them are professors and five are postgraduate students, all native Chinese. Each judge was asked to give only one label to a song. The songs that are labeled by at least 6 judges to the same class are re-mained. We use these songs' lyrics as the corpus. The distribution of the corpus in four classes is shown in Table
$\square \quad$ Although the number of songs in +V -A class is small, it is not surprising. This phenomenon conforms to the distri-bution in reality.

Confusion Matrix					
1	$\begin{gathered} 8 \\ 19.5 \% \end{gathered}$	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 4 \\ 9.8 \% \end{gathered}$	$\begin{gathered} 2 \\ 4.9 \% \end{gathered}$	$\begin{aligned} & 57.1 \% \\ & 42.9 \% \end{aligned}$
2	$\begin{gathered} 3 \\ 7.3 \% \end{gathered}$	$\begin{gathered} 10 \\ 24.4 \% \end{gathered}$	$\begin{gathered} 5 \\ 12.2 \% \end{gathered}$	$\begin{gathered} 5 \\ 12.2 \% \end{gathered}$	$\begin{aligned} & 43.5 \% \\ & 56.5 \% \end{aligned}$
$\begin{aligned} & \bar{U} \\ & \stackrel{\rightharpoonup}{2}^{3} 3 \end{aligned}$	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\mathrm{NaN} \%$ $\mathrm{NaN} \%$			
4	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 1 \\ 2.4 \% \end{gathered}$	$\begin{gathered} 0 \\ 0.0 \% \end{gathered}$	$\begin{gathered} 3 \\ 7.3 \% \end{gathered}$	$\begin{aligned} & 75.0 \% \\ & 25.0 \% \end{aligned}$
	$\begin{aligned} & 72.7 \% \\ & 27.3 \% \end{aligned}$	$\begin{aligned} & 90.9 \% \\ & 9.1 \% \end{aligned}$	$\begin{gathered} 0.0 \% \\ 100 \% \end{gathered}$	$\begin{aligned} & 30.0 \% \\ & 70.0 \% \end{aligned}$	$\begin{aligned} & 51.2 \% \\ & 48.8 \% \end{aligned}$
	1	2		4	
Target Class					

5.12 Results

To demonstrate how our approach improves the emotion classification of lyrics in comparison to existing methods, we implemented a emotion classification method based on lyrics with emotion lexicon: Lyricator [10]. Lyricator uses ANEW to extend the emotion lexicon by natural language corpus with a co-occurrence method. Using the extended emotion lexicon, Lyricator computes the emotion of each sentence of a lyric and the sentence emotion is the mean of emotion values of the emotion words contained in the sentence. The emotion of a lyric is weighted mean of values of the emotions of sentences. The weight is defined as the loop of sentences in the lyric.

To process lyrics, we translate the lexicon used in Lyricator and implement Lyricator's method. What's more, the parameters are adjusted to gain its best perfor-mance. Under the same test corpus that has been men-tioned above, we compare Lyricator with our system. Ta-ble 4 shows the evaluation results between Lyricator and our work in the same songs corpus. The precision for a class is the number of lyrics correctly labeled the class di-vided by the total number of lyrics labeled as belonging to the class. The Recall is defined as the number of true positive divided by the total number of lyrics that actually belong to the positive class. The small number of lyrics in +V-A leads to the low precision for this class. Because we have used the wealth of NLP factors and fuzzy cluster-ing method, our method's performance is better than the previous work.

Merging Factors:

- Lyrics-focused approaches are more accurate for sad songs (-ve Y axis of Thayer's Model)
- Audio-focused approaches are more accurate for happy songs (+ ve Y axis)

Main Song Emotion	Audio Based Emotion	Lyrics Based Emotion
Sad	Sad	Sad
Happy	Happy	Happy
Happy	Happy	Sad
Sad	Happy	Sad

- Reasons For Result Varying:

1. Shortage of Dataset
2. Not Using NLP Tools

- Assumed Percentage of variance: $17 \%-25 \%$

6. Related Works:

- Automatic Mood Detection and Tracking of Music Audio Signals
- Contributions:
- Music Mood Model Taxonomy description
- Extracting music features
- Mood Detection Algorithm
[Limitations:
- Insufficient music feature
- No relation with lyrics
- Inefficient Mood Detection Algorithm
- LYRIC-BASED SONG EMOTION DETECTION WITH AFFECTIVE LEXICON AND FUZZY CLUSTERING METHOD
- Contributions:
* Mood Model Taxonomy description
* Extracting lyric (NLP based) features
* Mood Detection Algorithm

L Limitations:

* No relation with Music (only related with song speed)

7. Conclusions

This project revealed to be a valuable one, consisting in a valid study, with interesting and credible results. Personally, the main goals and purposes of this work were achieved, and one hint of the relevance of these results on the MIR and MER fields is the possibility of writing (or, at least, to take part on) a paper about the subject.

Of course that there were time limits and some difficulties, the main ones being the complexity of the MARSYAS core code (which increased the learning curve), and its instability, due to constant updates that sometimes generated memory leaks in some versions and so, the work done is a functional prototype of the planned mood application and not a final version.

Yet, the features that weren't developed so far are well documented in both section 5.1 and Appendix A. This way, it is easy to understand what is already done and what paths can be followed.

It is also noteworthy all the study and knowledge gained through the planning and development of this project, which is well documented in this thesis report. This consists in a solid base and introduction to the study of the MIR and MER fields. Also, despite being mainly a research project, software engineering techniques were also used, which ensured planning and eased team work and task distribution among all the members of the project.

In conclusion, this project was undoubtedly worthy and added value to the areas covered. Its results are another small but important step in the research of these recent fields (MIR and MER), and so, more data is available to all the researchers on the subject.

7.1. Future work

In a research project of this kind, usually many improvements can be done, and this one is no exception. Mainly due to time restrictions, some of the requirements planned weren't developed, although the main objectives were achieved.

In what concerns to MARSYAS and playlist generation, some of the improvements could include the use of a bigger, balanced dataset (instead of the Yang
one), or, in alternative, to assure that both the training and test sets of the current dataset are balanced, including all the folds (with an equal number of songs for each quadrant). However, the latter option would mean that only 22 songs from each quadrant would be used in total (since the annotations analysis revealed that only 22 songs belonged to the second quadrant, the one with less number of songs).

Also, more metrics could be studied (which includes distance metrics, like the Euclidean and Manhattan distance between each songs feature vector, or a membershiplike feature vector distance) - for instance, extract more playlist generation statistics by changing the number of repetitions and/or folds and comparing the results. Other important tool would be the use of FFS, to eventually increase the quality of the results obtained. FFS would possibly provide better results by choosing the optimal set of features (the ones that provided the best prediction results). Last, but not least, other classifiers ($\mathrm{k}-\mathrm{NN}, \mathrm{GMM}$) could be used to compare results, and their parameters studied, compared and tuned (including the classifier used - SVM), to achieve better results.

In what concerns to the application (the client, backoffice and server), it could be improved to include all the options planned in the requirement analysis document (see Appendix A) that weren't developed. In what concerns to the database, the one currently specified and implemented is prepared for generalization and includes all the current necessary features.

Finally, at least the playlist generation experiments, metrics and results, could be documented on an article paper written on the subject.

References

Aucouturier, J.-J., \& Pachet, F. (2002). Music Similarity Measures: What's The Use?

Audio Music Mood Classification Results. (s.d.). Obtido em 20 de January de 2010, de Audio Music Mood Classification Results - MIREX 2008: http://www.musicir.org/mirex/2008/index.php/Audio_Music_Mood_Classification_Results\#MIREX_2 oo8_Audio_Mood_Classification_Run_Times
de Cheveigné, A., \& Kawahara, H. (2002). YIN, a fundamental frequency estimator for speech and music. Acoustical Society of America .

Euclidean distance. (s.d.). Obtido em 22 de January de 2010, de Wikipedia, the free encyclopedia: http://en.wikipedia.org/wiki/Euclidean_distance
jAudio. (s.d.). Obtido em 19 de January de 2010, de jAudio:
http://jmir.sourceforge.net/jAudio.html
Laar, B. v. (2005). Emotion detection in music, a survey.

Lartillot, O. (2008). MIRtoolbox 1.1 User's Manual. Jyväskylä, Finland.

Lartillot, O., Toiviainen, P., \& Eerola, T. (s.d.). Department of Music: MIRtoolbox. Obtido em 20 de January de 2010, de Jyväskylä University:
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox

Lu, L., Liu, D., \& Zhang, H.-J. (2006). Automatic Mood Detection and Tracking of Music Audio Signals. IEEE Transactions on Audio, Speech and Language Processing , 14 (1).

Marsyas. (s.d.). Obtido em 20 de January de 2010, de About:
http://marsyas.info/about/overview

McKay, C. (s.d.). jAudio: Towards a standardized extensible audio music feature extraction system.

Meyers, O. C. (2007). A Mood-Based Music Classification and Exploration System.

Overview. (s.d.). Obtido em 20 de January de 2010, de Marsyas:
http://marsyas.info/about/overview

Paiva, R. P. (2006). Melody Detection in Polyphonic Audio.

Pampalk, E. (2005). Tutorial: Music Similarity. ISMIR.

Pauws, S., \& Eggen, B. (2002). PATS: Realization and User Evaluation of an Automatic Playlist Generator.

Ribeiro, B. (2009). Pattern Recognition Techniques slides.

Scherrer, B. (2007). Gaussian Mixture Model Classifier

