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Abstract  

Breast cancer is one of the major causes of death in women when compared to all other cancers. 

Breast cancer has become the most hazardous types of cancer among women in the world. In 

this paper we present an analysis of the prediction of survivability rate of breast cancer patients 

using data mining techniques. The collection of large volumes of medical data has offered an 

opportunity to develop prediction models for survival by the medical research community. The 

data used is the SEER Public-Use Data. The preprocessed data set consists of 262,423 records, 

which have all the available72 fields from the SEER database. After cleaning of the data set, 

106,237 records were put under analysis, then we have investigated five data mining techniques: 

the Naïve Bayes, the back-propagated neural network, logistic regression, support vector 

machine and the J48 decision tree algorithms. Comparison of the performance of all these 

different techniques shows that the Logistic regression has a better performance of 93.07% 

accuracy. Afterwards, three feature reduction methods, Attribute correlation, Information gain 

and factor analysis for mixed dataset, were used to reduce data dimension. The result of these 

methods showed a better performance in time for all the above mentioned data mining 

techniques. It had a fluctuating accuracy in case of other methods but showed and increase to 

94.35% accuracy in case of Logistic regression when factor analysis for mixed dataset was used. 
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Chapter 1 

Introduction 

1.1 Overview  
 

Data mining, also known as knowledge discovery in databases is defined as “the 

extraction of implicit, previously unknown, and potentially useful information from data” [8]. It 

encompasses a set of processes performed automatically, whose task is to discover and extract 

hidden features (such as: various patterns, regularities and anomalies) from large data sets [18]. 

Classification is one of the most studied problems in machine learning and data mining [8]. 

Predicting the outcome of a disease is one of the most interesting and challenging tasks in which 

to develop data mining applications. An analysis of the most recent data has shown that the 

survival rate is 88% after 5 years of diagnosis and 80% after 10 years of diagnosis [1].  

In this paper we analyze the breast cancer data available from the SEER program with the aim of 

developing accurate survival prediction models for breast cancer. The data analyzed in this study 

is from the surveillance, epidemiology and end results (SEER) breast cancer incidence data in the 

years of 2004-2013. 

 

  

 

1.2 Research challenges 
 

  How to analyze the data, the data set at first was not organized in the proper way and 

then we clean the data then the records 106,237 were put for the analysis. 

How to extract the knowledge from the data related to the diseases. One of those technique is 

SEER to (Surveillance Epidemiology and End Results), which is a unique, reliable and essential 

resource for investigating the different aspects of cancer. 

Data variety, trying to accommodate the data comes from different sources and in variety 

different forms like (images, data text, and social numeric). The data may come in different form 

we should analysis in form of understanding then we can have the meaningful information to use 

those data for a particular task.   

Dealing with huge data sets, as we know the technique of data mining is built for dealing 

with huge amount of data sets there are several technique to analyze those data we have used 

Weka software tool to process the data using different methodology.  
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1.2 Motivation 
 

 Predicting the outcome of a disease is one of the most interesting and challenging tasks 

in which to develop data mining applications. Because   

 The classification of Breast Cancer data can be useful to predict the outcome of some 

diseases or discover the genetic behavior of tumors. 

 Predicating cancer outcome may help researchers who are working in the cure for cancer.   
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Chapter 2 

Literature Review  

2.1 Feature Selection 
 

Feature selection, also known as variable selection, feature reduction, attribute selection 

or variable subset selection, is the technique of selecting a subset of relevant features for building 

robust learning models. 

We have preprocessed the SEER data of 2004-2013 which contain 262,423 records, which 

have all the available72 fields for breast cancer to remove redundancies and missing information. 

The resulting data set had 106,237 records, which then pre-classified into two groups of 

“survived” and “not survived”. 

 

 

 Supervised learning generates a function that maps inputs to desired outputs. 

 Unsupervised learning models a set of inputs. 

 Semi-supervised learning combines both labeled and unlabeled examples to generate an 

appropriate function or classifier. 

 Reinforcement learning learns how to act given an observation of the world. Every action 

has some impact in the environment, and the environment provides feedback in the form 

of rewards that guides the learning algorithm. 

 Transduction tries to predict new outputs based on training inputs, training outputs, and 

test inputs. 

 Learning to learn learns its own inductive bias based on previous experience 

 

 

2.2 Feature Selection Techniques 
 

From a theoretical perspective, it can be shown that optimal feature selection for 

supervised learning problems requires an exhaustive search of all possible subsets of features of 

the 

Chosen cardinality. If large numbers of features are available, this is impractical. For practical 

supervised learning algorithms, the search is for a satisfactory set of features instead of an 

optimal set. Feature selection algorithms can be classified into two broad categories: 
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Feature ranking (FR) also called feature weighting [2], assesses individual features and 

assigns them weights according to their degrees of relevance. Many researches have been done 

with feature ranking as the base meth. 

 

2.3 Related Works 
 

Bellachia et al [2] uses the SEER data to compare three prediction models for detecting 

breast cancer. They have reported that C4.5 algorithm gave the best performance of 86.7% 

accuracy. 

 

Delen et al [6] in their work preprocessed the SEER data for to remove redundancies and 

missing information. They have compared the predictive accuracy of the SEER data on three 

prediction models indicated that the decision tree (C5) is the best predictor with 93.6% accuracy 

on the holdout sample. 

 

Endo et al [3] implemented common machine learning algorithms to predict survival rate 

of breast cancer patient. This study is based upon data of the SEER program with high rate of 

positive examples (18.5 %). Logistic regression had the highest accuracy, artificial neural network 

showed the highest specificity and J48 decision trees model had the best sensitivity 

 

Kotsiantis et.al. [13] did a work on Bagging, Boosting and Combination of Bagging and 

Boosting as a single ensemble using different base learners such as C4.5, Naïve Bayes, OneR and 

Decision Stump. These were experimented on several benchmark datasets of UCI Machine 

Learning Repository 
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Chapter 3 

Proposed method 

3.1 Overall Concept 
 

We have used five methods in our experiments which are Naïve bays, Artificial Neural 

Network ,logistic regression, support vector machine and Decision tree J48 we have compared 

the results between them among these logistic regression has better performance.  

Building accurate and efficient classifiers for large databases is one of the essential tasks 

of data mining and machine learning research. Building effective classification systems is one of 

the central tasks of data mining. 

 

3.2 Naïve Bayes 
 

The Naive Bayes is a quick method for creation of statistical predictive models [16]. NB is 

based on the Bayesian theorem. This classification technique analyses the relationship between 

each attribute and the class for each instance to derive a conditional probability for the 

relationships between the attribute values and the class. During training, the probability of each 

class is computed by counting how many times it occurs in the training dataset. This is called the 

“prior probability” P(C=c). In addition to the prior probability, the algorithm also computes the 

probability for the instance x given c with the assumption that the attributes are independent. 

This probability becomes the product of the probabilities of each single attribute. The 

probabilities can then be estimated from the frequencies of the instances in the training set. 
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3.4 Decision Tree J48 
 

Decision tree is a classifier in the form of a tree structure where each node is either a leaf 

node, indicating the value of the target attribute or class of the examples, or a decision node, 

specifying some test to be carried out on a single attribute-value, with one branch and sub-tree 

for each possible outcome of the test. A decision tree can be used to classify an example by 

starting at the root of the tree and moving through it until a leaf node is reached, which provides 

the classification of the instance. 
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3.5 Artificial Neural Network 
 

Neural networks are capable of modeling extremely complex, typically non-linear 

functions [10]. It is made up of structure or a network of numerous interconnected units (artificial 

neurons).  

Each of these units consists of input/output characteristics that implement a local computation 

or function. The function could be a computation of weighted sums of inputs which produces an 

output if it exceeds a given threshold. The output (whatever the result), could serve as an input 

to other neurons in the network. This process iterates until a final output is produced. 

 

 

 

 

 

3.6 Logistic Regression  
 

Logistic regression is considered as the standard statistical approach to modeling binary 

data [16]. It is a better alternative for a linear regression which assigns a linear model to each of 

the class and predicts unseen instances basing on majority vote of the models. During prediction, 
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instead of predicting the point estimate of the event itself, it builds a model to predict the odds 

of its occurrence. In two class problem for example, when the odds are greater than 50%, then 

the case is assigned to the class designated as “1” for YES and “0” for “YES” and “NO” instead. 

The given equations, equ1 and equ2, are the linear regression and logistic regression 

respectively.  

 

……………………………………… equ1  

   

    

 

………………………………………………………….. equ2 

 

 

 

 

3.7 SUPPORT VECTOR MACHINE (SVM) 
 

Support Vector Machine are a set of related supervised learning methods that analyze 

data and recognize patterns, used for classification and regression analysis. Support Vector 

Machine is an algorithm that attempts to find a linear separator (hyper-plane) between the data 

points of two classes in multidimensional space. Support Vector Machine represents a learning 

technique which follows principles of statistical learning theory [14]. Generally, the main idea of 

Support Vector Machine comes from binary classification, namely to find a hyperplane as a 

segmentation of the two classes to minimize the classification error. The Support Vector Machine 

finds the hyperplane using support vectors (training tuples) and margins (support vectors). The 

Sequential Minimal Optimization (SMO) algorithm is a simple and fast method for training a 

Support Vector Machine. 
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Chapter 4: 

Experimental Analysis 
 

We have used java programming language to extract and clean the data from SEER Public-

Use data. Weka (3.8) tool was used to apply all the classifiers algorithms I this paper. 

 

4.1 Dataset Details 
 

The data set on breast cancer on which we have applied the mentioned classification 

algorithms was from the SEER, a unique and reliable data source on cancer. The data set 

consisted of records from 2004-20013, it consisted of 262,423 cancer incidence. The 16 

important fields were extracted from the 72 field that the SEER data set provides. This fields were 

considered the important fields that are affecting and is concerned with breast cancer. The fields 

are as follows: 

 

Nominal variable name Number of distinct values 

Race  29  

Marital status   6    

Primary site code    9    

Histologic type      104    

Behavior code     2    

Grade  4  
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Extension of tumor     39    

Lymph node involvement   38    

Site specific surgery code      47    

Radiation  8 

Stage of cancer   13 

 

Table1: Nominal attributes of dataset 

 

Numeric variable name Mean Std. Dev. Range 

Age   59.209 13.228 12-107 

Tumor size   54.185 176.324 0-998 

Number of positive 
nodes   

26.504 42.641 0-98 

Number of nodes   6.581 12.879 0-98 

Number of primaries   0.433 0.804 0-7 

  

Table2: Numeric attributes of dataset. 

 

The survivability attribute was added in the pre-classified data. To consider a cancer 

patient record as survived or not survived, a record was classified as survived if the survival time 

record was greater than or equal to 60 months and the vital status record was alive. Then if the 

survival time record was less than 60 months and the cause of death was breast cancer, the 

patient instance was classified as not survived. Otherwise, the record was ignored. 

 

// Setting the survivability dependent variable for 60  

// months threshold  

  If STR ≥60 months and VSR is alive then 

                the record is pre-classified as “survived”  

else if  STR < 60 months and COD is breast cancer, then 

                the record is pre-classified as “not survived”  



11 
 

else  

                Ignore the record  

end if 

 

After the pre-classification, 106,237 records were left. Of this number of records, 92,812 

patient records were classified as survived and 13,425 were classified as not survived. 

 

Class Number of instances Percentage 

0 Not survived 13,425 12.6 

1 survived 92,812 87.4 

Total 106,237 100 

 

Table3: Dataset composition 

 

This shows 87.4 % survival rate in breast cancer, which is approximately equal to the 

survival rate of 89 % from 2006 to 2013 according to cancer association. 

After the preprocessing step, a common analysis would be determining the effect of the 

attributes on the prediction, or attribute selection. We used the information gain measure to 

rank the attributes due to the fact that it is a common method and the C4.5 decision tree 

technique utilizes this measure. 

The figure bellow shows the ranked survivability attributes of our data as calculated by 

the Weka toolkit. It clearly shows that Extension of Tumor and cancer stage has a higher rank 

than the Tumor Size. 
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Figure 1: Rank of attributes 

 

 

4.2 Performance Analysis 
 

  We will use the performance metrics of accuracy, precision (or Specificity), recall (or 

Sensitivity) ROC (receiver oriented characteristic) curve and time taken to build the model to 

compare the three techniques. In order to have a fair measure of the performance of the 

classifier; we used a cross validation with 10 folds. In its most elementary form, cross-validation 

consists of dividing the data into k subgroups. Each subgroup is predicted via the classification 

rule constructed from the remaining (k-1) subgroups, and the estimated error rate is the average 

error rate from these k subgroups. This is to avoid overfitting and also, the error rate is estimated 

in an unbiased way. The final classifier rule is calculated from the entire data set. 

 

4.2.1 Decision Tree Performance Analysis 
 

For each of the mentioned classification algorithms, a performance analysis was carried out. 

 

Decision Tree  

The J48 which is a java implementation of the c4.5 algorithm was carried out. The performance 

and confusion matrix was as given below. 
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Time 

taken to build model: 10.3 seconds 

Correctly Classified Instances       98633               92.8424 % 

Incorrectly Classified Instances     7604                7.1576 % 

Kappa statistic                               0.6218 

Mean absolute error                      0.1141 

Root mean squared error              0.2391 

Relative absolute error                  51.6621 % 

Root relative squared error           71.9661 % 

Total Number of Instances           106237 

 

 

 

 

 

Table 4: Decision Tree confusion matrix. 

 

4.2.2 Naïve Bayes Performance Analysis 
 

The Naïve Bayes algorithm showed a less performance accuracy but the time taken to 

build the model was considerably faster compared to all the other algorithms. 

 

Time taken to build model: 0.32 seconds 

Correctly Classified Instances        96554               90.8855 % 

Actual 
Predicted 

Survived Not Survived 

Survived 91251 1561 

Not Survived 6043   7382 
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Incorrectly Classified Instances      9683                 9.1145 % 

Kappa statistic                                0.615  

Mean absolute error                       0.1018 

Root mean squared error               0.2733 

Relative absolute error                   46.123 % 

Root relative squared error            82.2391 % 

Total Number of Instances            106237    

 

 

Actual 
Predicted 

Survived Not Survived 

Survived 86836   5976 

Not Survived 3707   9718 

Table 5: Naïve Bayes Confusion Matrix. 

 

4.2.3 Artificial Neural Network Performance Analysis 
 

    The Artificial Neural Network with back propagation showed a better accuracy prediction but 

the time taken to build the model was way too high. 

 

Time taken to build model: 69995.93 seconds 

Correctly Classified Instances       97842               92.0979 % 

Incorrectly Classified Instances      8395                7.9021 % 

Kappa statistic                          0.6002 

Mean absolute error                      0.081  

Root mean squared error                  0.2803 

Relative absolute error                 36.6756 % 

Root relative squared error             84.3513 % 

Total Number of Instances           106237 
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Actual 
Predicted 

Survived Not Survived 

Survived 90260 2552 

Not Survived 5843 7582 

  Table 6: Artificial Neural Network Confusion Matrix 

 

 

 

 

 

 

4.2.4 Logistic Regression Performance Analysis 
  

 Logistic regression was more accurate among all methods that we have used. 

  

Time taken to build model: 52.96 seconds 

Correctly Classified Instances       99029               93.2152 % 

Incorrectly Classified Instances      7208                6.7848 % 

Kappa statistic                          0.6516 

Mean absolute error                      0.1047 

Root mean squared error                  0.2286 

Relative absolute error                 47.4294 % 

Root relative squared error             68.799  % 

Total Number of Instances           106237    
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Actual 
Predicted 

Survived Not Survived 

Survived 91059 1753 

Not Survived 5455  7970 

  Table 7: Logistic Regression Confusion Matrix 

 

 

 

4.2.5 Support Vector Machine Performance Analysis 
 

 

 Support vector machine doesn’t has good accuracy. 

 

Time taken to build model: 5729.55 seconds 

Correctly Classified Instances       98314               92.5421 % 

Incorrectly Classified Instances      7923                7.4579 % 

Kappa statistic                          0.6114 

Mean absolute error                      0.0746 

Root mean squared error                  0.2731 

Relative absolute error                 33.7758 % 

Root relative squared error             82.1909 % 

Total Number of Instances           106237 

 

Actual 
Predicted 

Survived Not Survived 

Survived 7412 6013 

Not Survived 1910 90902 

  Table 8: Support vector machine Confusion Matrix 
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4.3 Comparative Analysis  
 

The comparative analysis on the different algorithm was performed and demonstrated 

in the figure below. The performance criterion was accuracy, precision, recall, and time taken to 

build the model. 

Algorithms 

Results(106,237) 

Accuracy Sensitivity Specificity ROC Area Time(s) 

Decision Tree 92.84 % 0.983 0.938 0.914 10.3 

Naïve Bayes 90.88 % 0.936 0.959 0.926 0.32 

ANN 92.08 % 0.973 0.939 0.797 69998.78 
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Logistic 

regression 
93.07% 0.981 0.942 0.935 191.25 

Support Vector 

Machine  
92.35% 0.983 0.933 0.748 2223.75 

  

    Table 9: comparison of all algorithms  

 

 

 

 

 

 

4.3.1 Accuracy: 
 

The accuracy performance criterion measures how much of the instances were correctly 

classified by the classification technique used.  

Acc = 
𝑇𝑃+𝑇𝑁

𝑃+𝑁
 …………………………………………………………………….. eq3 
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     Figure 3: Accuracy of algorithms  

 

 

 

4.3.2 Recall or Sensitivity: 
The fraction of those instances that are actually positive were predicted positive.  

 

                    Recall= 
𝑇𝑃

𝑇𝑃+𝐹𝑁
…………………………………………………………….. eq4 
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     Figure 4: Sensitivity of algorithms 

 

 

 

4.3.3 Precision or Specificity: 
 

   What fraction of those predicted positive are actually positive. 

                    Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
…………………………………………………………… eq5 
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Figure 5: Specificity of algorithms 

 

 

4.3.4 Time:  
In this performance comparison time was a criterion and the time an algorithm takes to 

build its model is important. 

 

Figure 6: Time to build each model. 
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4.4 ROC CURVE 
The ROC curve is a fundamental tool for diagnostic test evaluation. In a ROC curve the true 

positive rate (Sensitivity) is plotted in function of the false positive rate (100-Specificity) for 

different cut-off points of a parameter. 

This type of graph is called a Receiver Operating Characteristic curve (or ROC curve.) It is a plot 
of the true positive rate against the false positive rate for the different possible cut points of a 
diagnostic test. 

 

An ROC curve demonstrates several things: 

1. It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will be 
accompanied by a decrease in specificity). 

2. The closer the curve follows the left-hand border and then the top border of the ROC 
space, the more accurate the test. 

3. The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate 
the test. 

4. The slope of the tangent line at a cut point gives the likelihood ratio (LR) for that value of 
the test. You can check this out on the graph above. Recall that the LR for T4 < 5 is 52. 
This corresponds to the far left, steep portion of the curve. The LR for T4 > 9 is 0.2. This 
corresponds to the far right, nearly horizontal portion of the curve. 

5. The area under the curve is a measure of text accuracy. 
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DECISION TREE ROC 
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LOGISTIC REGRESSION ROC 

 

 

NAÏVE BAYES 
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Chapter 5 

5.1 Feature Reduction  
Feature selection is critical to building a good model for several reasons. One is that 

feature selection implies some degree of cardinality reduction, to impose a cutoff on the number 

of attributes that can be considered when building a model. Data almost always contains more 

information than is needed to build the model, or the wrong kind of information. For example, 

you might have a dataset with 500 columns that describe the characteristics of customers; 

however, if the data in some of the columns is very sparse you would gain very little benefit from 

adding them to the model, and if some of the columns duplicate each other, using both columns 

could affect the model. 

Not only does feature selection improve the quality of the model, it also makes the process of 
modeling more efficient. If you use unneeded columns while building a model, more CPU and 
memory are required during the training process, and more storage space is required for the 
completed model. Even if resources were not an issue, you would still want to perform feature 
selection and identify the best columns, because unneeded columns can degrade the quality of 
the model in several ways: 

 Noisy or redundant data makes it more difficult to discover meaningful patterns. 
 If the data set is high-dimensional, most data mining algorithms require a much larger 

training data set. 

During the process of feature selection, either the analyst or the modeling tool or algorithm 
actively selects or discards attributes based on their usefulness for analysis. The analyst 
might perform feature engineering to add features, and remove or modify existing data, 
while the machine learning algorithm typically scores columns and validates their 
usefulness in the model. 

 

In short, feature selection helps solve two problems: having too much data that is of little 
value, or having too little data that is of high value. Your goal in feature selection should be 
to identify the minimum number of columns from the data source that are significant in 
building a model. 
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5.2 Analysis of different algorithms after feature reduction 

Correlation attribute 

 

Actual 
Predicted 

Survived Not Survived 

Survived 2033 90779 

Not Survived 7336 6089 

  For 8 attributes of Decision tree j48 confusion matrix. 

 

Actual 
Predicted 

Survived Not Survived 

Survived 1432 91380 

Not Survived 7136 6289 

  For 10 attributes of Decision tree j48 confusion matrix. 

 

Actual 
Predicted 

Survived Not Survived 

Survived 1564 91248 

Not Survived 7355 6070 

  For 13 attributes of Decision tree j48 confusion matrix. 

 

Actual 
Predicted 

Survived Not Survived 

Survived 6185 86627 

Not Survived 9109 4316 

  For 8 attributes of Naïve Bayes confusion matrix. 
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Actual 
Predicted 

Survived Not Survived 

Survived 6047 86765 

Not Survived 9438 3987 

  For 10 attributes of Naïve Bayes confusion matrix. 

 

 

Actual 
Predicted 

Survived Not Survived 

Survived 6007 86805 

Not Survived 9610 3815 

  For 13 attributes of Naïve Bayes confusion matrix. 

 

 

Gain Ratio Attributes 

 

Actual 
Predicted 

Survived Not Survived 

Survived 1532 91280 

Not Survived 6855 6570 

  For 8 attributes of Decision tree j48 confusion matrix. 

 

Actual 
Predicted 

Survived Not Survived 

Survived 1909 90903 

Not Survived   7476   5949 

  For 10 attributes of Decision tree j48 confusion matrix. 

 



28 
 

 

Actual 
Predicted 

Survived Not Survived 

Survived 1589 91223 

Not Survived   7392  6033 

  For 13 attributes of Decision tree j48 confusion matrix. 

 

 

Actual 
Predicted 

Survived Not Survived 

Survived 7018 85794 

Not Survived 9754 3671 

  Naïve Bayes confusion matrix For 8 attributes. 

 

 

Actual 
Predicted 

Survived Not Survived 

Survived 6846 85966 

Not Survived 9799 3626 

  Naïve Bayes confusion matrix For 10 attributes. 

 

Actual 
Predicted 

Survived Not Survived 

Survived 6174 86638 

Not Survived 9655 3770 

  Naïve Bayes confusion matrix For 13 attributes. 
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Actual 
Predicted 

Survived Not Survived 

Survived 2023 90789 

Not Survived 6847 6578 

  Logistic regression confusion matrix For 8 attributes. 

 

 

Actual 
Predicted 

Survived Not Survived 

Survived 1859 90953 

Not Survived 6992 6433 

  Logistic regression confusion matrix For 10 attributes. 

 

 

 

Actual 
Predicted 

Survived Not Survived 

Survived 1697 91115 

Not Survived 7513 5912 

  Logistic regression confusion matrix For 13 attributes. 

 

Multiple factor analysis 

 

Actual 
Predicted 

Survived Not Survived 

Survived  91018 1794 

Not Survived 6453 6972 

  Multiple factor analysis confusion matrix For J48 with 8 attributes. 
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Actual 
Predicted 

Survived Not Survived 

Survived 90949 1863 

Not Survived 7029 6396 

  Multiple factor analysis confusion matrix For Logistic with 8 attributes. 

 

 

Actual 
Predicted 

Survived Not Survived 

Survived 86408 6404 

Not Survived 5211 8214 

  Multiple factor analysis confusion matrix For Naive with 8 attributes. 

 

 

 

Actual 
Predicted 

Survived Not Survived 

Survived  90952 1860 

Not Survived   5999   7426 

  Multiple factor analysis confusion matrix For J48 with 10 attributes. 

 

Actual 
Predicted 

Survived Not Survived 

Survived 91084 1728 

Not Survived   6791 6634 

  Multiple factor analysis confusion matrix For Logistic with 10 attributes. 
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Actual 
Predicted 

Survived Not Survived 

Survived 86088 6724 

Not Survived 4955 8470 

  Multiple factor analysis confusion matrix For Naive with 10 attributes. 

 

 

Actual 
Predicted 

Survived Not Survived 

Survived  90617 2195 

Not Survived 5430 7995 

  Multiple factor analysis confusion matrix For J48 with 13 attributes. 

 

 

Actual 
Predicted 

Survived Not Survived 

Survived 91125 1687 

Not Survived   6747 6678 

  Multiple factor analysis confusion matrix For Logistic with 13 attributes. 

 

 

Actual 
Predicted 

Survived Not Survived 

Survived 86128 6684 

Not Survived 4797 8628 

  Multiple factor analysis confusion matrix For Naive with 13 attributes 
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Factor Analysis for Mixed Data 
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Comparison of algorithms  

Algorithms 

Results(106,237) 

Accuracy Sensitivity Specificity ROC Area Time(s) 

Decision Tree 92.84 % 0.983 0.938 0.914 10.3 

Naïve Bayes 90.88 % 0.936 0.959 0.926 0.32 

ANN 92.08 % 0.973 0.939 0.797 69998.78 

Logistic regression 93.07% 0.981 0.942 0.935 191.25 

Support Vector 
Machine  

92.35% 0.983 0.933 0.748 2223.75 

 

Table 10: Comparison of different Algorithms after feature reduction. 

 

Implementation feature reduction part  

The constants class 

/* 

 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package featureselectionapp; 
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/** 

 * 

 * @author abid&youssouf 

 */ 

public class Constants { 

    public static final int THREADS_MAX_COUNT = 64; 

    public static final long MIN_DATA_SET_BYTES_THREAD = 4096; 

} 

 

The CustomLogger Class  

/* 

 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package featureselectionapp; 

 

import java.io.PrintStream; 

 

/** 

 * 

 * @author abid & youssouf  

 */ 

public class CustomLogger { 

     

    private static PrintStream ps = System.err; 

     

    private static void printUsage() { 
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        log("Usage: ./feature_selection_app [options] data_set_file [output_file]\n" 

                + "options:\n" 

                + "-h : to show this help\n" 

                + "-m metric_type : feature selection metric\n" 

                + " pmi  -- PMI (Pointwise Mutual Information) feature selection metric\n" 

                + " chi2 -- Chi^2 (X^2) feature selection metric\n" 

                + "-n number : number of features to select and return\n" 

                + "-t number : number of threads\n"); 

    } 

     

    public static void exitWithUsage(){ 

        printUsage(); 

        System.exit(1); 

    } 

     

    public static void logAndExit(String txt) { 

        log(txt); 

        System.exit(2); 

    } 

     

    public static void logAndExit(Throwable ex, String txt) { 

        log(ex, txt); 

        System.exit(2); 

    } 

     

    public static void logAndExitWithUsage(String txt) { 

        log(txt); 
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        exitWithUsage(); 

    } 

     

    public static void logAndExitWithUsage(Throwable ex, String txt) { 

        log(ex, txt); 

        exitWithUsage(); 

    } 

     

    public static void log(String txt){ 

        ps.println(txt); 

    } 

     

    public static void log(Throwable t) { 

        ps.println(t.getMessage()); 

    } 

     

    public static void log(Throwable t, String txt) { 

        ps.println(txt); 

        ps.println(t.getMessage()); 

        t.printStackTrace(ps); 

    } 

     

} 

 

 

The CustomStringIntHashMap Class 

/* 
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 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package featureselectionapp; 

import gnu.trove.map.hash.THashMap; 

/** 

 * 

 * @author abid & youssouf */ 

public class CustomStringIntHashMap extends THashMap<String, Integer> { 

  

    public void increment(String key, int inc) { 

        if (this.containsKey(key)) { 

            inc += this.get(key).intValue(); 

        } 

        this.put(key, inc); 

    } 

 

    public void decrement(String key, int dec) { 

        if (this.containsKey(key)) { 

            dec = this.get(key).intValue() - dec; 

        } 

        this.put(key, dec); 

    } 

} 

 

The DataSetFileEntry Class 

/* 
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 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package featureselectionapp; 

import gnu.trove.map.TMap; 

import gnu.trove.map.hash.THashMap; 

/** 

 * 

 * @author abid & youssouf 

 */ 

public class DataSetFileEntry { 

    public String class_name; 

    public TMap<String, Double> features; 

     

    public static DataSetFileEntry getInstanceByLineString(String _line) { 

        DataSetFileEntry entry = new DataSetFileEntry(); 

        String[] parts = _line.split("\\s+"); 

        entry.class_name = parts[0]; 

        entry.features = new THashMap(parts.length - 1); 

        for (int i = parts.length - 1; i >= 1; i--) { 

            String[] feature_and_value = parts[i].split(":"); 

            entry.features.put(feature_and_value[0], Double.valueOf(feature_and_value[1])); 

        } 

        return entry; 

    }  

} 
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The FeatureSelectionApp Class  

/* 

 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package featureselectionapp; 

import gnu.trove.map.TMap; 

import gnu.trove.map.hash.THashMap; 

import java.io.BufferedReader; 

import java.io.File; 

import java.io.FileInputStream; 

import java.io.FileNotFoundException; 

import java.io.IOException; 

import java.io.InputStreamReader; 

import java.io.PrintStream; 

import java.util.Comparator; 

import java.util.Iterator; 

import java.util.List; 

import java.util.SortedMap; 

import java.util.TreeMap; 

import java.util.concurrent.atomic.AtomicInteger; 

import java.util.logging.Level; 

import java.util.logging.Logger; 

/** 

 * 

 * @author abid & youssouf  
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 */ 

public class FeatureSelectionApp extends ThreadObserver { 

 

    /** 

     * Map<feature_name, Map<class_name, frequency_of_feature_for_this_class>> 

     */ 

    private static TMap<String, CustomStringIntHashMap> features_frequencies_per_class; 

    private static CustomStringIntHashMap classes_frequencies = new 

CustomStringIntHashMap(); 

    private static CustomStringIntHashMap features_frequencies = new 

CustomStringIntHashMap(); 

    private static int all_classes_count = 0; 

    private static int all_features_count = 0; 

    private static int records_count = 0; 

    private static String data_set_file_path = null; 

    private static File output_file = null; 

    private static FeatureSelectionMetricEnum metric = null; 

    private static int selected_features_count = 0; 

    private static int threads_count = 1; 

    private static final Object mutex = new Object(); 

    private static volatile boolean processing_done = false; 

 

    private static void parse_command_line(String argv[]) { 

        // parse options 

        int i; 

        for (i = 0; i < argv.length; i++) { 

            if (argv[i].charAt(0) != '-') { 

                // read data set file path 
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                if (data_set_file_path == null) { 

                    data_set_file_path = argv[i]; 

 

                } else if (output_file == null) {   // read output file path 

                    output_file = new File(argv[i]); 

                    if (!output_file.exists()) { 

                        try { 

                            output_file.createNewFile(); 

                        } catch (IOException ex) { 

                            CustomLogger.logAndExit(ex, "Could not create output file: " + argv[i]); 

                        } 

                    } 

                    if (!output_file.canWrite()) { 

                        CustomLogger.logAndExit("Output file " + argv[i] + " is not writable"); 

                    } 

                } else {    // else this is the end of the params 

                    break; 

                } 

            } else { 

                if (++i >= argv.length) { 

                    CustomLogger.exitWithUsage(); 

                } 

                char option_char = argv[i - 1].charAt(1); 

                switch (option_char) { 

                    case 'h': 

                        CustomLogger.exitWithUsage(); 

                        break; 
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                    case 'm': 

                        try { 

                            metric = FeatureSelectionMetricEnum.getMetricByKey(argv[i]); 

                        } catch (IllegalArgumentException ex) { 

                            CustomLogger.logAndExit(ex.getMessage()); 

                        } 

                        break; 

                    case 'n': 

                        selected_features_count = Integer.valueOf(argv[i]).intValue(); 

                        break; 

                    case 't': 

                        threads_count = Integer.valueOf(argv[i]).intValue(); 

                        if (threads_count > Constants.THREADS_MAX_COUNT) { 

                            threads_count = Constants.THREADS_MAX_COUNT; 

                        } 

                        break; 

                    default: 

                        CustomLogger.logAndExit("Invalid option: -" + option_char); 

                } 

            } 

        } 

 

        if (data_set_file_path == null || selected_features_count < 1 || metric == null) { 

            CustomLogger.logAndExitWithUsage("Data set file, metric and number of selected 

features are mandatory paramters"); 

        } 

    } 



43 
 

 

    private static void readDataSetFile(List<DataSetFileEntry> _data) { 

        features_frequencies_per_class = new THashMap(); 

        records_count = _data.size(); 

        for (DataSetFileEntry line_entry : _data) { 

            classes_frequencies.increment(line_entry.class_name, 1); 

            for (String feature_name : line_entry.features.keySet()) { 

                // the value of the feature is either 1 or nothing ////FIXME this part I am not sure 

about 

                int feature_val = line_entry.features.get(feature_name).intValue(); 

                CustomStringIntHashMap feature_map; 

                if (features_frequencies_per_class.containsKey(feature_name)) { 

                    feature_map = features_frequencies_per_class.get(feature_name); 

                } else { 

                    feature_map = new CustomStringIntHashMap(); 

                    features_frequencies_per_class.put(feature_name, feature_map); 

                } 

                feature_map.increment(line_entry.class_name, feature_val); 

                features_frequencies.increment(feature_name, feature_val); 

            } 

        } 

        all_features_count = features_frequencies.size(); 

        all_classes_count = classes_frequencies.size(); 

    } 

 

    /** 

     * @param args the command line arguments 
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     */ 

    public static void main(String[] argv) { 

        // parse the command options and read data set file into data structures 

        parse_command_line(argv); 

 

        // create an instance of this class to act as an observer for threads 

        FeatureSelectionApp app = new FeatureSelectionApp(); 

        app.startThreads(threads_count, data_set_file_path); 

         

        app.waitForAllThreads(); 

    } 

 

    private void printOutput(final TMap<String, Double> all_features_scores) { 

        PrintStream os = null; 

        if (output_file != null) { 

            try { 

                os = new PrintStream(output_file); 

            } catch (FileNotFoundException ex) { 

                CustomLogger.log(ex, "Cannot write to output file"); 

            } 

        } else { 

            os = System.out; 

        } 

 

        // sort the features 

        SortedMap<String, Double> all_features_sorted_scores = new TreeMap(new 

Comparator<String>() { 
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            @Override 

            public int compare(String o1, String o2) { 

                double diff = all_features_scores.get(o2) - all_features_scores.get(o1);    // 

descendingly 

                if (diff > 0) { 

                    return 1; 

                } else { 

                    return -1; 

                } 

            } 

        }); 

        all_features_sorted_scores.putAll(all_features_scores); 

 

        // put the top features in the outputfile 

        Iterator<String> features_names = all_features_sorted_scores.keySet().iterator(); 

        int i = 0; 

        while (features_names.hasNext() && i < selected_features_count) { 

            String fname = features_names.next(); 

            os.println(fname + "\t" + all_features_scores.get(fname)); 

            i++; 

        } 

        if (output_file != null) { 

            os.close(); 

        } 

    } 

 

    @Override 
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    public void allThreadsFinished(List<DataSetFileEntry> _data) { 

        readDataSetFile(_data); 

        // execute feature selection 

        TMap<String, Double> all_features_scores = FeatureSelectionMetric.getInstance( 

                metric, 

                features_frequencies_per_class, 

                classes_frequencies, 

                features_frequencies, 

                records_count).execute(); 

         

        // print the output 

        this.printOutput(all_features_scores); 

        synchronized (mutex) { 

            processing_done = true; 

        } 

    } 

 

    private void waitForAllThreads() { 

        while (true) { 

            try { 

                synchronized (mutex) { 

                    if (processing_done) { 

                        return; 

                    } 

                    mutex.wait(250); 

                } 

            } catch (InterruptedException ex) { 



47 
 

                CustomLogger.log(ex); 

            } 

        } 

    } 

} 

 

 

The FeatureSelectionMetric Class  

/* 

 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package featureselectionapp; 

import gnu.trove.map.TMap; 

import gnu.trove.map.hash.THashMap; 

import java.util.Map; 

import java.util.Set; 

 

/** 

 * 

 * @author abid & youssouf  

 */ 

public abstract class FeatureSelectionMetric { 

 

    protected TMap<String, CustomStringIntHashMap> features_frequencies_per_class; 

    protected CustomStringIntHashMap classes_frequencies; 

    protected CustomStringIntHashMap features_frequencies; 
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    protected int all_classes_count; 

    protected int all_features_count; 

    protected int all_data_set_records_count; 

 

    protected void takeInput( 

            TMap<String, CustomStringIntHashMap> _features_frequencies_per_class, 

            CustomStringIntHashMap _classes_frequencies, 

            CustomStringIntHashMap _features_frequencies, 

            int _all_data_set_records_count) { 

        features_frequencies_per_class = _features_frequencies_per_class; 

        classes_frequencies = _classes_frequencies; 

        features_frequencies = _features_frequencies; 

        all_classes_count = _classes_frequencies.size(); 

        all_features_count = _features_frequencies.size(); 

        all_data_set_records_count = _all_data_set_records_count; 

    } 

 

    public static FeatureSelectionMetric getInstance( 

            FeatureSelectionMetricEnum _type, 

            TMap<String, CustomStringIntHashMap> _features_frequencies_per_class, 

            CustomStringIntHashMap _classes_frequencies, 

            CustomStringIntHashMap _features_frequencies, 

            int _all_data_set_records_count) { 

 

        FeatureSelectionMetric metric = null; 

        if (_type == FeatureSelectionMetricEnum.PMI) { 

            metric = new MetricPMI(); 
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        } else if (_type == FeatureSelectionMetricEnum.CHI2) { 

            metric = new MetricChi2(); 

        } else { 

            throw new IllegalArgumentException("Invalid FeatureSelectionMetric type"); 

        } 

        metric.takeInput( 

                _features_frequencies_per_class, 

                _classes_frequencies, 

                _features_frequencies, 

                _all_data_set_records_count); 

        return metric; 

    } 

 

    public abstract TMap<String, Double> execute(); 

     

    ///// List of Metrics /////////////////////// 

    private static class MetricPMI extends FeatureSelectionMetric { 

 

        private double p_of_f(String _feature) { 

            return (double) features_frequencies.get(_feature) / (double) 

all_data_set_records_count; 

        } 

 

        private double p_of_c(String _class) { 

            return (double) classes_frequencies.get(_class) / (double) all_data_set_records_count; 

        } 
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        private double p_of_f_intersect_c(String _class, String _feature) { 

  CustomStringIntHashMap map = features_frequencies_per_class.get(_feature); 

  if (map == null) return 0; 

  Integer i = map.get(_class); 

  if (i == null) i = 0; 

  return (double)i / (double) all_data_set_records_count; 

        } 

 

        private double p_of_c_given_f(String _class, String _feature) { 

            return p_of_f_intersect_c(_class, _feature) / p_of_f(_feature); 

        } 

 

        private double p_of_f_given_c(String _feature, String _class) { 

            return p_of_f_intersect_c(_class, _feature) / p_of_c(_class); 

        } 

 

        private double log2(double _num) { 

            if (_num == 0.0) return 0.0;   

            return Math.log(_num) / Math.log(2); 

        } 

 

        private double pmiOfFeatureForAllClasses(String _feature) { 

            // PMI(f) = sum<all_classes>(P(f,c) * Log2(P(f|c) / P(f))) 

            double sum = 0.0; 

            for (String class_name : classes_frequencies.keySet()) { 

                // P(f, c) 

                sum += p_of_f_intersect_c(class_name, _feature) 
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                        * log2(p_of_f_given_c(_feature, class_name) / p_of_f(_feature)); 

            } 

            return sum; 

        } 

 

        @Override 

        public TMap<String, Double> execute() { 

            TMap<String, Double> scores = new THashMap(features_frequencies.size()); 

            for (String feature_name : features_frequencies.keySet()) { 

                scores.put(feature_name, pmiOfFeatureForAllClasses(feature_name)); 

            } 

            return scores; 

        } 

    } 

 

    private static class MetricChi2 extends FeatureSelectionMetric { 

 

 // class frequency 

 private double Nc1(String _class){ 

  Integer i = classes_frequencies.get(_class); 

  if (i != null) return (double)i.intValue(); 

  return 0; 

 } 

  

 // not class frequency 

 private double Nc0(String _class, int _records_count){ 

  return _records_count - Nc1(_class); 
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 } 

  

 // feature frequency 

 private double Nf1(String _feature){ 

  Integer i = features_frequencies.get(_feature); 

  if (i != null) return i; 

  return 0; 

 } 

  

 // not feature frequency 

 private double Nf0(String _feature, int _records_count){ 

  return _records_count - Nf1(_feature); 

 } 

  

  

        private double Nc1f1(String _class, String _feature) { 

         CustomStringIntHashMap map = features_frequencies_per_class.get(_feature); 

         if (map == null) return 0; 

  Integer i = map.get(_class); 

  if (i != null) return (double)i.intValue(); 

  return 0; 

        } 

         

        // class With Out Feature Frequency 

        private double Nc1f0(String _class, String _feature) { 

  return Nc1(_class) - Nc1f1(_class, _feature); 

        } 
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        // feature With Out Class Frequency 

 private double Nc0f1(String _class, String _feature) { 

  return Nf1(_feature) - Nc1f1(_class, _feature); 

        } 

         

        // frequency With out Class And Feature 

        private double Nc0f0(String _class, String _feature, int _records_count) { 

  return _records_count - ((Nc1(_class) + Nf1(_feature)) - Nc1f1(_class, _feature)); 

        }         

 

        private double chi2OfFeatureForAllClasses(String _feature) { 

  double sum = 0.0; 

  double nc1f1, nc0f0, nc1f0, nc0f1, nc1, nf1, nf0, nc0; 

  int n = all_data_set_records_count; 

  nf1 = Nf1(_feature); 

  //nf0 = Nf0(_feature, n); 

  for (String _class : classes_frequencies.keySet()) { 

   nc1   = Nc1(_class); 

   nc0   = Nc0(_class, n); 

   nc1f1 = Nc1f1(_class, _feature); 

   nc0f0 = Nc0f0(_class, _feature, n); 

   nc1f0 = Nc1f0(_class, _feature); 

   nc0f1 = Nc0f1(_class, _feature); 

   //http://blog.datumbox.com/using-feature-selection-methods-in-text-

classification/ 

   double d = ( 
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       (nc1f1 + nc0f1) * 

       (nc1f1 + nc1f0) * 

       (nc1f0 + nc0f0) * 

       (nc0f1 + nc0f0)); 

   double val = 0.0; 

   if (d != 0.0) val = (n * Math.pow((nc1f1 * nc0f0) - (nc1f0 * nc0f1), 2.0)) / d; 

       sum += val; 

  } 

  return sum / (double)all_classes_count; 

        } 

 

        @Override 

        public TMap<String, Double> execute() { 

            TMap<String, Double> scores = new THashMap(features_frequencies.size()); 

            for (String feature_name : features_frequencies.keySet()) { 

                scores.put(feature_name, chi2OfFeatureForAllClasses(feature_name)); 

            } 

            return scores; 

        } 

    } 

} 

The FeatureSelectionMetricEnum  

/* 

 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package featureselectionapp; 
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/** 

 * 

 * @author abid & youssouf 

 */ 

public enum FeatureSelectionMetricEnum { 

    PMI("pmi"), 

    CHI2("chi2"); 

     

    private String key = null; 

    FeatureSelectionMetricEnum(String _key) { 

        key = _key; 

    } 

     

    public static FeatureSelectionMetricEnum getMetricByKey(String _key) { 

        for (FeatureSelectionMetricEnum f : FeatureSelectionMetricEnum.values()) { 

            if (f.key.equals(_key)) return f; 

        } 

        throw new IllegalArgumentException("Invalid FeatureSelectionMetricEnum: " + _key); 

    } 

} 

The FeatureSelectionObserver Interface 

/* 

 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package featureselectionapp; 
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import gnu.trove.map.TMap; 

 

/** 

 * 

 * @author abid & youssouf 

 */ 

public interface FeatureSelectionObserver { 

     

    public void selectedFeatures(TMap<String, Double> _features_scores); 

     

} 

 

 

The ReaderThread Class 

/* 

 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package featureselectionapp; 

 

import gnu.trove.map.TMap; 

import gnu.trove.map.hash.THashMap; 

import java.io.BufferedReader; 

import java.io.FileInputStream; 

import java.io.FileNotFoundException; 

import java.io.IOException; 
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import java.io.InputStreamReader; 

import java.util.ArrayList; 

import java.util.List; 

import java.util.logging.Level; 

import java.util.logging.Logger; 

 

/** 

 * 

 * @author abid & youssouf 

 */ 

public class ReaderThread { 

 

    private ThreadObserver observer = null; 

    private int thread_index = 0; 

    private String file_path; 

    private int thread_count = 0; 

     

    public ReaderThread(String _file_path, int _thread_index, int _thread_count, ThreadObserver 

_observer){ 

        file_path = _file_path; 

        thread_index = _thread_index; 

        thread_count = _thread_count; 

        observer = _observer; 

    } 

     

    public void execute(){ 

        Thread th = new Thread(new Runnable() { 
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            @Override 

            public void run() { 

                List<DataSetFileEntry> class_features = new ArrayList(); 

                BufferedReader br = null; 

                try { 

                    br = new BufferedReader(new InputStreamReader(new FileInputStream(file_path))); 

                } catch (FileNotFoundException ex) { 

                    CustomLogger.logAndExit(ex, "Could not open Data set file for reading"); 

                } 

                 

                 

                String line = null; 

                try { 

                    int line_number = 0; 

                    while ((line = br.readLine()) != null) { 

                        if ((line_number % thread_count) == thread_index) 

class_features.add(DataSetFileEntry.getInstanceByLineString(line)); 

                        line_number++; 

                    } 

                } catch (IOException ex) { 

                    CustomLogger.log("Error while reading from data set file"); 

                } 

                try { 

                    if (br != null) br.close(); 

                } catch (IOException ex) { 

                    CustomLogger.log("Error while closing data set file"); 
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                } 

                observer.threadFinished(thread_index, class_features); 

            } 

        }); 

        th.start(); 

    } 

} 

 

 

The ThreadObserver Abstract Class 

/* 

 * To change this template, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package featureselectionapp; 

 

import gnu.trove.map.TMap; 

import gnu.trove.map.hash.THashMap; 

import java.io.File; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.List; 

import java.util.concurrent.atomic.AtomicInteger; 

 

/** 

 * 

 * @author abid & youssouf 
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 */ 

public abstract class ThreadObserver { 

     

    protected final List<DataSetFileEntry> data = new ArrayList(); 

    private AtomicInteger working_threads; 

    private int threads_count = 0; 

     

    public void startThreads(int _thread_count, String _file_path) { 

        // adjust threads count and features per thread 

        File data_set_file = new File(_file_path); 

        if (!data_set_file.exists()) { 

            CustomLogger.logAndExit("Dataset file " + _file_path + "does not exist"); 

        } 

        threads_count = _thread_count; 

         

        working_threads = new AtomicInteger(threads_count); 

         

        for (int i = 0; i < threads_count; i++) { 

            ReaderThread th = new ReaderThread(_file_path, i, threads_count, this); 

            th.execute(); 

        } 

    } 

     

    public void threadFinished(int _thread_index, List<DataSetFileEntry> _class_features) { 

        synchronized(data) { 

            data.addAll(_class_features); 

        } 
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        int count = working_threads.decrementAndGet(); 

        if (count <= 0) allThreadsFinished(data); 

    } 

     

    public abstract void allThreadsFinished(List<DataSetFileEntry> _data); 

         

     

} 

 

 

 

Chapter 6: 

Conclusion and Future Work. 

 6.1 Conclusion 
 

From the above performance evaluation it is seen that the Logistic Regression has the 

best accuracy of 93.07% before any feature reduction and time to build the model was 

191sec.  

The accuracy of logistic regression increased to 94.35%, for factor analysis for mixed data 

feature reduction method. 

Time to build the model also decreased to 102sec. So from this study, logistic regression 

showed the best result for breast cancer survivability prediction. 

 

6.2 Future work 
 

This paper has outlined, discussed and resolved the issues, algorithms, and techniques 

for the problem of breast cancer survivability prediction in SEER database. 

Increasing the performance of all the mention algorithms, removing some attributes that were 

ranked last in their contribution to the prediction of the model. 



62 
 

 

 

6.3 References 
[1] American Cancer Society. Breast Cancer Facts& Figures 2005-2006. Atlanta: American Cancer 

Society, Inc. (http://www.cancer.org/). 

[2] Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) Public-

Use Data (1973-2002), National Cancer Institute, DCCPS, Surveillance Research Program, Cancer 

Statistics Branch, released April 2005, based on the November 2004 submission. 

[3] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and techniques, 

2nd Edition. San Fransisco:Morgan Kaufmann;2005  

 [4]. Jyoti Soni, Ujma Ansari, Dipesh Sharma, Sunita Soni “Predictive Data Mining for Medical 

Diagnosis: An Overview of Heart Disease Prediction” IJCSE Vol. 3 No. 6 June 2011 

[5] D. Delen, G. Walker and A. Kadam (2005), Predicting breast cancer survivability: a comparison 

of three data mining methods, Artificial Intelligence in Medicine.  

[6] A.Bellachia and E.Guvan,“Predicting breast cancer survivability using data mining techniques”, 

Scientific Data Mining Workshop, inconjunction with the 2006 SIAM Conference on Data 

Mining,2006  

[7] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and techniques, 

2nd Edition. San Fransisco:Morgan Kaufmann;2005. 

[8] American Cancer Society. Breast Cancer Facts& Figures 2005-2006. Atlanta: American Cancer 

Society, Inc. (http://www.cancer.org/). 

[9] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:Morgan Kaufmann; 1993. 

[10] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Reading, MA: Addison-

Wesley, 2005. 

[11] Razavi, A. R., Gill, H., Ahlfeldt, H., and Shahsavar, N., Predicting metastasis in breast cancer: 

comparing a decision tree with domain,2011 

[10]. V. Chauraisa and S. Pal, “Early Prediction of Heart Diseases Using Data Mining Techniques”, 

Carib.j.SciTech,Vol.1, pp. 208-217, 2013 

[11] Weka: Data Mining Software in Java, 

 

 

http://www.cancer.org/

	Chapter 1
	Introduction
	1.1 Overview
	1.2 Research challenges
	1.2 Motivation

	Chapter 2
	Literature Review
	2.1 Feature Selection
	2.2 Feature Selection Techniques
	2.3 Related Works

	Chapter 3
	Proposed method
	3.1 Overall Concept
	3.2 Naïve Bayes
	3.4 Decision Tree J48
	3.5 Artificial Neural Network
	3.6 Logistic Regression
	3.7 SUPPORT VECTOR MACHINE (SVM)

	Chapter 4:
	Experimental Analysis
	4.1 Dataset Details
	4.2 Performance Analysis
	4.2.1 Decision Tree Performance Analysis
	4.2.2 Naïve Bayes Performance Analysis
	4.2.3 Artificial Neural Network Performance Analysis
	4.2.4 Logistic Regression Performance Analysis
	4.2.5 Support Vector Machine Performance Analysis
	4.3 Comparative Analysis
	4.3.1 Accuracy:
	4.3.2 Recall or Sensitivity:
	4.3.3 Precision or Specificity:
	4.3.4 Time:
	4.4 ROC CURVE

	Chapter 5
	5.1 Feature Reduction
	5.2 Analysis of different algorithms after feature reduction

	Chapter 6:
	Conclusion and Future Work.
	6.1 Conclusion
	6.2 Future work
	6.3 References


