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Abstract 

Ultrasound imaging is a diagnostic imaging technique based on the 
application of ultrasound. It is used to see internal body structures such 
as tendons, muscles, joints, vessels and internal organs. Its aim is often 
to find a source of a disease or to exclude any pathology. However, in 
order to gain more valuable information from the image, more 
processing needs to be done on the images themselves. One of these is 
strain calculation from the image. Pressure is applied to the area from 
which the image is derived and the behavior of the tissues in response 
to various amounts of pressure is observed. There are various methods 
to calculate the strain from an image. We propose a new method which 
makes use of Kalman filter for the strain estimation. From the motion 
vector of the tissues deformation, estimated using Kalman filter, we can 
classify whether the tissue exhibits cancerous behavior or it is a normal 
tissue.  
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CHAPTER 1: INTRODUCTION 
 

1.1 Overview 
Images produced using ultrasound is a versatile technique which has numerous applications in 
the field of medicine. It is possible to perform both diagnosis and therapeutic procedures, using 
ultrasound to guide interventional procedures (for instance biopsies or drainage of fluid 
collections). Sonographers are medical professionals who perform scans which are then 
typically interpreted by themselves or the radiologists, physicians who specialize in the 
application and interpretation of a wide variety of medical imaging modalities, or by 
cardiologists in the case of cardiac ultrasonography (echocardiography). Sonographers typically 
use a hand-held probe (called a transducer) that is placed directly on and moved over the 
patient. Increasingly, clinicians (physicians and other healthcare professionals who provide 
direct patient care) are using ultrasound in their office and hospital practices.However, the 
purpose of our research does not involve any medical professional, rather it seeks to use image 
processing techniques as a substitute for the diagnosis. But before delving into the specifics of 
the purpose and method which we wish to use, an overview of the ultrasound imaging process 
is required.  

Ultrasound is sound waves with frequencies which are higher than those audible to humans 
(>20,000 Hz). Ultrasonic images also known as sonograms are made by sending pulses of 
ultrasound into tissue using a probe. The sound echoes off the tissue; with different tissues 
reflecting varying degrees of sound. These echoes are recorded and displayed as an image to 
the operator. The image shown helps to detect changes in appearance, size or contour of 
organs, tissues, and vessels or to detect abnormal masses, such as tumors. A transducer both 
sends the sound waves into the body and receives the echoing waves. When the transducer is 
pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves into 
the body. As the sound waves bounce off internal organs, fluids and tissues, the sensitive 
receiver in the transducer records tiny changes in the sound's pitch and direction. These 
signature waves are instantly measured and displayed by a computer, which in turn creates a 
real-time picture on the monitor. One or more frames of the moving pictures are typically 
captured as still images. Short video loops of the images may also be saved. [1] A visual diagram 
of the process is shown below:  
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Figure 1: Ultrasound process 

  

Figure 2: Ultrasound image along with optical flow displacements with another image 
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1.2Problem Statement 
The area of interest for us is an application of ultrasound imaging called elastography. 
Elastography is a medical imaging modality that maps the elastic properties of soft tissue. The 
main idea is that whether the tissue is hard or soft will give diagnostic information about the 
presence or status of disease. For example, cancerous tumors will often be harder than the 
surrounding tissue, and diseased livers are stiffer than healthy ones. Other uses of elastography 
include:  

 identifying early traumatic changes in muscles and tendons 
 aiding in deciding the biopsy site more accurately, reducing negative biopsy rates 
 assessing liver fibrosis 
 assessing liver steatosis (abnormal retention of lipids within a cell) 

The process of elastography is outlined as follows. There are numerous elastographic 
techniques, in development stages from early research to extensive clinical application. Each of 
these techniques works in a different way. What all methods have in common is that they 
create a distortion in the tissue, observe and process the tissue response to infer the 
mechanical properties of the tissue, and then display the results to the operator, usually as an 
image. Each elastographic method is characterized by the way it does each of these things. 

 

To image the mechanical properties of tissue, we need to see how it behaves when deformed. 
There are three main ways of inducing a distortion to observe. These are: 

 Pushing/deforming or vibrating the surface of the body (skin) or organ (prostate) with a 
probe or a tool, 

 Using radiation force of focused ultrasound to remotely create a 'push' inside the tissue, 
and 

 Using distortions created by normal physiological processes, e.g. pulse or heartbeat. 

The primary way elastographic techniques are categorized is by what imaging modality (type) 
they use to observe the response. Elastographic techniques use ultrasound, magnetic 
resonance imaging (MRI) and pressure/stress sensors in tactile imaging (TI). There are a handful 
of other methods that exist as well. 

 

The observation of the tissue response can take many forms. In terms of the image obtained, it 
can be 1-D (i.e. a line), 2-D (a plane) or 3-D (a volume), or just a single value, and it can either be 
a video or a single image. In most cases, the result is displayed to the operator along with a 
conventional image of the tissue, which shows where in the tissue the different stiffness values 
occur. Once the response has been observed, the stiffness can be calculated from it. Most  
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elastography techniques find the stiffness of tissue based on one of two main principles: 

 For a given applied force (stress), stiffer tissue deforms (strains) less than does softer 
tissue. 

 Mechanical waves (specifically shear waves) travel faster through stiffer tissue than 
through softer tissue. 

Some techniques will simply display the distortion and/or response, or the wave speed to the 
operator, while others will compute the stiffness (specifically the Young's modulus or similar 
shear modulus) and display that instead. Some techniques present results quantitatively, while 
others only present qualitative (relative) results. 

There are mainly two different types of elastography namely strain elastography (also known as 
static or compression elastography) and shear wave elastography(also known as transient 
elastography). Strain elastography is our area of interest. Strain elastography assesses tissues' 
macro structure through the strain modulus. This is different from normal B-mode grayscale 
ultrasound which characterizes a tissue's elasticity, but at a micro level. Strain elastography 
relies on Young's modulus to detect strain in the axial dimension. The characteristics of an 
ultrasound beam through tissue before and after compression are compared. In some systems, 
the strain of tissues is measured in a semi-quantitative way, relying on Young's modulus, but 
not directly calculating it. 

On the other hand, in case of shear wave elastography, the concept is similar to strain 
elastography, but instead of using transducer pressure to compare a shift in an ultrasound A-
line (thereby measuring changes in strain), a higher intensity pulse is transmitted to produce 
shear waves, which extend laterally from the insonated(exposed to ultrasonographic waves) 
structure. The shear waves may then be tracked with low intensity pulses to find the shear 
velocity and this velocity is related to Young's modulus. 

Quasistatic elastography or strain imaging (sometimes called simply 'elastography' for historical 
reasons) is a pioneering elastography technique. In this technique, an external compression is 
applied to tissue, and the ultrasound images before and after the compression are compared. 
The areas of the image that are least deformed are the ones that are the stiffest, while the 
most deformed areas are the least stiff. Generally, what is displayed to the operator is an image 
of the relative distortions (strains), which is often of clinical utility. From the relative distortion 
image, however, making a quantitative stiffness map is often desired. To do this requires that 
assumptions be made about the nature of the soft tissue being imaged and about tissue outside 
of the image. Additionally, under compression, objects can move into or out of the image or 
around in the image, causing problems with interpretation. Another limit of this technique is 
that like manual palpation, it has difficulty with organs or tissues that are not close to the 
surface or easily compressed. 

The elastic properties of soft tissues depend on theirmolecular building blocks, and on the 
microscopic andmacroscopic structural organization of these blocks. The standard 



Page 10 of 32 
 

medicalpractice of the soft tissue palpation is based on qualitative assessment of the low-
frequencystiffness of tissue. Pathological changes are generallyknown to be correlated with 
changes in tissue stiffnessas well. Many cancers, such as scirrhous carcinoma of the breast, 
appear as extremely hard nodules. In many cases, despite the difference in stiffness, the small 
size of a pathological lesion and/or its location deep in the body preclude its detection and 
evaluation by palpation. In general, the lesion may or may not possessechogenic properties 
which would make it ultrasonically detectable. For example, tumors of the prostate or 
thebreast could be invisible or barely visible in standardultrasound examinations, yet be much 
harder than the embedding tissue. Diffuse diseases such as cirrhosisof the liver are known to 
significantly increase the stiffness of the liver tissue on the whole, yet they may appear normal 
in a conventional ultrasound examination. Since the echogenicity and stiffness of the tissue are 
generally uncorrelated it is expected that imaging tissue stiffness and strain will provide new 
information that is related to their structure. [3] This is the main purpose of strain elastography.  

 

1.3Research Challenges 
While it may seem that strain imaging is infallible for tumor detection in the various areas such 
as breasts, prostate gland, thyroid gland etc. it too is not without its limitations. 

Quasi-static elastography cannot give a quantitative value for the Young’s modulus since only 
the strain can beestimated and the applied stress is unknown. It is thus impossible to recover 
the Young’s modulus using Hooke’s law.The main limitations of this technique are still the 
control of the stress applied, which remains operator dependent,and the absence of a specific 
quantification. In addition, theuse of a stress applied by the operator limits the techniqueto 
superficial organs, mainly the breast or the thyroid.  Strain elastography in all its forms remains 
an examiner-dependent method. All SE techniques require a trained and experienced operator 
to perform valid free-hand cyclic compressions that can yield reliable and reproducible SE 
readings. The free-hand probe pressure is difficult to standardize among different US operators 
and strain variations due to changes in the amplitude and velocity of compression that cannot 
be avoided. Non-uniform compressions produce intra- and inter-observer variability. Therefore, 
several compression-relaxation cycles are needed to ensure that quality data are obtained. 
Another important issue is the fact that pre-stress compression can result in misleadingly high 
stiffness results, especially in superficial tissues like the thyroid or prostate. Therefore, the 
operator should be trained to maintain just a light contact and pressure before beginning the 
cycles of palpations because tissues appear stiffer when they are pre-compressed. Another 
technical limitation is the lack of standardization both in the technique application, the type of 
measurements obtained, the cut-off values, and the color coding. [4] 

Other than that, in contrast to engineering materials, the mechanical properties of biological 
tissues are not easily definable by closed-form mathematical expressions. When living, tissues 
are metabolically active and exhibit certain mechanical properties, which change soon after 
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death. Moreover, these mechanical properties may be dependent on age, strain rate and strain 
range. 

 

1.4 Thesis Objectives 
During the course of this thesis we researched with the aim of finding a way to improve 
detection of tumors in ultrasonographic images by using strain estimation. Thus the general 
objectives of the thesis are: 

 Improving the Signal-to-noise Ratio (SNR) in measuring displacements between 
ultrasonographic images 

 Measuring large displacements accurately using optical flow 
 Providing competitive results to existing methods of strain estimation 

 

1.5 Thesis Organization 
The thesis is organized as follows: Chapter 2 provides the literature review of all the papers and 
sources that were the basis of our research as well as existing methods of strain estimation that 
are being used in other applications. In chapter 3 we provide our proposed methodology and 
how we have implemented it. Chapter 4 compares the results of our proposed method against 
the existing methods of cross correlation and traditional optical flow. Finally in chapter 5 we 
conclude our thesis and provide some future work possibilities. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 Literature Review 
 

Optical flow is the distribution of apparent velocities of movement of brightness patterns in an 
image. Optical flow can arise from relative motion of objects and the viewer. Consequently, 
optical flow can give important information about the spatial arrangement of the objects 
viewed and the rate of change of this arrangement. Discontinuities in the optical flow can help 
in segmenting images into regions that correspond to different objects. Optical flow cannot be 
computed locally, since only one independent measurement is available from the image 
sequence at a point, while the flow velocity has two components. A second constraint is 
needed.A method for finding the optical flow pattern is presented which assumes that the 
apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. An 
iterative implementation is shown which successfully computes the optical flow for a number 
of synthetic image sequences. The algorithm is robust in that it can handle image sequences 
that arequantized rather coarsely in space and time.[11] 

Digital Image Correlation (DIC) is a 3D, full-field, non-contact optical technique to measure 
contour, deformation, vibration and strain on almost any material. The technique can be used 
for many tests including tensile, torsion, bending and combined loading for both static and 
dynamics applications. The method can be applied from very small (micro) to large testing areas 
– and the results are readily comparable with FEA results or strain gauges. Digital Image 
Correlation (DIC) is a full-field image analysis method, based on grey value digital images, that 
can determine the contour and the displacements of an object under load in three dimensions. 

The correlation algorithm is based on the tracking of the grey value pattern G(x,y) in small local 
neighborhood facets. Due to a loading of the object this pattern is transformed into 

…………………………………………………………………. (1) 

and 

……………………………………………………………… (2, 3) 

 

Within the correlation algorithm the difference 

……………………………………………………………………. (4) 
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of these patterns is minimized. 

By varying the illumination parameters 

( ) 

and the parameters of the affine transformation. [7] 

The local warping technique used in the two-step OF method requires the prior strain 
information, which is obtained in the first step. The pre-deformed RF signal is locally deformed 
according to estimated axial strain and axial shear strain, and then sub-sample displacement 
and strain tensors are estimated again from the warped pre- and post-deformed signals. This 
procedure is similar to the local stretching or local companding used in cross-correlation based 
motion estimator. The local warping technique is helpful to improve the coherence between 
the pre and post-deformed RF signals, and reduce the de-correlation of signals. Hence, by 
taking the advantages of local warping, the two-step OF method can reduce the bias and 
standard deviation of strain estimation, i.e., improve the accuracy and precision of strain 
estimation. [8] 

Traditionally, dense optical flow estimation has been formulated as a continuous optimization 
problem and many of today’s most successful methods leverage elaborate variants of the 
original formulation, allowing for more robust penalties or improving optimization. As 
continuous methods typically require linearizing the highly non-convex data term, they only 
permit the estimation of very small displacements up to a few pixels. Thus, in order to handle 
large displacements in real world videos, a simple heuristic is often employed: Optical flow is 
estimated in a coarse-to-fine manner, thereby guaranteeing an upper bound to the maximal 
displacement at each level of the image pyramid. Unfortunately, this strategy is highly 
susceptible to local minima as small structures and textural details vanish at coarse image 
resolutions, leading to over smoothing artifacts in the estimated flow field.In contrast to optical 
flow, the most successful approaches to stereo matching typically rely on discrete inference in 
graphical models. While such models are loopy by nature and thus lead to NP-hard optimization 
problems, good approximate solutions can often be efficiently computed using graph cuts, 
belief propagation or mean field approximations. Importantly, no image pyramids are required 
as the full data cost volume is considered at the same time during inference. Unfortunately, the 
application of discrete methods to the problem of optical flow is not straightforward and hence 
there exists only relatively little work in this direction. The main reason for this is the huge size 
of the label space which needs to be considered for the 2D large-displacement optical flow 
problem as opposed to the 1D stereo problem. 

First, they restrict the label set by considering only the L most likely matches per pixel which we 
obtain via approximate nearest neighbor search in feature space subject to non-maxima 
suppression constraints. To validate this restriction, we experimentally show that the 
oraclesolution of the restricted set outperforms all existing optical flow techniques by a 
significant margin.Second, our inference scheme takes advantage of efficient convergent block 
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coordinate descent (BCD) and iteratively updates all image rows and columns conditioned on 
the remaining variables via dynamic programming. Third, they exploit the special form of the 
pairwise potentials used by our formulation to further decrease computational complexity, 
thereby making very large unordered label sets with hundreds of labels tractable. Upon 
convergence, they remove outliers (e.g., in occluded regions) using strategies borrowed from 
the stereo literature. Finally, theyregress a real-valued dense flow field from our semi-dense 
integer flow estimate using variational techniques.Unfortunately, the application of discrete 
methods to the problem of optical flow is not   straightforward and hence there exists only 
relatively little work in this direction. The main reason for this is the huge size of the label space 
which needs to be considered for the 2D large-displacement optical flow problem as opposed 
to the 1D stereo problem. [17]Variational methods are among the most successful approaches 
to calculate the optical flow between two image frames. A particularly appealing formulation is 
based on total variation (TV) regularization and the robust L1 norm in the data fidelity term. 
This formulation can preserve discontinuities in the flow field and offers an increased 
robustness against illumination changes, occlusions and noise. In this work they present a novel 
approach to solve the TV-L1 formulation. Their method results in a very efficient numerical 
scheme, which is based on a dual formulation of the TV energy and employs an efficient point-
wise thresholding step. Additionally, their approach can be accelerated by modern graphics 
processing units. They demonstrate the real-time performance (30 fps) of their approach for 
video inputs at a resolution of 320 × 240 pixels.[10] 

 

Figure 3: Optical flow field for different images [10] 
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2.2 Implemented Methods of Strain Estimation 
There are a number of methods which already exist for strain estimation. Some of these are 
used in the medical field and some outside of it in applications such as building strain, structural 
strain. 

Methods for strain estimation: 

o Elastographic Process 
o Axial Strain Elastography 
o Lateral Strain Elastography 
o Modulus Elastography 
o Vibrational Methods 
o Adaptive Stretching 
o Correlation Coefficient 
o Phase Based Method 
o Least Squares Strain Estimator 
o Butterfly Search 
o Direct, incoherent, spectral strain estimator 

2.2.1 Axial Strain Elastography 
Tissue axial strains are calculated from the gradient of the estimated axial displacements. The 
current problem while performing strain elastography is that common differentiation operation 
which needs to be applied during the estimation amplifies the noise present in the 
displacement. This is undesirable and will cause problems in the calculation. AS a replacement, 
low-pass digital differentiator was proposed. Three types were implemented and tested, 
namely Simple DD, Optimum DD and Smoothed DD The quality of axial strain elastograms 
improved with increasing applied strain and A-line density but decreased with increasing lateral 
beamwidth and deteriorated as the number of active transmission elements in the sparse 
arrays were reduced. Also as filter length increases, the minimum square error and the noise 
amplification factor decrease.[20] 

 

Figure 4: The ideal axial strain image and strain images obtained by various LPDDs in the one-inclusion tissue model [20] 
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2.2.2 Lateral Elastography: 
A major disadvantage of the current practice of elastography is that only the axial component 
of the strain tensor is used to produce the elastogram, while the lateral and elevational 
components are basically disregarded. However, all three components are needed to fully 
characterize the motion of a three dimensional target. Furthermore, the lateral and elevational 
components can severely corrupt the axial strain estimation by inducing de-correlation noise. A 
new method has therefore been developed that produces high precision lateral displacements. 
In reference it is shown that the higher the interpolation scheme, the higher the number of 
independent displacement estimates and thereby the higher the precision of the estimation. 
Due to this high precision lateral tracking, quality lateral elastograms can be generated that 
display the lateral component of the strain tensor. 

2.2.3 Modulus Elastography: 
Elastography based on quantitative strain imaging suffers from mechanical artefacts 
(shadowing and target resolution) and from limitations to the contrast transfer efficiency (CTE). 
To go beyond such presumed limitations, a few groups independently considered elastography 
as a new, challenging inverse problem. The inverse problem (IP) approach is used extensively in 
electromagnetics, optics and geophysics research. In the biomedical field it has been 
extensively studied in bioelectricity to determine the distribution of potentials on the surface of 
the heart or the brain from a limited number of peripheral potential measurements. However, 
it is relatively new in the field of continuum mechanics and until recently it was not applied in 
the field of biomechanics, to which elastography belongs. 

 

2.2.4 Adaptive Stretching: 
Temporal stretching significantly improves TDE in elastography. However, the proper temporal 
stretching factor is dependent on the local strain, an unknown parameter one is trying to 
estimate. In an elastically inhomogeneous tissue, the strains will vary and thus, ideally, the 
stretching factor will have to be varied at different window locations. Since temporal stretching 
by the factor that compensates for the strain maximizes the correlation, an iterative algorithm 
is indicated. In this algorithm, the local temporal stretching factor is adaptively varied until a 
maximum in the correlation is reached. The local strain is then computed directly from this 
temporal stretching factor. Since the axial correlation is maximized at each data window 
between the pre- and post-compression A-lines, this estimator is an ‘optimal’ (one-
dimensional) estimator of strain. It is also well known that the gradient operation amplifies 
noise in the displacement estimates. Since adaptive stretching involves only intra-window 
operations and no inter window operation, it does not suffer from this type of degradation. 
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2.2.5 Correlation Coefficient: 
It has been discussed how the correlation between the pre- and post-compression echoes can 
decrease with applied strain. However, de-correlation itself has been used to estimate delay 
and/or strain. Various researchers used the correlation coefficient to estimate tissue motion. 
Bamber and Bush proposed using the de-correlation coefficient for the envelope signal for free 
zand elasticity imaging. But Varghese and Ophir [Varghese, T. and Ophir, J. Estimating tissue 
strain from signal de-correlation using the correlation coefficient. signal de-correlation using 
the correlation coefficient Ultrasound Med. Biol., 1996, 22, 1249–1254.] have demonstrated 
that the de-correlation coefficient has poor precision as strain estimator. So these this 
advantage need to be recognized and care should be taken while using this estimator. 

2.2.6 Phase Based Method: 
It is also possible to use phase to measure small tissue displacements and commercial 
ultrasound scanner use phase change to estimate motion for Doppler processing. Since the 
phase is only defined for narrowband systems some bandpass filtering is done prior to 
computation of the phase, which introduce a loss in the spatial resolution. [21] 

 

2.2.7 Least Squares Strain Estimator: 
It was shown that with such an estimator the signal to noise ratio in an elastogram was 
significantly improved due to the reduction of the displacement noise amplification due to the 
gradient operation. [2] 

 

2.2.8 Butterfly Search: 
Alam and Parker developed the ‘butterfly search’ technique for complex envelope signals from 
a deterministic analysis, derived using Schwartz’s inequality. Since this method can 
simultaneously analyze more than two successive A-lines, it is a natural candidate in multi 
compression elastography. Preliminary results have shown that it may improve the SNR and the 
dynamic range in elastography. [5] 

 

 

2.2.9 Direct, incoherent, spectral strain estimators: 
Elastography has been shown to be capable of producing quality strain images in vitro and in 
vivo. Standard elastography uses a coherent cross-correlation technique to estimate tissue 
displacement and tissue strain using a subsequent gradient operator. While coherent 
estimation methods generally have the advantage of being highly accurate and precise, even 
relatively small undesired motions are likely to cause signal de-correlation, and thus significant 
degradation of the elastogram. For elastography to become more universally practical in 
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applications such as intravascular and abdominal imaging, limitations associated with coherent 
strain estimation methods that require tissue and system stability must be overcome. On the 
other hand, incoherent estimators are moderately less precise but far more robust. 

 

2.2.10 Poission’s Ratio Elastography: 
Poisson’s ratio (n) for a plane strain state under uniaxial stress conditions is defined as 

v=-e1/ea 

Where e1 and ea are the lateral and axial strains respectively. Poisson’s ratio is an important 
mechanical parameter that describes the degree of material compressibility, or the change in 
volume following an applied compression. Poisson’s ratio equals 0.5 for totally incompressible 
materials and 0 for totally compressible ones. By measuring and imaging the distribution of 
Poisson’s ratio in tissues, it may be possible to estimate the amount ratio in tissues, it may be 
possible to estimate the amount regions. 

In cases where there is a strain contrast between an inclusion and the background, the Poisson 
elastogram is able to indicate whether that strain contrast (on the axial and lateral elastograms) 
is due to a Poisson’s ratio contrast, elastic modulus contrast or both.  

Poisson elastograms may have interesting applications in assessing the degree of unbound 
water content in tissues. The Poisson elastogram or the time sequence of Poisson elastograms 
may be used for quantitative of Poisson elastograms may be used for quantitative of oedema, 
inflammation or other hydrated poro-elastic tissues. Another interesting and potentially very 
useful property of the Poisson elastogram is that, as long as the tissue isotropy assumption 
holds, mechanical stress concentration artefacts due to geometrical boundary conditions 
should cancel out. This means that unlike earlier methods for quantifying tissue fluid transport 
that were highly dependent on the geometry, it may be possible to produce images of this basic 
tissue parameter that are free from geometrical artefacts.  

Finally, the knowledge of both lateral strain and Poisson’s ratio in addition to the axial strain is 
in general necessary for reconstruction algorithms this implies that the final modulus 
elastogram could become more accurate if the lateral and Poisson elastograms are computed 
first. 

 

 

 



Page 19 of 32 
 

CHAPTER 3: METHODOLOGY AND 
IMPLEMENTATION 

 

3.1 Methodology 
 

3.1.1 Optical Flow Introduction 
Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and edges in a 
visual scene caused by the relative motion between an observer and a scene. The concept of 
optical flow was introduced by the American psychologist James J. Gibson in the 1940s to 
describe the visual stimulus provided to animals moving through the world. Gibson stressed the 
importance of optic flow for affordance perception, the ability to discern possibilities for action 
within the environment. Followers of Gibson and his ecological approach to psychology have 
further demonstrated the role of the optical flow stimulus for the perception of movement by 
the observer in the world; perception of the shape, distance and movement of objects in the 
world; and the control of locomotion. 

 

Sequences of ordered images allow the estimation of motion as either instantaneous image 
velocities or discrete image displacements.The optical flow methods try to calculate the motion 
between two image frames which are taken at times t and t+Δt at every voxel position. These 
methods are called differential since they are based on local Taylor series approximations of the 
image signal; that is, they use partial derivatives with respect to the spatial and temporal 
coordinates. 

For a 2D+t dimensional case (3D or n-D cases are similar) a voxel at location (x,y,t) with intensity 
I(x,y,t) will have moved by Δx,Δy andΔt between the two image frames, and the following 
brightness constancy constraint can be given: 
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Assuming the movement to be small, the image constraint at I(x,y,t) with Taylor series can be 
developed to get:

 

Followed by: 

 

And finally resulting in  

 

where V
x
 and V

y
 are the velocity vector components in x and y and I

x
, I

y
, I

t
 are derivatives in the 

respective dimensions. This is an equation in two unknowns and cannot be solved as such. This 
is known as the aperture problem of the optical flow algorithms. To find the optical flow 
another set of equations is needed, given by some additional constraint. All optical flow 
methods introduce additional conditions for estimating the actual flow. 
 
 
Lucas-Kanade algorithm is one of these methods which attempts to estimate the optical flow in 
its own way. 
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3.1.2 Optical Flow using Lucas-Kanade algorithm 
In computer vision, the Lucas–Kanade method is a widely used differential method for optical 
flow estimation developed by Bruce D. Lucas and Takeo Kanade. It assumes that the flow is 
essentially constant in a local neighborhood of the pixel under consideration, and solves the 
basic optical flow equations for all the pixels in that neighborhood, by the least squares 
criterion. 

By combining information from several nearby pixels, the Lucas–Kanade method can often 
resolve the inherent ambiguity of the optical flow equation. It is also less sensitive to image 
noise than point-wise methods. On the other hand, since it is a purely local method, it cannot 
provide flow information in the interior of uniform regions of the image. 

The local image flow (velocity) vector (VxVy) must satisfy the following equations:  

 

where q1,q2,….,qn are the pixels inside the window, and Ix, qi, Iy, qi,It, qiare the partial derivatives 
of the image I with respect to position x, y and time t, evaluated at the point qiand at the 
current time. 

These equations can be written in matrix form Av=b, where, 

 

The Lucas–Kanade method obtains a compromise solution by the least squares principle. Namely, it 
solves the 2×2 system 
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Thus,  

 

 

3.2 Implementation: Multistep Optical Flow 
For our implementation, we have selected Lucas-Kanade algorithm as the ideal algorithm due 
to its obvious performance gain over the Horn-Schunck method.[19] 

Optical Flow is very reliable when it comes to tracking movement of objects or points of 
interest from one image to another or in video frames. However, Optical Flow breaks down for 
large movements because the differentials fail to hold. The Lucas–Kanade method per se can be 
used only when the image flow vector(VxVy) between the two frames is small enough for the 
differential equation of the optical flow to hold, which is often less than the pixel spacing. 
When the flow vector may exceed this limit, such as in stereo matching or warped document 
registration, the Lucas–Kanade method may still be used to refine some coarse estimate of the 
same, obtained by other means; for example, by extrapolating the flow vectors computed for 
previous frames, or by running the Lucas-Kanade algorithm on reduced-scale versions of the 
images. Indeed, the latter method is the basis of the popular Kanade-Lucas-Tomasi (KLT) 
feature matching algorithm. But that is not related to our application 

The workaround for this is to calculate the optical flow as a multistep addition between the 
initial image and the final image, by calculating the optical flow at regular intervals in between 
where the movement is small and suited to Lucas-Kanade method constraints and then adding 
them up for the final optical flow 
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Figure 5: Image set for a particular data sample 

 

Figure 6: Final displacement from image 1 to image 4 

3.2.1 Isolating a uniform region and calculating Signal to Noise Ratio (SNR) 
For a good estimation of the strain (displacement matrices) we need to select a uniform region. 
So first we need to convert the image to a colormap format and subsequently to grayscale and 
prepare a histogram for the image. AS we know, uniform regions will have the same brightness 
or intensity and thus we can easily select a threshold for converting the image to a binary form. 
This will then give a few regions which are uniform. From there the largest connected 
component will provide us with the uniform area from which we can calculate the SNR. 

 

 



Page 24 of 32 
 

For calculating the SNR the following formula was used:  

 

 

 

 

 

 

Figure 7: Uniform region identified from image 

 

 

 

 

 

 

 

 

Uniform region 
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CHAPTER 4: RESULTS 

 

4.1 Dataset 
Dataset collected from Fletcher Allen Health Care, University of Vermont. The ultrasound 
transducer that was used was a L14-5/38 Linear Array with 38mm Probe. The probe was 
rotated in Anti-Radial plane. The videos were each 8 seconds long in duration and there were 
45 frames per second for each video (360 frames in total). Some sample images: 

 

 

Figure 8:Samples of dataset 
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Details of the transducer array: 

Applications: Abdominal, Musculoskeletal, Pediatric, Small Parts  
Frequency Range: 14 - 5 MHz 
Focal Range: 2 - 9 cm 
Image Field: 16mm 
 

4.2 Results and Comparison 
The algorithm was tested against the cross correlation method for finding strain estimates for 
an image set as well as against traditional optical flow applied on the same set of images. To 
truly show the performance gain of Multistep Optical Flow, images with fairly considerable 
displacement between them were chosen 

 

Table Set1: Calculation of SNR from strain applied in the lateral direction 

Strain 
Percentage=1% 

Mean Deviation SNR 

Cross 
Correlation 

Method 
0.0218 0.001036 21.04 

Normal Optical 
Flow 

0.5445 0.0244 22.33 

Multistep OF 0.6741 0.0245 27.48 

 

Strain 
Percentage=2% 

Mean Deviation SNR 

Cross 
Correlation 

Method 
0.0312 0.0026 11.99 

Normal Optical 
Flow 

0.4421 0.0279 15.87 

Multistep OF 0.4812 0.0278 17.28 
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Strain 
Percentage=4% 

Mean Deviation SNR 

Cross 
Correlation 

Method 
0.123 0.014 9.16 

Normal Optical 
Flow 

0.5124 0.0280 18.33 

Multistep OF 0.4678 0.0272 17.21 

 

Strain 
Percentage=5% 

Mean Deviation SNR 

Cross 
Correlation 

Method 
0.112 0.019 5.81 

Normal Optical 
Flow 

0.5475 0.0452 12.12 

Multistep OF 0.5568 0.0360 15.48 

 

 

Table Set 2: Calculation of SNR from strain applied in the axial direction 

Strain 
Percentage=1% 

Mean Deviation SNR 

Cross Correlation 
Method 

0.201 0.0416 11.85 

Normal Optical 
Flow 

0.4144 0.0336 12.74 

Multistep OF 0.3568 0.0294 12.51 

 

Strain 
Percentage=2% 

Mean Deviation SNR 

Cross 
Correlation 

Method 
0.4838 0.0408 11.85 

Normal Optical 
Flow 

0.5144 0.0236 21.74 
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Multistep OF 0.4517 0.0204 22.07 

 

Strain 
Percentage=4% 

Mean Deviation SNR 

Cross 
Correlation 

Method 
0.4512 0.0538 8.39 

Normal Optical 
Flow 

0.5865 0.0404 14.52 

Multistep OF 0.5912 0.0365 16.20 

 

Strain 
Percentage=5% 

Mean Deviation SNR 

Cross 
Correlation 

Method 
0.4209 0.0539 7.81 

Normal Optical 
Flow 

0.5271 0.0471 11.21 

Multistep OF 0.5871 0.0444 13.20 

 

 

 

Figure 9: Graph comparing the SNR for lateral direction 
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Figure 10: Graph comparing the SNR for axial direction 

 

As we can see from the above results, our implementation performs favorably especially as the strain 
percentage goes higher. Only in 2 cases out of the 8, tradition OF outperformed the multistep OF. 
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CHAPTER 5: CONCLUSION 

5.1 Summary 
In this thesis, an optical flow based strain estimation algorithm is proposed that uses multistep 
optical flow calculation to estimate displacements over large distances which normally would 
not yield accurate results meaning there would be a low SNR for those calculations. By adding 
the individual optical flows between intermediate images we can get an accurate assessment of 
optical flows between images that normally would have a large displacement between them, 
hampering calculations. As we have seen in the results section of Chapter 4, our proposed 
method provides a competitive SNR value at most strain percentages, only falling behind in few 
occasions, that too by a relatively negligible amount.  

5.2 Future Works 
Calculation of Signal to Noise Ratio requires an area of uniform displacement along the axial or 
lateral direction otherwise it offers a very poor result. It is easy to convert the image to binary 
and then select the largest uniform area for computation. However it requires the observer to 
select a threshold according to the histogram. It would be useful if this process was converted 
to dynamic and also provides reliable results, because we could not get both to occur 
simultaneously in our efforts. 

Also we wish to reliably detect the lesions as another feature which we hope to use machine 
learning or even deep learning with. The area of classification is largely dominated by the use of 
training classifiers and applying them to the sample data. For the training itself we would need 
a huge sample dataset which is not possible at the moment.  

Finally we wish to see our algorithm be applied in the real world and not as a theoretical 
approach. Hopefully it can be used to better diagnose patients with tumors and detect them 
whilst they are still in benign stage before they become malignant. 
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