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Abstract:  
The invention of high throughput technology like microarrays has enabled us to 

better understand how different cellular components interact. Thus created great 

interest in the field of Gene Regulatory Network(GRN) in particular. The interplay 

of interactions between DNA, RNA and proteins leads to genetic regulatory 

networks (GRN) and in turn controls the gene regulation. Directly or indirectly in a 

cell such molecules either interact in a positive or in 

repressive manner therefore it is hard to obtain the accurate computational models 

through which the final state of a cell can be predicted with certain accuracy. A 

variety of models and methods have been developed to address different aspects 

of GRN. Using the Time series data and applying it to these models researchers 

generate meaningful results i.e. how genes interact with one another. However 

results found are not of much accuracy due to presence of intrinsic noise of the 

expression measurements.  In order to produce more accurate GRNs using one of 

the many models available, a new technique is proposed here. 

 

Motivation: Cancer is a complex disease, triggered by mutations in multiple genes 

and pathways. There is a growing interest in the application of systems biology 

approaches to analyze various types of cancer-related data to understand the 

overwhelming complexity of changes induced by the disease. 
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Results: We reconstructed a regulatory module network using gene expression, 

microRNA expression and a clinical parameter, all measured in lymphoblastoid 

cell lines derived from patients having aggressive or non-aggressive forms of 

prostate cancer. Our analysis identified several modules enriched in cell cycle-

related genes as well as novel functional categories that might be linked to prostate 

cancer. Almost one-third of the regulators predicted to control the expression 

levels of the modules are microRNAs. Several of them have already been 

characterized as causal in various diseases, including cancer. We also predicted 

novel microRNAs that have never been associated to this type of tumor. 

Furthermore, the condition-dependent expression of several modules could be 

linked to the value of a clinical parameter characterizing the aggressiveness of the 

prostate cancer. Taken together, our results help to shed light on the consequences 

of aggressive and non-aggressive forms of prostate cancer. 

 

 

Introduction: 

Biological system has been traditionally studied by explaining behavior of 

individual cell components. Even though this knowledge is helpful it does not 

allow us to understand how complex cell components like gene work. Through 

the advent of high throughput technologies like microarrays, understanding Gene 

functionalities and therefore Gene Regulatory Network have become much more 

easier than it has been in the past. 
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 To understand Gene Regulatory network, first we need to what gene really 

is. Gene is a section of DNA which contains instructions for making protein. This 

protein is then responsible for a particular characteristic like hair or eye color. To 

make protein messenger RNAs (mRNA) act as a template where the instruction 

from gene is transcribed or copied. From the mRNA strand the transcribed 

instructions are used to form a chain sequence of amino acids. This amino acid 

chain then twists and curls to form a complex 3 dimensional shape which is called 

a protein molecule. This protein molecule is then responsible for a particular 

characteristic. 

During the past century, the basic strategy to decypher biological functions was 

essentially to concentrate efforts on a very limited set of molecules of interest. This 

reductive or gene-centric approach has had, and still has, an enormous success,  

producing immediately applicable results in all areas of molecular biology 

knowledge. However, it has become clear that biological function can rarely be 

assigned to an individual molecule but is rather the result of the interactions among 

a discrete set of various types of molecules (proteins, RNA, metabolites, etc.). 

Those functional modules are a critical level of biological organization that cannot 

be identified by the study of their individual components (Hartwell et al., 1999). 

One of the main goals of systems biology is to determine those modules and their 

components, by data-mining and integrating high-throughput ‘omics’ data. 

Cancer is essentially a genetic disease, characterized by an uncontrolled 

proliferation and survival of damaged cells, resulting in tumor formation. Unlike 

other diseases, such as cystic fibrosis or muscular dystrophy, there is no single 

gene defect that directly ‘causes’ cancer. Cells have multiple safeguards to prevent 
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the effects of mutations appearing in various cancer genes, and it is only when 

several of those genes are affected that an invasive and potentially lethal tumor 

develops (Vogelstein and Kinzler, 2004). The picture is further complicated by the 

fact that new classes of molecules like microRNAs (miRNAs) have been shown to 

play a crucial role in tumorigenesis, and therefore should be taken into account 

(Esquela-Kerscher and Slack, 2006). Prostate cancer is the third most common 

cancer in men worldwide and occurs principally in the United States, Canada and 

northwestern Europe, but is uncommon in Asian countries and South America 

(Quinn and Babb, 2002). Prostate cancer is a complex disease, and finding the 

genetic causes of this disease has proven to be difficult, even if genome-wide 

association studies have recently detected a number of genetic variants, gene 

fusions and expression signatures associated with this disease (Witte, 2008). 

Furthermore, the progression of prostate cancer is also complex, with ‘only’ 10% 

of the patients being diagnosed with an aggressive form that can evolve to threaten 

their life. The determinants of this outcome are largely unknown (Lu-Yao et 

al., 2002). 

There is an increasing interest in systems biology approaches for the discovery of 

genes associated with cancer (Hood et al., 2004; Hornberg et al., 2006). Those 

approaches help to simplify the overwhelmingly complex picture that is often 

coming out of more traditional approaches by constructing more easily 

interpretable network representations of the underlying system and deriving 

concrete, experimentally verifiable hypotheses. The integration of clinical data in a 

robust framework that would allow the identification of modules that are 

pathologically altered in disease has been identified as one of the major challenges 

for network biology (Barabási and Oltvai, 2004). 
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Here, we used the LeMoNe algorithm to reconstruct a regulatory module network 

linked to prostate cancer using a large dataset of lymphoblastoid cells samples for 

which expression levels were measured for genes as well as miRNAs. LeMoNe 

uses ensemble-based probabilistic optimization techniques to identify clusters of 

co-expressed genes and their putative regulators (Joshi et al., 2008, 2009; 

Michoel et al., 2007). The algorithm has been validated and applied on various 

biological data sets (Michoel et al., 2009; Vermeirssen et al., 2009). Recently, we 

applied it to a set of cancer samples of various origins, for which expression data 

were available for both genes and a limited set of miRNAs. A couple of miRNAs 

were identified as high-scoring regulators for several modules of co-expressed 

genes, and a miRNA was validated experimentally as a regulator of a module 

linked to epithelial homeostasis, with a possible role in epithelial to mesenchymal 

transition (Bonnet et al., 2010). So far, we used expression data measurements to 

assign regulators to clusters of co-expressed genes, but in this study we further 

extended the algorithm to simultaneously evaluate a heterogeneous set of candidate 

regulators which can be continuous-valued or discrete. In addition to combining 

transcription factors and miRNAs as regulators, we have also associated a clinical 

parameter to the condition-dependent expression levels of a module, gaining 

further insight in the regulatory processes. 
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Problem Statement: 

 Cancer is one of the most diseases faced by mankind. Every year thousands 

of people all over the world die due to this disease. Cancer is a form of tumor. A 

group of cells abnormally divide to form a lump of cells (tumor) which eventually 

leads to cancer. Although chemotherapy has proved to be helpful in cancer 

diagnosis in some cases in recent years, it may not cure the patient completely. 

 So what we are proposing is a technique that will look into the 

functionalities of genes in cancer cells. Cells have genes which are responsible for 

the regulation of cell division. Due to some mutations, these genes involved in the 

process are changed (Mutated), i.e. the instructions which these genes contain 

are changed. Mutation of genes causes the cell to divide abnormally (uncontrolled 

cell division and hence increase in cell number). This is cancer develops in 

humans. 

  We are suggesting the use of Gene Regulatory Network (GRN) to 

successfully identify how the genes of cancer cell are interacting with one another 

and therefore figure out which genes serve to influence the expression of genes 

that are responsible for the abnormal cell division in cancer cells. 

  Using data from our proposed technique diagnosis of cancer can be done at the 

gene level and hence might provide a more efficient approach to the treatment of 

cancer.   

Gene Regulatory Network (GRN) is the study of how individual genes 

interact with one another. The expression of a particular gene results in a protein 
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and this protein molecule may in turn cause the expression of a completely 

different gene. Thus expression of a gene may be dependent on the expression 

level of a different gene. In cells,  genes interact with one another to accomplish 

the complex functionalities of the cell, such as  respiration, photosynthesis, cell 

division, etc. 

 

 

       

Figure: Correlation between genes 

 

 

 

The advent of microarrays has made it easier for us to understand how 

genes work. Microarrays give us information about gene expression level during 

different time intervals. This is what we call the TIME SERIES DATA. These data 

are applied to one of several models developed for assessing Gene Regulatory 
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Network to find dependencies between different genes. Gene Regulatory 

Networks are needed to indicate the interrelation between genes in the genomic 

level. Such information is useful for disease treatment, drugs creation purposes 

and to understand the activity of living organisms in the molecular level.  

 

 

 

 

 

 

 

 

REFERENCE FROM: 

Identifying Gene Regulatory Networks from Gene Expression Data (by 

Vladimir Filkov University of California, Davis) 

 

Research Challenges 

1. Analyzing & Understanding the whole methodology clearly.   

2. Examined the previous works on this methodology.  

3. Collecting The Dataset Which we want to work on. 

4. Works with a new statistical software R. 

5. Detection of hub genes. 

6. Module Construction 
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How Gene Regulatory Network works: 
 

.The discovery of gene regulatory networks (GRN) from time series data of gene 

expression observations can be used to: 

 

1. Identify important genes in relation to a disease. Example: Cancer. 

2. Gain an understanding of the dynamic interaction between genes. 

3. Predict the gene expression values at future time points 

 

A gene regulatory network (GRN) is a collection of molecular regulators that 

interact with each other and with other substances in the cell to govern the gene 

expression levels of mRNA and proteins. These play a central role 

in morphogenesis, the creation of body structures, which in turn is central 

to evolutionary developmental biology (evo-devo). 

The regulator can be DNA, RNA, protein and complexes of these. The interaction 

can be direct or indirect (through transcribed RNA or translated protein). In 

general, each mRNA molecule goes on to make a specific protein (or set of 

proteins). In some cases this protein will be structural, and will accumulate at the 

cell membrane or within the cell to give it particular structural properties. In other 

cases the protein will be an enzyme, i.e., a micro-machine that catalyses’ a certain 

reaction, such as the breakdown of a food source or toxin. Some proteins though 

serve only to activate other genes, and these are the transcription factors that are 

the main players in regulatory networks or cascades. By binding to 

the promoter region at the start of other genes they turn them on, initiating the 

production of another protein, and so on. Some transcription factors are inhibitory. 
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In single-celled organisms, regulatory networks respond to the external 

environment, optimizing the cell at a given time for survival in this environment. 

Thus a yeast cell, finding itself in a sugar solution, will turn on genes to make 

enzymes that process the sugar to alcohol.[1] This process, which we associate with 

wine-making, is how the yeast cell makes its living, gaining energy to multiply, 

which under normal circumstances would enhance its survival prospects.In 

multicellular animals the same principle has been put in the service of gene 

cascades that control body-shape.[2] Each time a cell divides, two cells result 

which, although they contain the same genome in full, can differ in which genes 

are turned on and making proteins. Sometimes a 'self-sustaining feedback loop' 

ensures that a cell maintains its identity and passes it on. Less understood is the 

mechanism of epigenetics by which chromatin modification may provide cellular 

memory by blocking or allowing transcription. A major feature of multicellular 

animals is the use of morphogen gradients, which in effect provide a positioning 

system that tells a cell where in the body it is, and hence what sort of cell to 

become. A gene that is turned on in one cell may make a product that leaves the 

cell and diffuses through adjacent cells, entering them and turning on genes only 

when it is present above a certain threshold level. These cells are thus induced 

into a new fate, and may even generate other morphogens that signal back to the 

original cell. Over longer distances morphogens may use the active process 

of signal transduction. Such signaling controls embryogenesis, the building of 

a bodyplan from scratch through a series of sequential steps. They also control 

and maintain adult bodies through feedback processes, and the loss of such 

feedback because of a mutation can be responsible for the cell proliferation that 

is seen in cancer. In parallel with this process of building structure, the gene 

https://en.wikipedia.org/wiki/Gene_regulatory_network#cite_note-1
https://en.wikipedia.org/wiki/Gene_regulatory_network#cite_note-2
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cascade turns on genes that make structura proteins that give each cell the 

physical properties it needs. 

 

 

 

Fig: A simplified model of Gene Regulatory Network,. 
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Gene Regulatory Networks have two main processes. 

   

1) The first is called pre-processing. Using MicroArrays  (a high throughput 

technology ) we gather expression levels of different inside a cell (cancer 

cells in our case) over a specified period of time.  These gene expression 

levels for individual genes are arranged into a table which is called the 

TIME SERIES DATA. 

 

2) 2)The next step is the modeling of gene regulatory networks using 

algorithms to derive a Gene Regulatory Network topology from the time 

series data found in the previous step. This GRN can be used to identify 

which genes are responsible for influencing the expression of mutated genes 

that result in abnormal cell division 

 

The major approaches that deals with the modeling of gene regulatory networks 

involve  

1. Differential equations.  

2. Stochastic models 

3. Evolving connectionist systems 

4. Boolean networks 

5. Generalized logical equations 

6. Threshold models 

7. Petri nets 
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8. Bayesian networks 

9. Directed and undirected graphs 

10. Learning Module Networking (LeMoNe) 

 

Existing Techniques for pre-processing: 

Previously Genetic Algorithm (GA) was applied to reduce the number of gene 

samples from the time series data. Then one of the above models is used to 

derive the Gene Regulatory Network for this reduced gene sample. Using 

Genetic Algorithm (GA) can have some limitations. These limitations reduce 

the accuracy of the derived Gene Regulatory Network. So in this paper we will 

be proposing an alternate approach to reducing the number of gene sample size 

to be used in any one of the networks to derive the Gene Regulatory Network. 

The reason behind trying to find an alternate approach instead of using Genetic 

Algorithm is mentioned below using references from the following paper.                                    

 

REFERENCE FROM: 

Advantages and Disadvantages of Genetic algorithms for clustering ( Abul 

Hashem Beg and Md Zahidul Islam) 
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There are some limitations of Genetic Algorithm (GA) based clustering 

technique.     

Some of which are: 

(1) Many existing Genetic Algorithm techniques randomly generate the number 

of genes. The quality of the genes is unlikely to be high due to random selection 

process. 

 

(2) An existing technique called the GenClust technique generates high quality 

genes in the initial population. Thereby obtaining a good clustering result. 

However, the complexity of the initial population selection is very high. 

 

(3)Many GA based clustering suffers from degeneracy. The degeneracy mainly 

occurs when multiple chromosomes represent the same solution. Degeneracy 

can lead to an inefficient solution. In order to avoid the degeneracy, an existing 

technique called GAGR [10] introduces a gene-rearrangement approach. 

However, the gene-rearrangement approach used in GAGR requires the same 

size (i.e. the same number of genes) of pair chromosomes, which participates 

in crossover operation. Moreover, GenClust also uses a gene-rearrangement 

operation that can re-arrange the chromosome pair with different sizes. 

However, the gene-rearrangement used in GenClust can handle a dataset with 

low dimensions. Therefore, the techniques that can handle the gene-

rearrangement for the data set with high dimension are desirable.  
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(4) Moreover, the time complexities of some GA-based clustering techniques 

are O(nm2+n2m),O(n2+m2),O(n2) respectively. Therefore, reducing the time 

complexity for GA-based clustering techniques is also highly desirable.  Fitness 

value is calculated repeatedly which might be computationally expensive for 

some problems. Being stochastic, there are no guarantees on the optimality or 

the quality of the solution. If not implemented properly, the GA may not 

converge to the optimal solution. 

                                   

 

Our Proposed Pre-Processing technique: 

 In this paper we are proposing an alternate way of pre-processing which 

does not require the use of  genetic Algorithm (GA). Our pre-processing 

techniques will reduce the size of the gene sample to be implemented by the 

algorithms to derive the Gene Regulatory Network (GRN). This will enable us 

to remove the limitations of the existing technique (Genetic Algorithm) used to 

reduce the gene sample size. 

 

We are suggesting the following technique: 

1. Finding mean expression level of each gene from time series data and then 

calculating the perturbation level for that gene. Firstly we will assume a 

hypothetical threshold value (Tm). Then we will find the mean expression 

levels of each gene over a specified time interval. If the mean value is found 

to be less than the hypothetical threshold value (Tm), then we will discard 
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that gene. If the mean value found is greater than or equal to the hypothetical 

threshold value (Tm), then we will move on to the next step. 

 The next step to this technique is finding the perturbation values of each of 

the selected gene from the sample we found by comparing mean value with 

Tm. Then we will find the mean perturbation value (this will be our 

threshold Perturbation value ,Tp ).  

Now we will accept only those genes which have a perturbation value higher 

than or equal to the threshold Perturbation value, Tp, and implement these 

genes in any one algorithm we find suitable for deriving the Gene regulatory 

Network. 

 

 

 

 

Using mean to find perturbation: 

 

This technique allows us to find the perturbation level for each gene by first 

calculating the mean expression level of each gene. 

WORKING PROCEDURE: 

Using the following time series data from microarray, that shows the 

expression levels of genes at different time intervals: 
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 Step 1: Finding mean expression level of each gene from time series data 

   

For cg00000292 we get, 

Mean =    

∑ 𝑋𝑖 

𝑛
  

=
.528+.5537+.55935+.3373+.5682

5
 = 0.51436 

Finding mean expression values for all the above genes we get the following table:  
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Here we have assumed the hypothetical mean expression level, Tm to be 0.3   

We will select the hypothetical mean expression level, Tm  via trial and error 

method. We can use different values for this hypothetical value, Tm until we get 

the most optimal solution. 

 

Any mean value that is below this hypothetical value Tm will be discarded. In the 

above figure the mean values of gene expression with values greater than Tm are 

highlighted i.e. 

 mean value>=Tm 

 

Step 2: Now we will find the perturbation value of each of the genes that have a 

mean value greater than Tm.  
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Perturbation is the summation of absolute differences between gene expression 

levels at intervals Ti , Ti+1, Ti+2, Ti+3…………. Ti+n. 

 Formula for calculating perturbation: 

 

Perturbation= ∑  𝑛−1
𝑖=1 |Xi – Xi+1| 

For cg00000292, we get the following perturbation, 

Perturbation = |.518-.5537| + |.5537-.5936| + |.5936-.3373| + |.3373-.5682|          

 =.5628 

 

By applying the above equation we get the following table of perturbation values.  

Here we get the mean of the perturbation value, Tp= .40792 

 

 

We have discarded all the genes with perturbation value < .40792  
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The selected gene sample has been highlighted in the perturbation column.  

We have thus reduced the gene sample to only a few genes. Our technique finds 

out those genes that have dependencies with each other. The rest are discarded. We 

can now apply this reduced gene sample to an GRN algorithm which will derive 

the desired GRN topology. 

 

 

Implementation of Learning Module Network (LeMoNe) Algorithm on 

the pre-processed data 
 

We designed and tested the LeMoNe (Learning Module Networks) algorithm in 

previous studies (Joshi et al., 2008, 2009; Michoel et al., 2007). The algorithm 

extends the method of Segal et al. (2003) to infer regulatory modules and their 

specific regulators from gene expression data by using a more representative 

solution extracted from an ensemble of possible statistical models to explain the 

data. LeMoNe infers a module network in two major stages. 

 The first one is a two-way clustering of genes and conditions, using a Gibbs 

sampling procedure (Joshi et al., 2008). 

In order to avoid local optima, multiple clustering solutions are generated and 

subsequently integrated in a final set of so-called tight clusters, corresponding to 

sets of genes that are frequently associated across all the clustering solutions. 
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 In the second stage, the algorithm infers a prioritized list of regulators for each 

cluster of co-expressed genes. More precisely, a hierarchical tree is build by 

grouping sets of conditions (corresponding in this case to samples taken from 

different patients) having similar means and standard deviation. Regulators are 

assigned to each node of the tree by logistic regression on the regulator expression 

values to predict the assignment of conditions to each side of the tree node (Joshi et 

al., 2009). Regulators having a distinct expression pattern on each side of a given 

tree node will get a high probabilistic score. Multiple statistically equivalent 

partitions of conditions are generated for each cluster of co-expressed genes and an 

ensemble approach is used to sum the strength with which a regulator participates 

in each regulatory tree. A global score is calculated which reflects the overall 

statistical confidence, and which is used for prioritizing the whole list of regulators 

for a given set of co-expressed genes. The mathematical details of the algorithm 

can be found in Joshi et al.(2009).  
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Integrating discrete and heterogeneous continuous-valued regulators 

As explained above, regulators are assigned to a co-expression cluster by using 

logistic regression on the binary splits of a set of hierarchically linked condition 

clusters. More precisely, let 𝒞0 and 𝒞1 be two disjoint sets of conditions. Given a 

regulator with expression value x in some condition, our model assumes there is a 

(hidden) binomially distributed random variable Y such that Y = 0 if the condition 

is assigned to 𝒞0 and Y = 1 if it is assigned to 𝒞1, with probability   

 

 

 

 

 

 

 

For a continuous-valued regulator, the training data for a regulator R consists of a 

set of expression values xm across all measured conditions m. Furthermore, given 

the partition of conditions and their hierarchical tree, we know at each tree node 

which conditions m belong to 𝒞0 and which to 𝒞1. Hence, using Bayes' rule, we can 

determine the parameters β and z which maximize the posterior probability of 
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assigning regulator R. This posterior probability is then used as the score for R at 

this particular tree node and combined with the scores at other nodes to compute a 

global assignment score. The parameter z is interpreted as a split value, meaning 

if R is highly expressed (xm > z) the condition is assigned to one side of the split 

and if R is lowly expressed (xm < z) to the other side. The parameter β is 

determined by how well a regulator fits the separation of conditions: if xm > z for 

all m ∈ 𝒞1and xm < z for all m ∈ 𝒞0 (or vice versa), we can take β = +∞ and obtain 

a maximal posterior probability. If there is no split value which achieves a good 

separation of conditions, β will be close to 0 leading to low values of the posterior 

probability. See Joshi et al. (2009) for more details. 

Clearly, there is no need for the values x to be comparable in absolute terms to the 

expression values determining the co-expression clusters. This is exploited to 

assign miRNA regulators. Furthermore, there is also no need for the values x to be 

continuous. In this article, we considered discrete regulators which can take two 

values, say 0 and 1. Then the parameter z becomes redundant and we set it  z = 0.5, 

while β is determined as before by maximizing the posterior probability. As we are 

using a probabilistic model and the final regulator score is defined by a posterior 

probability, the scores of mRNA, miRNA and discrete regulators can all be 

integrated and compared on the same scale to determine the final module network 

with heterogeneous regulators. 
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 Results and Discussions 
 

The set of 43 tight clusters was used as input for the second stage of the algorithm, 

the assignment of regulators. The probabilistic score calculated for each regulator 

reflects how well its expression profile predicts the condition-dependent expression 

level of the genes in a cluster. Furthermore, we can use this score on heterogeneous 

types of regulators, including ones having discrete values (see Section 2). For this 

study, we have used three different types of regulators. First, we selected all 

transcription factors and signal transducers from the gene expression dataset, using 

the GO categories ‘transcription factor activity’ (GO:0003700) and ‘signal 

transducer activity’ (GO:0004871). This selection resulted in a set of 1558 genes. 

Second, we added a set of 735 microRNA expression profiles that were measured 

on the same samples, but using a distinct microarray platform (Wang et 

al., 2009a, b). Third, we also used as a ‘regulator’ a clinical parameter, the Gleason 

grade, a discrete score assigned by a pathologist based on the microscopic 

appearance of prostate tissue biopsies. High values of Gleason grade are linked to 

more aggressive forms of prostate cancer characterized by a worse prognosis for 

the patient. The 90 samples in the dataset have been classified as ‘high’ or ‘low’ 

Gleason score. 

A total of 77 374 regulator–module assignments were made by the algorithm, from 

which we selected the top 1% as high-scoring candidate regulators (774 regulator–

module pairs). For each regulator assigned to a module, the algorithm is also 

selecting another one at random, thus defining a distribution of randomly assigned 

regulators. In this study, the distribution of all random regulators has a median 

score of 9.37, with a maximal score of 60.11. On the other hand, the top regulators 

(i.e. the top 1% of all assigned regulators) have a median score of 228, with a 

https://academic.oup.com/bioinformatics/article/26/18/i638/207167#SEC2
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minimum value of 107.47. Therefore the minimum score for a top regulator is still 

3.8 times higher than the maximal score for a randomly assigned regulator, thereby 

demonstrating that the top regulators score is far greater from what could be 

expected by chance. There are 496 unique regulators in the top 1% selection. Most 

of the regulators are assigned to one cluster (68%), but some are assigned to two or 

more (Figs 1 and 2). Within this set, a total of 148 miRNAs have been selected 

(30% of all high-scoring regulators). Some miRNAs are also assigned to more than 

one cluster (Figs 1 and 2). 
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(A) Simplified representation of the module network inferred by the 

LeMoNe algorithm. Clusters of co-expressed genes have diamond shapes, 

while regulators are symbolized by circles. The color of the circle 

correspond to a given type of regulator. The thickness of the edges is 

proportional to the score of a regulator for a given module. For clarity, some 

clusters are not represented and we have limited the regulators to six per 

module. (B) Zoom on the module network representation. The yellow 

regulator labeled GL represent a clinical parameter, the Gleason score, 

which is connected to three different clusters. 

 

 

 

 

 

Conclusion 

In this study, we have applied a module network algorithm to a large expression 

data set measured on lymphoblastoid cell lines coming from patients having 

different forms of prostate cancer. Compared to our previous applications of the 

algorithm, we have further extended it to simultaneously evaluate a heterogeneous 

set of candidate regulators which can be continuous-valued or discrete. 

We predicted a module network of 43 modules of co-expressed genes with their 

associated high-scoring regulators. Most of the modules show enrichment for 

specific GO categories. Several of those categories are related to cell cycle and 
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mitosis activities, which is consistent with previous studies on the same dataset. 

Almost 30% of the predicted regulators are miRNAs, and many of them have been 

characterized as causal in many diseases, including cancer. Our results also suggest 

novel miRNA candidates that could be linked to prostate cancer. This study also 

associate the Gleason score, a clinical parameter to modules enriched in cell 

growth and mitosis. 

Our study clearly demonstrate the interest of systems biology approaches to study 

cancer and its consequences, more particularly by the integration of heterogeneous 

sets of candidate regulators. This type of analysis can be applied to various cancer 

types and tissues for which relevant expression data for mRNA, miRNA and 

various clinical parameters are available. 
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