

Wastage-Aware Routing in Energy-Harvesting

Software Defined Wireless Sensor Networks

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF

REQUIREMENT FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND

ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

GAZIPUR, BANGLADESH

SUBMITTED BY

Md. Rayhan Kabir (134421)

Rafid Abyaad (134407)

Supervised by

Prof. Dr. Muhammad Mahbub Alam

Head of the Department,

Department of Computer Science and Engineering,

Islamic University of Technology.

November, 2017

 Declaration of Authorship

We, Rayhan Kabir (134421) and Rafid Abyaad(134407), declare that this thesis

titled “Wastage-Aware Routing in Energy-Harvesting Software Defined

Wireless Sensor Networks” and the works presented in it are our own. We

confirm that:

 This work has been done for the partial fulfillment of the Bachelor of

Science in Computer Science and Engineering degree at this university.

 Any part of this thesis has not been submitted anywhere else for obtaining

any degree.

 Where we have consulted the published work of others, we have always

clearly attributed the sources.

Submitted by:

--

Md. Rayhan Kabir (134421)

--

Rafid Abyaad (134407)

i

Wastage-Aware Routing in Energy-Harvesting Software

Defined Wireless Sensor Networks

Approved by:

Prof. Dr. Muhammad Mahbub Alam

Head of the Department,

Department of Computer Science and Engineering,

Islamic university of Technology

Date:…………………………….

ii

Abstract

Techno-economic drivers are creating the conditions for a radical change

of paradigm in the design and operation of future telecommunications

infrastructures. In fact, SDN, NFV, Cloud and Edge-Fog Computing are

converging together into a single systemic transformation termed

“Softwarization” that will find concrete exploitations in network

management. Although wireless equipment manufacturers are increasing

their involvement in SDN-related activities, to date there is not a clear and

comprehensive understanding of what are the opportunities offered by SDN

in most common networking scenarios involving wireless infrastructureless

communications and how SDN concepts should be adapted to suit the

characteristics of wireless and mobile communications. Here we studied

different proposed protocol architecture for software defined wireless

network, effective ways for energy efficient WSN and found some of the

shortcomings of them. We discuss about some of the challenges facing IOT

paradigm and major design requirements as well; with the intention to merge

SDN and energy reservation approaches for better performance in terms of

network lifetime and latency.

iii

Acknowledgement

First and formost, we offer gratitude to the Almighty Allah (SWT) for giving us

the capability to do this work with good health.

We are greatful to our thesis supervisor, Dr, Muhammad Mahbub Alam, for the

support and guidance throughtout our research at Islamic University of

Technology(IUT). He created a nice research environment for which we have able

to explore many ideas without constraint. We have gaines a wealth of knowledge

and future endeavor. For all of his eggorts as oir true mentor, we express our

heartfelt gratitude to him.

We would like to thank all the faculty members of the department of CSE, IUT for

their inspiration and help.

And last but not least we are thankful to our family, friends and well wishers for

their support and inspiration. Withiout them it would never been possible for us to

make it this far.

iv

Table of Contents

1. Introduction-- 01

2. SDN Overview-- 04

3. Design issue --- 08

3.1 Scalability-- 08

3.2 Security -- 11

4. Wireless SDN --- 14

4.1. Requirements -- 15

4.2. Protocol Architecture --- 16

4.3. Design and Implementation --- 20

5. Broadcast storm --- 22

5.1 Related works --- 22

5.1 Existing problem -- 25

5.1 Solutions --- 25

6. Wireless sensor network design issue -------------------------------------- 27

7. WSN application and motivation --- 32

8. Energy constrains in WSN -- 34

11.1 Related works -- 35

9. Energy harvesting WSN --- 36

10. SDN based solution --- 37

11. Future works --- 37

12. References -- 38

v

1. INTRODUCTION

Designing and managing network has become one of the biggest challenge for the ever

increasing networks. In past few years with the aid of SDN (software-defined networking)

Designing and managing networks has become more innovative. This technology seems to have

appeared suddenly, but it is actually part of a long history of trying to make computer networks

more programmable. Software defined networking is proposed to reduce the complexity of

network configuration.

Computer networks are complex and difficult to manage. They involve many kinds of equipment

from routers and switches to middle boxes such as firewalls, network address translators, server

load balancers, and intrusion- detection systems. Routers and switches run complex, distributed

control software that is typically closed and proprietary. The software implements network

protocols that undergo years of standardization and interoperability testing. Network

administrators typically configure individual network devices using configuration interfaces that

vary between vendors—and even between different products from the same vendor. Although

some network-management tools offer a central vantage point for configuring the network, these

systems still operate at the level of individual protocols, mechanisms, and configuration

interfaces. This mode of operation has slowed innovation, increased complexity, and inflated

both the capital and the operational costs of running a network. SDN is changing the way

networks are designed and managed. It has two defining characteristics. First, SDN separates the

control plane (which decides how to handle the traffic) from the data plane (which forwards

traffic according to decisions that the control plane makes). Second, SDN consolidates the

control plane, so that a single software control program controls multiple dataplane elements.

The SDN control plane exercises direct control over the state in the network’s dataplane

elements (i.e., routers, switches, and other middleboxes) via a well-defined API.

Software Defined Networking (SDN) promises to dramatically reduce the complexity of network

configuration and management as well as to make the introduction of innovation in the network

operations possible. Accordingly, SDN design and experimentation is the subject of the

increasing attention of the industrial and academic research the institution of large industry-

driven organizations focused on SDN such as the Open Networking Foundation (ONF)

(https://www.opennetworking.org/) witness such increasing interest. The SDN has interested the

1

 wireless networking community as well In fact, an increasing number of enterprises working in

the field of wireless and mobile communications have joined SDN-related initiatives. For

example, Verizon, Nokia Siemens Networks, Ericsson, and Netgear are current members of

ONF. Regardless of such increasing interest, to the best knowledge, there is not a clear and

comprehensive understanding of what are the advantages of SDN in the most common wireless

infrastructureless networking scenarios and how the SDN concept should be expanded to suit the

characteristics of wireless and mobile communications.

In case of wireless sensor networks, adopting SDN is little bit complex but it can put a

remarkable improvement in routing over current routing protocols. In wireless sensor networks

the nodes can be source node, target node or forwarding node. The high dynamic characteristics

of wireless link cause poor quality and low stability for link, which poses a challenge to

throughput and transmission reliability of wireless sensor network. Otherwise, restricted energy

and mobility requirements of node also bring difficulties to design and optimization of routing

protocol.

Figure: SDN architecture

Traditional multi-hop wireless routing is divided into active routing and passive routing; active

routing such as OLSR{X} is based on broadcast information; in each node, the routing

information from that node to all other nodes is saved, so there is so much routing information

that requires to be saved in each node, and too much internal storage is occupied; therefore,

active routing is not adapted to high dynamic network. As for passive routing such as AODV{X}

the routing is searched with broadcast each time when sending data is required by node; when

multiple nodes require sending routing, nodes need broadcasting for times to search routing;

when there are too many links for a node, too much energy is consumed by broadcast. SDN

2

separates control from data, and open uniform interface (such as OpenFlow) is adopted for

interaction. Control layer is responsible for programming to manage & collocate network, to

deploy new protocols, and etc. Through centralized control of SDN, uniform network-wide view

may be obtained, and dynamic allocation may be conducted to network resources as per changes

in network flow [4]. Currently, the most routing researches for software-defined network are

with respect to wired network and data center [5, 6]; though software-defined Internet of Things

and software-defined wireless sensor network are put forth in a few researches, but only at stage

of putting forth models and concepts. In researches on SDN based on wireless network, the

characteristics of wireless network, such as broadcast characteristics, hidden terminal, node

mobility and etc. shall be taken into consideration. OpenFlow Protocol is only applicable to route

selection, however, applying more functions such as perceiving a variety of sensor data, sleep,

aperiodic data collection and etc. in wireless network node, cannot be realized with OpenFlow

Protocol and Standard.

3

2. SDN OVERVIEW

The basic idea of SDN is the separation of control plane and packet forwarding plane. In SDN

control plane is programmable hence giving rise to innovation. Software Defined Networking

(SDN) assure to strikingly minimize the current complex networking environment and its

management. Innovation feature is making the networking environment more attractive to work

on. User can differentiate between the service providers because of various dimensions which are

not there in traditional networks. This will help drastically to maximize the network ability to

deliver to the best and more efficiently. SDN is seen as area of attraction for researchers and

hardware manufacturers in recent times. For example Ericsson, Net-gear, Nokia Siemens

Networks and Verizon are in the list of current members of Open Networking Foundation

(ONF). Along with what discussed above, various opportunities which should be trapped with

help of implementing the SDN to wireless infrastructure-less networks are stated in the study.

SDN is based on abstraction. Separation between control plane and forwarding plane is done. An

interactive application environment is provided with control plane. Network topology

information plays critical role with the help of which decision can be changed, modified and

designed in completely new manner with help of SDN application interface. Control plane can

FIGURE: SDN switch specification

4

also be termed as the operating system of the network. Refer Figure. for more detailed SDN

design concept.

A very critical task is to select a SDN model or models SDN can support. Basically there are

three types of models which are network virtualization model, evolutionary model and the

OpenFlow model of SDN. The most important goal of network virtualization is to get rid of

restrictions on LAN partitioning that resides in Ethernet Virtual LAN standards and solve the

issues like scalability & multicasting in the network architectures. One highly popular advantage

of network virtualization is that it is affirmative towards multitenant clouds without making any

change in the network but the most significant negative of virtualization is that it adds

complexity and extra overheads. Evolutionary model objective is to maximize software control

within the boundaries of network topologies. Integration of standards in the devices by vendors

is a major problem in this model. Some do it some won’t there compatibility issue arises. Last

one is OpenFlow is the model, on which the basic idea on SDN is built [8]. There must be a

mechanism for frequent changes to a network. These change will be both in conditions and

network state. There must be a high level language for network configuration support. There

must be better visibility and control on network troubleshooting tasks as well as on its diagnosis.

For the solution a wide range of high level language network policies and correct scan of

networproblem.

Software Defined Networking (SDN) provides very interesting features which will revolutionize

the future networks like centralize control mechanism, cost efficiency, innovation,

programmability, scalability, security, virtualization, cloud support, automation, reliability and

efficient environment to support Big-Data. It gives us a centralized control mechanism of various

networking hardware devices from multiple vendors, further network automation is greatly

improved with the help of APIs which are used to abstract network details. One of the

main objective of SDN is to provide innovation over the internet or the network, this ensure very

less vendor dependence. Programmability by operators is feature of Software Defined

Networking which helps to put innovation into practice. Security and reliability are the major

issues in today’s networks, SDN enhance these two aspects to the maximum. Simple operation

and cost efficiency are key factors with openness to design and invent in SDN. SDN makes it

easy to share resources in an efficient manner with the feature of network intelligence. Further

paper stated SDN is helpful in service aware networking too. With SDN, Network Management

5

has improved vastly which also give it cutting edge on traditional networking architecture and

important determinant in future works.

Networks based on Software Defined Networking are being implemented both on testbed and

production networks. Fault tolerance property is a key for the production networks and a most

desirable & a must for SDN networks. It is noted that with respect to fault tolerance in SDN

there are not much researches. A fault tolerance SDN architecture is stated which quickly

recover from the occurred faults and can work on highly scalable networks. The architecture

describes the recovery from multiple links failures. SDN based networks are more and more

been deployed both on testbed and production networking environments.OpenFlow: A

dedicated OpenFlow Switch is a dumb data path element that forwards packets

between ports, as defined by a remote control process. Figure 1 shows an example of an

OpenFlow Switch.

In this context, flows are broadly defined, and are limited only by the capabilities of the

particular implementation of the Flow Table. For example, a flow could be a TCP connection, or

all packets from a particular MAC address or IP address, or all packets with the same VLAN tag,

or all packets from the same switch port. For experiments involving non-IPv4 packets, a flow

could be defined as all packets matching a specific (but non-standard) header.

Each flow-entry has a simple action associated with it; the three basic ones (that all dedicated

OpenFlow switches must support) are:

1. Forward this flow’s packets to a given port (or ports). This allows packets to be routed

through the network. In most switches this is expected to take place at line rate.

2. Encapsulate and forward this flow’s packets to a controller. Packet is delivered to

Secure Channel, where it is encapsulated and sent to a controller. Typically used for the

first packet in a new flow, so a controller can decide if the flow should be added to the

Flow Table. Or in some experiments, it could be used to forward all packets to a

controller for processing.

3. Drop this flow’s packets. Can be used for security, to curb denial of service attacks, or

to reduce spurious broadcast discovery traffic from end-hosts.

6

An entry in the Flow-Table has three fields:

(1) A packet header that defines the flow,

(2) The action, which defines how the packets should be processed

(3) Statistics, which keep track of the number of packets and bytes for each flow, and the time

since the last packet matched the flow (to help with the removal of inactive flows).

In the first generation “Type 0” switches, the flow header is a 10-tuple shown in Table 1. A TCP

flow could be specified by all ten fields, whereas an IP flow might not include the transport ports

in its definition. Each header field can be a wildcard to allow for aggregation of flows, such as

flows in which only the VLAN ID is defined would apply to all traffic on a particular VLAN.

In port VLAN ID Ethernet IP TCP

SA DA Type SA DA Port Src Dst

Controllers:

A controller adds and removes flow-entries from the Flow Table on behalf of experiments. For

example, a static controller might be a simple application running on a PC to statically establish

flows to interconnect a set of test computers for the duration of an experiment. In this case the

flows resemble VLANs in current networks— providing a simple mechanism to isolate

experimental traffic from the production network. Viewed this way, OpenFlow is a

generalization of VLANs.

One can also imagine more sophisticated controllers that dynamically add/remove flows as an

experiment progresses. In one usage model, a researcher might control the complete network of

OpenFlow Switches and be free to decide how all flows are processed. A more sophisticated

controller might support multiple researchers, each with different accounts and permissions,

 enabling them to run multiple independent experiments on different sets of flows. Flows

identified as under the control of a particular researcher (e.g., by a policy table running in a

controller) could be delivered to a researcher’s user-level control program which then decides if

a new flow-entry should be added to the network of switches.

7

3. DESIGN ISSUES

3.1 Scalability:

One possible SDN design is to push all the control functionality to a centralized controller.

Empowered with a complete network-wide view, developing control applications and enforcing

policies become much easier in this setting. Nevertheless, controllers can potentially become the

bottleneck in the network operation. As the size of a network grows, more events and requests

are sent to the controller, and at some point, the controller cannot handle all the incoming

requests. Early benchmarks of an SDN controller (NOX) showed that it can handle 30k

requests/s. Even though this may be sufficient for a sizeable enterprise network, it could be a

major problem for data-center-like environments with high flow initiation rates. One way to

alleviate this concern is to level parallelism in multicore systems and improve IO performance.

Tootoonchian et al. showed that simple modifications to the NOX controller boosts its

performance by an order of magnitude on a single core. It means that a single controller can

support a far larger network, given sufficient controller channel bandwidth with acceptable

latency. We can also reduce the number of requests forwarded to the controller. DIFANE [5]

proactively pushes all state to the data path In DevoFlow , with support from an ASIC, short-

lived flows are handled in the data path, and only larger flows are forwarded to the controller,

effectively reducing the load on the controller and improving scalability. Alternatively, one can

distribute the state and/or computation of the control functionality over multiple controllers.

Having a centralized controller is by no means an intrinsic characteristic of SDN. All we need is

a unified networkwide view to reap the benefits of SDN. As stated in [7], it is not always feasible

to achieve strong consistency while maintaining availability and partition tolerance. Therefore,

selecting an apt consistency level is an important design trade-off in SDN. To preserve

scalability, one should design control applications with the weakest possible consistency level.

There are solutions where we can physically distribute the control plane elements, yet maintain

the network-wide view. Onix [2], for example, is a distributed control platform that facilitates

implementation of distributed control planes. It provides control applications with a set of

general APIs to facilitate access to network state (NIB), which is distributed over Onix instances.

HyperFlow. This keeps the simplicity of developing the control plane on a central controller

while alleviating a class of scalability issues associated with a centralized controller, albeit for a

more restricted set of control applications satisfying certain properties. Kandoo takes a different

approach to distributing the control plane. It defines a scope of operations to enable applications

with different requirements to coexist: locally scoped applications (i.e., applications that can

operate using the local state of a switch) are deployed close to the data path in order to process

frequent

8

requests and shield other parts of the control plane from the load. A root controller, on the other

hand, takes charge of applications that require network-wide state, and also acts as a mediator for

any coordination required between local controllers. An interesting observation is that control

plane scalability challenges in SDN (e.g., convergence and consistency requirements) are not

inherently different than those faced in traditional network design. SDN, by itself, is neither

likely to eliminate the control plane design complexity or make it more or less scalable.1 SDN,

however:

 • Allows us to rethink the constraints traditionally imposed on control protocol designs (e.g., a

fixed distribution model) and decide on our own trade-offs in the design space

• Encourages us to apply common software and distributed systems development practices to

simplify development, verification, and debugging Unlike traditional networks, in SDN, we do

not need to address basic but challenging issues like topology discovery, state distribution, and

resiliency over and over again.

As demonstrated in Onix, control applications can rely on the control platform to provide these

common functions; functions such as maintaining a cohesive view of the network in a distributed

and scalable fashion. In fact, it is significantly easier to develop applications for such cohesive

distributed control platforms than a swarm of autonomous applications running on heterogeneous

forwarding elements.

Flow Initiation Overhead — Ethane [10], an early SDN security system, puts a controller in

charge of installing forwarding state on switches on a per-flow basis. Even though this reactive

form of flow handling introduces a great degree of flexibility (e.g., easy fine-grained high-level

network-wide policy enforcement in the case of Ethane), it introduces a flow setup delay and,

depending on implementation, may limit scalability. Early designs, such as Ethane and NOX,

lead to the widespread assumption that all SDN systems are reactive. In reality, however,

proactive designs — in which forwarding entries are set up before the initiation of actual flows

— are perfectly acceptable in SDN, and can avoid the flow setup delay penalty altogether. Let us

review the flow setup process to explain the bottlenecks and show how a good design can avoid

them. As illustrated in Fig. 2, the flow setup process has four steps:

• A packet arrives at the switch that does not match any existing entry in the flow table.

• The switch generates a new flow request to the controller.

• The controller responds with a new forwarding rule.

• The switch updates its flow table. The performance in the first three steps and partially the last

depends on the switch capabilities and resources (management CPU, memory, etc.) and the

performance of its software stack.

The delay in the third step is determined by the controller’s resources along with the control

program’s performance. Finally, the switch’s FIB update time contributes to the delay in

9

 completing the flow setup process. Assuming controllers are placed in close proximity of

switches, the controller-switch communication delay is negligible. On the controller side, even

on a commodity machine with a single CPU core, state-of-the-art controllers are well capable of

responding to flow setup requests within a millisecond when the flow initiation requests are on

the order of several hundred thousand per second. While Open vSwitch — an OpenFlow-enabled

software switch — is capable of installing tens of thousands of flows per second with sub-

millisecond latency, hardware switches only support a few thousand installations per second with

a sub-10 ms latency at best. This poor performance is typically attributed to lack of resources on

switches (weak management CPUs), poor support for high-frequency communication between

the switching chipset and the management CPU, and non-optimal software implementations. We

expect these issues to be resolved in a few years as more specialized hardware is built. It is

foreseeable that the FIB update time will become the main factor in the switch-side flow setup

latency. While we argue that controllers and, in the near future, switches would be able to sustain

sufficient throughput with negligible latency for reactive flow setup, in the end the control logic

determines the scalability of a reactive design. A control program installing an end-to-end path

on a per-flow basis does not scale, because the perswitch memory is fixed but the number of

forwarding entries in the data path grows with the number of active flows in the network.

However, the control program may install aggregate rules matching a large number of micro-

flows (thereby facing the same scalability challenges as a proactive design), or proactively install

rules in the network core to provide end-to-end connectivity and identify quality of service (QoS)

classes, while classifying and reactively labeling flows at the edge. A viable solution to the

scalability challenges of the proactive designs in the former class due to data path memory

scarcity is proposed in DIFANE [5]; while the scalability of the latter class follows from the

observation that the fanout of an edge switch and thus the number of flows initiated there is

bounded (just add edge controllers as the network grows in size). Resiliency to Failures —

Resiliency to failures and convergence time after a failure have always been a key concern in

network performance. SDN is no exception, and, with the early systems setting an example of

designs with a single central control, resiliency to failures has been a major concern. A state-

synchronized slave controller would be sufficient to recover from controller failures, but a

network partition would leave half of the network brainless. In a multicontroller network, with an

appropriate controller discovery mechanisms, switches can always discover a controller if one

exists within their partition. Therefore, given a scalable discovery mechanism, controller failures

do not pose a challenge to SDN scalability. Let us decompose the process of repairing a broken

link or switch to see how it is different from the traditional networks. As shown in Fig. 3,

convergence in response to a link failure has five steps. The switch detects a change. Then the

switch notifies the controller. Upon notification, the control program computes the repair actions

and pushes updates to the affected data path elements, which, in turn, update their forwarding

tables.2 In traditional networks, link failure notifications are flooded across the network, whereas

with SDN, this information is sent directly to a controller. Therefore, the information

propagation delay in SDN is no worse than in traditional networks. Also, as an advantage for

SDN, the computation is carried out on more capable controller machines as opposed to weak

10

 management CPUs of all switches, regardless of whether they are affected by the failure or not.

Note that the above argument was built on the implicit assumption that the failed switch or link

does not affect the switch-controller communication channel. The control network itself needs to

be repaired first if a failed link or switch was part of it. In that case, if the control network —

built with traditional network gear — is running an IGP, the IGP needs to converge first before

switches can communicate with the controller to repair the data network. In this corner case,

therefore, convergence may be slower than in traditional networks. If this proves to be a

problem, the network operator should deploy an out-of band control network to alleviate this

issue. Overall, the failure recovery process in SDN is no worse than in traditional networks.

Consequently, similar scalability concerns exist, and the same techniques used to minimize

downtime in traditional networks are applicable to SDN. For instance, SDN design can and

should also leverage local fast failover mechanisms available in switches to transiently forward

traffic toward preprogrammed backup paths while a failure is being addressed.

3.2 Security:

IT infrastructure is rapidly moving to the cloud, creating a dramatic technology shift in the data

center. This shift has significantly influenced user behavior: end users now expect anytime,

anywhere access to all their data. Additionally, network operations are being transformed from

operator-intensive management towards greater automation. The data center of the future is

emerging as a highly virtualized environment that must address a diverse set of user needs,

including anytime, anywhere access to their data, the consumerization of IT (BYOD) and

increased reliance on cloud services. Security concerns are consistently identified as a major

barrier to this data center transformation. While protecting user data is of paramount importance,

mobility and virtualization pose new threats that must be understood and secured. And the

human factor continues to lead to unnecessary downtime, expense, and unauthorized intrusion.

Throughout the enterprise, end devices and data center resources including hypervisors, storage

devices, servers, switches, and routers must be secured. Despite the diverse threats, existing

security strategies can be successful at minimizing many of the security risks in the data center

(see Figure 2). Currently available security solutions are, however, difficult to deploy, manage,

program, scale, and secure. Policies are tightly coupled to physical resources as opposed to

services and applications. Security solutions struggle to provide quick and automated threat

mitigation across equipment from multiple vendors. Consistent security policies are difficult to

11

administer across compute, storage, and network domains, and multiple data centers. No

solutions today allow for complete security orchestration across data center networks.Today’s

security solutions include:

• Firewalls for perimeter defense and internal domain control.

• Intrusion detection and prevention systems that monitor network activities for malicious

activities or policy violations and attempt to prevent attacks.

• Secure Sockets Layer virtual private networks (SSL VPNs), which provide the ability to

securely separate customers and domains.

• Network management solutions that attempt to centrally manage many of these security

functions via a console.

• IEEE 802.1X port-based network authentication and access control.

• IPsec for end-to-end authentication and encryption of the IP packets in a communication

session.

• Transport Layer Security (TLS) for Application Layer communication encryption security at

the Transport Layer.

• The Remote Access Dial In User Service (RADIUS) networking protocol, which offers

centralized authentication, authorization, and accounting (AAA) management for end devices to

use a network service.

OpenFlow-based SDN offers a number of attributes that are particularly well suited for

implementing a highly secure and manageable environment:

• The flow paradigm is ideal for security processing because it offers an endto-end, service-

oriented connectivity model that is not bound by traditional routing constraints.

• Logically centralized control allows for effective performance and threat monitoring across the

entire network.

• Granular policy management can be based on application, service, organization, and

geographical criteria rather than physical configuration.

• Resource-based security policies enable consolidated management of diverse devices with

various threat risks, from highly secure firewalls and security appliances to access devices.

• Dynamic and flexible adjustment of security policy is provided under programmatic control.

• Flexible path management achieves rapid containment and isolation of intrusions without

impacting other network users. By blending historical and real-time network state and

12

performance data, SDN facilitates intelligent decision-making, achieving flexibility, operational

simplicity, and improved security across a common infrastructure.

While the SDN centralized control model offers significant benefits to the network and to

security management, there are tradeoffs. Logically centralized (and typically physically

distributed) SDN controllers are potentially subject to a different set of risks and threats

compared to conventional network architectures.

 • The centralized controller emerges as a potential single point of attack and failure that must be

protected from threats.

• The southbound interface between the controller and underlying networking devices (that is,

OpenFlow), is vulnerable to threats that could degrade the availability, performance, and

integrity of the network. OpenFlow specifies the use of TLS or UDP/DTLS, either of which

supports authentication using certificates and encryption to secure the connection. Additional

security measures may be needed in case this authentication fails.

 • The underlying network infrastructure must be capable of enduring occasional periods where

the SDN controller is unavailable, yet ensure that any new flows will be synchronized once the

devices resume communications with the controller.

13

4. WIRELESS SDN

The current researches on SDN are mainly focused on wired network and data center, while

software-defined wireless sensor network (WSN) is put forth in a few researches, but only at

stage of putting forth models and concepts.

In wireless sensor network, each node may act as data source & target node,

and forwarding node as well. The high dynamic characteristics of wireless link

cause poor quality and low stability for link, which poses a challenge to throughput and

transmission reliability of wireless sensor network. Otherwise, restricted

energy and mobility requirements of node also bring difficulties to design and

optimization of routing protocol.

Traditional multi-hop wireless routing is divided into active routing and passive routing; active

routing such as OLSR is based on broadcast information;

in each node, the routing information from that node to all other nodes is saved,

so there is so much routing information that requires to be saved in each node, and too much

internal storage is occupied; therefore, active routing is not

adapted to high dynamic network. As for passive routing such as AODV, the

routing is searched with broadcast each time when sending data is required by node; when

multiple node require sending routing, nodes need to broadcast for many times to search for

routing. When there are too many links to a node, too much energy is wasted with

broadcast.SDN separates control from data, and open uniform interface (such as OpenFlow) is

adopted for interaction. Control layer is responsible for programming to manage & collocate

network, to deploy new protocols, and etc. Through centralized control of SDN, uniform

network-wide view may be obtained, and dynamic allocation may be conducted to network

resources as per changes in network flow. Currently, the most routing researches for software-

defined network are with respect to wired network and data center; though software-defined

Internet of Things and software-defined wireless sensor network are put forth in a few

researches, but only at stage of putting forth models and concepts.

In researches on SDN based on wireless network, the characteristics of wireless network, such as

broadcast characteristics, hidden terminal, node mobility and etc. shall be taken into

consideration. OpenFlow Protocol is only applicable to route selection, however, applying more

functions such as perceiving a variety of sensor data, sleep, aperiodic data collection and etc. in

wireless network node, cannot be realized with OpenFlow Protocol and Standard.

14

4.1 REQUIREMENTS

Implementations of the SDN solutions for traditional wired networks have considered velocity as

the major performance measure. Indeed, it is necessary to guarantee that SDN nodes can execute

switching operations at line rate. Satisfaction of such necessity has been paid in terms of low

flexibility in the definition of the rules specifying the flows, like it will be further discussed later.

In LR-WPAN networking scenarios constraints about the velocity can be relaxed. In fact,

communications in LRWPANs occur at low rate by definition. On the contrary it is extremely

important to guarantee low energy consumption. By looking at the scientific literature it becomes

clear that reduction of energy consumption can be achieved in several ways. Among them,

SDWN uses duty cycles, in network data aggregation, and flexible definition of rules and actions

to allow cross-layer optimization.

Accordingly, the new requirements which have been considered in the design of SDWN are

given below:

SDWN must support duty cycles– The most obvious way for reducing the energy consumption

is turning the radio off when it is not utilized, that is, to use duty cycles. The radio interface of

generic nodes is turned off periodically. This would result in topology modifications which

should be considered by the modules that are responsible for network Control. Obviously control

of the duty cycle requires appropriate primitives.

SDWN must support in-network data aggregation– Energy consumption can be reduced by

removing the from the data circulating in the network, that is, by using data aggregation

techniques. In fact, it is well known that in many relevant scenarios data circulating in the

network is highly correlated both in time and space. Support of data aggregation functionalities

is achieved by SDWN through an appropriate module in the protocol architecture and the

definition of a new action.

SDWN must support flexible definition of the rules – OpenFlow supports the definition of

rules which consider the traditional TCP (or UDP)/IP header fields only. This allows a definition

of switching and routing strategies which are much more flexible when compared to traditional

switching/routing strategies. However, analysis of the literature suggests that higher flexibility is

required in wireless sensor and actor networks. In SDWN higher flexibility is achieved along

two orthogonal dimensions. In fact, on the one hand SDWN allows to define rules which

consider any byte in the packet (obviously there are some limitations like we will explain in

Section V-B) for matching purposes. This would allow, for example, to route packets based on

the specific value in the payload they carry (which would be extremely useful in several wireless

sensor and actor networking scenarios). On the other hand, SDWN allows to define rules in

15

which matching must not be necessarily conditioned by the equality between the bytes to be

considered in the packet and some reference values. In fact, SDWN allows to define rules in

which matching can be conditioned by other relational operators. For example, a route can be

configured for packets in which the value contained in the payload is higher than a given

threshold while another route is configured for packets in which the above value is below the

threshold. Again several application scenarios can be figured out in which the above flexibility is

extremely useful. Other requirements– There are several other obvious new requirements that

must be satisfied, which we will not specifically analyze for space constraints. Examples include

the necessity to support nodes mobility and the resulting topology changes, the necessity to deal

with the unreliability characterizing wireless links, and the need to be robust to the failure of

generic nodes and the Control node.

4.2 PROTOCOL ARCHITECTURE

The protocol architecture Developed for a sensor and actor network based on IEEE 802.15.4

communication nodes. Besides the transceiver a micro-control unit is deployed in such nodes

with limited computing and energy capabilities. In the network there is also one (or several) sink

node(s) which is (are) also the node(s) where the network Controller is executed. The IEEE

802.15.4 transceiver of the sink is connected to an embedded system running, for example, a

Linux operating system. Computing/communication capabilities of such embedded system are

significantly high when compared to the other nodes of the network. The network Controller

functionality will be performed by such embedded system. In Figure 1 we show the proposed

protocol architectures for SDWN nodes. More specifically, in Figure 1 (left) we show the

protocol architecture for generic nodes, whereas in Figure 1 (right) we show the protocol

architecture for the sink nodes.

A. Generic node

All generic nodes run the basic physical and MAC layer functionalities of standard IEEE

802.15.4, required to form a peer-to-peer topology. On top of the MAC layer, a Forwarding layer

is executed which is responsible for treating arriving packets as specified by the controller. To

achieve such goal, the Forwarding layer maintains a flow table updated. According to the SDN

approach, the entries of the flow tables, which are called, are defined by a rule, an action, and

statistic information.

A rule is a description of the characteristics which are featured by packets belonging to a flow

and that must be treated by the node in the same way. Indeed, each flow table entry specifies the

action which should be executed to all packets satisfying the above rule. Finally, the table flow

entry specifies the number of received packets which have satisfied the rule, that is, the statistic

information.

16

Arriving packets are provided by the MAC layer to the Forwarding layer. This identifies the type

of packet and if it is a control packet, then sends it to the Network Operating System layer which

will be described later in this section. Otherwise, i.e., if the packet is a data packet, the

Forwarding layer controls whether the packet matches one of the rules specified in the flow

table. If this is the case, then the packet is treated according to the corresponding action.

Otherwise the packet is given to the Network Operating System layer. The Aggregation layer is

executed over the Forwarding layer. Its responsibility is to perform the action required to

aggregate information flowing through the network. Current implementation of the Aggregation

layer is quite straightforward. In fact, one of the actions which can be specified by the flow table

entries is to include the packet in an aggregation equivalent flow (AEF). Packets belonging to the

same AEF can be aggregated with each other and sent to the Aggregation layer for this purpose.

The Forwarding layer will just concatenate arriving packets, if these are sufficiently small, and

forward them as specified by the corresponding flow table entry.

In the future, a more sophisticated behavior for the Aggregation layer can be designed. Finally,

in the architecture shown in Figure 1 (left) we can distinguish a Network Operating System

(NOS) layer which runs on top of the IEEE 802.15.4 standard physical and link layers and has

access to all the new protocol layers described.

Above. Indeed, It is observed that the NOS layer has access to APIs offered by all layers. Such

APIs enable to control the behavior of the physical and link protocol layers as well as the new

defined layers and therefore, allow cross-layer operations.

Figure: Node architecture

17

Objectives of the NOS layer are, on the one hand, to collect local information from the node and

send such information to the Controller; on the other hand, to control the behavior of all other

layers of the protocol stack as specified by the Controller. Achievement of the above objectives

requires NOS to be able to reach the sink node at any time. To this purpose a simple protocol is

applied as described in Section V-A. A Flow Chart of the operations run by the NOS layer is

reported in Figure:

Figure: flow chart for NOS operation

Finally, note that the Application layer runs on top of the NOS layer, which is thus expected to

provide an appropriate API. In order to support legacy applications, the current API generalizes

the IEEE 802 APIs.

B. Sink node

The architecture of the Sink node can be split into two different parts as shown in Figure 1

(right). In fact, the bottom layers which run in the same device which is used by generic nodes

are the same as explained in the previous subsection. Besides, there are further functionality

which require high computing and communication capabilities and therefore are executed in the

Linux-based embedded system.

18

The device and the embedded system are usually connected through USB, RS232 or some other

communication interface. In the embedded system, an Adaptation layer is executed which is

responsible of formatting the messages in such a way that they can be handled by the WPAN

devices.

Another key element of the sink node is the Virtualizer layer. This layer uses the local

information collected by the generic nodes to build a consistent and detailed representation of the

current network topology (graph, energy level of all generic nodes, quality of the links, etc). The

Virtualizer layer is responsible for allowing the coexistence of different logic networks on the

same devices. Such networks can use different policies regarding the network management, i.e.

they use different Controllers. Each coexisting network is characterized by a network rule which

is used to filter packets that will be treated according to the specific management policies defined

by the corresponding Controller. For what concerns the representation of the network topology, a

map is used to collect all the information regarding a generic node. More specifically, for each

generic node A the topology information that we need to manage is the following:

• Last time instants when the sink node has received a packet generated by A.

• The battery level reported in the last packets received from A.

• A list of nodes that are neighbors of A. For each of such neighbors, say B, we need to represent

the address (at this moment this is a 2 byte field), the quality of the link between nodes A and B,

a time stamp reporting the last time instant when the sink has received a packet from A that

reports B among A’s neighbors.

 In current implementation we represent the network conditions by exploiting the Java Map

interfaces. For the Map an obsolescence timeout is defined which is the time after which an entry

(being it an entire list of neighbors or just one neighbor) should be removed from the map unless

there are evidences that this action should not be taken.

Finally, besides the Application layer the protocol architecture of the sink node contains one or

several Controller(s). The Controller is responsible to implement the desired network

management policy. More specifically, the Controller will receive packets that generic nodes

have not been able to classify in an existing flow and for such packets must define a rule along

with the appropriate actions. The Controller will create flow table entries in this way which are

based on the information on the current topology of the network.

19

4.3 DESIGN AND IMPLEMENTATION:

Collection of topology information

• The sink node periodically generates a beacon packet.

• This packet is broadcasted throughout the network in multi-hop

• At each hop the beacon packet contains information about the current distance

from the sink (expressed as the number of hops to reach it) and a measurement of

the local battery level.

• Upon receiving a beacon packet each node increases the value of the current

distance from the sink by one, overwrites the value of the current level of the

battery, and, then, forwards the packet.

• Also, upon receiving a beacon packet each node measures the RSSI value in the

link towards the nodes that have just transmitted the beacon

• The information contained in the beacon packets and the RSSI measurement

allow each node to identify the most convenient next hop node to reach the sink.

• Each node also stores in a local table, called neighbors table, the list of nodes

from which it received a beacon, and for each of them stores the measured value

of RSSI as well.

• This list of neighbors will be sent periodically to the sink node using a packet,

called report packet, which will be forwarded to the best next hop node

• The sink node will receive the list of neighbors from any network node and will

be able to infer the global topology of the network

20

Packet format:

Figure: packet format

All the packets circulating in the network use a fixed header that is organized as depicted in

Figure. Additional fields may be included based on the specific type of packet, as explained

below:

Type 0 - Data packet: This packet is generated/delivered by/to the application layer and

contains the header as depicted in Figure plus the payload.

Type 1 - Beacon packet: This is the packet which is broadcast periodically by the sink. Such

packet contains the header fields as reported above and an additional byte (referred to as “Hops

to sink”) providing the number of hops required to reach the sink from the node which has

transmitted (not generated) the packet.

Type 2 - Report packet: This packet is generated periodically by each node and is transmitted

to the sink upon receiving a Beacon Packet. Report packets contain the 10 bytes of header

depicted in Figure plus the “Hop to sink” byte, another byte reporting an assessment of the

current charge level of the battery (several devices support the reading of the battery voltage) and

information about the current neighboring nodes. Such information is structured as follows. The

first byte contains the number of current neighbors. Then for each of the above neighbors 2 bytes

are used for the address and an additional byte for the RSSI.

Type 3 - Rule/action Request: This packet is generated by a node upon receiving a packet

which does not match any of the rules stored in the flow table. It is generated as a copy of the

incoming packet in which, however, the Type of Packet field (i.e., byte 6 in the header) is set to 3

and the original Type of Packet value is inserted at byte 10.

Type 4 - Rule/action Response: Besides the usual header this packet contains a pair

Rule/Action which is described as presented in Section V-B. More specifically, we use 2 bits to

identify the window size, 3 bits to identify the relational operator, one byte to identify the

position in the packet of the first byte of the window, and two bytes for the “value” field

21

5. BROADCAST STORM

A straight-forward approach to perform broadcast is by flooding. A host, on receiving a

broadcast message for the first time, has the obligation to rebroadcast the message. Clearly, this

costs n transmissions in a network of it hosts. In a CSMA/CA network, drawbacks of flooding

include:

Redundant rebroadcasts: When a mobile host decides to rebroadcast a broadcast message to its

neighbors, all its neighbors already have the message.

Contention: After a mobile host broadcasts a message, if many of its neighbors decide to

rebroadcast the message, these transmissions (which are all from nearby hosts) may severely

contend with each other.

Collision: Because of the deficiency of backoff mechanism, the lack of RTS/CTS dialogue, and

the absence of CD, collisions are more likely to occur and cause more damage. Collectively, we

refer to the above phenomena as the broadcast storm problem

Simply flooding broadcast package in network would cause problems such as rebroadcast &

redundancy, signal collision, broadcast storm and etc. Especially when network nodes are

relatively dense, these problems would be more outstanding. Generally, wireless sensor network

is deployed densely, and there are a lot of redundant nodes, and system bears stronger fault-

tolerant performance. If only a part of nodes are selected for rebroadcast on premise that all

nodes should receive broadcast, the problem of broadcast storm would be relieved.

5.1 Related works:

At present, there are a variety of researches that aim to solve the problem of broadcast storm,

there into, there are algorithms based on probability, counter, distance, location, neighbor

information and etc.

Probabilistic Scheme: An intuitive way to reduce rebroadcasts is to use probabilistic

rebroadcasting. On receiving a broadcast message for the first time, a host will rebroadcast it

with probability P. Clearly, when P = 1, this scheme is equivalent to flooding.

Counter-Based Scheme: When a host tries to rebroadcast a message, the rebroadcast message

may be blocked by busy medium, backoff procedure, and other queued messages. There is a

22

chance for the host to hear the same message again and again from other rebroadcasting hosts

before the host actually starts transmitting the message. We can prevent a host from

rebroadcasting when the expected additional coverage of the host’s rebroadcast becomes too

low. This is what the counter-based scheme is based on. Specifically, a counter c is used to keep

track of the number of times the broadcast message is received. A counter threshold C is chosen.

Whenever c 2 C, the rebroadcast is inhibited. The scheme is formally derived below.

S1. Initialize counter c = 1 when a broadcast message is heard for the first time. In S2, if message

is heard again, interrupt the waiting and perform S4.

S2. Wait for a random number of slots. Then submit message for transmission and wait until the

transmission actually starts.

S3. The message is on the air. The procedure exits.

S4. Increase c by one. If c < C, resume the interrupted waiting in S2. Otherwise c = C, proceed to

SS. Cancel the transmission of message if it was submitted in S2. The host is prohibited from

rebroadcasting msg. Then exits.

Neighbor information based scheme: the algorithm where MPR nodes are selected by OLSR

routing is taken into reference; the neighbors of a part of nodes are selected for broadcast. 1-hop

and 2-hop neighbor nodes of some node are utilized in this algorithm..

 As for probability based method, nodes conduct broadcast based on certain probability;

however, this method could not be adapted to change in node density, if the node density is low,

the area covered by broadcast decreases. As for counter-based algorithm, after the number of

broadcast received by a node exceeds a certain threshold, the broadcast at that node would be

canceled. This algorithm is not influenced by node density in network, but there is much

broadcast delay. As for broadcast algorithm based on neighbor information, a part of nodes are

selected for broadcast as per neighbor information. This kind of broadcast algorithm needs

neighbor information.

23

Tests were conducted for 4 algorithms (3 broadcast methods and full-node broadcast) in

simulation scene; the results of performances contrast are shown in Table.

There are 800 nodes in total in simulation network, the number of nodes in full-node broadcast is

the number of total nodes, while the number of broadcast in the other 3 methods is largely

reduced, there into, the number in counter method is more than that in greedy neighbor method

but less than that in probability method. It can be seen that the less the number of broadcast is,

the longer the network lifetime is. What should be noticed is that as for probability method and

counter method, if different parameters are set up, the results are different; if the probability set

up in probability method is larger, or if the threshold set up in counter method is larger, the

number of broadcast is larger.

The parameters for probability method and counter method in the table are values with better

performance in experiment. During actual simulation, even greedy neighbor algorithm has

multiple redundancies, because overlap exists for greedy neighbor of multiple nodes in

transmission distance after multiple hops, and there is still margin for reduction.

Node forms the backward path to controller as per broadcast package received, and sends

REPORT packet along the backward path; if the information of each node is sent separately

along the backward path, then midway node could finish sending information of downstream

node through sending for many times. In this paper, it is designed that the upstream node shall

combine information of all next-hop nodes for sending, after information of downstream node

arrives at upstream node.

After a node receives SDN broadcast package, there is certain delay before it sends REPORT

packet; it is designed that the delay time of node is inversely proportional to hop count of the

node to controller. The larger the hop count is, the shorter the delay for sending node information

package is. Therefore, the information of nodes located at the edge would be reported firstly, and

After controller receives REPORT packet, node information shall be saved into array of node

information list, and residual energy of node shall be saved into array of residual energy. Thus

there is global view at controller, and controller is able to provide routing for other nodes.

24

5.2 Existing problem:

From the above discussion we can see that to reduce the broadcast storm we can use probabilistic

broadcasting or the counter based broadcasting to reduce the total number of broadcast. But in

both of the cases we have some shortcomings. They are:

 For probability based method, nodes conduct broadcast based on certain probability;

however, this method could not be adapted to change in node density, if the node density

is low, the area covered by broadcast decreases.

 For counter-based algorithm, after the number of broadcast received by a node exceeds a

certain threshold, the broadcast at that node would be canceled. This algorithm is not

influenced by node density in network, but there is much broadcast delay.

5.3 Probable Solutions:

To reduce the broadcast storm there are some more scheme. These schemes can be applied to

simulate and see the result on broadcast storm. Some of the scheme are described below:

Distance-Based Scheme: In the previous scheme, a counter is used to decide whether to drop a

rebroadcast or not. In this scheme, we will use the relative distance between hosts to make the

decision.

Location-Based Scheme: Without loss of generality, let a host’s location be (0,O) (here we use

q-coordinate to facilitate our presentation; in fact, devices such as GPS receivers can provide 3-D

locations in longitude, latitude, and altitude). Suppose a host has received the same broadcast

message from k hosts located at (x1,yl),(x2,y2)... , (xk,yk). We can calculate the additional area

that can be covered if the host rebroadcasts the message. Let AC (x1,yl),(x2,y2)... , (xk,yk)

denote the additional coverage divided by r2. Then we can compare this value to a predefined

coverage threshold A (0 < A < 0.61) to determine whether the receiving host should rebroadcast

or not.

Cluster-Based Scheme: It is assumed that a host periodically sends packets to advertise its

presence. Thus any host can determine its connectivity with other hosts on its own. Each host has

a unique ID. A cluster is a set of hosts formed as follows. A host with a local minimal ID will

elect itself as a cluster head. All surrounding hosts of a head are members of the cluster identified

by the head’s ID. Within a cluster, a member that can communicate with a host in another cluster

is a gateway. To take mobility into account, when two heads meet, the one with a larger ID gives

up its head role.

25

S1. When the broadcast message is heard, if the host is a non-gateway member, the rebroadcast

is inhibited and the procedure exits. Otherwise, the host is either a head or a gateway. Proceed to

S2.

S2. Use any of the probabilistic, counter-based, distance based, and location-based schemes to

determine whether to rebroadcast or not.

Shortest path based scheme:

• Implement shortest distance based broadcasting:

• At the very first the network topology will be discovered by counter based

scheme

• Then from the topology the shortest path for each of the node from controller is

calculated

• The maximum distant node from the controller is taken as threshold matric and is

set

• After each period the controller will broadcast the beacon packet with the metric

0.

• After receiving a packet if the metric is greater than the threshold then will be

discarded otherwise broadcasted.

• If any new node is added in the network it will send join request to all available

nodes and node will send the information to the controller. The controller will

choose the shortest path for that new node.

26

WSN DESIGN ISSUES

Energy:

Sensor nodes run on limited battery, and in most cases regular maintenance is not possible. So, it

is vitally important that energy usage is wise and efficient so it prolongs the network lifetime.

Some cases may allow rechargeable batteries and energy can be replenished through solar or

wind power. However, as SDN grows it might get difficult to do so.

Communication:

IEEE 802.15.1 and 802.15.4 are the two most viable protocols for WSN. These protocols co-

exist with other protocols which are not ideally suited for WSN, such as WLAN and UWB.

Bluetooth(802.15.1) is a short range wireless communication technology which consumed high

amount of energy until BLE (Bluetooth low energy) was available. BLE reduces the pwer

consumption by a lrage amount and consequently increases communication range. The only

drawback to Bluetooth is with regards to scalability.

IEEE 802.15.4 was designed specifically for networks with low power consumption, low

deployment cost, less complexity and short range communication while maintaining a simple

protocol stack. The MAC layer defines two type of functional nodes namely: Reduced

Functional nodes and Full Functional nodes. Reduced functional nodes can only act as an end

device but full functional nodes can also act as the network coordinator; can be the controller in

SDN paradigm.

Routing:

WSN topologies are unstructured and therefore many traditional routing protocols are not

suitable. The routing protocols should be lightweight because of the limited resources. WSN

protocols are classified as greedy forwarding, data centric, energy centric and flood based.

Greedy forwarding forward the packets to neighbors closest to the destination, which can be

effective in a dense deployment of nodes. Data centric approaches are attribute based and help

removing redundant data. Compression and aggregation in data centric approaches also minimize

energy wastage for redundant data. Energy efficient protocols choose neighbors with high energy

levels and route packets. Energy aware harvesting protocol can be applied for efficient use of

harvested energy from the environment, integration of EH-WSN into SDN is discussed later.

27

QOS:

Coupled with configuration management is performance management. The two main objectives

of performance management of a WSN are the Quality of Service (QoS) and the quality of the

information obtained . However, there is usually a trade-off between QoS, energy consumption

and network lifetime. Depending on the environmental conditions, resource constraints, service

demand; the management protocols can permit lower QoS when energy is scarce and thus

extending network lifetime. Several network management protocols have been proposed in QoS

management of the WSN architecture including the hybrid data dissemination framework

protocol RRP, Sensor Network Management System (SNMS), Simple Network Management

Protocol (SNMP) and Wireless sensor network Management System (WinMS) . SNMP is a

widely used management protocol that provides good management for TCP/IP based networks

and is supported by several vendors in managing both wired and wireless networks. It allows

management of network performance and enables fault identification. WSNManagement based

on SNMP protocols has been proposed as an efficient network configuration, fault and

performance management system. The performance of WSNManagement showed efficiency in

WSN management with a 5 percent reduced packet loss and a 0.2 s reduced delay time while

improving the lifetime of the overall sensor node system. Delay-related QoS is critical for

WSNs, especially for real-time applications. Apart from WSNManagement, Zhao et al. propose

an optimized resource allocation solution for delay constrained Wireless Regional Area

Networks (WRANs) to improve delay-related QoS management.

Security:

Management of security is difficult to provide as WSNs are mainly made up of ad-hoc wireless

networks with intermittent connectivity and resource limitations. This leads to vulnerability to

threats that could be internal, external, malicious or even accidental. Data and resources can thus

be stolen or modified and a denial of service attack is also possible. Security management for

example has been approached through the use of key management schemes. Reegan et al.

mention various requirements in managing security such as authentication, confidentiality,

integrity, availability and authorisation. A network with high security features should be

developed to meet these requirements however, the challenge here is the limited resource in

bandwidth and energy inherent to WSNs . Management of security therefore has to be based on

effective key distribution taking into account features such as bandwidth, sensor memory,

transmission range and the necessary know-how . Several key management schemes have also

been discussed by Reegan et al.. Much more recently Key management based on the dynamic

clustering and optimal routing choice of the Mobile Sink has been proposed . The scheme

28

extends static key management to dynamic key management with an improved flexibility while

satisfying storage efficiency and connectivity. A further contribution has been made by

proposing a hybrid key management scheme which takes advantage of both the Polynomial Pool

and Basic Random (PPBR) key pre-distribution techniques to improve the difficulty in cracking

the key system . To tackle issues related with link connectivity in key management, the tree base

path key establishment method is used. The architecture of WSNs based on SDN is such that a

logically centralized controller poses a security risk as any compromise in the controller, cluster-

head in clustered topologies or even the link to the controller can affect the system QoS. A

malicious attacker can introduce false data and parameters in the network or a Denial of Service

resulting in system unreliability. A few contributions have been made in managing security for

SDN-based WSNs, Flauzac et al. for example describe the need for security management in both

wired and wireless networks based on SDN for Internet of Things (IoT) and propose a security

model for IoT SDN architecture. An extension of the proposed architecture for IoT is made to

include sensors integrating the aspect of guaranteeing the security of the network based on the

grid of security concept embedded in each controller. The grid of security concept has been

presented previously as an approach to securing networks by ensuring that communication takes

place between trustworthy devices regardless of system policy control supported by a

communication model to help structure the service distribution of security among nodes. The

overall concept is to decentralize the management of security of the network to ensure continuity

in security during failure.

Another security management contribution has been the integration of Secure Multiparty

Computation (SMC) to secure private sensory data in SDN-based WSNs. The focus is the

application of SMC in securely processing sensory data between the SDN-based WSN and the

web server. Sun et al. present a security model based on the SMC protocol allowing clients in the

SDN-based WSN to connect and disconnect to the web server arbitrarily. A lottery SMC

protocol is constructed for the performing selection in SDN-based WSNs with an encryption

based on the layered homophobic function.

Scalability:

The architectures reviewed so far are based on a centralized controller in a flat topology which is

easy to deploy and manage. Gante et al.for instance introduce smart management of SDWSNs to

improve efficiency and overcome inherent difficulties of ordinary WSNs. The management

scheme is based on a proposed base station architecture for WSNs with an integrated controller.

The controller creates forwarding rules that are placed in flow tables from location data obtained

through localization techniques processed in the application layer of the architecture. However,

flat topologies like this are limited to short range and small scale applications and as networks

scale up to very large numbers of nodes there is need to integrate topologies that are hierarchical

or provide a virtual overlay of the physical network to support efficient scalability and

29

localization. A few architectures are available for network management designed towards

improving SDN-based WSN management efficiency by using distributed multiple controllers

rather than a single centralized controller. This also enables efficient scalability and a reduction

in overhead control data as it is not necessary to communicate all control data centrally.

Distributed controllers also allow for effective security and QoS management as the WSN is not

solely dependent on one controller, making the system more reliable during attacks or failures in

the link to the central controller.

A hierarchical architecture called Software Defined Clustered Sensor Networks (SDCSN) has

been proposed to use multiple base stations as controllers that also play the role of cluster heads.

A large-scale group of nodes is divided into clusters and there is a cluster head for each. The

cluster head controls and coordinates the sensor nodes in each cluster and all the information

processed in each cluster is routed to the cluster head. Management of such an architecture

requires enabling the sensor nodes to function as controllers effectively enabling multiple

controllers in the network. Oliveira et al. design and implement an architecture based on multiple

controllers within a WSN in a framework called TinySDN based on Tiny-OS with a design

structure that consists of SDN-enabled sensor nodes and an SDN controller node. This addresses

issues such as in-band control, higher communication latency, and limited energy supply. The

downside to this management approach is that the cluster head can also become vulnerable to

attack posing a network security risk however self-stabilisation techniques for re-selecting a new

cluster head upon such an event have been proposed. To manage the network with more

flexibility for integration of various functions an architecture based on network virtualisation has

been proposed.

Another hierarchical architecture proposed to manage scalability is context based logical

clustering . This is based on logically clustering sensors according to context (gathered data type)

regardless of their physical distribution based on HyperFlow unlike other clustering methods

proposed which allow clustering of adjacent nodes. Clustering sensors according to context

would allow for data and resource sharing regardless of network expansion. Each cluster has a

local controller which maybe physically distributed but logically synchronised hence referred to

as logical sink in the virtual network overlay. The performance study shows that this technique

improves network stability effectively.

Sensor data without location information is not useful especially in large-scale applications with

hundreds to thousands of nodes. SDN in WSNs provides the possibility of obtaining location

information with a good level of accuracy by implementing proposed localization algorithms

.The localization algorithm to be implemented and managed can either be centralized or

distributed depending on the mapping information and level of accuracy provided by the

algorithm. More recently a localization node selection algorithm based on the SDN and the

Cramer-Rao Lower Bound (CRLB) metric has been investigated and proposed . The algorithm

makes use of the global network view that the SDN controller has while satisfying the need for

energy conservation and the simulation results presented a significant improvement in the

localization performance.

30

Design of a sensor openflow:

The fundamental assumption that OpenFlow makes is that the underlying network is composed

of high-speed switches such as Ethernet/MPLS switches and IP routers. OpenFlow was also

designed as a wired protocol, and its typical use cases are data centers, cellular backhaul,

enterprise WiFi backbone, and WANs. Compared to WSN, these represent significant disparities

and lead to major challenges in designing SOF. A. Data Plane: Creating Flows At the data plane,

packets are handled as per flows. A flow is a programmable (i.e., user-customizable) set of

packets that share certain properties specified by a Match in a flow-table entry, or flow entry for

short. The Match is often wildcarded, like “IP source address is 10.0.*.*”, and packets that match

it will be treated as in the same flow and be imposed an Action (e.g., “send to port 1”) specified

by the same flow entry (cf. Fig. 1 or 2). OpenFlow implicitly assumes the presence of IP-like

addressing so as to create flows. For example, it defines Match fields such as IPv4_SRC,

ETH_DST and MPLS_LABEL to match packets with IPv4 source address, Ethernet destination

address and MPLS label, respectively. However, as opposed to address-centric OpenFlow

networks, WSN are typicallydata-centric—acquiring data of interest is more important than

knowing who sent the data—and employ different addressing such as attribute-based naming,

e.g., “nodes whose sensing temperature>30◦C”. SOF must cope with this in the first place for

flow creation. B. Control Plane: SOF Channel An OpenFlow channel is an end-to-end

connection used to transmit control messages between a controller and a switch. An SOF channel

is similarly defined. However, this channel must provide TCP/IP connectivity for reliable end-to

end in-order message delivery, and the two end-parties are identified using IP addresses.. This is

normally not practical for WSN and the SOF channel has to be hosted in band, i.e., by the WSN

itself. Thus, the resource constrained WSN will have to additionally carry control traffic between

controllers and sensors. This is further exacerbated by the fact that control traffic in WSN tends

to be large due to the high network dynamics (node/link failures, energy-aware routing, mobility,

etc.). Hence, without a proper mechanism to curb control traffic overhead, the underlying WSN

can be overloaded. D. Traffic Generation End-users are considered peripheral to SDN and hence

out of the scope of OpenFlow. On the contrary, sensor nodes behave like end-users by generating

data packets, in addition to merely forwarding data as OpenFlow switches do. E. In-Network

Processing At times, WSN need to process data in-situ, e.g., perform data aggregation or

decision fusion, in order to reduce data redundancy and conserve network resource such as

bandwidth and energy. This is another feature absent in SDN. F. Backward and Peer

Compatibility Albeit radical, SOF should desirably provide backward compatibility, with respect

to traditional (non-OpenFlow and non-SOF) networks, so as to protect legacy investments. It is

also desirable for SOF to offer peer

compatibility, i.e., to be compatible with OpenFlow networks which are concurrently being

developed and standardized, for interoperability purposes.

31

7. WSN APPLICATION AND MOTIVATION FOR SD-

WSN

Wireless sensor networks are able to integrate various sensing capabilities thus providing support

for various real-world applications. This flexibility is accompanied by several research

challenges in providing effective management for the application considering the resource

constrained nature of WSNs. The various benefits that SDN introduces to these management

challenges allows it to be utilized in several applications such as in environmental applications,

health care, military and in home networks. We shall briefly discuss these application scenarios

and bring to light the benefits of SDN-based management in these areas.

 Environmental Applications

A popular environmental application of WSNs is based on the measurement of physical

parameters such as temperature, vibration, sound, chemicals and gases. This has led to

application in scenarios such as the agriculture industry for irrigation or animal monitoring,

water industry for development of smart water grids to enable efficient distribution and control

of potable water and in disaster relief applications for monitoring and fighting forest fires and

also in earthquake detection and rescue operations. Other applications include environmental

control of pollutants and marine monitoring requiring long term unmanned WSN operations.

However, such applications may require deployment of sensors over very large areas, harsh

environments or even hard to reach regions which may result in dependence on sensor energy

supply which affects network lifetime and the ability to alternate tasks upon change of sensing

requirement or upon node failure. SDN-based management would allow for a centralized

network view of essential parameters suitable for large-scale applications, where energy is

crucial SDN techniques provide effective resource allocation through software duty-cycling and

by enabling easier use of traffic engineering, congestion control, load balancing and mobility

management. SDN also provides an effective interface for sensor re-programmability necessary

for function alternation without requiring additional hardware such as FPGAs .

 Medicine and Health Care

WSN application in health care has been considered to have the potential of being beneficial to

the quality of health especially for the chronically ill and elderly patients. WSNs can also be used

for tracking of patients and doctors in hospitals which can prove useful in saving lives. A

controversial application of WSNs in health care is the use of implantable sensor systems to

monitor patient activities resulting in Wireless body Area Networks (WBANs). Darwish et al.

identify challenges to implementing WBANs among which are sensor maintenance once body-

worn, energy management for sensor batteries considering that charging would be pose a

challenge especially for the elderly as they have to remember to charge multiple sensors,

insufficient bandwidth resource to allow for transmission of large amounts of medical diagnostic

32

data, meeting the QoS requirements of health monitoring hindered by WSN resource constraints,

reliability of critical medical data packets being delivered, security and privacy of medical data,

scalability and sensor mobility challenges as patients move about in their daily life. SDN-based

management would provide a solution to several of these highlighted challenges based on the

ability to provide energy and maintenance management from a central location which could be a

task of hospital administration for instance. Furthermore, SDN techniques are being developed to

reduce traffic overhead data to mitigate bandwidth problems and also to ensure accuracy of data

and fault monitoring more efficiently, SDN provides a solution based on separation of

destructive interfering nodes. Security and privacy is a key issue in health applications and SDN

provides several encryption algorithms that can be delivered on demand, the encryption

techniques available are discussed later in this paper.

 Military Applications

In military applications WSNs can be used to detect presence of enemy or friendly forces,

assessment of terrain and chemical sensing of weapons. Recently Fraga-Lamas et al. reviewed

the possibility of applying IoT to warfare to increase efficiency. Uses of WSNs for defence IoT

highlighted included application in fire control, inventory tracking, fleet monitoring, energy

management and management of the health and safety of troops. However, to be suitable for use

in defense and security WSNs need to meet operational requirements such as robustness, ease of

deployment, interoperability/adaptability and most importantly security. SDN can be leveraged

to better achieve these requirements as it maintains a global control of the network infrastructure

in the field which better manages system security and issuance of new task protocols during

operation. SDN-based management also provides an opportunity to easier deploy mobility

algorithms to handle constant movement of troops as these algorithms can be configured and

managed in a more resource capable global controller.

 Wireless Home Networks

WSNs for home use have seen increasing demands with arising smart homes and buildings in

general. Homes are now composed of a network of light, motion and temperature sensor nodes

that can be integrated in appliances to introduce smart capabilities in a home. This network can

also be linked to the Internet to allow users to remotely control these home appliances. However,

in addition to a network of smart devices is a network of other communication technologies such

as WiFi, ethanet, cellular and power-line communications. The challenge with such a

heterogeneous network is the lack of an automated system to enable network optimization by

selecting the best communication technology to use, this decision is usually made by the user

manually. Soetens et al. [71] have proposed an SDN-based management technique to improve

management of such heterogeneous home networks by using OpenFlow-enabled link switches.

SDN techniques have also been proposed to enhance the development and management of smart

homes [72]. Smart device use is increasing in homes and this creates difficulty in management

especially with the advent of video streaming services such as Youtube and Netflix.

33.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469636/#B71-sensors-17-01031
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469636/#B72-sensors-17-01031

8. ENERGY CONSTRAINTS ON WSN

Recharging batteries in a wireless sensor network is sometimes impossible due to the placement

of the sensor nodes, but more commonly it is merely practically and/or economically infeasible.

At any rate, it is widely recognized that, generally, energy is a strictly limited resource in

wireless sensor networks and that the consequences of this limitation must be considered.

Ultimately, if we want to have the sensor network performing satisfactorily for as long as

possible, the energy constrained operation of the sensor nodes forces us to compromise between

different activities in the network. Compromises are needed on the node level as well as on the

network level. Saving energy is tantamount to finding the best compromise, the best tradeoff,

between different energy consuming activities and their design.

Equipping the sensor nodes with non-rechargeable batteries of appropriately chosen capacity

may justify the high cost of WSN deployment for low consumption applications, but may not for

power-hungry applications such as audio/video systems.

Energy-harvesting wireless sensor networks (EH-WSN) provide a solution to this energy

problem by allowing sensor nodes to harness environmental energy to power the nodes. This

solution can be implemented through two different design paradigms – perpetual operation and

supply augmentation.

In the former, consumption is adapted to available harvest so that the node, theoretically,

operates forever. In the latter, the objective is similar to that of traditional finite battery supplied

WSNs, which is to maximize some energy metric such as network residual energy or lifetime.

This is especially applicable to monitoring applications that require continuous operation even

when environmental energy is unavailable. We adapt this scenario for our design objectives.

Two enabling technologies drive the feasibility of EH-WSNs – energy harvesting and energy

management. Energy harvesting technology converts environmental energy into electrical

energy, for example, Photovoltaic (PV) panels from solar and piezoelectric transducers from

mechanical stress.

A route selection method in which route decisions are based on a cost metric comprised of two

components – the first relating to energy consumption due to transmission of packets and the

second reflecting the energy harvest wastage due to overcharge can be an excellent addition to

the routing policies supported by SDN.

34

8.1 Related works

Several works on energy-harvesting routing protocols have been published introduced one of the

first routing protocols to integrate solar energy harvest into the route selection by simply

classifying nodes as either harvesting or non-harvesting, with the non-harvesting nodes avoided

as much as possible. Authors associate cost metrics representative of a node’s available energy

with the links. Routes are then found using Bellman-Ford, Directed Diffusion (DD), or other

applicable shortest-path or least-cost algorithms applied on these metrics.

Routing is cast into a flow-maximization problem in which the probability of transmitting a

packet over an edge is proportional to the maximum flow of that edge, calculated using an

extension of Ford-Fulkerson algorithm.

A metric based on geographical distance, link quality and energy harvest is used in a blacklisting

routing algorithm, however the protocol requires nodes to know the geographical location of

other nodes, which may not be available. An energy budget for a time slot is calculated. During

the exploratory phase of DD, only nodes with enough energy budget admit packets for relay. The

protocol proposed is based on a finite state machine with charge, receive, and transmit states for

a node. The node transitions to the charge state when its battery level falls below a threshold.

 An energy harvesting adaptive opportunistic routing algorithm in which data packets are

broadcasted towards the sink. For high data rate applications, this may produce too many

duplicate data packets.

These works have shown energy savings can be obtained through harvest-aware routing

protocols, however, their cost metrics do not factor in network energy wastage due to

overcharge. Further performance improvement can be achieved by incorporating energy wastage

in the routing decisions.

35

9. ENERGY HARVESTING-WSN IMPLEMENTATIONS

On-Demand Routing:
A common classification of WSN routing protocols is the categorization into table-driven or on-

demand. On demand routing protocols discover routes only when required.

This can be advantageous when there is high mobility, high variability in the network energy

state such as in the case of EH-WSNs, or when sources only need to originate packets at irregular

events.

Table-Driven Routing:

In table-driven or proactive routing protocols, each node maintains routes to

every possible destination. However, active maintenance of these routes can become inefficient

when there is high mobility or when traffic is characterized by non-regular events.

Motivation for Integration to SDN

 Nodes can work as simple forwarding elements

 No on-demand routing overhead

 Control packets are decoupled from data packets

 Less space complexity in nodes, requiring only the energy level information of the

neighbor nodes

 Heterogeneous nodes requiring different routing policies.

36

10. Probable SDN based Solution

 Each time report packet arrives at controller, estimated energy harvest value is collected

by the controller.

 When a node requests the controller for a route, the controller can find a route to the

destination which wastes the minimal amount of energy and convey it to the sender node.

 This eliminates the latency that reactive routing algorithms incur.

 Also, more than one routing matrices can be used in one implementation. Different

policies can be applied to different nodes with different requirements.

11. Future works

• The packet format should be designed to support necessary change

• Different algorithm should tested to find the optimization to find shortest path.

• The protocol with the change should be simulated to see the result

• Different broadcasting scheme should be simulated to find the optimization.

37

References

1. New Networking Era: Software Defined Networking - Furqan Alam, Iyad Katib,

Ahmed Saeed Alzahrani, International Journal of Advanced Research in Computer

Science and Software Engineering, Volume 3, Issue 11, November 2013

2. Software Defined Wireless Networks: Unbridling SDNs - Salvatore Costanzo, Laura

Galluccio, Giacomo Morabito, Sergio Palazzo DIEEI –European Workshop on Software

Defined Networking, 2012

3. Software-Defined Networks for Future Networks and Services - White Paper based

on the IEEE Workshop, 29th January 2014

4. Software Defined Network Routing in Wireless Sensor Network- Junfeng Wang, Ping

Zhai, Yin Zhang , Lei Shi, Gaoxiang Wu, Xiaobo Shi, Ping Zhou, 2016-17

5. Wireless Software Defined Networking: A Survey and Taxonomy- Israat Tanzeena

Haque and Nael Abu-Ghazaleh, IEEE Communication Surveys, 2016-17

6. A Survey on Software-Defined Wireless Sensor Networks: Challenges and Design

Requirements- Hlabishi I. Kobo, Adnan M. Abu-Mahfuz, Gerhard P. Hancke, IEEE,

March 2017

7. SD-WISE: A Software-Defined WIreless SEnsor network- Angelos-Christos G.

Anadiotis, Laura Galluccio, Sebastiano Milardo, Giacomo Morabito, and Sergio

Palazzo, IEEE, Oct 2017

8. On Scalability of Software-Defined Networks - NetSoheil Hassas Yeganeh, Amin

Tootoonchian, and Yashar Ganjali, University of Toronto IEEE Communications

Magazine • February 2013

9. Information-Centric Networking for the Internet of Things: Challenges and

Opportunities Marica Amadeo, Claudia Campolo, José Quevedo, Daniel Corujo,

Antonella Molinaro, Antonio Iera, Rui L. Aguiar, and Athanasios V. Vasilakos IEEE

Network • March/April 2016

10. Cache “Less for More” in Information-Centric Networks Wei Koong Chai, Diliang

He, Ioannis Psaras, and George PavlouDepartment of Electronic and Electrical

Engineering, University College London, WC1E 6BT, Gower Street, London, UK

{w.chai,diliang.he.10,i.psaras,g.pavlou}@ee.ucl.ac.uk

11. Energy-efficient algorithm based on multi-dimensional energy space for software-

defined wireless sensor networks Liao Wenxing; Wu Muqing; Wu Yuewei 2016

International Symposium on Wireless Communication Systems (ISWCS)

38

12. A novel software defined wireless sensor network based grid to vehicle load

management system Nazmus S. Nafi; Khandakar Ahmed; Manoj Datta; Mark A.

Gregory 2016 10th International Conference on Signal Processing and Communication

Systems (ICSPCS)

13. Software defined wireless sensor networks security challenges Tebogo Kgogo; Bassey

Isong; Adnan M. Abu-Mahfouz 2017 IEEE AFRICON Year: 2017

14. Efficient Wireless Power Transfer in Software-Defined Wireless Sensor Networks

Waleed Ejaz; Muhammad Naeem; Mehak Basharat; Alagan Anpalagan;

Sithamparanathan Kandeepan IEEE Sensors Journal Year: 2016

15. Wireless multimedia sensor networks: A survey Ian F. Akyildiz; Tommaso Melodia;

Kaushik R. Chowdury IEEE Wireless Communications Year: 2007

39

