A STUDY ON WASTE WATER MANAGEMENT IN THE DHAKA EPZ AREA

Organisation of Islamic Cooperation

ABDULLAH AL HASHIB STUDENT ID: 085431

MD. SABBIR ZAMAN STUDENT ID: 085427

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING (CEE) ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) THE ORGANISATION OF ISLAMIC COOPERATION (OIC) BOARD BAZAR, GAZIPUR, DHAKA, BANGLADESH OCTOBER, 2012

A STUDY ON WASTE WATER MANAGEMENT IN THE DHAKA EPZ AREA

A thesis report submitted to the Department of Civil and Environmental Engineering (CEE), Islamic University of Technology (IUT), in partial fulfillment of the requirements for the Degree of Bachelor of Science in Civil and Environmental Engineering

Organisation of Islamic Cooperation

Project and Thesis CEE 4800

Supervised By Dr. Md. Rezaul Karim Professor, CEE Department **Prepared By** Abdullah Al Hashib Student ID: 085431

Md. Sabbir Zaman Student ID: 085427

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING (CEE) ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) THE ORGANISATION OF ISLAMIC COOPERATION (OIC) BOARD BAZAR, GAZIPUR, DHAKA, BANGLADESH OCTOBER, 2012

Islamic University of Technology Department of Civil and Environmental Engineering (CEE)

We hereby recommend that this thesis prepared by Abdullah Al Hashib and Md. Sabbir Zaman, entitled **"A Study on Waste Water Management in the Dhaka EPZ Area"** has been accepted as fulfilling the part of the requirements for the degree of Bachelor of Science in Civil and Environmental Engineering (B.Sc. CEE).

Prof. Dr. A.K.M. Sadrul Islam Head, CEE Department, IUT

Prof. Dr. Md. Rezaul Karim Supervisor

Professor, CEE Department, IUT

DECLARATION

This is to certify that the work presented in this thesis is the outcome of the investigation carried out by Abdullah Al Hashib and Md. Sabbir Zaman under the supervision of Prof. Dr. Md. Rezaul Karim, Department of Civil and Environmental Engineering (CEE), Islamic University of Technology (IUT), The Organization of Islamic Cooperation (OIC), Gazipur, Bangladesh.

Abdullah Al Hashib Student ID: 085431 B.Sc. CEE

Md. Sabbir Zaman Student ID: 085427 B.Sc. CEE

DEDICATED TO OUR BELOVED PARENTS

ACKNOWLEDGEMENT

First and foremost, we must feel grateful and wish to acknowledge our profound indebtedness to Prof. Dr. Md. Rezaul Karim, Professor, Department of Civil and Environmental Engineering (CEE), Islamic University of Technology (IUT). His deep knowledge in the field of research influenced us to carry out this project up to this point. His endless patience, scholarly advice, reading many inferior drafts and correcting them at all circumstances have made it possible to come to this stage.

The researchers are also grateful to Prof. Dr. A.K.M. Sadrul Islam, Head, Department of Civil and Environmental Engineering (CEE), Islamic University of Technology (IUT) for his all out cooperation.

The researchers like to convey their deep gratitude and appreciation to Mr. Afsar Ahmed, Assistant Engineer (Civil), Dhaka EPZ for his guidance and valuable suggestions throughout the study.

The researchers wish to thank the staff members of CETP for their sincere cooperation.

Finally the researchers like to appreciate and thank their family members for their patience and continuous encouragement for completion of this research.

TABLE OF CONTENTS

Acknowledg	gement			vi
List of Tabl	es			X
List of Figure	res			xi
List of Acro	onyms			xii
Abstract				xiii
Chapter	Торі	c	Page	
Chapter 1	INTI	RODUCTION		
	1.1	General		2
	1.2	Objective		2
	1.3	Study Area		3
	1.4	Scope of the Study		3
	1.5	Limitations of this Study		3
Chapter 2	LITH	ERATURE REVIEW		
	2.1	General		5
	2.2	Overview of EPZ in Bangladesh		5
	2.3	Rationale of choosing Dhaka EPZ area		6
Chapter 3	Meth	nodology		
	3.1	General		11
	3.2	Assessment of the DEPZ Industries		11
	3.3	Environmental Impact Assessment		11
Chapter 4	ASSI	ESSMENTOF THE DEPZ INDUSTRIES		
	4.1	General		13
	4.2	Classification of the Industries		13

	4.3	Assess	sment of the Production Process of the Industries	15
		4.3.1	South China Bleaching and Dyeing Factory Limited	15
		4.3.2	FCI (BD) Limited	17
	4.4	Consu	mption of Water and Generation of Waste Water	19
	4.5	Assess	sment and Performance Analysis of CETP	19
Chapter 5	ENV	IRONM	IENTAL IMPACT ASSESSMENT	
	5.1	Gener	al	32
	5.2	Enviro	onmental Issues Related to DEPZ area	32
		5.2.1	Environmental Parameters	32
		5.2.2	Evaluation of Impact	32
	5.3	Enviro	onmental Impact Assessment (EIA)	33
		5.3.1	Introduction	33
		5.3.2	Steps of EIA	34
		5.3.3	EIA Methodologies	34
		5.3.4	The Method of Assessment	36
			5.3.4.1 Magnitude of Environmental Alterations	36
			5.3.4.2 Relative Importance of Environmental Parameters	37
		5.3.5	EES Procedure Applied in the DEPZ Area	38
	5.4	Major	Findings of EIA	43
	5.5	Mitiga	ation Measures for Sustainable Development	44
Chapter 6	SUM	MARY	AND CONCLUSIONS	
	6.1	Summ	ary of this Study	47
	6.2	Conclu	usions	47

6.3	Future Scope of this Study	47
-----	----------------------------	----

Reference

Appendix A	Classification of the Industries	51
Appendix B	Quality of the water parameters in both Inlet and Outlet of CETP	55
Appendix C	Daily Sludge Production and Management by CETP	61
Appendix D	Questionnaire/Checklist of EIA	65
Appendix E	Interviews/Focus Group Discussions (FGDs)	68

49

LIST OF TABLES

Table	Title	
No.		Page
4.1	Consumption of water in DEPZ	19
4.2	Discharge water Standard for inland surface water according to ECR, 1997	19
4.3	Description of the Legends of the Sectional Layout of CETP	23
5.1	Summary of Evaluation of EIA Methodologies	35
5.2	Determination of Environmental Impact Value (EIV)	40

LIST OF FIGURES

Figure No.	Title	Page	
2.1	Location of EPZs in Bangladesh	6	
2.2	Location Map of DEPZ	9	
4.1	Categorization of the DEPZ industries according to DoE	14	
4.2	Categorization of the DEPZ industries according to EPZ	14	
4.3	Process Flow Diagram for Composite Textile Plant	16	
4.4	Production Flow Chart of FCI (BD) Ltd.	18	
4.5	Process Flow Diagram of the CETP	21	
4.6	Sectional Detail layout or plan view of CETP	22	
4.7	pH value vs Time	24	
4.8	TSS vs Time	25	
4.9	TDS vs Time	26	
4.10	COD vs Time	27	
4.11	DO vs Time	28	
4.12	Sludge Drying Beds in CETP	30	
5.1	Quantification of Environmental Impact	37	

List of Acronyms

BEPZA= Bangladesh Export Processing Zone Authority

BOI= Board of Investment

EPZ= Export Processing Zone

CETP= Central Effluent Treatment Plant

ETP= Effluent Treatment Plant

FDI= Foreign Direct Issue

FY= Fiscal Year

EIA= Environmental Impact Assessment

EIV= Environmental Impact Value

EES= Environmental Evaluation System

EU= European Union

GoB= Government of Bangladesh

ABSTRACT

DEPZ bear a lion portion of the total economy of Bangladesh. Due to its flourishing industrialization it also poses threat to the environment at the same time. Huge amount of water is consumed and wasted everyday. This study attempted to assess the wastewater management in the DEPZ area.

To conduct this study firstly the industries of EPZ was classified according to both DoE and EPZ to facilitate or ease the work to assess some representative industrial process. Then treatment procedure of their waste water is examined. Finally, an EIA has been conducted to evaluate the overall impact in the surrounding environment of DEPZ taking into account 30 parameters related to physico-chemical, ecological or biological and human interest parameters.

After assessing the inlet and outlet parameters of water it is obvious that discharged water from CETP is maintaining the DoE standard according to ECR, 1997. But from field observation it was found that water is polluted outside the CETP. The main reason was that there are lots of industries other than EPZ which discharges waste water to the natural surface water without properly maintaining the DoE standard. Government or relevant authorities have not proper control over them.

From the result of the EIA, it is seen that total value of physico-chemical parameters, ecological parameters and human interest parameters are -14.25, -17.25 and +36.75 respectively. As a result, total EIV value becomes +5.25. It was also obvious from the EIA that the most negative impact was in the fisheries and surface water quality in terms of both availability and quality. Terrestrial habitat and Agricultural lands are also in great threat. But positive value comes in the human interest parameters and thus in the total EIV mostly due to employment generation and commercial progress, socio-economic development and improvement in the sectors of transportation and education.

Based on the major findings of the EIA some recommendations are proposed to mitigate the adverse impact of the DEPZ industries on environment. Among them, control of the industries outside the DEPZ by the concerned authority to ensure reduce the impact on surface water and fisheries is of prime importance. Tree Plantation scheme should be initiated as early as possible. Good working environment should also be introduced for preventing accident and ensuring public safety. Effective environmental management plan should be implemented to coordinate these measures.

Chapter 1 Introduction

1.1 General

Bangladesh is a developing country. Keeping pace with the growing economic conditions of the nations of the world every country is becoming industrialized now-a-days. Bangladesh is not except of that. Over the last three decades, economy of Bangladesh has been changed gradually. Agricultural sectors contribution has steadily declining, and manufacturing sector has been rising. There are many individual industries are now flourishing. But BEPZA (Bangladesh export Processing Zones) are collaborating a numbers of industries to increase entrepreneurship and also to develop the industrialization sector of Bangladesh. Garments sector has become the prior sector for export earning and employment generation. It should be noted here that most of the industries of DEPZ are either dyeing or washing or textile or garments oriented industries. More female workers are in garment industry rather than other type of industries. A study has been published by Jayanthakumaran, (2002) which says that cost benefit analysis suggested that EPZ had a positive economic impact for citizen of host country. However later Amirahmadi et al., (1995) argued that there are listed researches done to explore why EPZ has become more attractive policy for a developing country. Findings suggested that the impact of EPZ is largely on economic and mostly in employment generation (Eusuf et al, 2007; Aggarwal, 2005). So, DEPZ is playing a pioneer role for attracting foreign direct investment in Bangladesh.

But due to these increasing numbers of industries Environment is becoming an increasing threat for human lives and other animals. Scenario of this deterioration in developing countries is becoming adverse day by day. In this situation this thesis is attempted to focus on this demandable issue of adverse environmental impact of industries on environment and some mitigation measures to develop this worse condition.

1.2 Objective

To study about the wastewater management of the DEPZ area several objectives are to be accomplished. They are-

- 1. Categorization of the industries of DEPZ according to DoE
- 2. Study the industries of DEPZ with respect to industrial process

- 3. Assessment and performance analysis of Central Effluent Treatment Plant (CETP)
- 4. Make an environmental impact assessment of DEPZ area
- 5. Identify problems and suggest some environmental management initiatives

1.3 Study Area

The research work is to be carried out in the DEPZ area which is situated in Ganakbari, Baipayl, Ashulia, Dhaka. `Banshi' river is the main natural stream around this area.

1.4 Scope of the Study

Categorization of the DEPZ industries according to both DoE and BEPZA was done before initiating the study. This study involves the assessment of the industrial process of the industries of DEPZ. It also includes the assessment of the inlet and outlet water quality parameters of CETP. To assess the surrounding area of DEPZ an environmental impact assessment was performed according to Environmental Evaluation System for which survey among the surrounding DEPZ was required. All types of parameters i.e. physic-chemical, ecological and human interest parameters were considered for conducting the EIA. Based on the results of the EIA some major impacts on the environment were identified for which mitigation measures were also proposed.

1.5 Limitations of this Study

To study of waste water around the DEPZ area it is necessary to assess or study about all the industries and polluters surrounding the DEPZ. Because industries of DEPZ are not solely responsible for protecting the surrounding environment. But this study is limited to the DEPZ industries, their waste water management process and the effects on environment.

Environment is also vulnerable due to solid waste generated from the industries of DEPZ. But detail assessment of solid waste is beyond this study. This thesis is limited to waste water. However, collection and disposal of solid waste and rubbish is considered in the EIA analysis.

Chapter 2 Literature Review

2.1 General

This chapter focuses on the previous related environmental management studies on wastewater in Bangladesh. Different types of environmental assessment have been previously performed in Bangladesh. Most of them are based on specific type of industries. Such as- Environmental assessment of textile dyeing industries in Gazipur and Narayanganj area has been studied (*Islam M. M. et al*). Studies have been focused on Tanneries (*Azom M.R. et al, 2012*), Ship breaking and recycling industries (*Hossain S. M. et al, 2011*), Pharmaceutical industries (*Wahi R. R. et al, 2012*) to achieve the environmental sustainability in Bangladesh. These studies are limited to the specific type of industries and their related impacts on environment. Regarding EPZ, where a variety of industries are running, there was no previous study on environmental management. Moreover, Assessment of EIA can be performed in variety of ways. This work has followed environmental evaluation system for the assessment of the environmental impact.

2.2 Overview of EPZ in Bangladesh

In order to stimulate rapid economic growth of the country, particularly through industrialization, the government of Bangladesh has adopted an 'Open Door Policy' to attract foreign investment to Bangladesh. BEPZA is the official organ of the government to promote, attract and facilitate foreign investment in the Export Processing Zones. The primary objective of an EPZ is to provide special areas where potential investors would find a congenial investment climate, free from cumbersome procedures.

BEPZA has a head office situated in capital city Dhaka. The whole organization is divided into several zones. BEPZA has EPZs in eight different regions of Bangladesh. They are at Dhaka, Chittagong,Mongla, Ishwardi, Comilla, Uttara, Adamjee and Karnaphuli. Among them, Dhaka and Chittagong EPZ are currently running. BEPZA is establishing two new zones namely Meghna EPZ and Feni EPZ.

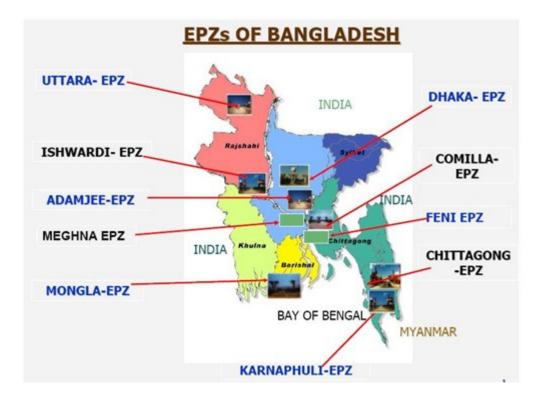
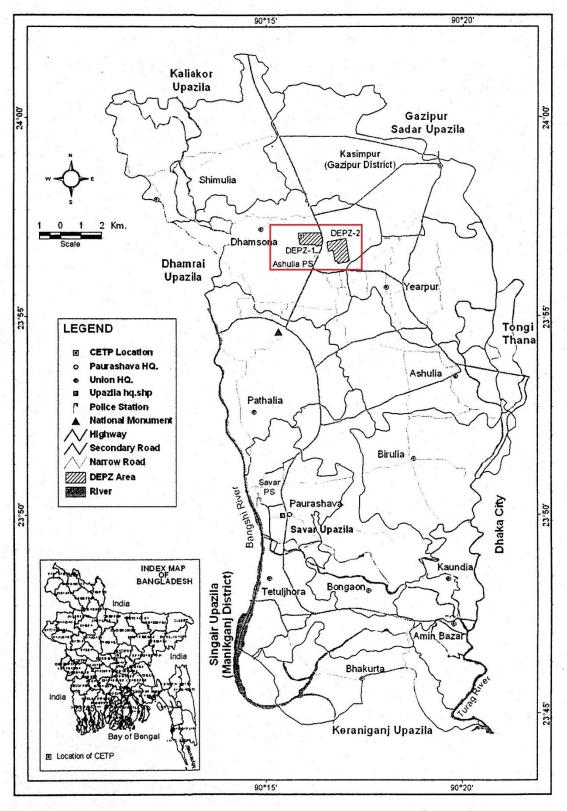


Figure 2.1: Location of EPZs in Bangladesh

2.3 Rationale of choosing Dhaka EPZ area

Dhaka EPZ is located in Savar, 35 kms from Dhaka city center, 25 kms from Hazrat Shahjalal (R) Airport and 304 kms from Chittagong Sea Port. The zone is situated on an area of 143.84 hectares (346.51 acres) with 388 industrial plots. Industries of DEPZ are located in two zones. Some industries are located in the old zones and are known as old zone industries and the others are known as new zone industries.

EPZ contribution in investment is tremendous and it has 4.82% share of total investment as registered in Board of Investment (BOI). In the fiscal year 2007-2008 the volume of investment was 154.34 million US\$ (Islam M. Z. et al, 2011). Investors are from 35 different countries (*Barua, 2008*) along with Japan, Korea, Hong Kong, Thailand, Taiwan, China, USA, UK, Ireland, Germany, Malaysia, Indonesia, France, Singapore, Italy, Sweden, Switzerland, UEA, India, Nepal and Pakistan have invested in DEPZ. The cumulative investment in EPZs up to January, 2008 is US\$ 1286.60 million (*Barua, 2008*).Among


the foreign investors South Korea is in the top of the list, followed by China, Japan, India, USA, UK, Taiwan, Malaysia respectively.

By looking at the country export performance, during the fiscal year 2006-2007 goods worth of US\$ 13,903.47 million were exported from Export Processing Zones. EPZs in Bangladesh are gradually upward moving towards the share of national export. The contribution of EPZs to national exports increased from 2.69 in FY 1990-91 to 8.68 in FY 1995-96. During the fiscal year 2005-2006 the export percent (%) from EPZ was 17.43% out of total export (100%) from Bangladesh (*Islam M. Z. et al, 2011*). On the other hand, RMG & Knit export from EPZ share was 20.40%. Bangladesh has been ranked as the sixth largest exporting country in the US and fifth largest in the EU (*www.cpd.org*) in 2007.

EPZs performance is not only in export, it has a great achievement in employment generation. After establishing the EPZ in 1983, employment was 624 at the beginning, increased to 29448 in 2007 as a cumulative figure. Up to January, 2008 among the zones the total employment is 2,07,275 whereas the civilian labor force in active is 9,37,024 (*Islam M. Z. et al, 2011*). Hence, EPZ share of employment is more than about 22% (*BBS, 2006*). It has been noticed that 1,32,644 (64%) of total employments in EPZs are female (*Bangladesh Economic Review, 2008*). According to Madani (1999), in Bangladesh's Chittagong EPZ, the proportion of female workers categorized as "production worker" is much higher than the male proportion (98.4% to 79%).

Share of DEPZ in the whole EPZ is remarkable. Economic growth participation of DEPZ is gradually rapidly increasing without interrupting during FY 1995-96 to 2007-08. DEPZ percentage of total export within EPZs was almost 50% since FY 2003-04 to 2007-08. In terms of investment DEPZ receives 72% investment among all of the EPZs (*Islam M. Z. et al, 2011*).

Therefore, DEPZ has contributed much in the Bangladesh economy with respect to employment generation opportunities, exporting goods and services and investment volume as well for the economic growth of the country. Due to this flourishing sector and increasing number of industries in the DEPZ area surrounding environment is becoming vulnerable day by day because of increasing pollution of the industries with lack of environmental management initiatives and proper control of the administration. That's why a huge effort is necessary to analyze the industries based on their industrial procedures and chemicals used and disposed by them on environment as well as their step towards the management of this waste. Environmental Impact Assessment (EIA) is also required to conduct to evaluate and analyze the present scenario.

Fig

ure 2.2: Location map of DEPZ

Chapter 3 Methodology

3.1 General

This chapter briefly describes the procedures that are adopted during this research work. Tasks can be broadly classified in two divisions. They are assessment of the DEPZ industries and Environmental Impact Assessment of the DEPZ area.

3.2 Assessment of the DEPZ industries

(i) DEPZ has a lot of industries. So, classification of them according to DoE and according to EPZ was done to facilitate the assessment of the industries.

(ii) A red-wet bleaching and dyeing and an orange-wet washing industry was taken as representatives of the industries. Industrial production processes of the industries were assessed.

(iii) Savar Dyeing and Finishing Industry was visited by the researchers as a representative industry of DEPZ.

(iv) Data regarding consumption of water by the industries and generation of waste water were collected from DEPZ.

(v) Central Effluent Treatment Plant was visited several times by the authors. Comparison of Inlet and outlet water with respect to DoE standard was also done in this study.

3.3 Environmental Impact Assessment

(i) EIA has a lot of methods to perform. Among those, EES was preferred.

(ii) To conduct the EIA according to EES, firstly parameters were identified and then relative importance value was evaluated. After that degree of impact value was measured. Finally, relative impact was determined and EIV was calculated.

(iii) Based on the results of the EIA, some major impacts (both positive and negative) were identified.

(iv) Recommendations were proposed to mitigate the negative impacts and enhance the positive impacts.

Chapter 4

Assessment of the DEPZ Industries

4.1 General

This chapter includes the classification of the industries of DEPZ. Assessment of the industrial production process of the representative industries is shown in this chapter. Consumption of water and generation of waste water is explained in this section. Performance analysis of CETP is also within the scope of this chapter.

4.2 Classification of the Industries

100 industries of DEPZ are currently operating. BEPZA has classified them in two broad categories according to the industrial process especially depending on the water demand of the industries. They are-

- (i) Wet Industry
- (ii) Dry Industry

Wet industries involve dyeing and washing operations. Dry industries are mainly garment industries in the DEPZ. Wet industry mainly discharges dye, chemicals etc whereas Dry industry mainly discharges domestic waste such as sewage waste or kitchen waste. It is noteworthy that most of the industries in DEPZ are textile related industries. It has been found that about 32 industries in DEPZ are under the category of wet industry and 68 industries are under the dry category.

According to Environmental Conservation Rule, 1997 there are 37 Red industries followed by 38 Orange B, 12 Orange A and 13 Green industries. All wet industries and 6 dry industries fall under red category. Other dry industries fall in the rest of the categories. List and classification of the industries are shown in Appendix A.

Categorizations of the industries are given below for easy illustration:

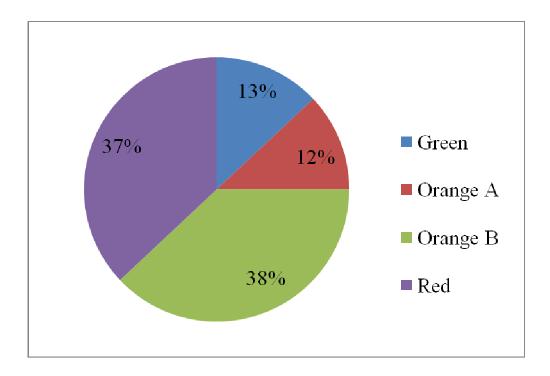


Figure 4.1: Categorization of the DEPZ industries according to DoE

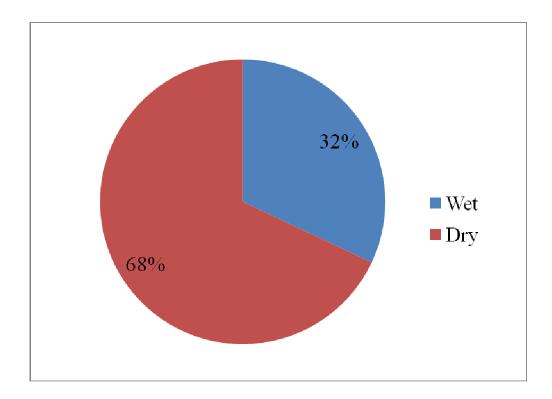


Figure 4.2: Categorization of the DEPZ industries according to EPZ

4.3 Assessment of the Production Process of the Industries

Among the various types of industries a red-wet and an orange B-wet industry are considered as representatives for assessing the industrial production process of the DEPZ industries. For red-wet industry South China Bleaching and Dyeing Factory Limited and for an orange-wet industry FCI (BD) Limited was chosen.

4.3.1 South China Bleaching and Dyeing Factory Limited

South China is the largest exporter of woven fabric in Bangladesh. It manufactures garments from the fabrics produced by it and exports to the USA, Canada and all EU countries. Its production process involves bleaching, dyeing and washing and falls under the Red-Wet industry. Production capacity of the industry is about 3 million yds in a month.

South China Bleaching and Dyeing Factory Limited is a part of a Composite Textile Plant. This company is associated with the Goldtex Knitting and Goldtex. Process flow diagram for Composite Textile Plant is shown in Figure 4.3. Water is mainly required for the bleaching and dyeing operation of South China Bleaching and Dyeing Factory Limited. Waste water is also produced in these industrial processes.

It should be noted here that many of the industries of EPZ have their individual Effluent Treatment Plant because of the rules and regulation of EPZ. But lack of supervision and control by the authority encourage the industries to discharge effluent without proper treatment and thus save money. That is why, conception of CETP was innovated to control and maintain the discharge standard properly.

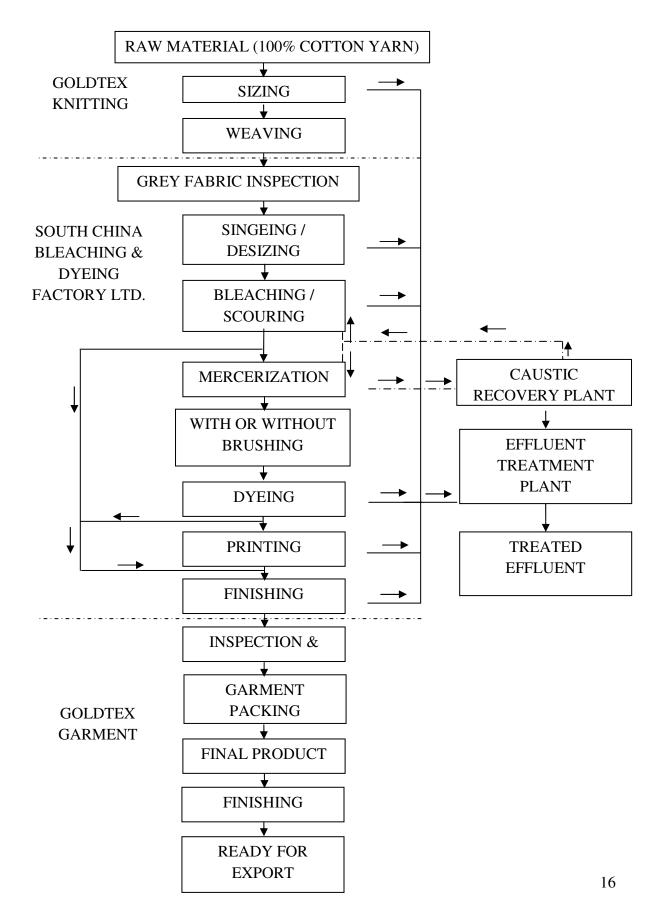
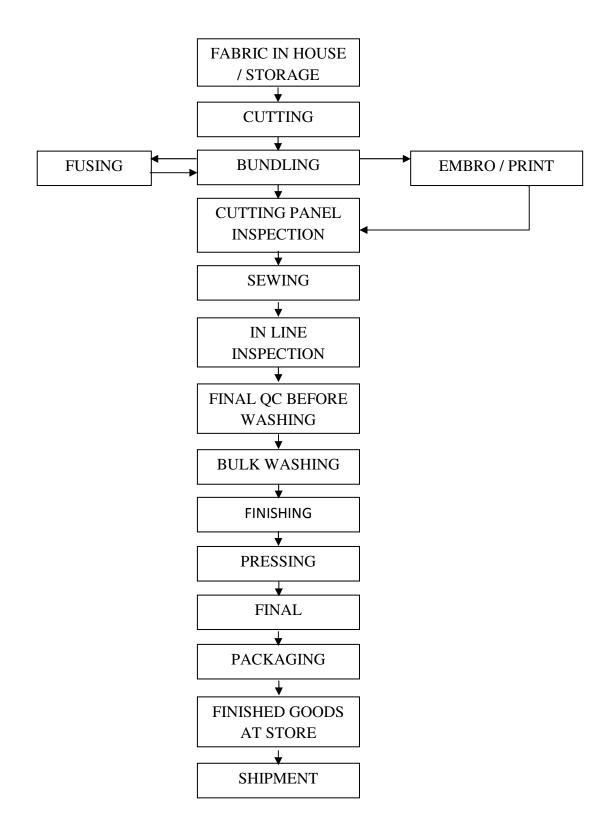



Figure 4.3: Process Flow Diagram for Composite Textile Plant

4.3.2 FCI (BD) Limited

It is a 100% foreign invested company. It is a British owned company. It is mainly washing industry. In terms of categorization they fall under orange B-wet industry. It conducts mainly garment oriented business. Its main products are Blazer or Jackets, Trouser, Skirt and Blouse. Production capacity per month is 40,000 pcs, 130,000 pcs, 60,000 pcs and 2,00,000 pcs respectively. Usual production flow chart of FCI (BD) Limited is shown in Figure 4.4.

It is observed from the flow chart that this industry is not associated with the bleaching or dying operation. So, as it was discussed in the previous section water is mostly used for washing operation in this industry. It can be stated here that industries includes only washing operation i.e. absence of bleaching and dyeing operation produces less polluted effluent than the industries associated with dyeing operation.

Figure 4.4: Production Flow Chart of FCI (BD) Ltd.

4.4 Consumption of Water and Generation of Waste Water

Water is provided to the industries of DEPZ mainly from ground water. Water consumed by the industries of DEPZ has been recorded in daily basis in DEPZ Bill June, 2010. They divided the water consumption pattern in three groups. Water consumption summary of that report is presented below:

Serial Number	Item Name	Water consumption m ³ /day
1	All New Zone Enterprise	33374
2	All Old Zone Enterprise	16444
3	Service Organization	645
Total		50463

Table 4.1: Consumption of water in DEPZ

According to EPZ, generation of waste water can be considered as 15% less of the consumption of water. This is because of surface runoff, evaporation and seepage.

4.5 Assessment and Performance Analysis of CETP

The textile industry is one of the complex processes which generally has difficulty in meeting waste water discharge limits, particularly with regard to dissolved solids, ionic salts, pH, COD, color and sometimes heavy metals (*Steffen, Robertson and Kristen, 1993; Lin and Peng, 1966; Vlyssides et al, 1999*)

Water has some basic properties. It has been seen that if the acid, oxygen and solid present in the water is maintained then it is suitable to discharge into the inland surface water. According to DoE, standard for pH, TSS, TDS, COD, DO are tabulated below:

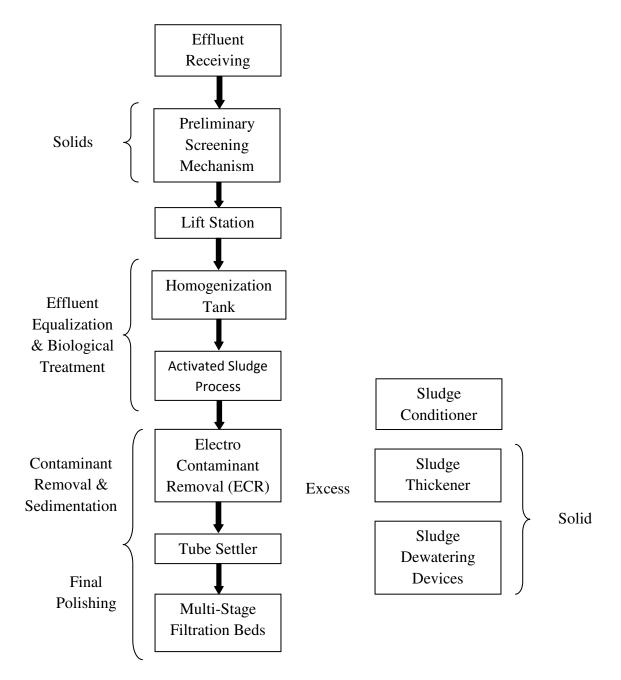

рН	TSS (mg/l)	TDS (mg/l)	COD (mg/l)	DO (mg/l)
6 - 9	≤ 150	≤2100	≤ 200	4.5 -8

Table 4.2: Discharge water Standard for inland surface water according to ECR, 1997

CETP is situated in a plot area of 19,613 m². Treatment capacity of the CETP is 43,000 m³ water/day. But at present they are treating 14,000 m³ water/day. Because at present, only old zone industries are associated with the CETP. Process flow diagram maintained by the Dwater C.E.T.P Ecosystems (Bd) Ltd. (Deco Ltd.) to maintain the standard are shown in Figure 4.5. The process flow diagram shows three major sections which are as follows:

- (i) Conditioning treatment includes screening and pH control when needed.
- (ii) Primary treatment includes activated sludge processing (ASP) and ASP clarifier and Active Recirculation. ASP requirements are pH control, fine screening, temperature, sufficient aeration, recirculation etc.
- (iii)Secondary treatment includes ECR treatment having no chemicals and ECR clarifier and course polish. Each ECR unit is designed for CETP processing rates from 180 to 250 m³/hr. Greater surface reaction area with vertical flow including easy blade replacement and cleaning.

CETP PROCESS FLOW DIAGRAM

Sectional Detail Layout of CETP is also shown below:

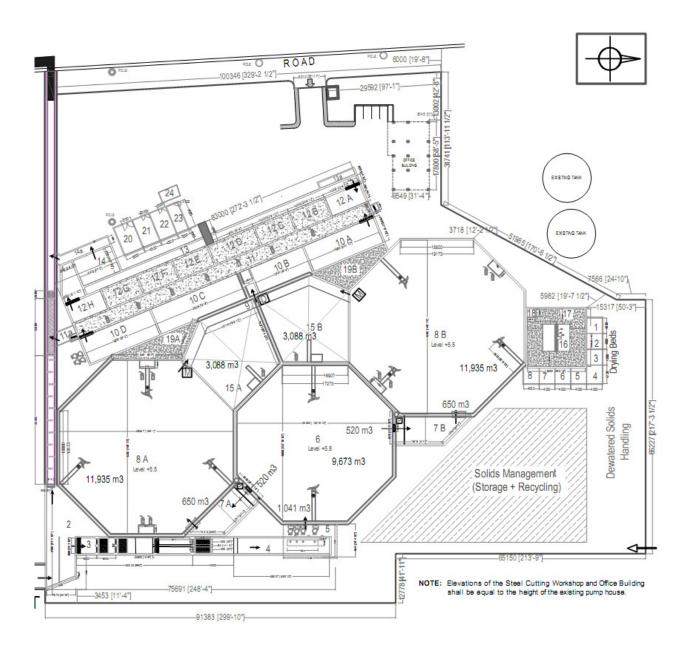


Fig 4.6: Sectional Detail layout or plan view of CETP

Sl. No.	Description
1	Collection Pit Of Drain
2	Receiving Station
3	Bar Screening Section 3'' & 1'' Spacing Bars
4	Drum / Inclined Screening Sections 2#
5	Lift Station / Pump House
6	Homogenization Tank
7 A-B	Neutralization Tank (Nos. 2)
8 A-B	ASP Oxidation Tank (Nos. 2)
9	Aqueduct / Asp Clarifier Feeding Section
10 A-	ASP Clarifier (1)
D	
11	ECR Feeding Trough & Spent Acid Trough
11 a	Commissioning Emergency By Pass
12 A-	Common Tube Settler
Н	
13	ECR Colloidal Trough
14	Coarse Media Filtration
15 A-	Asp Biomass Holding / Condition Tank
В	
16	Sludge Thickener
17	Dewatering Equipment Platform
18	Poly Mixing Tank
19 A-	Blower Rooms Above Oxidation Tank
В	
20	Steel Workshop
21	Transformer Sub Station
22	Primary Treatment Generator

23	Future Expansion
----	------------------

They have started their functioning regularly from February, 2012. Since then, it is maintaining those five parameters before discharging into the inland surface water. They determine the quality of those parameters in both inlet and outlet of CETP. Values of these parameters till August 26 are given in Appendix B. These values are used to make graphs for easy illustration of comparison of inlet waste water with treated effluent and their maintenance of the discharge standard of DoE. The graphs are illustrated below:

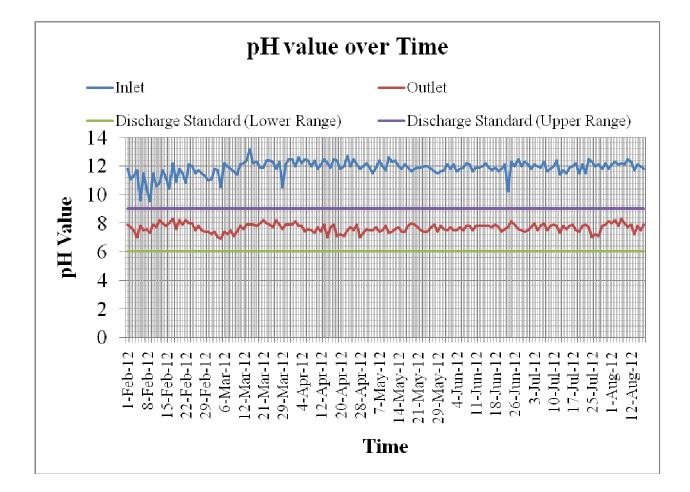


Figure 4.7: pH value vs Time

Maximum and minimum value of pH in inlet during February to August was 13.2 and 9.5 respectively (Appendix B). Average value in inlet and outlet are 11.9 and 7.7 respectively.

Minimum value of outlet in CETP is 6.9 which is more than 6. Maximum value of pH in outlet is 8.3 which is below 9. So DoE standard for inland surface water in terms of pH is maintained by CETP.

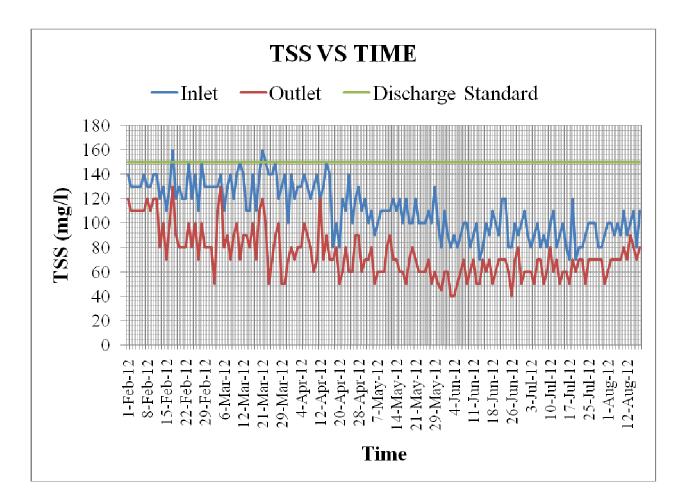


Figure 4.8: TSS vs Time

Maximum value of TSS in inlet during February to August is160 mg/l which is more than 150 mg/l (Appendix B). Average value in inlet and outlet are 111.5 mg/l and 74.3 mg/l respectively. Maximum value of TSS in outlet is 130 mg/l which is less than 150 mg/l. So, DoE standard for inland surface water in terms of TSS is maintained by CETP.

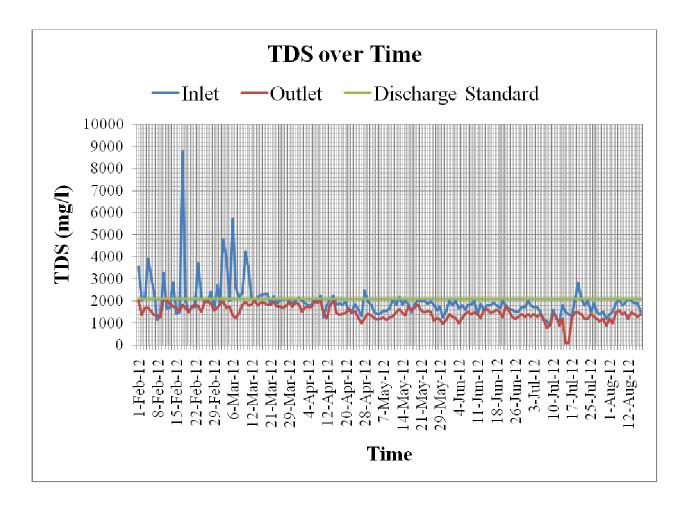


Figure 4.9: TDS vs Time

Maximum value of TDS in inlet during February to August is 8790 mg/l which is more than 2100 mg/l (Appendix B). Average value in inlet and outlet are 1990 mg/l and 1493.9 mg/l respectively. Maximum value of TDS in outlet is 2080 mg/l which is less than 2100 mg/l. So, DoE standard for inland surface water in terms of TSS is maintained by CETP.

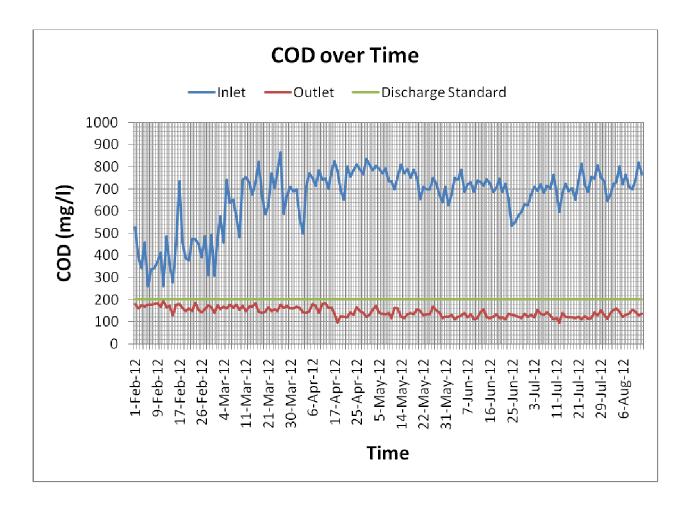


Figure 4.10: COD vs Time

Maximum value of COD in inlet during February to August is 866 mg/l which is more than 200 mg/l (Appendix B). Average value in inlet and outlet are 662.2 mg/l and 145.4 mg/l respectively. Maximum value of TDS in outlet is 195 mg/l which is less than 200 mg/l. So, DoE standard for inland surface water in terms of TSS is maintained by CETP.

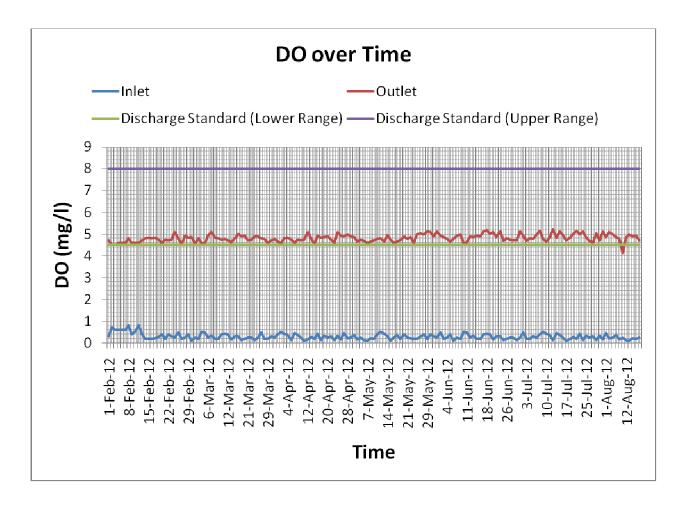


Figure 4.11: DO vs Time

Minimum and Maximum value of DO in inlet during February to August was 0.1 mg/l and 0.8 mg/l respectively (Appendix B). Average value in inlet and outlet are 0.29 mg/l and 4.81 mg/l respectively. Minimum value of outlet in CETP is 5.21 mg/l which is in between 4.5 mg/l and 8 mg/l. Maximum value of DO in outlet is 4.12 mg/l which is below 4.5. Second minimum value of DO is 4.5 mg/l which occurs two times during this period. Moreover, there are so many days where DO is close to 4.5. So it can be roughly said that DoE standard for inland surface water in terms of DO is maintained by CETP.

From the above figures, it is seen that CETP is maintaining the DoE standard for every five basic parameters before discharging into the inland surface water.

Generation of sludge is also measured regularly by CETP. Capacity of each sludge drying bed is 25 ton of sludge. Data of sludge production and management is shown in Appendix C. It has been observed that it took two months i.e. February and March for filling up the Sludge Drying Bed-1. On August 26, sixth drying bed was operating. After certain days they remove the sludge and clean the sludge drying bed for further operation.

Opening stock of sludge was 155670 kg up to 26th August. Average daily sludge production was 748.41 kg.

Photo 4.12: Sludge Drying Beds in CETP

Chapter 5

Environmental Impact Assessment

5.1 General

In this chapter Environmental Impact Assessment was covered in detail. A brief description about environmental parameters and how to choose the required method among the EIA methodologies available are parts of this chapter. Later on this chapter gives a theoretical description of EES that is adopted for conducting the Environmental Impact Assessment in the DEPZ area. The steps of the EES method that was followed during the EIA was also discussed shortly. Finally, values of different parameters and EIV calculation are shown in a table.

5.2 Environmental Issues Related to DEPZ area

5.2.1 Environmental Parameters

In Bangladesh a considerable number of parameters or components of the environment may be grouped under three mutually interacting major components-ecological, physico-chemical and human interest. The ecological components include fisheries, eutrophication, weeds, forest, wildlife, species diversity and endangered species under aquatic and terrestrial subgroups. The physico-chemical effects are diverse and extended over a large number of parameters under land, surface water, ground water and atmosphere. Human interests include various parameters under health situation, socio-economic and aesthetic conditions. A change in the system exerts certain influence on many parameters resulting in a net positive or negative impact on the environment. The understanding of the development actions and their interactions with the components of the environment is needed to conduct environmental assessment of infrastructural development projects and to plan mitigating measures to prevent or minimize environmental degradation.

5.2.2 Evaluation of Impact

The magnitude of impacts either positive or negative has to be quantified to conduct EIA. The most common measurements of some parameters are length, number and area affected or benefited. The evaluation of some of the parameters related to quality of life is very difficult and requires specialized training and long experience. The scope of this guideline will be to make a quantitative and qualitative evaluation of various related environmental parameters based on available information, experience from similar project, knowledge of the related previous literatures, field observation, simple survey and measurement and correlate them to the magnitude of the impacts.

5.3 Environmental Impact Assessment (EIA)

5.3.1 Introduction

Environmental Impact Assessment (EIA) is the assessment of the beneficial and adverse changes in environmental resources or values resulting from a proposed project. It is a planning and management tool for sustainable development that seeks to identify the type, magnitude and probability of environmental and social changes likely to occur as direct or indirect result of a project or policy and to design the possible mitigation procedure (Vanclay and Bronstein, 1995; Harvey, 1998; Momtaz et al., 1998; Thomas, 1998). The EIA process essentially comprises of three sequential elements. They are-

(1) Identification of all possible positive and negative impacts on the natural and human environment resulting from a proposed project.

(2) Evaluation or assessment which includes quantification of the identified impacts with respect to a common base and with respect to impacts from other project actions.

(3) Preparation of a mitigation plan which upon implementation, will reduce or offset the potentially significant negative impacts of a project to acceptable levels. This reduction may result from implementation of a project alternative or project modifications or environmental protection measures. The plan simply reduces the number or magnitude of adverse impacts.

The EIA process may also include a monitoring plan to observe performance of the mitigation plan adopted for protection of the environment from degradation and to review the environmental changes during implementation and operation of the project closely. But these are beyond the scope of this thesis paper.

5.3.2 Steps of EIA

When it is identified that EIA is required by Screening or Initial Environmental Examination (IEE) the immediate step is the Scoping. After that Impact Analysis is done according to the available tools or methodology for the analysis. Several methodologies have been developed for assessing the impacts of development activities on the environment. These are as follows: Ad-hoc, Checklists, Environmental evaluation System (EES), Matrices, Networks, Cost/benefit analysis, overlays and Geographical Information Systems (GIS), simulation modeling workshop. Based on the impact analysis, mitigation and impact management is proposed according to engineering judgment. In this way, EIA report is prepared.

This thesis is limited to impact analysis and mitigation and impact management with proper involvement of the surrounding public.

5.3.3 EIA Methodologies

There are about 100 methods for carrying out ElA but most of these can be divided into only a few classes. The eight important techniques and methodologies considered suitable for assessing environmental impact of development activities in the developing countries are:

- (1) Checklists
- (2) Matrices
- (3) Overlays
- (4) Networks
- (5) Environmental Indices
- (6) Cost-Benefit Analysis
- (7) Simulation Modeling Workshops
- (8) Environmental Evaluation System

All the methods are neither suitable for every type of project nor adaptable in all developing countries without modification. It is important to understand the strength and weakness of the techniques and methodologies to determine the suitable methods for different types of projects in the context of technical and economical situation prevailing in a country. An evaluation of various ElA methodologies based on 16 criteria presented in UNESCAP Publication is shown in Table 5.1. Each of the methods compared here are subjective to some degree and no one of them is good for every application.

Criteria	Check	Over	Net	Mat	Environm	Cost	Simulation
	lists	lay	work	rix	ental	Benefit	Modeling
					Index	analysis	Working
01. Comprehensiven	S	N	L	S	S	S	L
ess							
02. Communicability	L	L	S	L	S	L	L
03. Flexibility	L	S	L	L	S	S	L
04. Objevtivity	Ν	S	S	L	L	L	S
05. Aggregation	Ν	S	N	Ν	S	S	Ν
06. Replicability	S	L	S	S	S	S	S
07. Multi-functions	Ν	S	S	S	S	S	L
08. Uncertainity	Ν	N	N	Ν	Ν	Ν	S
09. Space-dimension	Ν	L	N	Ν	S	Ν	S
10. Time-dimension	S	N	N	Ν	S	S	L
11. Data	L	N	S	S	S	L	Ν
Requirement							
12. Summary Format	L	S	S	L	S	L	L
13. Alternative	S	L	L	L	L	L	L
Comparison							
14. Time	L	N	S	S	S	S	Ν
Requirement							
15. Manpower	L	S	S	S	S	S	Ν
Requirement							

Table 5.1: Summary of Evaluation of EIA Methodologies

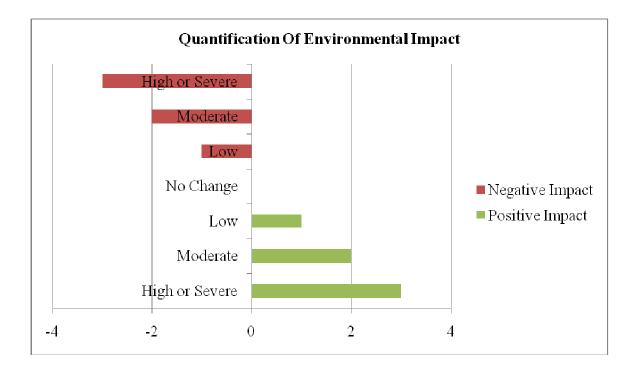
16.	Economy	L	L	L	L	L	L	Ν

L = Completely Fulfilled, or Low Resources Need

- S = Partially Fulfilled, or Moderate Resource Need
- N = Negligibly Fulfilled, or High Resource Need

Source: Environmental Impact Assessment: Guidelines for Planners and Decision Makers, UN Publication ST/ESCAP/351, ESCAP, 1985.

5.3.4 The Method of Assessment


Considering the situation prevailing in the country, a simple methodology has been developed for Environmental Impact Assessment of infrastructure projects. The methodology is based on Environmental Evaluation System (EES) developed by Battelle Columbus Laboratories in the United States. In Bangladesh, in the absence of a data base it is only possible to estimate the potential environmental changes from the existing situation. In this method, the existing environmental conditions will be the reference level and the positive and negative changes in environmental conditions resulting from the proposed project will be evaluated. The environmental impact will be assessed by Environmental Impact Values (EIVs) which may be defined mathematically as follows:

$$EIV = \sum_{i=1}^{n} (Vi).(Wi)$$

where Vi is the relative change in the value of environmental quality of parameter i with respect to existing situation. Wi is the relative importance or weight of parameter i, and n is the total number of environmental parameter related to the project. The computation of Environmental Impact Value (EIV) of a project needs determination of Vi, the value representing the magnitude of alteration of the environmental parameters, and Wi, the value representing relative weight or importance of the respective parameters.

5.3.4.1 Magnitude of Environmental Alterations

The beneficial and adverse changes in environmental parameters resulting from a project, usually expressed in qualitative terms have been plotted in a scale to quantify the environmental alterations. Fig 5.1 shows the correlation between qualitative statement and

proposed quantitative values of environmental changes resulting from a project.

Fig. 5.1: Quantification of Environmental Impact

Since the changes of environmental parameters are measured with respect to existing condition, no change has 0 value. The adverse changes have been given values -1, -2and -3 to represent low, moderate, high or severe negative impacts respectively. Similarly +1, +2 and +3 represent low, moderate and high positive impacts respectively. A value from the scale representing effect of the project on each parameter will be taken to compute the EIV of the project.

5.3.4.2 Relative Importance of Environmental Parameters

All environmental parameters influenced by the project are not of equal importance or weight. The importance of a parameter varies from country to country depending on the environmental concerns of the country. In Bangladesh, flood, employment, agriculture, fisheries, etc. carry more importance than many others. The parameters related to DEPZ area have been given different values based on prevailing environmental concerns in Bangladesh and presented in Table 5.2. The values representing importance or weight of the parameters

can be used to compute the relative impacts of the parameters that are then summed up to obtain the total EIV of the project.

5.3.5 EES Procedure Applied in the DEPZ Area

The activities involved in conducting EIA of a proposed project are diverse and intensive efforts including field surveying are needed to prepare successful EIA report. The procedure for conducting EIA may be described in the following steps:

Step 1: Preparatory Works

A checklist of environmental parameters is prepared by identifying the physico-chemical, ecological and human interest parameters related to this study.

Step 2: Data Collection

Information related to the project was collected from all possible secondary sources and field survey was conducted to collect primary data regarding existing physical, ecological and socio-economic conditions. Potential changes in all relevant environmental parameters were measured with special emphasis on key issues i.e. parameters with higher importance value. Opinion of well-informed local people and the beneficiaries were collected by the field survey. Questionnaires developed to acquire field data have been presented in Appendix D. It can be noted here that field surveys were done in Modhupur, Kaicchabari, Ashulia and Badail which are the areas near DEPZ. List of the participants from different surrounding areas for the interviews was also taken (Appendix E).

The Relative Importance Value of the parameters in relation to the project was determined from DoE, previous literatures and the opinions of the experts.

Step 3: Data Analysis

Qualitative and quantitative field assessments were converted to values indicating magnitude of environmental changes using the scale shown in Fig. 5.1.Quantification was made by calculating the average values taken from the field survey and some minor adjusting based on literature reviews and engineering judgment. For example, impact of the surface water quality parameters obtained from the field survey was calculated to get the average value of - 2.51. It is then rounded to -2.5 based on observation and engineering judgment by the researchers. Again, calculated average value of fisheries, employment opportunity and socioeconomic conditions were -2.97, +2.47 and +2.51 respectively which were rounded to -3, +2.5 and +2.5 respectively as previous. It is notable here that it was also necessary for the easy illustration of the impact on environment of the parameters. Moreover, this is an approximate method. So, this type of minor changes based on researchers' judgment should be acceptable.

Step 4: Impact Evaluation

Values indicating magnitude of environmental changes from Fig.5.1, and corresponding importance or weight of environmental parameters influenced by the project in the appropriate columns were put in Table5.2 and relative positive and negative impact of the parameters were obtained by multiplying them. All these impacts were summed up as illustrated in Table 5.2 to obtain the EIVs of major components or of the total project.

Step 5: Mitigating and Monitoring Plans

More attention were put to parameters producing negative EIVs and mitigating measures were identified and incorporated in the planning and implementation stages of the project to eliminate, reduce and offset negative impacts and thereby enhance net positive EIV i.e. benefit of the project.

No. of	Environmental Parameters	Relative	Degree of	Relative	Impact	EIV
Parameter		ce Value	Impact on environme nt	Positive	Negati ve	
Physico-Cho	emical					-14.25
01	Surface Water Availability	3	-2.5		-7.5	
02	Surface Water Quality- chemical, biological or physical	3	-2.5		-7.5	
03	Ground Water Table/Availability	3	1.25	3.75		
04	Ground Water Quality	3	2	6		
05	Climate Changes	1	-1.75		-1.75	
06	Air Quality-Burning of waste, dust emission, smoke, sight, poor visibility, gas, vapor, unpleasant odor/smell	2	-1.75		-3.5	
07	Air Flow-Wind Patterns	1	-1.5		-1.5	
08	BufferZones-usuallyVegetated-ForestVegetativeCovers-Windbreaks,ErosionControl,WildlifeSound Insulation	1	-1.5		-1.5	
09	Land Quality Pollution, Geology/Land Capability e.g. Agricultural Capability/Erosion	2	.5	1		

Table 5.2: Determination of Environmental Impact Value (EIV)	

10	Noise-intensity, duration	1	-1.75		-1.75	
	&frequency-during					
<mark>Ecologi</mark>	cal/Biological					-17.25
11	Terrestrial Wildlife-Domestic	1	-2.75		-2.75	
	&Farm Animals, mammals,					
	birds					
12	Aquatic Biology especially	3	-3		-9	
	Fisheries					
13	Terrestrial habitats & Aquatic	2	-2.75		-5.5	
	or marine habitat, Wetlands,					
	birds nesting areas, grazing					
	areas					
Human	interest	I		1		36.75
14	Industrial Physical Safety &	2	1	2		
	Health, Psychological well-					
	being					
15	Public Health-Diseases such as	2	1	2		
	parasitic disease-malaria,					
	communicable disease-					
	typhoid, cholera					
16	Agriculture-Agricultural	3	-2.25		-6.75	
	Crops-Agricultural Land					
17	Employment opportunities-	3	2.5	7.5		
	new jobs or transfer, number					
	as well as diversity, skills to					
	fill the jobs					
18	Housing-availability &	1	1	1		
	suitability (local people &					
	immigrant work force)					
19	Education	3	2.25	6.75		

20	Utilities: water supply,	3	25		75	
	electricity(Power) & gas					
	supply					
21	Public transport services	3	1.5	4.5		
22	Highways/Railways	3	2.25	6.75		
23	Medical services & facilities	2	75		-1.5	
24	Law Enforcement services	2	1.5	3		
25	Solid Waste Disposal, Sewage	2	-1		-2	
	Disposal, Rubbish collection &					
	disposal					
26	Social Change, economic	3	2.5	7.5		
	development, Commercial					
	services					
27	Navigation, Flood Control	1	.25	.25		
28	Amenities: Recreation,	1	-1.5		-1.25	
	Religious					
29	Aesthetic/Historic Structures	1	.25	.25		
30	Tranquility	3	2.5	7.5		
Total Env	vironmental Impact Value (EIV)	1	1	1	1	5.25

5.4 Major Findings of EIA

As from the results of the Table 4.1, it is seen that relative impact value of physico-chemical parameters and ecological parameters are negative. But human interest parameters are positive. So apparently it can be said that though the environment is degrading, socio-economic condition of the surrounding people is improving.

Surface water availability or the quality is so deteriorated that people can not drink or even bath in those water courses. River 'bonshi' is the main natural stream around DEPZ area which is directly affected for the industries of DEPZ. It is also observed from the site visit in that area. People rely on groundwater source which is good in terms of quality.

Condition of fisheries is worst. Fish habitat is totally collapsed due to continuous pollution from the industries. People import fish from the nearby regions to meet their protein need.

Terrestrial habitats, birds nesting areas and grazing areas are destroyed to establish new industries. As a result, problems of deforestation such as- deterioration of air quality, high speed air flow, less strong buffer zone and in the long run climate change occurs.

Agricultural land or production of agricultural crops is also heavily affected in the DEPZ area for the same reason.

Total EIV value has come positive due to mostly the human interest parameters. Because of DEPZ lots of employment opportunities have been created. Female employment also consist the lion portion of this employment. This result shows similarity with the previous literatures which is shown in the literature review section of this study statistically. As a result, social and economic or commercial condition of the locality has been improved. Also development with respect to highways and education are notable. So, when people get these facilities in their day to day life naturally they feel peace in their mind. They hardly think about the degradation of the environment.

5.5 Mitigation Measures for Sustainable Development

To lessen the previous adverse impact on environment following mitigation measures can be adopted:

- (i) CETP is treating the effluent of the old zone industries. It should connect the new zone industries as early as possible by overcoming the administrative and political complexity. It is noteworthy that most of the new zone industries have effluent treatment plant.
- (ii) Physico-chemical and Ecological parameters of DEPZ area are also degrading due to the outside industries i.e. industries out of DEPZ. Strict administrative control is badly needed for proper maintenance and control of the discharge of those industries in the natural stream.
- (iii)Tree plantation initiative has to be taken by the GoB.
- (iv)Every ETP should be ensured to run all the time by the concerned authority.
- (v) DoE should monitor at least 6 months after in every year to check the condition of ETP, effluent samples report and the certificate of chemical composition issued by third party to ensure that, they are using within permissible limits.

(vi)New industries can be licensed if they fulfill every condition of DoE.

- (vii) Agricultural land should not be given for further new establishment of industries.
- (viii) Disposal of solid waste should be more organized.
- (ix)Efficient equipment that is less responsible for polluting water should be introduced.
- (x) Effective Environmental Management Plan should be introduced and implemented.
- (xi)The working environment needs to be kept as dry as possible to prevent accidents. Hazardous waste must be disposed of properly in accordance with manufacturers' guidelines and national policies.
- (xii) To avoid any severe accident there should always be at least one member of staff on each shift that is trained in "First Aid" and who is made responsible for all first aid requirements during their shift. At least one first aid box should be made available in an area that is accessible to all the workers.
- (xiii) Every Textile dyeing industry should apply for air emission test to predict climate change.

- (xiv) To ensure the public safety the regular checkup of the laborers should be done. Moreover safety precautions like helmet, eye protective glass, hand gloves, ear plug, and air mask should be taken by laborers to avoid any incident.
- (xv) Skin test, blood test should be done for the workers on regular basis.
- (xvi) Emergency Evacuation due to fire is very important for dyeing industries as there are many chemicals which may be flammable and explosive used in dying process.

Chapter 6 Summary and Conclusions

6.1 Summary of the Study

EPZ has a significant financial role in the economy of Bangladesh. It consumes lots of water for the production process and also discharges a huge amount of waste water after its operation. CETP is trying to maintain the discharge standard for inland surface water. But it is only limited to the treatment of the effluent of the old EPZ industries. Although it has a large capacity to treat the effluent new zone industries are not yet connected to CETP due to some administrative complexity. After conducting EIA it has been come out that in spite of lots of positive sides of EPZ it has a number of negative impacts on environment. Although employment opportunity, socio-economic condition, highway and education are the beneficial sectors of the project there are many adverse impacts too. Negative sectors are mainly surface water, fisheries, terrestrial habitat and agricultural crops.

6.2 Conclusions

Although EIV is positive now increasing number of industries poses great threat to make it negative in coming days. To minimize the adverse impacts and enhance the positive impacts surrounding people as well as concerned authority bear a significant role and have to be cautious enough and determined to reduce the impact to make a sound and sustainable environment for the future generation. GoB has the most important role to turn it into reality. This study will help to identify some possible mitigation measures to reduce the impact on the environment of the DEPZ area. Hopefully, Bangladesh government will take necessary management initiatives in near future.

6.3 Future Scope of this Study

Only 150 surveys from the surrounding people of DEPZ may not be sufficient to come to a decision about the environmental impact of DEPZ area. So, more survey in future would make the decision more accurate.

Only old zone industries are associated with CETP. Due to some administrative complexity, new zone industries are not yet added with CETP. So performance of CETP in terms of treatment of water is measured for only old zone industries. So, after joining with the new

zone industries this study can be extended. Apart from this, not only new zone industries but also some special industries which are not under DEPZ are also discharging water to the surface water course. So, test of water from those discharge points would reveal more information regarding the quality of the surface water.

Other method of EIA can also be adopted in future to evaluate whether the result varies or not. Moreover, that will help to come to a more dependable decision and help taking measures boldly.

Reference

Azom M. R., Mahmud K., Yahya S. M., Sontu A., Himon S. B. (2012). Environmental Impact Assessment of Tanneries: A Case Study of Hazaribag in Bangladesh. International Journal of Environmental Science and Development, Vol. 3, No. 2, April 2012.

Dorsati Madani (August, 1999). A Review of the Role and Impact of Export Processing Zones. PREM- EP, The World Bank.

Environmental Impact Assessment: Guidelines for Planners and Decision Makers, UN Publication ST/ESCAP/351, ESCAP, 1985.

GOB.(2008) Bangladesh Economic Review.

Guidelines on Environmental Issues related to Physical Planning (1992). Local Government Engineering Department (LGED). Government of the People's Republic of Bangladesh. Ministry of Local Government. Rural Government and Cooperatives Local Government Division.

Hossain S. M., Mahmud K., Yahya S. M., Navid E.H. (2011). Ship breaking and recycling industry in Bangladesh Towards sustainable development to mitigate environmental hazards. Proceedings of the 3rd (2011) CUTSE International Conference, Miri, Sarawak, Malaysia, 8-9 Nov, 2011.

http://www.cpd.org.bd/html/events_details.asp?sec=News&ssub=News%20Details&id=0111 64120

Islam M. M., Mahmud K., Faruk O., Billah M. S (2011). Textile Dyeing Industries in Bangladesh for Sustainable Development. International Journal of Environmental Science and Development, Vol. 2, No. 6, December 2011.

Islam M. Z., Mukhtar U. (2011). EPZ History In Bangladesh And Its Administration And Legislation For Economic Enclave. Business and Management Review Vol. 1(7) pp. 86 – 102 September, 2011. ISSN: 2047–0398. Available online at http://www.businessjournalz.org/bmr

Wahi R. R., Mahmud K., Rahman S. (2012). Assessment Of Pharmaceutical Industries In Bangladesh - An Effective Step Towards The Achievement Of Environmental Sustainability. Proceedings of the 1st International Conference on Civil Engineering for Sustainable Development (ICCESD-2012), 2~3 March 2012, KUET, Khulna, Bangladesh.

Appendix A

Classification of the DEPZ Industries

Serial	Enterprise Name	Category	Category (DOE)
Number		(EPZ)	
1.	Austan Ltd. (Sir June)	Wet	RED
2.	South China Bleaching & Dyeing Factory	Wet	RED
3.	Redpoint Jackets Ltd.	Wet	RED
4.	Hyopshin Co .Ltd.	Wet	RED
5.	Young-A Tex BD. Co. Ltd	Wet	RED
6.	Paddock Jeans Ltd	Wet	RED
7.	Dhaka Beijing Dyeing And Weaving	Wet	RED
8.	Helicon Ltd.	Wet	RED
9.	Intimate Suppliers Ltd.	Wet	RED
10.	Lenny Fashion Ltd	Wet	RED
11.	Lenny Apparels Ltd	Wet	RED
12.	FCI (BD) Ltd	Wet	Orange B
13.	Experience Clothing Co.	Wet	RED
14.	Savar Dyeing & Industries Ltd	Wet	RED
15.	SavarDyeing& Finishing Ind. Ltd	Wet	RED
16.	A-ONE BD. LTD.	Wet	RED
17.	Expcom Ltd.	Wet	RED
18.	IL Kwang Co. Ltd	Wet	RED
19.	Experience Accessories	Wet	RED
20.	German Chemicals	Wet	RED
21.	Ever Way Chemical Bd.	Wet	RED
22.	Hop Yick Bd. Ltd	Dry	Orange B
23.	Gold Tex LTD.	Dry	Orange B
24.	H.M. Construction	Dry	Orange A

25.	Osman Interlings Ltd	Dry	Orange B
26.	Sabir Traders	Dry	Orange B
27.	Meetick Hangers (Dhaka).	Dry	Orange B
28.	Cherry Intimate Limited	Dry	Green
29.	Otl Double Gull Bd. Ltd.	Dry	Orange A
30.	Dong Bangla Facilities (Bd)Ltd.	Dry	Orange B
31.	Geebee Garments Ind Ltd.	Dry	Orange B
32.	Alfa Pattern Bangladesh	Dry	Orange B
33.	Mainetti (Bd) Pvt .Ltd.	Dry	Orange A
34.	Ospinter Garments Ltd.	Dry	Orange B
35.	Dong Mi Tex ,Co. Ltd.	Dry	Orange B
36.	Setexco Limited	Dry	Orange B
37.	D Water Cept	Dry	Orange A
38.	YoungoneHitech Sports Ind Ltd	Dry	Orange B
39.	United Commercial Bank	Dry	Green
40.	Hop Lun (BD) Ltd	Dry	Orange B
41.	Alliance Stitches Ltd.	Dry	RED
42.	Swan Lon Co Ltd.	Dry	Orange B
43.	Alfa Packages (Bd) Ltd.	Dry	Orange A
44.	Fem Accessories Ltd.	Dry	Orange A
45.	Sgwicus (Bd) Ltd.	Dry	Orange B
46.	SavarInd Pvt. Ltd.	Dry	Orange B
47.	Divisional Engineer T&T	Dry	Green
48.	New Star Hi -Lon Co. Ltd.	Dry	Green
49.	Hangers Plus Bd.Ltd.	Dry	Orange B
50.	Baxter Branton (Bd)Cloth	Dry	Orange B
51.	Beximco Fashions Ltd.	Dry	Orange B
52.	Actor Sporting Ltd.	Dry	Orange B
53.	Home Bound Packers	Dry	Orange A
54.	Hsbc Bank Ltd.	Dry	Green

55.	Air Allience Ltd.	Dry	Orange A
56.	Prime Bank Ltd.	Dry	Green
57.	City Bank Ltd.	Dry	Green
58.	Active Logistic Ltd.	Dry	Green
59.	Expo Express Ltd.	Dry	Orange A
60.	Green View Taver Ltd.	Dry	Green
61.	Tnt Express Ltd.	Dry	Green
62.	Dhl World Wide Ltd.	Dry	Orange A
63.	Novo Cargo Services Ltd	Dry	Green
64.	StanderdcharteredBnk	Dry	Green
65.	Dhaka Bank Ltd	Dry	Green
66.	Swift Logistic Service	Dry	Orange A
67.	Bangladesh Express Ltd.	Dry	Orange A
68.	Mainetti (Bangladesh) Pvt. Ltd	Dry	Orange B
69.	Avery Dennison	Dry	Orange B
70.	Asia Plastic/ Hanger Plus	Dry	Orange B
71.	Brac Net (BD) Ltd.	Dry	Orange B
72.	Dhakarea Ltd	Dry	Orange B
73.	JuHyung Industry Co. Ltd	Dry	Orange B
74.	Juksan (BD) Ltd	Dry	Orange B
75.	Kryolan (BD) Ltd	Dry	Orange B
76.	LSI Industries Ltd/ Lasting Spring Metal	Wet	
	Ind. Ltd		RED
77.	Paxar Bangladesh Ltd	Dry	RED
78.	Queen South Textile Mills Ltd.	Wet	RED
79.	Ring Shine Textiles Ltd.	Wet	RED
80.	SBC Garments Accessories Mfg. (BD) Ltd.	Wet	RED
81.	Shanta Industries Ltd./Shanta Denims Ltd	Dry	RED
82.	Shasha Denims Ltd.	Dry	RED
83.	Shepherd Textile (BD) Ltd.	Wet	RED

84.	Shine Fashion Co. (Pvt) Ltd	Dry	Orange B
85.	Softex Sweater Ind. (Pvt) Ltd	Dry	Orange B
86.	Superior Footwear Co. Ltd	Dry	Orange B
87.	The Accessories Ltd.	Dry	Orange B
88.	Windsor Plastic (BD) Ltd	Dry	Orange B
89.	YKK Bangladesh Pte Ltd.	Wet	RED
90.	Zong Sine Textile Industries Ltd.	Wet	RED
91.	Avent Garden Fashion	Dry	Orange B
92.	Aamra Fashion Ltd.	Dry	Orange B
93.	Epic Garments Manufaturing Co. Ltd	Wet	RED
94.	I.P. Jaq Knitting Ltd.	Wet	RED
95.	J & J Medical Ltd.	Dry	RED
96.	KBC Cemical Ltd.	Wet	RED
97.	M/s. Styrax Fashion Ltd.	Dry	Orange B
98.	Rancon Sweater Ltd.	Dry	RED
99.	Sangnam Textiles Mills Ltd./Young one Sys. Fiber Pro. Ltd.	Wet	RED
100.	United Power Generation Ltd.	Dry	Orange B

Appendix B

Quality of the water parameters in both Inlet and Outlet of CETP

Parameters	pH		TSS (n	ng/l)	TDS (mg/l)	COD (mg/l)	DO (n	ng/l)
Date	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet
1-Feb-12	11.8	7.9	140	120	3540	2030	526	182	0.3	4.7
2-Feb-12	11.1	7.7	130	110	2040	1380	393	160	0.7	4.5
3-Feb-12	11.3	7.5	130	110	2180	1700	340	175	0.6	4.5
4-Feb-12	11.7	7	130	110	3920	1700	458	170	0.6	4.6
6-Feb-12	9.6	7.8	130	110	3032	1530	260	179	0.6	4.6
7-Feb-12	11.5	7.5	140	110	2270	1350	334	177	0.6	4.6
8-Feb-12	10.4	7.6	130	120	1120	1360	340	182	0.8	4.8
9-Feb-12	9.5	7.3	130	110	1310	1300	370	185	0.4	4.6
11-Feb-12	11.5	7.9	140	120	3290	2080	410	170	0.5	4.6
12-Feb-12	10.6	7.7	140	120	1650	2010	260	195	0.8	4.6
13-Feb-12	10.8	8.2	120	80	1690	1910	485	166	0.4	4.7
14-Feb-12	11.7	8	130	100	2830	1750	360	171	0.2	4.8
15-Feb-12	11.2	7.8	110	70	1420	1690	276	130	0.2	4.82
16-Feb-12	10.4	8	130	100	1480	1560	450	178	0.19	4.8
17-Feb-12	12.2	8.3	160	130	8790	1850	735	180	0.23	4.82
18-Feb-12	10.9	7.6	120	90	2090	1710	458	164	0.27	4.73
19-Feb-12	11.8	8.2	130	80	1480	1500	388	148	0.38	4.6
20-Feb-12	11.5	7.9	120	80	1710	1750	376	160	0.18	4.75
22-Feb-12	10.8	8.2	120	80	1710	1850	476	150	0.39	4.7
23-Feb-12	12.1	8	150	100	3710	1790	472	186	0.3	4.73
25-Feb-12	12	8	120	80	2140	1530	451	154	0.24	5.1
26-Feb-12	11.5	7.5	140	100	1980	1950	390	145	0.48	4.76
27-Feb-12	11.7	7.8	110	70	1940	2030	487	157	0.18	4.52
28-Feb-12	11.5	7.5	150	100	2410	1880	310	174	0.26	4.91

29-Feb-12	11.3	7.4	130	80	1630	1590	491	167	0.38	4.82
1-Mar-12	11	7.4	130	80	2690	1700	307	140	0.1	4.87
2-Mar-12	11.1	7.2	130	80	1940	1860	482	174	0.25	4.57
3-Mar-12	11.8	7.4	130	50	4800	1990	576	158	0.18	4.79
4-Mar-12	11.7	7	130	110	3920	1700	458	170	0.51	4.6
5-Mar-12	10.5	6.9	140	130	1990	1760	740	161	0.48	4.57
6-Mar-12	12.2	7.4	110	80	5710	1370	637	177	0.25	4.93
7-Mar-12	12	7.2	130	90	2540	1230	651	165	0.33	5.1
8-Mar-12	11.8	7.5	140	70	2190	1460	574	179	0.18	4.84
9-Mar-12	11.6	7.1	120	90	2340	1850	481	155	0.18	4.8
10-Mar-12	11.4	7.4	140	100	4240	1960	740	172	0.39	4.75
11-Mar-12	12.1	7.8	150	70	3380	1810	754	149	0.43	4.77
12-Mar-12	12.2	7.6	140	90	2160	1850	730	168	0.38	4.72
13-Mar-12	12.4	7.9	110	90	2010	2050	675	170	0.16	4.61
14-Mar-12	13.2	7.9	110	80	2170	1830	730	183	0.31	4.79
18-Mar-12	12.2	7.9	140	100	2270	1930	823	146	0.29	4.99
19-Mar-12	12.3	7.8	110	70	2290	1930	674	142	0.12	4.9
20-Mar-12	11.9	8	140	110	2310	1840	586	146	0.18	4.91
21-Mar-12	11.9	8.2	160	120	1840	1860	625	166	0.26	4.71
22-Mar-12	12.4	8	150	100	2210	1950	771	149	0.24	4.75
24-Mar-12	12.4	7.9	140	50	1890	1750	705	158	0.14	4.88
25-Mar-12	12.3	7.7	140	70	2040	1750	780	150	0.24	4.9
27-Mar-12	11.8	8.2	150	90	2050	1700	866	177	0.48	4.8
28-Mar-12	12.3	7.9	120	100	2080	1790	589	165	0.19	4.76
29-Mar-12	10.5	7.6	130	50	2010	1950	670	173	0.2	4.59
30-Mar-12	12.1	7.9	140	50	1890	1750	710	162	0.31	4.7
31-Mar-12	12.5	7.9	100	70	2040	1940	690	160	0.24	4.78
1-Apr-12	12.5	7.9	140	80	2150	1870	699	170	0.38	4.65
2-Apr-12	12	8.1	120	70	2000	1540	570	164	0.51	4.6
3-Apr-12	12.6	7.8	130	80	1890	1740	499	144	0.42	4.8

4-Apr-12	12.2	7.8	130	80	1810	1730	712	142	0.35	4.82
5-Apr-12	12.5	7.4	140	100	1820	1740	770	150	0.14	4.73
6-Apr-12	12.4	7.6	130	90	2090	1950	750	180	0.45	4.6
7-Apr-12	12	7.5	120	80	1910	1950	715	172	0.35	4.75
8-Apr-12	12.4	7.3	130	60	2240	2000	785	140	0.26	4.7
9-Apr-12	11.8	7.7	140	70	1260	1470	740	181	0.11	4.73
12-Apr-12	12.1	7.4	120	120	1790	1250	746	184	0.15	5.1
15-Apr-12	12.5	7.9	130	70	2100	1810	702	165	0.28	4.76
16-Apr-12	12.2	7	150	90	2240	2010	781	163	0.18	4.52
17-Apr-12	11.9	7.7	140	70	1840	1480	825	139	0.42	4.91
18-Apr-12	12.5	7.9	80	70	1890	1380	783	99	0.12	4.82
19-Apr-12	12.4	7.1	100	80	1840	1450	694	126	0.32	4.87
20-Apr-12	11.8	7.2	80	50	1930	1470	650	125	0.24	4.9
22-Apr-12	12	7.1	120	60	1550	1680	801	122	0.31	4.75
23-Apr-12	12.7	7.5	110	80	1540	1480	755	145	0.14	4.6
24-Apr-12	12	7.7	140	60	1850	1560	786	132	0.34	5.1
25-Apr-12	12.5	7.5	100	60	1590	1240	812	167	0.17	4.92
26-Apr-12	12.1	7.9	120	90	1310	1020	789	150	0.45	4.9
28-Apr-12	11.8	7	130	90	2480	1230	767	140	0.21	4.97
29-Apr-12	12	7.3	110	60	1980	1440	838	125	0.25	4.9
30-Apr-12	12.2	7.6	120	70	1820	1360	810	132	0.36	4.87
2-May-12	11.9	7.5	100	70	1470	1250	785	154	0.15	4.66
3-May-12	11.5	7.5	110	80	1420	1180	805	172	0.26	4.75
5-May-12	11.9	7.7	90	50	1430	1210	790	142	0.12	4.67
7-May-12	12.4	7.4	100	60	1550	1270	769	138	0.1	4.58
8-May-12	12	7.5	110	60	1550	1140	794	135	0.23	4.64
9-May-12	11.7	7.8	110	60	1660	1260	736	142	0.19	4.7
10-May-12	12.6	7.3	110	80	2090	1330	736	119	0.38	4.78
12-May-12	12.3	7.4	110	90	1820	1490	698	165	0.52	4.81
13-May-12	12.4	7.6	120	70	2190	1640	756	160	0.42	4.65

14-May-12	12	7.7	110	70	1830	1460	810	123	0.29	4.95
15-May-12	11.8	7.4	120	60	2030	1360	769	118	0.11	4.74
16-May-12	12.1	7.4	100	60	1840	1750	792	136	0.26	4.58
17-May-12	11.9	7.8	120	50	1490	1620	750	141	0.35	4.65
19-May-12	11.6	8	100	70	1840	1700	788	135	0.2	4.71
20-May-12	11.8	7.9	100	80	2030	1840	751	157	0.38	4.88
21-May-12	11.9	7.7	120	70	1960	1590	654	148	0.25	4.77
22-May-12	11.9	7.5	100	60	2010	1490	710	129	0.21	4.85
23-May-12	12	7.4	100	60	1870	1550	699	135	0.19	4.58
24-May-12	12	7.4	100	60	1970	1520	699	135	0.19	4.97
27-May-12	11.8	7.7	110	70	1830	1120	751	168	0.27	5.02
28-May-12	11.6	7.9	100	50	1560	1250	723	151	0.38	4.96
29-May-12	11.5	7.4	130	60	1740	1180	674	144	0.18	5.12
30-May-12	11.6	7.8	100	50	1260	970	641	119	0.39	5.08
31-May-12	11.7	7.6	80	45	1550	1150	710	123	0.3	4.89
1-Jun-12	12.1	7.5	110	60	2000	1400	624	125	0.24	5.11
2-Jun-12	11.8	7.7	90	60	1800	1300	675	132	0.48	4.91
3-Jun-12	12.1	7.5	80	40	2010	1250	751	112	0.18	4.85
4-Jun-12	11.6	7.5	90	40	1640	1000	741	125	0.26	4.78
5-Jun-12	11.8	7.7	80	50	1790	1230	787	130	0.38	4.65
6-Jun-12	11.9	7.5	90	60	1600	1450	687	140	0.1	4.78
7-Jun-12	12.2	7.8	100	70	1840	1520	720	121	0.25	4.92
9-Jun-12	12.1	7.8	100	50	1820	1400	730	136	0.18	4.98
10-Jun-12	11.6	7.5	80	60	1990	1500	687	112	0.51	4.57
11-Jun-12	11.9	7.8	90	70	1360	1420	738	119	0.48	4.63
12-Jun-12	11.9	7.8	100	50	1860	1250	732	144	0.25	4.88
13-Jun-12	12	7.8	70	50	1600	1580	714	158	0.33	4.86
14-Jun-12	12.2	7.8	80	70	1800	1640	745	120	0.18	4.91
16-Jun-12	11.9	7.8	100	60	1810	1480	725	118	0.18	4.88
17-Jun-12	11.7	7.7	90	70	1910	1530	687	123	0.39	5.12

18-Jun-12	11.9	7.9	110	50	1810	1630	706	135	0.43	5.18
19-Jun-12	11.6	7.7	100	60	1640	1500	746	118	0.38	4.99
20-Jun-12	11.8	7.4	90	70	1990	1260	685	120	0.16	5.1
21-Jun-12	12.1	7.6	120	70	1800	1750	725	112	0.31	4.87
23-Jun-12	10.2	7.7	120	70	1640	1600	654	137	0.29	5.12
25-Jun-12	12.3	8.1	80	60	1600	1300	532	133	0.12	4.68
26-Jun-12	12	7.9	80	40	1500	1200	551	130	0.18	4.79
27-Jun-12	12.5	7.6	100	70	1500	1300	578	125	0.26	4.75
12-Jan-00	12	7.5	90	80	1700	1400	597	119	0.24	4.71
30-Jun-12	12.3	7.4	100	50	1700	1300	630	137	0.14	4.71
1-Jul-12	12.1	7.5	110	60	2000	1400	624	125	0.24	5.11
2-Jul-12	11.8	7.7	90	60	1800	1300	675	132	0.48	4.91
3-Jul-12	12.1	8	80	60	1700	1400	710	122	0.19	4.68
4-Jul-12	12	7.5	90	50	1700	1300	691	154	0.2	4.79
5-Jul-12	11.9	7.8	100	70	1500	1400	721	138	0.31	4.77
6-Jul-12	12.3	8	80	70	1100	1200	684	132	0.24	4.98
8-Jul-12	11.6	7.5	90	50	1100	800	714	145	0.38	5.14
9-Jul-12	11.8	7.8	80	60	900	900	701	130	0.51	4.77
10-Jul-12	12	7.9	100	80	1600	1400	765	112	0.42	4.65
11-Jul-12	12.4	7.8	110	60	1200	1300	683	119	0.35	4.82
12-Jul-12	11.4	7.3	80	70	1100	900	597	98	0.14	5.21
14-Jul-12	11.7	7.8	90	50	1800	1200	684	141	0.45	4.84
15-Jul-12	11.5	7.6	100	60	1500	110	724	125	0.35	5.12
16-Jul-12	11.9	7.8	80	60	1400	110	688	121	0.26	4.95
17-Jul-12	12	7.9	70	50	1300	1200	705	120	0.11	4.72
18-Jul-12	12.2	7.5	120	70	2000	1500	652	117	0.15	4.79
21-Jul-12	11.5	7.4	70	60	2800	1500	739	125	0.28	4.99
22-Jul-12	12.1	7.8	80	70	2100	1400	814	112	0.18	5.14
23-Jul-12	11.5	7.9	80	70	1800	1200	720	127	0.42	4.97
24-Jul-12	12.5	7.7	90	50	2000	1200	685	115	0.12	5.12

					•			•		
25-Jul-12	12.3	7	100	70	1500	1400	756	119	0.32	4.87
26-Jul-12	12	7.2	100	70	1900	1300	746	144	0.24	4.67
28-Jul-12	12.1	7.1	100	70	1500	1200	809	130	0.31	4.62
29-Jul-12	11.8	7.8	80	70	1400	1100	754	151	0.14	5.03
30-Jul-12	12.2	7.9	80	70	1500	1200	735	132	0.34	4.71
31-Jul-12	11.8	8.1	90	50	1200	900	645	115	0.17	5.12
1-Aug-12	12.1	8	100	60	1400	1200	675	142	0.45	4.87
2-Aug-12	12.3	8.2	100	70	1500	1000	724	154	0.21	5.08
4-Aug-12	12.1	7.8	90	70	1900	1500	731	160	0.25	4.98
5-Aug-12	12.2	8.3	100	70	2100	1600	803	147	0.36	4.87
6-Aug-12	12.1	8	90	70	1800	1400	722	125	0.15	4.78
7-Aug-12	12.5	7.7	110	80	1900	1500	764	131	0.26	4.12
12-Aug-12	12.3	7.9	90	70	2100	1200	710	138	0.12	4.83
13-Aug-12	11.7	7.2	100	90	2000	1500	698	154	0.1	4.97
14-Aug-12	12.1	7.8	110	80	1900	1400	741	146	0.23	4.88
25-Aug-12	12	7.5	80	70	1900	1300	820	129	0.19	4.93
26-Aug-12	11.8	7.9	110	80	1500	1400	768	138	0.24	4.71
Average	11.9	7.7	111.5	74.3	1990	1494	662.2	145.4	0.29	4.81

Appendix C

Daily Sludge Production and Management by CETP

Date	Daily Sludge Production	Opening Stock	Store	Remarks
8-Feb-12	360kg	360kg	Sludge Drying Bed-1	
9-Feb-12	400kg	760kg	Sludge Drying Bed-1	
10-Feb-12	280kg	1040kg	Sludge Drying Bed-1	
11-Feb-12	450kg	1490kg	Sludge Drying Bed-1	
12-Feb-12	450kg	1940kg	Sludge Drying Bed-1	
13-Feb-12	500kg	2440kg	Sludge Drying Bed-1	
14-Feb-12	520kg	2960kg	Sludge Drying Bed-1	
15-Feb-12	500kg	3460kg	Sludge Drying Bed-1	
16-Feb-12	420kg	3880kg	Sludge Drying Bed-1	
17-Feb-12	280kg	4160kg	Sludge Drying Bed-1	
18-Feb-12	550kg	4710kg	Sludge Drying Bed-1	
19-Feb-12	550kg	5260kg	Sludge Drying Bed-1	
20-Feb-12	500kg	5760kg	Sludge Drying Bed-1	
21-Feb-12	600kg	6360kg	Sludge Drying Bed-1	
22-Feb-12	620kg	6980kg	Sludge Drying Bed-1	
23-Feb-12	480kg	7460kg	Sludge Drying Bed-1	
24-Feb-12	500kg	7960kg	Sludge Drying Bed-1	
25-Feb-12	550kg	8460kg	Sludge Drying Bed-1	
26-Feb-12	450kg	8910kg	Sludge Drying Bed-1	
27-Feb-12	600kg	9510kg	Sludge Drying Bed-1	
28-Feb-12	600kg	10110kg	Sludge Drying Bed-1	
1-Mar-12	620kg	10730kg	Sludge Drying Bed-1	
2-Mar-12	550kg	11280kg	Sludge Drying Bed-1	

3-Mar-12	550kg	11830kg	Sludge Drying Bed-1
4-Mar-12	400kg	12230kg	Sludge Drying Bed-1
5-Mar-12	520kg	12750kg	Sludge Drying Bed-1
6-Mar-12	600kg	13350kg	Sludge Drying Bed-1
7-Mar-12	600kg	13950kg	Sludge Drying Bed-1
8-Mar-12	500kg	14450kg	Sludge Drying Bed-1
9-Mar-12	500kg	14950kg	Sludge Drying Bed-1
10-Mar-12	450kg	15400kg	Sludge Drying Bed-1
11-Mar-12	650kg	16050kg	Sludge Drying Bed-1
12-Mar-12	560kg	16610kg	Sludge Drying Bed-1
13-Mar-12	550kg	17160kg	Sludge Drying Bed-1
14-Mar-12	600kg	17760kg	Sludge Drying Bed-1
15-Mar-12	600kg	18360kg	Sludge Drying Bed-1
16-Mar-12	600kg	18960kg	Sludge Drying Bed-1
17-Mar-12	550kg	19510kg	Sludge Drying Bed-1
18-Mar-12	550kg	20060kg	Sludge Drying Bed-1
19-Mar-12	500kg	20560kg	Sludge Drying Bed-1
20-Mar-12	550kg	21110kg	Sludge Drying Bed-1
21-Mar-12	580kg	21690kg	Sludge Drying Bed-1
22-Mar-12	600kg	22290kg	Sludge Drying Bed-1
23-Mar-12	620kg	22910kg	Sludge Drying Bed-1
24-Mar-12	600kg	23510kg	Sludge Drying Bed-1
25-Mar-12	500kg	24010kg	Sludge Drying Bed-1
26-Mar-12	550kg	24560kg	Sludge Drying Bed-1
27-Mar-12	450kg	25010kg	Sludge Drying Bed-1
28-Mar-12	480kg	25490kg	Sludge Drying Bed-1
29-Mar-12	480kg	25970kg	Sludge Drying Bed-1
30-Mar-12	500kg	26470kg	Sludge Drying Bed-1
2-Apr-12	1800kg	28270kg	Sludge Drying Bed-2
6-Apr-12	2700kg	30970kg	Sludge Drying Bed-2

9-Apr-12	1500kg	32470kg	Sludge Drying Bed-2			
13-Apr-12	2300kg	34770kg	Sludge Drying Bed-2			
17-Apr-12	2100kg	36870kg	Sludge Drying Bed-2			
20-Apr-12	1950kg	38820kg	Sludge Drying Bed-2			
24-Apr-12	2550kg	41370kg	Sludge Drying Bed-2			
25-Apr-12	2800kg	44170kg	Sludge Drying Bed-2			
4-May-12	1700kg	45870kg	Sludge Drying Bed-2			
7-May-12	1550kg	47420kg	Sludge Drying Bed-2			
11-May-12	2250kg	49670kg	Sludge Drying Bed-2			
15-May-12	2500kg	52170kg	Sludge Drying Bed-3			
18-May-12	1700kg	53870kg	Sludge Drying Bed-3			
21-May-12	1600kg	55470kg	Sludge Drying Bed-3			
24-May-12	1800kg	57270kg	Sludge Drying Bed-3			
27-May-12	3250kg	60520kg	Sludge Drying Bed-3			
30-May-12	2550kg	63070kg	Sludge Drying Bed-3			
2-Jun-12	3700kg	66770kg	Sludge Drying Bed-3			
6-Jun-12	4100kg	70870kg	Sludge Drying Bed-3			
10-Jun-12	4500kg	75370kg	Sludge Drying Bed-3			
14-Jun-12	4700kg	80070kg	Sludge Drying Bed-4			
17-Jun-12	5100kg	85170kg	Sludge Drying Bed-4			
	4500kg			Each	Bag	capacity
20-Jun-12	4500Kg	89670kg	100 plastic Bag	45kg		
23-Jun-12	4700kg	94370kg	Sludge Drying Bed-4			
26-Jun-12	3500kg	97870kg	Sludge Drying Bed-4			
30-Jun-12	4100kg	101970kg	Sludge Drying Bed-4			
3-Jul-12	4200kg	106170kg	Sludge Drying Bed-4			
6-Jul-12	4500kg	110670kg	Sludge Drying Bed-5			
9-Jul-12	3800kg	114470kg	Sludge Drying Bed-5			
12-Jul-12	4000kg	118470kg	Sludge Drying Bed-5			
16-Jul-12	4700kg	123170kg	Sludge Drying Bed-5			

20-Jul-12	5300kg	128470kg	Sludge Drying Bed-5	
23-Jul-12	4400kg	132870kg	Sludge Drying Bed-6	
27-Jul-12	4500kg	137370kg	Sludge Drying Bed-6	
30-Jul-12	3900kg	141270kg	Sludge Drying Bed-6	
3-Aug-12	3500kg	144770kg	Sludge Drying Bed-6	
7-Aug-12	4200kg	148970kg	Sludge Drying Bed-6	
12-Aug-12	2700kg	151670kg	Sludge Drying Bed-6	
25-Aug-12	3800kg	155670kg	Sludge Drying Bed-6	

Appendix D

Questionnaire/Checklist of EIA

No. of	Environmental Parameters	Negativ	e		No	Positiv	e	
Paramet er		High or Severe	Mode rate	Low	Cha nge	Low	Mod erat e	High or Sever e
Physico-C	hemical							-
01	Surface Water Availability							
02	Surface Water Quality- chemical, biological or physical							
03	Ground Water Table/Availability							
04	Ground Water Quality							
05	Climate Changes							
06	Air Quality-Burning of waste, dust emission, smoke, sight, poor visibility, gas, vapor, unpleasant odor/smell							
07	Air Flow-Wind Patterns							
08	BufferZones-usuallyVegetated-ForestVegetativeCovers-Windbreaks,ErosionControl,WildlifeSound Insulation							
09	Land Quality Pollution, Geology/Land Capability e.g.							

	Agricultural	
10	Capability/Erosion/	
10	Noise-intensity, duration &	
	frequency	
Ecolog	ical/Biological	
11	Terrestrial Wildlife-Domestic	
	& Farm Animals, mammals,	
	birds	
12	Aquatic Biology especially	
	Fisheries	
13	Terrestrial habitats & Aquatic	
	or marine habitat, Wetlands,	
	birds nesting areas, grazing	
	areas	
Humai	n interest/ community/ responses/ characteristics/ environment	
14	Industrial Physical Safety &	
11	Health, Psychological well-	
	being	
15	Public Health-Diseases such as	
15		
	parasitic disease-malaria,	
	communicable disease-	
	typhoid, cholera	
Socio-l	Economic	
16	Agriculture-Agricultural	
	Crops-Agricultural Land	
17	Employment opportunities-	
	new jobs or transfer, number	
	as well as diversity, skills to	
	fill the jobs	
18	Housing-availability &	

	suitability (local people			
	&immigrant work force)			
19	Education			
20	Utilities: water supply,			
	electricity(Power) & gas			
	supply			
21	Public transport services			
22	Highways/Railways			
23	Medical services & facilities			
24	Law Enforcement services			
25	Solid Waste Disposal, Sewage			
	Disposal, Rubbish collection &			
	disposal			
26	Social Change, economic			
	development, Commercial			
	services			
27	Navigation, Flood Control			
28	Amenities: Recreation,			
	Religious			
29	Aesthetic/Historic Structures			
30	Tranquility			

Appendix E Interviews/Focus Group Discussions (FGDs) List of Participants

Location:

Date & Time:

SI No.	Name, Address &Telephone No.	Occupation	Signature