

Development of an Efficient Algorithm for DNA Sequence

Alignment Based on Cosine Similarity

Authors

T.M. Ariq Ahsan Student Id: 084406

 MD Saleh Faize Student Id: 084444

 Supervisor

Prof. Dr. M. A. Mottalib

Head of the Department

Department of Computer Science & Engineering (CSE)

Islamic University of Technology (IUT)

Co-Supervisor

Abid Hasan

Lecturer

Department of Computer Science & Engineering (CSE)

Islamic University of Technology (IUT)

A Thesis submitted to the Department of Computer Science & Engineering (CSE)

 in Partial Fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science & Engineering (CSE)

Department of Computer Science & Engineering (CSE)

Islamic University of Technology (IUT)

Organization of the Islamic Cooperation (OIC)

Gazipur, Bangladesh

September, 2012

2

ABSTRACT

In our thesis we wanted to work with approximate gene matching with the help of the

cosine similarity factor. Though several other gene matching algorithms has been

invented since the post Sanger method period but quite a little advancement has been

done in this field. We have chalked out a new formula for gene sequence matching

and implemented gap algorithm in it and then evaluated it with some of the well

established algorithm (The Dot-Matrix method, The Dynamic Programming and The

Word Method.). We sacrificed efficiency for accuracy but we think our acumen of

time was not bad either. We have our sight set upon further developing it and more

assessment of it in near future.

3

 TABLE OFCONTENTS:

Chapter 1.Introduction……………………………………………………………………....4

1.1 Overview…………………………………………………………………………………..4

1.2 Problem Statement…………………………………………………………………….....5

1.3 Research Challenge………………………………………………………………………6

1.4 Motivation………………………………………………………………………………...6

1.5 Scope……………………………………………………………………………………....6

1.6 Thesis Outline………………………………………………………………………….....7

Chapter 2.Literature Review……………………………………………………………......8

2.1 Sequence Alignment...8

2.2 Sequence Alignment Types……………………………………………………………...8

 2.2.1 Global and Local Alignment…………………………………………….......8

 2.2.2 Macromolecular Alignment……………………………………………........9

2.3 Existing Sequence Alignment Techniques…………………………………………….14

 2.3.1 Pairwise Sequence Alignment Techniques……………………………......14

 2.3.2 Multiple Sequence Alignment Techniques……………………………......18

Chapter 3.Proposed Method…………………………………………………………….....21

3.1 Overall Concept………………………………………………………………………...21

3.2 Proposed Method and Algorithm……………………………………………………...21

Chapter 4.Experimental Analysis………………………………………………………….24

4.1 Datasets………………………………………………………………………………….24

4.2 Results…………………………………………………………………………………...25

4.3 Parameter Generation………………………………………………………………….28

4.4 Comparing Existing Methods………………………………………………………….30

Chapter 5.Conclusion………………………………………………………………………33

References…………………………………………………………………………...............34

4

Chapter 1. Introduction

1.1 Overview

Bioinformatics is the collection of biological data which are derived from statistical

and structural analysis. There is information stored in our genetic code. That

information is the prior concern in the fields of bioinformatics. But the genetic code‟s

information processing is not the only main task of bioinformatics; here information is

also collected from experimental results from various sources like- patient statistics

and scientific literature, for processing. Research in bioinformatics includes method

development for storage, retrieval and analysis of the data. We can see now that

bioinformatics is a rapidly developing branch of biology and is highly

interdisciplinary, using techniques and concepts from informatics, statistics,

mathematics, chemistry, biochemistry, physics, and linguistics. It has many practical

applications in different areas of biology and medicine.

We find the introduction of computing in bioinformatics in 1920s when the scientists

realized the establishment of biological laws from data analysis by induction. It is also

known as the traditional method which is found in history. However the development

of powerful computers and the availability of experimental data launched

bioinformatics as an independent field where we can treat data in a faster manner than

previous age. For example, we can say the development of dimension in image

viewing and with the help of that now it is possible of viewing three-dimensional

structure of DNA or amino acid. Today, practical applications of bioinformatics are

readily available through the World Wide Web, and are widely used in biological and

medical research. As the field is rapidly evolving, the very definition of bioinformatics

is still the matter of some debate.

For several reasons we find a natural relationship in computer science and biology.

The first reason is the phenomenal rate of biological data being produced provides

challenges like massive amounts of data have to be stored, analyzed and made

5

accessible. The second reason is the nature of the data if often such that a statistical

method, and hence computation, is necessary. This applies in particular to the

information on the building plans of protein and of the temporal and spatial

organization of their expression in the cell encoded by the DNA. The third reason is

there is a strong analogy between the DNA sequence and a computer program. For

example we can say that the DNA represents a Turing Machine.

Analyses in bioinformatics focus on three types of datasets: genome sequences,

macromolecular structures, and functional genomics experiments (e.g. expression

data, yeast two–hybrid screens). But bioinformatics analysis is also applied to various

other data, e.g. taxonomy trees, relationship data from metabolic pathways, the text of

scientific papers, and patient statistics. A large range of techniques are used, including

primary sequence alignment, protein 3D structure alignment, phylogenetic tree

construction, prediction and classification of protein structure, prediction of RNA

structure, prediction of protein function, and expression data clustering. Algorithmic

development is an important part of bioinformatics, and techniques and algorithms

were specifically developed for the analysis of biological data (e.g., the dynamic

programming algorithm for sequence alignment).

Bioinformatics has a large impact on biological research. Giant research projects such

as the human genome project would be meaningless without the bioinformatics

component. The goal of sequencing projects, for example, is not to corroborate or

refute a hypothesis, but to provide raw data for later analysis. Once the raw data are

available, hypotheses may be formulated and tested in silicon. In this manner,

computer experiments may answer biological questions which cannot be tackled by

traditional approaches. This has led to the founding of dedicated bioinformatics

research groups as well as to a different work practice in the average bioscience

laboratory where the computer has become an essential research tool.

1.2 Problem Statement:

The main problem of high dimensional data is the inclusion of noisy and irrelevant

data in the information set. As the datasets become large the number of noisy,

6

redundant and uninformative gene also increases resulting in space-time complexity.

So we work with on an efficient algorithm for sequence alignment based on cosine

similarity.

1.3 Research Challenges:

The high dimensionality results in an immense feature space and thus execution of a

brute force exhaustive search should not be encouraged. Therefore, to achieve an

accurate and efficient evaluation of samples an optimal method needs to be devised.

The desired outcome of the method is minimizing the number of features and

increasing the predictive power of the classifiers. To add more intensity to the

problem domain this field of bioinformatics produces inadequate testing and training

samples. Along with the removal of noisy, irrelevant and redundant information the

proposed method must be able to handle the correlation factor existing between the

features and thus utilize the combined predictive power. This study encompasses all

these factors and theoretically expects to bring about better results.

1.4 Motivation:

Our motivation was for finding a new approach for sequence alignment techniques.

And as we said we try to give one. We try to give an efficient algorithm on sequence

alignment technique based on cosine similarity.

1.5 Scopes:

This study aims at giving a new approach for better sequence alignment. As we said

some of the methods do not work well as those take all the characters of the sequence

for comparison. But in our approach we try to solve that by using chunks. But still lot

of work is needed for improving our algorithm. For that purpose the door for

implementation is open for all interested ones. There can be work done like- for

reducing the time complexity, giving scores to the alignments, for overcoming the

generalization problem and others.

7

1.6 Thesis Outline:

In Chapter 1 we have talked about the introduction of our study in a précised manner.

Chapter 2 deals with the basic feature selection method and some highlighted

evolutionary approaches with a brief discussion about PSO method. Chapter 3 will be

discussed about our proposed algorithm and some elaborate discussion. Chapter 4 will

consist of the experimental analysis and result comparisons.

8

Chapter 2.Literature Review

2.1Sequence Alignment:

The method of arranging DNA, RNA or protein sequences for similarity region

identification is called a sequence alignment in the language of bioinformatics. A

sequence alignment can be a consequence of functional, structural or evolutionary

relationships between the sequences. In sequence alignment we not only look for

exact matching but also relative matching by using gaps. Gaps are used by insertion,

extension and deletion. Mismatches can be interpreted as point mutation and gaps as

indels where two sequences share a common ancestor. In sequence alignment of

proteins, the degree of similarity between amino acid occupying a particular position

in the sequence can be interpreted as a rough measure of how conserved a particular

region or sequence motif is among lineages. The absence of substitution, or the

presence of only very conservative substitutions in a particular region of the sequence

suggest that this region has structural or functional importance. But in DNA and RNA

nucleotide bases are more similar to each other than amino acids, the conservation of

base pairs can indicate a similar functional or structural role.

2.2 Sequence Alignment Types:

2.2.1 Global and Local Alignments:

We can align the sequence with our hands where it is very short. But in real life we

have to work with extremely numerous sequences to align which is beyond question if

we use only our hands. For this reason human knowledge is applied to construct

algorithms to produce high-quality sequence alignments. In the computational

approaches we have two types of alignments. They are – Global Alignment and Local

Alignment.

In global alignment calculation, it uses a form of global optimization that forces the

alignment to span the entire length of all query sequence. Whether local alignments

identify similarity regions within long sequences that are often widely diverge overall.

Local alignments are often preferable, but can be more difficult to calculate because of

9

the additional challenge of identifying the regions of similarity. A variety of

computational algorithms have been applied to the sequence alignment problem,

including slow but formally correct methods like dynamic programming, and efficient,

heuristic algorithms or probabilistic methods that do not guarantee to find best

matches designed for large-scale database search.

In global alignment, a kind of attempt is found to align every residue in almost every

sequence. It is extremely useful when the sequences in the query set are similar and of

roughly equal size. For example Needlman-Wunsch algorithm used a general global

alignment technique based on dynamic programming. But for dissimilar sequences

local alignments are more useful which are suspected to contain regions of similarity

or similar sequence motifs within their larger sequence context. For example we found

a general local alignment method by Smith-Waterman algorithm which also used

dynamic programming. At last it can be said that if there exists sufficient similarity

then there will be no difference between local and global alignments.

We will face a problem in aligning the sequences if there exists an overlap between

the downstream part of one sequence with the upstream part of another sequence. In

this situation neither global nor local alignment is appropriate. Here the fact is that a

global alignment would attempt to force the alignment to extend beyond the

overlapped region. On the other hand a local alignment might not fully cover the

overlapped region. So here the introduction of a hybrid method is made which is

known as semiglobal or glocal methods. The name glocal comes from the first part of

global and last part of local. These methods try to find the best possible alignment

including the start and end of one or the other sequence.

2.2.2Macromolecular Alignments:

http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Heuristic_algorithm
http://en.wikipedia.org/wiki/Probability

10

DNA:

DNA, the full form goes like this-„Deoxyribonucleic acid.‟ It is a nucleic acid that

contains genetic instructions which are used in the development and functioning of all

known living organisms. It is known that the genetic information which is carried by

the DNA segments is called „GENE.‟ Besides RNA and proteins, DNA is one of the

major macromolecules which are essential for all known forms of life.

DNA consists of two long polymers of simple units called nucleotides, with

backbones made of sugars and phosphate groups joined by ester bonds. These two

strands run in opposite directions to each other and are therefore anti-parallel.

Attached to each sugar is one of four types of molecules called nucleobases. The

nucleobases are classified into two types: the purines, A and G, being fused five- and

six-membered heterocyclic compounds, and the pyrimidines, the six-membered rings

C and T. It is the sequence of these four nucleobases along the backbone that encodes

information. Within cells DNA is organized into long structures called chromosomes.

During cell division these chromosomes are duplicated in the process of DNA

replication, providing each cell its own complete set of chromosomes. In living

organisms DNA does not usually exist as a single molecule, but instead as a pair of

molecules that are held tightly together. These two long strands entwine like vines, in

the shape of a double helix. The nucleotide repeats contain both the segment of the

backbone of the molecule, which holds the chain together, and a nucleobase, which

interacts with the other DNA strand in the helix.

http://en.wikipedia.org/wiki/Polymers
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Backbone_chain
http://en.wikipedia.org/wiki/Monosaccharide
http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/Ester
http://en.wikipedia.org/wiki/Antiparallel_%28biochemistry%29
http://en.wikipedia.org/wiki/Nucleobases
http://en.wikipedia.org/wiki/Purine
http://en.wikipedia.org/wiki/Heterocyclic_compound
http://en.wikipedia.org/wiki/Pyrimidine
http://en.wikipedia.org/wiki/Nucleic_acid_sequence
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Cell_division
http://en.wikipedia.org/wiki/DNA_replication
http://en.wikipedia.org/wiki/DNA_replication
http://en.wikipedia.org/wiki/Double_helix

11

 Figure 1: Single Helix RNA and Double Helix DNA.

RNA:

Ribonucleic acid, or RNA, is part of a group of molecules known as the nucleic acids,

which are one of the four major macromolecules (along with lipids, carbohydrates and

proteins) essential for all known forms of life. Like DNA, RNA is made up of a long

chain of components called nucleotides. Each nucleotide consists of a nucleobase, a

ribose sugar, and a phosphate group. The sequence of nucleotides allows RNA to

encode genetic information. All cellular organisms use messenger RNA (mRNA) to

http://en.wikipedia.org/wiki/Nucleic_acids
http://en.wikipedia.org/wiki/Macromolecule
http://en.wikipedia.org/wiki/Lipids
http://en.wikipedia.org/wiki/Carbohydrates
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Life
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Nucleobase
http://en.wikipedia.org/wiki/Ribose
http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/Messenger_RNA

12

carry the genetic information that directs the synthesis of proteins. In addition, many

viruses use RNA instead of DNA as their genetic material. Some RNA molecules play

an active role in cells by catalyzing biological reactions, controlling gene expression,

or sensing and communicating responses to cellular signals. One of these active

processes is protein synthesis, a universal function whereby mRNA molecules direct

the assembly of proteins on ribosomes. This process uses transfer RNA (tRNA)

molecules to deliver amino acids to the ribosome, where ribosomal RNA (rRNA)

links amino acids together to form proteins. The chemical structure of RNA is very

similar to that of DNA, with two differences: (a) RNA contains the sugar ribose, while

DNA contains the slightly different sugar deoxyribose (a type of ribose that lacks one

oxygen atom), and (b) RNA has the nucleobaseuracil while DNA contains thymine.

Unlike DNA, most RNA molecules are single-stranded and can adopt very complex

three-dimensional structures.

Protein:

Proteins are biochemicalcompounds consisting of one or more polypeptides typically

folded into a globular or fibrous form, facilitating a biological function.

A polypeptide is a single linear polymer chain of amino acids bonded together by

peptide bonds between the carboxyl and amino groups of adjacent amino acid

residues. The sequence of amino acids in a protein is defined by the sequence of a

gene, which is encoded in the genetic code. In general, the genetic code specifies 20

standard amino acids; however, in certain organisms the genetic code can include

seleno-cysteine and in certain archaeapyrolysine. Shortly after or even during

synthesis, the residues in a protein are often chemically modified by posttranslational

modification, which alters the physical and chemical properties, folding, stability,

activity, and ultimately, the function of the proteins. Sometimes proteins have non-

peptide groups attached, which can be called prosthetic groups or cofactors. Proteins

can also work together to achieve a particular function, and they often associate to

form stable proteincomplexes. Like other biological macromolecules such as

http://en.wikipedia.org/wiki/Virus
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Protein_biosynthesis
http://en.wikipedia.org/wiki/Ribosome
http://en.wikipedia.org/wiki/Transfer_RNA
http://en.wikipedia.org/wiki/Ribosomal_RNA
http://en.wikipedia.org/wiki/Deoxyribose
http://en.wikipedia.org/wiki/Uracil
http://en.wikipedia.org/wiki/Thymine
http://en.wikipedia.org/wiki/Biochemistry
http://en.wikipedia.org/wiki/Biochemistry
http://en.wikipedia.org/wiki/Peptide
http://en.wikipedia.org/wiki/Globular_protein
http://en.wikipedia.org/wiki/Fibrous_protein
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Peptide_bond
http://en.wikipedia.org/wiki/Carboxyl
http://en.wikipedia.org/wiki/Amino
http://en.wikipedia.org/wiki/Residue_%28chemistry%29
http://en.wikipedia.org/wiki/Peptide_sequence
http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Genetic_code
http://en.wikipedia.org/wiki/Selenocysteine
http://en.wikipedia.org/wiki/Archaea
http://en.wikipedia.org/wiki/Archaea
http://en.wikipedia.org/wiki/Posttranslational_modification
http://en.wikipedia.org/wiki/Posttranslational_modification
http://en.wikipedia.org/wiki/Prosthetic_group
http://en.wikipedia.org/wiki/Cofactor_%28biochemistry%29
http://en.wikipedia.org/wiki/Protein_complex
http://en.wikipedia.org/wiki/Macromolecules

13

polysaccharides and nucleic acids, proteins are essential parts of organisms and

participate in virtually every process within cells. Many proteins are enzymes that

catalyze biochemical reactions and are vital to metabolism. Proteins also have

structural or mechanical functions, such as actin and myosin in muscle and the

proteins in the cytoskeleton, which form a system of scaffolding that maintains cell

shape. Other proteins are important in cell signaling, immune responses, cell adhesion,

and the cell cycle. Proteins are also necessary in animals' diets, since animals cannot

synthesize all the amino acids they need and must obtain essential amino acids from

food. Through the process of digestion, animals break down ingested protein into free

amino acids that are then used in metabolism.

We have said earlier about the macromolecules which are important for every living

organism. Now we will discuss about their sequence alignment shortly in the

following:

The sequence alignments of the macromolecules are almost same but the exception

exists in their representation of respective characters. For DNA the representative

characters are-A, T, C, G; for RNA-A, U, C, G and for proteins the representative

characters are various amino acids‟ characters. The algorithmic approach is same for

the three macromolecules. We will discuss about the sequence techniques both the

existing ones and ours in the later parts.

http://en.wikipedia.org/wiki/Polysaccharide
http://en.wikipedia.org/wiki/Nucleic_acid
http://en.wikipedia.org/wiki/Cell_%28biology%29
http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Catalysis
http://en.wikipedia.org/wiki/Metabolism
http://en.wikipedia.org/wiki/Actin

14

Figure 2: Protein Structure.

2.3 Existing Sequence Alignment Techniques:

There are two types of sequence alignment techniques. They are pairwise and multiple

sequence alignment. In pairwise sequence alignment technique we try to find the best

possible matching as local or global alignments of two query sequences. On the other

hand multiple sequence alignment is an extension of pairwise sequence alignment

where we also try to find the best possible matching from more than two sequences.

As we work with pairwise sequence alignment in our thesis so we will try to discuss

some of the pairwise alignment techniques in the following:

2.3.1 Pairwise Sequence Alignment Techniques:

2.3.1.1 Dot-matrix Method:

The dot-matrix approach produces a group of alignments for individual sequence

regions. It is conceptually simple. It is easy to visually pick certain sequence features

(such as-insertions, deletions, repeats, or invert repeats) in the absence of noise. In

order to construct the plot of dot-matrix we use a two-dimensional matrix where two

15

sequences are written along the top row and leftmost column. The recurrence plot is

selected by putting a dot at the place where the characters match appropriately. Very

closely related sequences appear as a single line along the matrix‟s main diagonal as

plotted dots.

The main advantage of this techniques is repetitiveness in a single sequence. Here we

can plot a sequence against itself and if they share significant similarities will appear

as lines off the main diagonal. If a protein has multiple similar structural domains then

this situation can occur.

This method incorporates some problems which we cannot neglect. We use dot plots

for displaying the information. For this reason the technique includes- noise, lack of

clarity, non-intuitiveness, difficulty in extracting match positions between two

sequences. The main advantage is the wastage of space where the match data is

inherently duplicated across the diagonal and most of the actual plotted area is

covered either by empty space or noise. So there can be loss of information too and it

is not desired.

 Figure 3: Dot-Matrix Plot

16

2.3.1.2 Dynamic Programming:

For the production of global and local alignments dynamic programming technique is

applied. Needleman-Wunsch used dynamic programming for producing global

alignments where Smith-Waterman used this technique for producing local

alignments. Here protein alignments use a substitution matrix for matching and DNA

and RNA may use scoring matrix. In this technique we can use gap penalties for

DNA, RNA and proteins. In standard dynamic programming, the score of each amino

acid position is independent of the identity of its neighbors and here base stacking

effects are not taken into account but it is possible to take account by modifying the

algorithm efficiently. A common extension to standard linear gap costs is the usage of

two different gap penalties for opening a gap and for extending a gap. Typically the

former is much larger than the latter, e.g. -10 for gap open and -2 for gap extension.

Thus, the number of gaps in an alignment is usually reduced and residues and gaps are

kept together, which typically makes more biological sense. The Gotoh algorithm

implements affine gap costs by using three matrices.

Dynamic programming can be useful in aligning nucleotide to protein sequences, a

task complicated by the need to take into account frameshift mutations (usually

insertions or deletions). The framesearch method produces a series of global or local

pairwise alignments between a query nucleotide sequence and a search set of protein

sequences, or vice versa. Its ability to evaluate frameshifts offset by an arbitrary

number of nucleotides makes the method useful for sequences containing large

numbers of indels, which can be very difficult to align with more efficient heuristic

methods. In practice, the method requires large amounts of computing power or a

system whose architecture is specialized for dynamic programming. The dynamic

programming technique guarantees in finding an optimal alignment from a given

particular scoring function. But making a good scoring function is an empirical rather

than a theoretical matter most of the time.

http://en.wikipedia.org/wiki/Frameshift

17

 Figure 4: Dynamic Programming Plot.

2.3.1.3 Word Methods:

The k-tuple method is also known as world methods. It uses heuristic methods which

cannot guaranty of an optimal alignment solution but is significantly more efficient

than dynamic programming. These methods are used in large databases where it is

assumed that there will be no significant match between two sequences. World

methods identify a series of short, nonoverlapping subsequences in the query sequence

that is then matched to candidate database sequences. The relative positions of the

word in the two sequences being compared are subtracted to obtain an offset; this will

indicate a region of alignment if multiple distinct words produce the same offset. Only

if this region is detected do these methods apply more sensitive alignment criteria;

thus, many unnecessary comparisons with sequences of no appreciable similarity are

eliminated.

18

In the FASTA method, the user defines a value k to use as the word length with which

to search the database. The method is slower but more sensitive at lower values of k,

which are also preferred for searches involving a very short query sequence. The

BLAST family of search methods provides a number of algorithms optimized for

particular types of queries, such as searching for distantly related sequence matches.

BLAST was developed to provide a faster alternative to FASTA without sacrificing

much accuracy; like FASTA, BLAST uses a word search of length k, but evaluates

only the most significant word matches, rather than every word match as does

FASTA. Most BLAST implementations use a fixed default word length that is

optimized for the query and database type, and that is changed only under special

circumstances, such as when searching with repetitive or very short query sequences.

2.3.2 Multiple Sequence Alignment Techniques:

Though we do not work with multiple sequence alignment but our proposed technique

has the capability of that and for that reason the technique can be modified in future.

That‟s why we are going to give a brief discussion on existing multiple sequence

alignment techniques in the following:

2.3.2.1 Dynamic Programming:

The technique of dynamic programming is theoretically applicable to any number of

sequences; however, because it is computationally expensive in both time and

memory, it is rarely used for more than three or four sequences in its most basic form.

This method requires constructing the n-dimensional equivalent of the sequence

matrix formed from two sequences, where n is the number of sequences in the query.

Standard dynamic programming is first used on all pairs of query sequences and then

the "alignment space" is filled in by considering possible matches or gaps at

intermediate positions, eventually constructing an alignment essentially between each

two-sequence alignment. Although this technique is computationally expensive, its

guarantee of a global optimum solution is useful in cases where only a few sequences

need to be aligned accurately. One method for reducing the computational demands of

19

dynamic programming, which relies on the "sum of pairs" objective function, has been

implemented in the MSA software package.

2.3.2.2 Progressive Methods:

Progressive, hierarchical, or tree methods generate a multiple sequence alignment by

first aligning the most similar sequences and then adding successively less related

sequences or groups to the alignment until the entire query set has been incorporated

into the solution. The initial tree describing the sequence relatedness is based on

pairwise comparisons that may include heuristic pairwise alignment methods similar

to FASTA. Progressive alignment results are dependent on the choice of "most

related" sequences and thus can be sensitive to inaccuracies in the initial pairwise

alignments. Most progressive multiple sequence alignment methods additionally

weight the sequences in the query set according to their relatedness, which reduces the

likelihood of making a poor choice of initial sequences and thus improves alignment

accuracy. Many variations of the Cluster progressive implementationare used for

multiple sequence alignment, phylogenetic tree construction, and as input for protein

structure prediction. A slower but more accurate variant of the progressive method is

known as T-Coffee.

2.3.2.3 Iterative Methods:

Iterative methods attempt to improve on the heavy dependence on the accuracy of the

initial pairwise alignments, which is the weak point of the progressive methods.

Iterative methods optimize an objective function based on a selected alignment

scoring method by assigning an initial global alignment and then realigning sequence

subsets. The realigned subsets are then themselves aligned to produce the next

iteration's multiple sequence alignment. Various ways of selecting the sequence

subgroups and objective function are reviewed in.

20

2.3.2.4 Motif Finding:

Motif finding, also known as profile analysis, constructs global multiple sequence

alignments that attempt to align short conserved sequence motifs among the sequences

in the query set. This is usually done by first constructing a general global multiple

sequence alignment, after which the highly conserved regions are isolated and used to

construct a set of profile matrices. The profile matrix for each conserved region is

arranged like a scoring matrix but its frequency counts for each amino acid or

nucleotide at each position are derived from the conserved region's character

distribution rather than from a more general empirical distribution. The profile

matrices are then used to search other sequences for occurrences of the motif they

characterize. In cases where the original data set contained a small number of

sequences, or only highly related sequences, pseudocounts are added to normalize the

character distributions represented in the motif.

2.3.2.5 Techniques Inspired by Computer Science:

A variety of general optimization algorithms commonly used in computer science

have also been applied to the multiple sequence alignment problem. Hidden Markov

models have been used to produce probability scores for a family of possible multiple

sequence alignments for a given query set; although early HMM-based methods

produced underwhelming performance, later applications have found them especially

effective in detecting remotely related sequences because they are less susceptible to

noise created by conservative or semiconservative substitutions.Genetic algorithms

and simulate annealing have also been used in optimizing multiple sequence

alignment scores as judged by a scoring function like the sum-of-pairs method. More

complete details and software packages can be found in the main article multiple

sequence alignment.

21

Chapter 3.Proposed Method:

3.1 Overall Concept:

Sequences are sufficiently flexible to be able to express the same meaning through

different alignment. At the same time, inconsistency of surface expressions has

persisted as a serious problem in natural sequencing processing. For example, in the

biomedical domain, cardiovascular disorder can be described using various

expressions: cardiovascular diseases, cardiovascular system disorder, and disorder of

the cardiovascular system. It is a nontrivial task to find the entry from these surface

expressions appearing in sequence. This study addresses approximate sequence

matching, which consists of finding all the possible matching in a sequence collection

V such that they have similarity that is no smaller than a threshold _ with a query

string x. This task has a broad range of applications, including sequencing correction,

relative sequence look-up, record linkage, and duplicate sequence.

Formally, the task obtains a subset V

 = { y V | sim(x,y) },………………………………………………………(1)

Wherein (x, y) present the similarity between x and y. A naive solution to this task is

to compute similarity values |V | times, i.e., between x and every string .

However, this solution is impractical when the number of strings |V | is huge (e.g.,

more than one million).

3.2 Proposed Method and Algorithm:

We assume that the characters of a sequence are represented arbitrarily by a set.

Although it is important to design a sequence representation for an accurate similarity

measure, we do not address this problem: our emphasis is not on designing a better

representation for sequence matching but on establishing an efficient algorithm.

Our representation is given by n-grams: all subsequences of size n in a string. We use

trigrams throughout this study as an example of sequence representation. For example

the sequence “ATCGTAGTATTAGTTACCT” is expressed in 21 elements of letter

22

trigrams(1), {„$$A‟, „$AT‟, „ATC‟, „TCG‟, „CGT‟, „GTA‟, „TAG‟, „AGT‟, „GTA‟,

„TAT‟, „ATT‟, „TTA‟, „TAG‟, „AGT‟, „GTT‟, „TTA‟, „TAC‟, „ACC‟, „CCT‟, „CT$‟,

„T$$‟}. We used two „$$‟ signs to indicate the starting and ending of the sequence.

But we discard two characters („$$A‟ and „T$$‟) from comparison in the sequence

alignment technique for experiencing a better efficiency. In general, a string x

consisting of |X| characters yields (|x| + n − 1) elements of n grams. We call |x| and |X|

the length and size, respectively, of the string x.

Let X and Y denote the feature sets of the strings x and y, respectively. The cosine

similarity between the two strings x and y is,

 Cosine(X, Y) = ………………………………...(2)

By integrating this definition with Equation 1, we obtain the necessary and sufficient

condition for

 [] |X Y| min { |X| , |Y|}…………….(3)

This inequality states that two strings x and y must have at least = []

features in common. When ignoring |X Y | in the inequality, we have an inequality

about |X| and |Y |,

 [|X|] |Y| []………………………………...(4)

This inequality presents the search range for retrieving similar strings; that is, we can

ignore strings whose feature size is out of this range. Other derivations are also

applicable to similarity measures, including Dice, Jaccard, and overlap coefficients.

We explain one usage of these conditions. Let query string x =

“ATCGTAGTATTAGTTACCT” and threshold for approximate dictionary matching

 = 0.7 with cosine similarity. Representing the strings with letter trigrams, we have

the size of x, |X| = 19. The inequality (4) gives the search range of |Y| of the retrieved

strings, 10 |Y| 39. Presuming that we are searching for strings of |Y | = 15,we

obtain the necessary and sufficient condition for the approximate sequence matching

from the inequality (3), = 15 |X Y |. Now if we take sequence of 22 characters

23

and we run our program with trigrams with the previous threshold value then we will

not get any desired values. For that the cosine(X,Y) value will be 0.1467 which is not

anywhere near to our threshold value. So we will not always take trigrams for

comparison between the sequences for alignment. For this reason we try to make our

program to work in an efficient environment by giving user the feasibility of selecting

the number of characters of a chunk.

In the above discussion we said about the exact matching between two sequences. But

in real life we rarely have the probability of exact matching. That‟s why we

incorporate gaps for relative matching. In that purpose we also use the same equations

and procedures. Like there will be threshold value according which we will try to find

our desired sequence alignment and for comparison we also take out two characters

(„$$A‟ and „T$$‟) like the previous one. For finding the relative sequence alignment

we do not negotiate with accuracy.

Our proposed algorithm is given below:

24

 Input: V : collection of sequences

 Input: x: query sequence

 Input: α: threshold for the similarity

 Output: Y: list of sequences similar to the query

 1.X string to character(x);

 2.Y [];

 3.forl min y(|X|, _) to max y(|X|, α) do

 4. min overlap(|X|, l, α);

 5. R = overlapjoin(X, Y, V, l);

 6. for each r 2 R do append r to Y;

 7. end

 8. return Y;

4.Experimental Analysis:

We report the experimental results of approximate dictionary matching on large-scale

datasets with person names, biomedical names, and general English words. We

implemented various systems of approximate dictionary matching.

4.1 Datasets

We used three large datasets with person names (IMDB actors), general English

words (Google Web1T), and biomedical names (UMLS).

25

• IMDB(International Medical Database): This dataset comprises disease names

extracted from the IMDB database6. We used all virus names (1,098,022 strings; 18

MB) from the file diease.rr.ogf. The average number of letter trigrams in the strings is

17.2. The total number of trigrams is 42,180. The system generated index files of 83

MB in 56.6 s.

• GoogleWeb1T unigrams: This dataset consists of English word unigrams included in

the Google Web1T corpus (LDC2006T13). We used all word unigrams (13,588,391

strings; 121 MB) in the corpus after removing the frequency information. The average

number of letter trigrams in the strings is 10.3. The total number of trigrams is

301,459. The system generated index files of 601 MB in 551.7 s.

• UMLS: This dataset consists of English names and descriptions of biomedical

concepts included in the Unified Medical Language System (UMLS). We extracted all

English concept names (5,216,323 strings; 212 MB) from MRCONSO.RRF.aa.gz and

MRCONSO.RRF.ab.gz in UMLS Release 2009AA. The average number of letter tri-

grams in the strings is 43.6. The total number of trigrams is 171,596. The system

generated indexes of 1.1 GB in 1216.8 s. For each dataset, we prepared 1,000 query

strings by sampling strings randomly from the dataset. To simulate the situation where

query strings are not only identical but also similar to dictionary entries, we

introduced random noise to the strings. In this experiment, one-third of the query

strings are unchanged from the original (sampled) strings, one-third of the query

strings have one letter changed, and one-third of the query strings have two letters

changed. When changing a letter, we randomly chose a letter position from a uniform

distribution, and replaced the letter at the position with an ASCII letter randomly

chosen from a uniform distribution.

4.2 Results:

To examine the scalability of each system, we controlled the number of strings to be

indexed from 10%–100%, and issued 1,000 queries. Figure 1 portrays the average

response time for retrieving strings whose cosine similarity values are no smaller than

0.7. Although LSH (B=16) seems to be the fastest in the graph, this system missed

26

many true positives7; the recall scores of approximate dictionary matching were

15.4% (IMDB), 13.7% (Web1T), and 1.5% (UMLS). Increasing the parameter B

improves the recall at the expense of the response time. LSH (B=64) 8. It not only ran

slower than the proposed method, but also suffered from low recall scores, 25.8%

(IMDB), 18.7% (Web1T), and 7.1% (UMLS). LSH was useful only when we required

a quick response much more than recall. The other systems were guaranteed to find

the exact solution (100% recall). The proposed algorithm was the fastest of all exact

systems on all datasets: the response times per query (100% index size) were 1.07 ms

(IMDB), 1.10 ms (Web1T), and 20.37 ms (UMLS). The response times of the Naıve

algorithm were too slow, 32.8 s (IMDB), 236.5 s (Web1T), and 416.3 s (UMLS). The

proposed algorithm achieved substantial improvements over the AllScan algorithm:

the proposed method was 65.3 times (IMDB), 227.5 times (Web1T), and 13.7 times

(UMLS) faster than the Naıve algorithm. We observed that the Signature algorithm,

which is Algorithm 3 with- out lines 17–18, did not perform well: The Sig- nature

algorithm was 1.8 times slower (IMDB), 2.1 times faster (Web1T), and 135.0 times

slower (UMLS) than the AllScan algorithm. These results indicate that it is imperative

to minimize the number of candidates to reduce the number of binary-search

operations. The proposed algorithm was 11.1–13.4 times faster than DivideSkip.

Figure 2 presents the average response time of the proposed algorithm for different

similarity measures and threshold values. When the similar- ity threshold is lowered,

the algorithm runs slower because the number of retrieved strings |Y| in- creases

exponentially. The Dice coefficient and cosine similarity produced similar curves.

Table 2 summarizes the run-time statistics of the proposed method for each dataset

(with cosine similarity and threshold 0.7). Using the IMDB dataset, the proposed

method searched for strings whose size was between 8.74 and 34.06; it retrieved 4.63

strings per query string. The proposed algorithm scanned 279.7 strings in 4.6 inverted

lists to obtain 232.5 candidate strings. The algorithm performed a binary search on 4.3

inverted lists containing 7,561.8 strings in all. In contrast, the AllScan algorithm had

to scan 16,155.1 strings in 17.7 inverted lists and considered 9,788.7 candidate strings,

and found only 4.63 similar strings. This table clearly demonstrates three key

contributions of the proposed algorithm for efficient approximate dictionary matching.

27

First, the pro- posed algorithm scanned far fewer strings than did the AllScan

algorithm. For example, to obtain candidate strings in the IMDB dataset, the pro-

posed algorithm scanned 279.7 strings, whereas the AllScan algorithm scanned

16,155.1 strings. Therefore, the algorithm examined only 1.1%– 3.5% of the strings in

the entire inverted lists in the three datasets. Second, the proposed algorithm

considered far fewer candidates than did the AllScan algorithm: the number of

candidate strings considered by the algorithm was 1.2%– 6.6% of those considered by

the AllScan algorithm. Finally, the proposed algorithm read fewer inverted lists than

did the AllScan algorithm. The proposed algorithm actually read 8.9 (IMDB), 6.0

(Web1T), and 31.7 (UMLS) inverted lists during the experiments9. These values

indicate that the proposed algorithm can solve τ -overlap join problems by checking

only 50.3% (IMDB), 53.6% (Web1T), and 51.9% of the total inverted lists retrieved

for queries.

 Table 1: Run-time statistics of the proposed algorithm for each dataset

28

4.3 Parameter Generation:

 Positional features Position-specific k-mers are the most common features used for

finding signals in the DNA stream data. These features capture the correlations

between different nucleotides and their relative positions. The nucleotides bordering

the splice site are of primary importance as they may capture binding information. The

simplest features of this type are position-specific 1-mers, which describe the

occurrence of a specific nucleotide in a particular location in the sequence. These

features also define the consensus sequence. We consider sequences of length 160, so

there are 4 × 160 or 640 possible position-specific 1-mers. We use this basic feature

set to construct position-specific k-mer features. Position-specific k-mers capture the

correlations between k-adjacent nucleotides. At each position i in the sequence, these

features represent the substrings appearing at positions i, i+1, .., i + k − 1. This feature

type is useful for discovering species-specific functional signals, as well as

29

evolutionary conserved functional signals. For each position-specific k-mer we record

the presence or absence of that feature in the neighborhood of the splice site. This

results in a set of (n − k + 1)×4k potential features for each value of k and sequence of

length n.

Construction Method. This construction method starts with an initial set of position-

specific k-mer features and extends them to a set of position-specific (k+1)-mers by

appending the letters of the alphabet to each position-specific k-mer feature. As an

example, suppose an initial set of 2-mers F initial = {ac2, cg5}, where the subscript

denotes the starting position. F constructed = {aca2, acc2, acg2, act2, cga5, cgc5, cgg5,

cgt5} is the extended set of position specific 3-mers. Incrementally, in this manner, we

can construct level k + 1from level k.To capture the correlations between different

nucleotides in non-consecutive positions in the sequence, we describe conjunctive

position-specific features. We construct these complex features from conjunctions of

basic position-specific features. This feature type is useful for discovering interacting

functional signals in the sequence. The dimensionality of this kind of feature is

inherently high. For each conjunctive positional feature, we record the presence or

absence of that feature in the neighborhood of the splice site. For each iteration, if the

number of conjuncts is k, we have a total of _nk_ × 4k such features for a sequence of

length n.

Construction Method: We construct conjunctions of basic features by starting with

an initial conjunction of basic features and adding another conjunct basic feature in an

unconstrained position. Let our basic set be F basic = {a1, c1, . . . , gn, tn}, where a1

denotes nucleotide a at the first sequence position, and so on. If our initial set is F

initial = {a1, g2}, we can extend it to the level 2 set of position-specific base

combination.

So in this case we find that, we have these types of parameter:

Cosine(X,Y)= The cosine function for similarity.

(X)= The correlated set that has common number of element.

30

τ= The amount of least common elements.

α= Accuracy Threshold.

4.4 Comparing Existing Method:

Our previous chapter gives a few insight about result generation according to our

proposal. Here we represent some of our results graphically to show the comparison

between our method and the existing.

We can also graphically represent the existing methods with our methods for different

sirt of datasets.

31

 Figure 5: Comparison between sequence length and gram-wise analysis.

Here we are showing the gram wise analysis for the sequences. As we are taking a

much bigger n-gram with every evaluation of the reference sequence in length more

grams taken gives a good feedback whereas less gram analysis gives a result that is

hazier. Below Run time analysis shows another situation where system derivatives and

gram wise representation varies.

32

Figure 6: Comparative runtime analysis for Runtime for different methods.

33

 Figure 7: Runtime analysis for some of our benchmark datasets:1.UMLS 2.WEB1T

Chapter 5. Conclusion:

We present a simple and efficient algorithm for approximate DNA sequence matching

with the cosine measures. We conducted experiments of approximate DNA sequence

matching on large-scale datasets with different DNA sequences for biolife and

diseases. Even though the algorithm is very simple, our experimental results showed

that the proposed algorithm executed very quickly. We also confirmed that the

proposed method drastically reduced the number of candidate strings considered

during approximate dictionary matching. We believe that this study will advance

practical NLP applications for which the execution time of approximate dictionary

matching is critical.

Our performance can be more fast if we can somehow bound our n-gram derivative to

necessary level according to our τ overlap number and accuracy threshold α. In future

we hope to pursue over this notions.

34

References:

1. Andoni, Alexandr and PiotrIndyk. 2008. Near- optimal hashing algorithms for

approximate nearest neighbor in high dimensions. Communications of the

ACM, 51(1):117–122.

2. Arasu, Arvind, VenkateshGanti, and RaghavKaushik. 2006. Efficient exact set-

similarity joins. In VLDB ‟06: Proceedings of the 32nd International Confer-

ence on Very Large Data Bases, pages 918–929.

3. Behm, Alexander, ShengyueJi, Chen Li, and Jiaheng Lu. 2009. Space-

constrained gram-based indexing for efficient approximate string search. In

ICDE ‟09: Proceedings of the 2009 IEEE International Conference on Data

Engineering, pages 604–615.

4. Bergsma, Shane and GrzegorzKondrak. 2007. Alignment-based discriminative

string similarity. In ACL ‟07: Proceedings of the 45th Annual Meet- ing of the

Association of Computational Linguistics, pages 656–663.

5. Bocek, Thomas, Ela Hunt, and Burkhard Stiller. 2007. Fast similarity search in

large dictionaries. Technical Report ifi-2007.02, Department of Informatics

(IFI), University of Zurich. 858Chandel, Amit, P. C. Nagesh, and

SunitaSarawagi. 2006. Efficient batch top-k search for dictionary based entity

recognition. In ICDE ‟06: Proceed- ings of the 22
nd

 International Conference

on Data Engineering.

6. Charikar, Moses S. 2002. Similarity estimation tech- niques from rounding

algorithms. In STOC ‟02: Proceedings of the thiry-fourth annual ACM sym-

posium on Theory of computing, pages 380–388.

7. Chaudhuri, Surajit, VenkateshGanti, and RaghavKaushik. 2006. A primitive

operator for similarity joins in data cleaning. In ICDE ‟06: Proceedings of the

22nd International Conference on Data Engineering.

8. Cohen, William W., PradeepRavikumar, and Stephen E. Fienberg. 2003. A

comparison of string distance metrics for name-matching tasks. In Proceedings

of the IJCAI-2003 Workshop on Information Integration on the Web (IIWeb-

03), pages 73–78.

35

9. Davis, Jason V., Brian Kulis, Prateek Jain, SuvritSra,and Inderjit S. Dhillon.

2007. Information-theoretic metric learning. In ICML ‟07: Proceedings of the

24th International Conference on Machine Learning, pages 209–216.

10. Gravano, Luis, Panagiotis G. Ipeirotis, H. V. Jagadish,Nick Koudas,

S.Muthukrishnan, and DiveshSrivastava. 2001. Approximate string joins in a

database (almost) for free. In VLDB ‟01: Proceedings of the27th International

Conference on Very Large DataBases, pages 491–500.

11. Henzinger, Monika. 2006. Finding near-duplicate web pages: a large-scale

evaluation of algorithms. In SIGIR ‟06: Proceedings of the 29th Annual Inter-

national ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 284– 291.

12. Huynh, Trinh N. D., Wing-Kai Hon, Tak-Wah Lam,and Wing-Kin Sung. 2006.

Approximate string matching using compressed suffix arrays. Theoreti-cal

Computer Science, 352(1-3):240–249. Kim, Min-Soo, Kyu-Young Whang,

Jae-Gil Lee, and Min-Jae Lee. 2005. n-Gram/2L: a space and time efficient

two-level n-gram inverted index structure. In VLDB ‟05: Proceedings of the

31st International Conference on Very Large Data Bases, pages 325– 336.

13. Lee, Hongrae, Raymond T. Ng, and Kyuseok Shim.2007. Extending q-grams to

estimate selectivity of string matching with low edit distance. In VLDB ‟07:

Proceedings of the 33rd International Conference on Very Large Data Bases,

pages 195–206.

14. Li, Chen, Bin Wang, and Xiaochun Yang. 2007. Vgram: improving

performance of approximate queries on string collections using variable-length

grams. In VLDB ‟07: Proceedings of the 33rd International Conference on

Very Large Data Bases, pages 303–314.

15. Li, Chen, Jiaheng Lu, and Yiming Lu. 2008. Effi-cient merging and filtering

algorithms for approximate string searches. In ICDE ‟08: Proceedings of the

2008 IEEE 24
th

International Conference onData Engineering, pages 257–266.

16. Liu, Xuhui, Guoliang Li, JianhuaFeng, and LizhuZhou. 2008. Effective indices

for efficient approximate string search and similarity join. InWAIM‟08:

36

Proceedings of the 2008 The Ninth International Conference on Web-Age

Information Management, pages 127–134.

17. Manku, Gurmeet Singh, Arvind Jain, and AnishDas Sarma. 2007. Detecting

near-duplicates for web crawling. In WWW ‟07: Proceedings of the 16th

International Conference on World Wide Web, pages 141–150.

18. Navarro, Gonzalo and Ricardo Baeza-Yates. 1998. Apractical q-gram index for

text retrieval allowing errors. CLEI Electronic Journal, 1(2).Ravichandran,

Deepak, Patrick Pantel, and Eduard Hovy. 2005. Randomized algorithms and

nlp: using locality sensitive hash function for high speed noun clustering. In

ACL ‟05: Proceedings of the 43rd Annual Meeting on Association for

Computa- tional Linguistics, pages 622–629.

19. Sarawagi, Sunitaand AlokKirpal. 2004. Efficient set joins on similarity

predicates. In SIGMOD ‟04: Proceedings of the 2004 ACM SIGMOD

international conference on Management of data, pages743–754.

20. Wang, Wei, Chuan Xiao, Xuemin Lin, and ChengqiZhang. 2009. Efficient

approximate entity extraction with edit distance constraints. In SIGMOD ‟09:

Proceedings of the 35th SIGMOD International Conference on Management of

Data, pages 759–770.

21. Winkler, William E. 1999. The state of record link-age and current research

problems.Technical Report R99/04, Statistics of Income Division, Internal

Revenue Service Publication.

22. Xiao, Chuan, Wei Wang, and Xuemin Lin. 2008. Ed-Join: an efficient

algorithm for similarity joins with edit distance constraints. In VLDB ‟08:

Proceedings of the 34th International Conference on Very Large Data Bases,

pages 933–944.

