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Abstract

Object tracking is one of the main areas in computer vision. Tracking is basically

a process of locating a moving object over time using any kind of sensing device.

Here the image sensing device works as the input device and the whole tracking is

done by processing the image information. To track an object is not an easy task

because of various limitations of the input device and the processing ability of the

processors. The underlying scientific phenomenon of the dynamics and physics

of this mysterious world make it worse. Our tracker was developed to track an

object regardless of its any feature, for example, the shape, color or intensity,

illumination change. It was also developed to work in fast camera motion move-

ments. To have an idea of the motions of every pixel in two consecutive frames

we have to determine the motion vectors at first. Using Lucas-Kanade method

we managed to find the motion vectors. Now it is the problem of determining

the actual motion vector which has caused the tracked object move. We used

the Global motion estimation from the coarsely sampled motion vector field. We

incorporated the cascaded outliers rejection method where outliers indicates the

noises. It was incorporated after getting the motion vectors at first stage and

before calculating the global motion estimation. This system was experimented

on three different videos which had distinctive characteristics. Comparing with

the state of the art trackers our tracker showed a very good performance and

sometimes better than those.
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Chapter 1

Introduction

1.1 Overview

Information retrieval and data analysis is the most necessary field in today’s

world. To survive in this competitive world this field is becoming popular day by

day .In every aspect of life people now think about how to involve the technology

and make their life easier .An easier life wants to reduce their burden by giving

their task to others. From this thought the automated system or the process

that can be done by the computer itself is being developed .One way to do this is

to retrieve enough information about the task and analyze in a way so that the

task can be done without any direct help of the human .Moreover to increase the

accuracy and efficiency of the task. Computer vision now-a-days is a buzz word

in this world .People now wants to see the world in more precise way with the

computer. They want to leave many of their tasks related to the eye monitoring

to the automated computer vision .Visual tracking is one of the fascinating area

of this field. Our topics are about the object tracking.

Tracking can have many classifications, branches according to their nature,

uses, and procedures. Object tracking is one of a kind where we want to track

an object. The object can have a special shape or sizes or color or any other

feature. In another kind we can track any kind of shapes, sizes or color or any

other feature. We have just to select the object regardless of any feature. But

many of us still think about what is actually meant by tracking. If we present

an example we think it will be clear for many of our readers. For example we

1
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are watching a football game with our own eyes. But one of us doesn’t know the

best player in the team. So others are helping him to make him known to him.

Let’s say we helped him to recognize that the jersey no 9 is the best player and

he should follow him to every step so that he can enjoy the game best even the

player doesn’t possess the ball all time . He then watched him throughout the

game like a spy and didn’t watch any of the other players. This is called tracking

because tracking is all about to follow in every step .Whatever happens in rest

of the world is not concerned here. The motion or the environment or the other

situation should not hamper here.

Our tracking concentrated on any kind of shaped object tracking. We are

not narrowing down our focus in any particular environment. Whatever fast

movements happen or the motions of the object or the other backgrounds are it

should work.

There are many challenges related with this system because of its nature. The

most difficult problem is that we actually don’t know the mystery of the motion of

the objects that we see are moving. There are many underlying things happening

in front of our eyes that we cannot perceive. There are many complex motions

happening all the time with incredible synchronization. But if we want to describe

the technical difficulties we have to first mention about the processing power. Our

human eyes capture the images and send it to the brains which have the immense

calculation power and the storage. The brain not only depends on calculating

the motion trajectory, it also does the synchronization with the previous stored

images to solve the reference problem. We have processors that cannot meet the

calculation of any complex motion. The capture device also does not have the

sufficient input quality. We have to work with very little resources. There is not

enough optimized algorithm also. It creates the problem more difficult.

Although we have many challenges in this field we have a very wide and interest-

ing application fields for this. It is being implemented in numerous applications,
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for example, security, surveillance [17], human-computer interaction [18], traffic

pattern analysis [19], recognition, medical image processing [20]. In these all fields

tracking is there but the object may vary according to the subject of purpose. For

example in surveillance one may choose any particular person to track wherever

he goes. In a densely populated area among all the people it should track only

that people.

1.2 Problem Domain

We have talked little about tracking. Now we want to dig into a little deeper.

There are many problems and challenges in tracking an object. What we see from

other tracker is that still no tracker can solve all the problems. If any tracker

wants to do these it makes the program very difficult to handle all the aspects

and it cannot encompass all the calculation in it. As a result considering all the

technical limitation it is very slow and show very poor performance. So when

any tracker is being developed there focus of interest has to be narrowed down

to a small set of problems. Our area of interest is to develop a robust and cost

effective system that allows user to track any kind of selected object. Challenges

often encountered in object tracking:

� Loss of information caused by the projection of the 3D world on a 2D image

� Illumination change

� Object deformation

� Cluttered-background

� Complex object motion

� Full occlusion

� Partial occlusion

� In-plane rotation
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� Out-of-plane rotation

� Fast object motion or moving background

� Real-time processing requirements

1.3 Research Challenges

We have some challenges in our research what we want to solve. These are

discussed below:

� Illumination change: People don’t want to bother about the illumination

problem when they track. There any time may happen a low illumination in

an environment .And a particular range of illumination shouldn’t be chosen

either so we try to not to focus any kind of region of illumination to run

our program.

� Accuracy in detection: This is the main focus of research problem. Many

trackers don’t track the object correctly. There error rate is not negligible,

so they are useless in most of the applications. We hope that whatever

motion complexity is our program should track it with the minimalist error.

� Any kind of shape of Objects: The object shape can vary largely. We

should not limit it with only rectangle shape, triangle shape or circular

shape. Our user will choose any kind of shape they want to track. A

particular shape may make the algorithm easier but it cannot be usable for

the general use.

� Rotation invariant: Rotation invariant tracker means that if we rotate

any tracked object they should not lose the object in the proceedings. As we

know the object is still there, so to provide the accuracy in the tracking we

have to ensure the rotation invariant feature. Rotation can make an object

appear completely different; so many trackers can differentiate it from its

original appearance.
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� Fast object motion: Due to the camera configuration and the computa-

tion complexity the fast object motion tracking is avoided by most of the

trackers. But if we look at the basic purpose of tacking we have to concen-

trate on fast object motion tracking. Though we have technical limitation

we have to overcome it with our algorithm.

1.4 Motivation

Our main motivation to do this research is to ensure tracking accuracy. There

are many researches going on to develop a good tracker but no tracker is providing

a good accuracy. The tracking of fast movement of objects is another motivation

for us. Fast motion of object is a very normal phenomenon in our daily life. If

we cannot incorporate in our system then its application range will fall down to

very small range. These kind of things a make tracker more usable to a user and

we want that.

1.5 Research contribution

Our tracker is cautious about the computation complexity. To minimize the

computation complexity it doesn’t calculate the same frame twice. The consec-

utive frames are necessary to track a single transition. Most of the trackers at

first calculate the present frame, then the next frame and then to compute the

motion they have to go back to the previous frame again.

In this way every frame is being computed at least twice. Our tracker is a single

pass tracker where a frame is computed only once and thus has less computation.

It doesn’t store the frame information also. So it has minimum space complexity

also. For example the state of the art TLD tracker [8], [9], [10] uses the forward-

backward procedure where they have to compute every single frame twice. They

also store different appearance of the object, so they have space complexity too.
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We have incorporated the outlier rejection on the motion vector so that we

find the actual motion that actually happened among all the noises from the

background. The noisy motion always corrupts the actual data; as a result the

accuracy decreases in a great manner. An outlier rejection should be considered

as an intelligent way to handle the situation.

1.6 Thesis outline

In Chapter 1 we have talked about the introduction of our study in a precise

manner. Chapter 2 deals with some definition of tracker, how motion vectors

are generated, some outlier rejection methods, how Global motion estimation

works and how some state-of-the-art existing tracker works. Chapter 3 will be

discussed about our proposed algorithm and some elaborate discussion. Chapter

4 will consist of the experimental analysis and result comparisons.



Chapter 2

Literature review

2.1 Object Tracking

Object tracking can be defined as tracking a single or multiple objects over a

sequence of images [1]. So by just processing the current frame the tracker tracks

the object on the next image and then the next one. The object or objects are at

first selected on the first frame. There are lots of challenges that are associated

with tracking an object. They are - illumination, pose, scale, deformation, motion

blur, noise, and occlusion. By considering these challenges different trackers

are developed. But there is not a single tracker that can overcome all these

challenges. So according to the need specific tracking algorithms are used for

specific environments.

2.2 Key components of a tracker

Although different online object tracker has different components and features

according to the specific environment, there are some common components all

the trackers have. According to [1] there are three key components of a tracker -

� Object representation

� Dynamic model

� Search mechanism

We are going to discuss these three key components plus some other components

of tracking.

7
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2.2.1 Object Representation

An object in an image can be represented as holistic descriptors or local de-

scriptors. Some common holistic descriptors are color histograms and raw pixel

values. The advantage of histogram-based representation that they can effectively

handle object deformation as well as occlusion. However they cannot handle scale

changes and do not exploit the structural information of the object. Local de-

scriptors are used mainly because of their robustness to pose and illumination

change.

2.2.2 Adaptive Appearance model

For ensuring robust tracking performance it is crucial to update the appearance

model. The most straightforward and easiest way is to replace the current appear-

ance model with the information from the most recent tracking result. However

this type of tracking causes drifting in the tracking which leads to a very noise

output. There are many other update algorithms. In SemiT [5] the update algo-

rithm formulates the update problem as a semi-supervised task where the drawn

samples are treated as unlabeled data. The task is then to update a classifier with

both labeled and unlabeled data. Specific prior is used in BeSemiT [6] approach

to reduce drifts. In MILT [7] the tracking problem within the multiple instances

learning (MIL) framework to handle ambiguously labeled positive and negative

data obtained online for reducing visual drifts. TLD [8] pose the tracking prob-

lem as a semi-supervised learning task and exploit the underlying structure of

the unlabeled data to select positive and negative samples for update.

2.2.3 Motion Model

The dimensionality of state vector xt, at time t depends on the motion model

that a tracking method is equipped with. The most commonly adopted models

are translational motion (2 parameters), similarity transform (4 parameters), and

affine transform (6 parameters).
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2.2.4 Dynamic Model

A dynamic model, either predefined or learned from certain training data, is

often used to predict the possible target states (e.g., motion parameters) in order

to reduce the search space and computational load. A dynamic model is usually

utilized to reduce computational complexity in object tracking as it describes the

likely state transition, i.e.,p(xt|xt−1), between two consecutive frames where xt is

the state vector at time t.

2.2.5 Search Mechanism

Based on the search mechanism the tracking algorithms are categorized as

deterministic or stochastic. The searching mechanism is done using an objective

function which maximizing or minimizes the results based on distance, similarity

or classification measures, such as the Lucas-Kanade [2] algorithm which is a

deterministic method uses the sum of squared distance to measure the error.

Kalman filter [3] is also another deterministic method. TLD uses the Lucas-

Kanade method for searching. By considering observations over multiple frames

within a Bayesian formulation stochastic methods usually optimize the objective

function. It improves robustness over deterministic methods by its capability of

escaping from local minimum with much lower computational complexity than

sampling-based methods that operate on each frame independently.

2.3 Types of tracker

According to the tracking of an object and how can it track to different situation

we can categorize trackers of mainly two types:

� Short-term tracker

� Long-term tracker

The definition of these trackers are given below-
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� Short-term tracker: Short term trackers track an object for short period

of time. Short term trackers cannot track an object if it gets occluded by

another object or disappear from the view of the camera and reappear again

because it doesn’t store any kind information regarding the object. Rather

it only calculates the motion of the object. Although it might seem that

short term trackers has no use in real time applications but to build the

long-term tracker a short-term tracker is essential. The better the short-

term tracker is the better the tracker would be able to track the object

perfectly and find its trajectory. Lucas-kanade [2] is a widely used optical

flow estimation which is used to determine the motion vectors of a short-

term tracker. Another short-term tracker could be the template matching

algorithm which is a really primitive and brute force type of tracker which

is not very effective.

� Long-term tracker: Long-term trackers can track object even if it gets

occluded or disappears from the view of the camera and reappears again. A

good long-term tracker can track an object for a very long amount of time.

Long-term trackers use short term trackers to find the motion trajectory

of the object. It also stores information about the object. So even if the

object does disappear or get partially occluded by another object and then

reappears again a good long term tracker can locate that object and then

using the short term tracker to track it again. Some examples of good long-

term tracker are - TLD [8] [9] [10], BoostT [4], SemiBoostT [5] etc. TLD

uses the Lucas-kanade method as the short-term trackers.

2.4 Optical Flow

Optical flow or optic flow calculates the motion of objects, surfaces, and edges

in a visual scene caused by the relative motion between an observer (an eye or a

camera) and the scene [11]. Optical flow specifies how much the pixel has moved

from its adjacent images. The moving patterns cause temporal varieties of the
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image brightness. It is assumed that all temporal intensity changes are due to

motion only.

But in case of optical flow there are some constraints. There can be no occlusion

(one object moving in front of/or behind another object), unless it is modeled

in such a. All objects in the scene are rigid, no shape changes allowed. This

assumption assures that optical flow actually captures real motions in a scene

rather than expansions, contractions, deformations or shears of various scene

objects.

Let’s assume in Fig 2.1 I(x, y, t) is the center pixel in a nn neighborhood

and moves by δx, δy in time δt to I(x + δx, y + δy, t + δt). Since I(x, y, t) and

I(x+ δx, y+ δy, t+ δt) are the images of the same point (and therefore the same)

we have:

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (2.1)

The assumption is true to a first approximation (small local translations)

provided δx, δy, δt are not too big. We can perform a 1st order Taylor series

expansion about I(x, y, t) in equation to obtain:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
δI

δx
δx+

δI

δy
δy +

δI

δt
δt+H.O.T. (2.2)

Where H.O.T. are the Higher Order Terms, which we assume are small and

can safely be ignored. Using the above two equations we obtain:

Figure 2.1: The image at position (x, y, t) is the same as at (x+δx, y+δy, t+δt).
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δI
δx
.δx+ δI

δy
.δy + δI

δt
.δt = 0 or

δI
δx
. δx
δt
+ δI

δy
. δy
δt
+ δI

δt
. δI
δI

= 0 and finally:

δI
δx
.vx +

δI
δy
.vy +

δI
δt

= 0.

(2.3)

Here vx = δx
δt

and vy = δy
δt

are the x and y components of image velocity and

δI
δx
, δI

δy
, δI

δt
are image intensity derivatives at (x, y, t). We normally write these

partial derivatives as:

Ix =
δI

δx
, Iy =

δI

δy
and It =

δI

δt
. (2.4)

The difference between (vx, vy) which are the x and y components of optical

flow and (Ix, Iy, It) which are intensity derivatives. This equation can be rewritten

more compactly as:

(Ix, Iy).(vx, vy) = −It (2.5)

or as:

∇I.v⃗ = −It (2.6)

where ∇I = (Ix, Iy) is the spatial intensity gradient and v⃗ = (vx, vy) is the image

velocity or optical flow at pixel (x, y) at time t. The equation here has two

unknowns and thus cannot be solved by using the equation alone. To find the

optical flow a set of equations are needed given some constraints.

2.4.1 Lucas Kanade Method

In computer vision, the Lucas-Kanade method is a widely used differential

method for optical flow estimation developed by Bruce D. Lucas and Takeo

Kanade [2]. It assumes that the flow is essentially constant in a local neighbor-

hood of the pixel under consideration, and solves the basic optical flow equations

for all the pixels in that neighborhood, by the least squares criterion.
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The Lucas-Kanade method assumes that the displacement of the image con-

tents between two nearby instants (frames) is small and approximately constant

within a neighborhood of the point under consideration. So it takes into account

the information of the neighborhood for the considered point. It devises an equa-

tion which has two unknown variables. The equation is Av = b where A is the

partial derivative of image with respect to x and y , v is the motion vector(Vx, Vy)

and the b is the derivative matrix of image t with respect to time t.

From the above equation we can see in the motion vector (Vx, Vy) the two

variables are unknown . If we need to evaluate it we need more equations and

that is provided by the neighborhood pixels. Thus this method calculates other

pixels and tries to find the velocity or the motion vector of one pixel.

2.5 Outlier Rejection

After generating a MV (motion vector) we try to estimate the Global motion

of that particular object. But before estimating the global motion of the selected

object we need to reject the outliers. Outliers are those noisy outputs in the MV

that might cause to give bad output while estimating the global motion. These

outliers are rejected using different outlier rejection schemes. After rejecting the

outliers we are left with the inliers from which we can get almost accurate global

motion. We are now going to discuss three outlier rejection methods.

2.5.1 MV Outlier Rejection Cascade

MV outlier rejection cascade [12] is used for removing the outliers from the MV

and also to speed up the GME process.

Here three cascaded filter is used. These filters have their own way to filter out

the outliers. The first filter computes the individual MVs from the neighborhood

MVs, the second filter computes the averages of diagonally opposite MVs from
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the neighborhood MVs and the last filter computes the averages of triangularly

opposite MVs from the neighborhood MVs.Thus in every steps it filter out the

outliers depending on some threshold value.The last inliers are ready to go for the

global motion estimation then. Using this technique we can remove the outliers

Figure 2.2: Motion vector outlier rejection cascade work flow

according to the percentage we want.

2.5.2 Forward Backward error

Forward-backward consistency assumes that correct tracking should be inde-

pendent of the direction of time-flow [10]. Given a point location in time t, the

goal is to estimate its location in time t+ 1.

Let S = (It, It+1, . . . , It+k) be an image sequence and xt be a point location in

time t. Using an arbitrary tracker, the point xt is tracked forward for k steps. The

resulting trajectory is T k
f = (xt, xt+1, . . . , xt+k), where f stands for forward and

k indicates the length. Our goal is to estimate the error (reliability) of trajectory

T k
f given the image sequence S. For this purpose, the validation trajectory is first

constructed. Point xt+k is tracked backward up to the first frame and produces

T k
b = (x̂t, x̂t+1, . . . , x̂t+k), where x̂t+k = xt+k. The Forward-Backward error is

defined as the distance between these two trajectories:

FB(T k
f |S) = distance(T k

f , T
k
b ). Various distances can be defined for the tra-

jectory comparison. For the sake of simplicity, we use the Euclidean distance

between the initial point and the end point of the validation trajectory, distance

(T k
f , T

k
b ) = ||xt − x̂t||.
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After finding the distance for all the pixels we set a threshold and eliminate all

those pixels whose distance value exceeds the threshold. We can than keep the

inliers and run the GME on the inliers.

2.5.3 Random Sample Consensus (RANSAC)

RANSAC is an iterative method to estimate parameters of a mathematical

model from a set of observed data which contains outliers [13]. It is a non-

deterministic algorithm in the sense that it produces a reasonable result only

with a certain probability, with this probability increasing as more iteration are

allowed. A basic assumption is that the data consists of ”inliers”, i.e., data whose

distribution can be explained by some set of model parameters, and ”outliers”

which are data that do not fit the model. In addition to this, the data can be

subject to noise. The outliers can come, e.g., from extreme values of the noise

or from erroneous measurements or incorrect hypotheses about the interpreta-

tion of data. RANSAC also assumes that, given a (usually small) set of inliers,

there exists a procedure which can estimate the parameters of a model that op-

timally explains or fits this data. The input to the RANSAC algorithm is a set

of observed data values, a parameterized model which can explain or be fitted

to the observations, and some confidence parameters. RANSAC achieves its goal

by iteratively selecting a random subset of the original data. These data are

hypothetical inliers and this hypothesis is then tested as follows:

a) A model is fitted to the hypothetical inliers, i.e. all free parameters of the

model are reconstructed from the inliers.

b) All other data are then tested against the fitted model and, if a point fits

well to the estimated model, also considered as a hypothetical inlier.

c) The estimated model is reasonably good if sufficiently many points have

been classified as hypothetical inliers.

d) The model is re-estimated from all hypothetical inliers, because it has only

been estimated from the initial set of hypothetical inliers.

e) Finally, the model is evaluated by estimating the error of the inliers relative
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to the model.

This procedure is repeated a fixed number of times, each time producing either

a model which is rejected because too few points are classified as inliers or a

refined model together with a corresponding error measure. In the latter case,

we keep the refined model if its error is lower than the last saved model.

2.6 Global Motion Estimation (GME)

When we calculate the motion vectors of particular frames it means every pixel

of that frame has that motion in between the consecutive frames. By looking at

the direction of the vectors we can understand the trajectory of the object we

were tracking. But there are noises which can make many unnecessary vectors

and it can lead us to a confusing motion trajectory. We said outlier rejection can

remove some of the noises but it cannot remove all. Moreover besides noise there

are background motions. So to get the actual motion we had to think of another

way. In a video sequence there works many parametric transformation. To get

the motion about the object we should take into account those parameters. The

process of estimating the transform parameters is called global motion estimation

(GME) [14].This a powerful tool .There are many GME algorithms but we are

interested in the algorithms where parametric transformation are being consid-

ered. Since the transformation are not linear and the equations are so complex

to calculate and time consuming so a simple parametric equation is required.

A number of featureless GME algorithms have been proposed in the past, and

generally they can be categorized into direct and indirect methods. Direct GME

methods are pixel-based and try to minimize the prediction errors in the pixel

domain. Indirect GME methods contain two stages, and GME is performed at the

second stage based on the motion vectors resulted from the first motion estimation

stage [14]. For the estimation of the perspective model parameters, direct GME

methods in the pixel domain [22], [23] are computationally expensive due to the
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iterative processes in the nonlinear estimation and the number of pixels involved,

which limit their applicability in real applications. Two-step methods consisting

of a local motion estimation followed by a GME were proposed [24], [25], but

they were not general enough to handle perspective motions.

The global motion estimation from the coarsely sampled motion vector field

uses eight parameters to compute the transformation of a pixel’s position. The

parameters mainly came from the concept of four transformation models. They

are the translational model, geometric, affine and the perspective model. The

parameters are being tuned by the neighborhood pixel’s information. The equa-

tions [14] are given below:

x′ = fx(x, y|m) = m0x+m1y+m2

m6x+m6y+1

y′ = fy(x, y|m) = m3x+m4y+m5

m6x+m6y+1

(2.7)

Here mi are the parameters and the new position of any pixel is (x′, y′) which

was at (x, y) position previously. So from the motion vectors it gives only one

motion which represent the final motion of the object.

2.7 Examples of some trackers

We are now going to discuss some state-of-the-art trackers such as - TLD,

BoostT and SemiT. Their short description is given below.

2.7.1 TLD (Tracking Learning Detection)

TLD [8] [9] [10] is a long time online tracker. It estimates the object location,

scale changes, how the object looks and what is not that object by scanning every

frame. TLD uses the adaptive short term tracker on Lucas-Kanade [2] method.

Then it models the appearance in an unsupervised manner based on two events

called growing and pruning events. These events correct each other. It uses

Forward-backward error detection as outlier rejection method. The online model
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is represented by a set of 15x15 intensity normalized patches. Distance between

two patches is defined using normalized cross-correlation. Object Detector is

based on new features that we call 2bit Binary Patterns (2bitBP). These features

measure gradient orientation within a certain area, quantize it and output four

possible codes.

2.7.2 Online Boosting Tracker

Online boosting tracker [4] uses the boosting algorithm, discrete AdaBoost for

classification. Boosting is strongly related to SVM. Online boosting tracker uses

boosting for feature selection. Boosting is a general method for improving the

accuracy of any given learning algorithm. This is done by combining N hypotheses

which have been generated by repeating training with different subsets of training

data. Boosting transforms a weak learning algorithm into a strong one. The

on-line algorithm requires that the number of weak classifiers is fixed at the

beginning. In the off-line case all samples are used to update (and select) one

weak classifier, whereas in the on-line case one sample is used to update all weak

classifiers and the corresponding voting weight.

2.7.3 Semi-supervised Boosting Tracker

In semi-supervised tracking [5] the basic idea is to formulate tracking as binary

classification problem between the foreground object, which has to be tracked,

and the local background. Assuming the object has been detected in the first

frame; an initial classifier is built by taking positive samples from the object and

randomly chosen negative ones from the background. From time t to t + 1 the

classifier is evaluated exhaustively pixel by pixel in the local neighborhood. The

confidence distribution is analyzed and in the simplest case the local maximum

is considered to be the new object position. In order to robustly find the object

in the next frame and thus adapt to appearance changes of the object, different

lightning conditions or background changes, the classifier gets updated. A positive
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update is taken for the patch where the object is most likely to be and negative

updates are drawn from the local neighborhood.



Chapter 3

Proposed Method

3.1 Overall concept

Object tracking has been developed by several algorithms by several developers.

No algorithm has made its position on the top of others. Ours tracking algorithm

has very logical reason at its every steps. The thing first comes anyone’s mind

when he wants to track someone is that the motion vector. So our first step is

to build the motion vector of every pixel between two consecutive frames. We

have used the Optical motion flow technique to derive the motion vector. The

Lucas-Kanade [2] method was followed to get the motion vectors. These motion

vectors now indicate the trajectory of every pixel but they do not mean the exact

motion of the object. There are noises that make the object motion confusing.

So what we have to do now? The logical answer is, we should try to remove the

outliers that are the noise. In this situation we introduce an outlier rejection to

our program and that is the cascaded motion vector outlier rejection. It works

with the three cascaded filters on the motion vectors to remove the outliers. Here

it takes into account the neighborhood of every pixel. After this we have some

refined motion vectors. But problem of getting the final motion vector is not

finished here because there may have background motion or any kind of other

motion that does not coincide with our actual object motion. Here we have used

the global motion estimation tool that is very useful. We have used the global

motion estimation from coarsely sampled motion technique. It also considers

the neighborhood of the pixel. It uses some motion model like translational,

geometric, affine, perspective. Then we get the final motion vector that actually

20
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represents our tracked object motion.

Figure 3.1: Our proposed method

3.2 Object Selection

At first the object selection happens in the system. We encompass the object

with a rectangle shape boundary window. It cannot be less than 8x8 dimensions.

The bigger the dimension size, the less the frame rate processing will be. The

medium dimension size window brings good result for example, 50x50 or 30x30.
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Figure 3.2: Object Selection

3.3 Motion Vector Generation using Lucas-

Kanade Method

As Lucas-Kanade [2] assumes that the displacement of the image contents be-

tween two nearby instants (frames) is small and approximately constant within a

neighbourhood of the point p under consideration. From the optical flow equation

can be assumed to hold for all pixels within a window cantered at p. Namely, the

local image flow (velocity) vector (Vx, Vy) must satisfy

Ix(q1)Vx + Iy(q1)Vy = −It(q1)

Ix(q2)Vx + Iy(q2)Vy = −It(q2)
...

Ix(qn)Vx + Iy(qn)Vy = −It(qn)

(3.1)

Where q1, q2, . . . , qn are the pixels inside the window, and Ix(qi), Iy(qi), It(qi)

are the partial derivatives of the image I with respect to position x, y and time t,

evaluated at the point qi and at the current time. These equations can be written

in matrix form Av = b, where
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A =


Ix(q1) Iy(q1)

Ix(q2) Iy(q2)
...

Ix(qn) Iy(qn)

 , v =

 Vx

Vy

 and b =


−It(q1)

−It(q2)
...

−It(qn)

 (3.2)

From the Lucas-Kanade Method we find a system. This system has more

equations than unknowns and thus it is usually over-determined. The Lucas-

Kanade method obtains a compromise solution by the least squares principle.

From Av = b equation we can write,

ATAv = AT b or

v = (ATA)−1AT b
(3.3)

Now we can write it in vector form as:

 Vx

Vy

 =

 ∑
i Ix(qi)

2
∑

i Ix(qi)Iy(qi)∑
i Ix(qi)Iy(qi)

∑
i Iy(qi)

2

−1  −
∑

i Ix(qi)It(qi)

−
∑

i Iy(qi)It(qi)

 (3.4)

With the sums running from i = 1 to n. To generate the motion vector we have

to deliver two consecutive frames, the present one and the previous one. Then the

corresponding pixels in the boundary window of two frames will be computed.

Here for every pixel we take a 5x5 neighborhood window and pass this to the

Lucas-kanade method iteratively. Lucas-kanade method then gives us the motion

vectors for every pixel.

3.4 Outlier Rejection using Motion vector out-

lier rejection cascade algorithm

Now we have the motion vectors at our hand. At first, we initialize outlier

rejection rate at 0.5. Then we pass the motion vector to cascaded outlier rejection

method. The boundary window is just sent here not the whole image.
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Figure 3.3: The motion vector generated after the selected object is passed to the

Lucas-kanade algorithm

The cascade consists of three filters [12]. Input MV field is subject to testing

in the first filter, and then the MVs declared as inliers are further tested in the

second filter, and so on.

Figure 3.4: Construction of MVs in Sj
i ; (a) S

1
i (b) S2

i (c) S3
i

To test each input MV , the filters in the cascade employ the following strategy.

Let MVi be the input MV to be tested in j filter, where j ϵ {1, 2, 3}. Associated

with MVi is the set Sj
i of MV s computed from the 8-neighborhood of MVi as

shown in Fig. 3.4, where the location of is shown in gray. For filter 1, S1
i consists

of individual MV s from the neighborhood of MVi, as shown in Fig. 3.4(a).

For filter 2, S2
i consists of the averages of diagonally opposite MV s from the

neighborhood of MVi, as shown in Fig. 3.4(b). Finally, for filter 3, S3
i consists

of the averages of triangularly opposite MV s from the neighborhood of MVi, as
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shown in Fig. 3.4(c). There are at most eight MV s in S1
i , and at most four MV s

in each of S2
i and S3

i .

Once Sj
i is constructed, the following conditions for each MVk ϵ Sj

i and count

how many times the following conditions are satisfied:

||MVi −MVk||/||MVi|| < T j
magϕ(MVi)− ϕ(MVk) < T j

ph (3.5)

where T j
mag and T j

ph are the thresholds for maximum relative magnitude dif-

ference, and maximum phase difference, respectively. To avoid the compu-

tation of phase ϕ(.) ,the equation above can be rewritten as (MVi,MVk) >

||MVi||.||MVk||.cos(T j
ph) . Let N j

i be the number of times the above conditions

are satisfied. Note that, N1
i < 16 and N j

i < 8 for j ϵ {2, 3}. The weighted

count is given by WN j
i = W j−1

i .N j
i , where W j

i = exp(−(WN j
max − WN j

i )),

WN j
max = maxiWN j

i and W 0
i = 1 for all i . The weight W j

i is a measure of how

similar is MVi to vectors in Sj
i .

The MV goes through three filters and at the end the top 50% motion vectors

are kept. This rejects any noisy motion vector. The algorithm for the Motion

Vector Outlier Rejection Cascade is given below:

Algorithm 1: Motion Vector Outlier Rejection Cascade

MV is the motion vector generated from the Lucas-Kanade method; p is the

Outlier Rejection rate

1)Initialize all MV s as inliers and Set p := 0.5

2)Set j := 1

3)For j ≤ 3 do

a)For each inlier MVi , find the weighted count WN i
j .

b)Sort MV s in descending order of their WN i
j .

c)Set p percentage of MV s at the bottom of the sorted list as outliers.

4)End for

5)Return MV
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After the MV has gone through the outlier rejection method the MV without

the noisy output looks like Fig 3.5.

Figure 3.5: MV after the outlier rejection method

3.5 Global motion Estimation

The refined motion vector is passed to this stage. We use the algorithm of

global motion estimation from coarsely sampled motion vector field. From the

boundary window we get the motion vector that represents the motion of the

object. This final motion vector is then set for the whole boundary window and

it moves toward that direction. The GME we are going to use have considered

the models given in Fig 3.6 and Fig 3.7.

Here x’ and y’ are the new cordinates of the previous position x and y of the

tracked object . We see from the above below that if we can compute the eight

parameters then we can cover all the transformations . So the equations goes like

:

x′ = fx(x, y|m) = m0x+m1y+m2

m6x+m6y+1

y′ = fy(x, y|m) = m3x+m4y+m5

m6x+m6y+1

(3.6)

Here m0 to m7 are the eight parameters we were talking about. These equa-

tions are then computed for the differentiations. Thus the parameters are tuned
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Figure 3.6: Global Motion Models

(a) (b)

(c) (d)

Figure 3.7: Typical motion vector fields for (a) translational, (b) geometric, (c)

affine, and (d) perspective models.
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and we get the desired.

The algorithm for the GME is given below:

Algorithm 2: Global Motion Estimation From Coarsely Sampled

Motion Vector Field

m is the motion parameter ; A is the Hessian Matrix ; b is the gradient vector.

1)Set T := 99999 and initialize mk

2)For i ≤ 32 OR m ≥ 0.001 do

a)For each pixel (xi, yi) do,

i)compute (x′
i, y

′
i) ;

ii)compute ei ;

iii)If i = 1 Then compute histogram of ei

iv)End If

v)If ei < T Then

A)compute derivative of ei with respect to mk

B)add the pixel’s contribution to A and b.

vi)End If

b)End for

c)Solve A∆m = b and update m(t+ 1) = m(t) + ∆m

d)If i = 1 Then compute T to exclude the top 10% of the histogram of ei.

e)End If

3)End for

4)Return m

The GME gives a single motion from the motion vectors and according to

that the bounding box moves to that position. This steps are repeated in every

frame sequence and the object is tracked in that way.



Chapter 4

Experimental Analysis and Result

Discussion

4.1 Used software and tools

The software we have used are Matlab R2010a, Microsoft Visual Studio 2010,

Open CV. The experiments were done in the Intel Pentium Dual CPU E2200

@2.20 GHz, Ram 2.00 GB, 32-bit Operating System and with a HD Webcam.

4.2 Datasets

The datasets Hallway , CarPhone , Salesman are the video sequences taken

from http:// media.xiph.org/video/derf . The video sequences are in QCIF for-

mat. The dataset named Face was taken by a HD webcam . Table 4.1 contains

the details about the datasets.

Table 4.1: Summary of Datasets

Video Sequence name Dimension Number of frames Dimension of bounding box

Hallway 177× 144 280 30× 30

CarPhone 177× 144 380 52× 52

Salesman 177× 144 449 24× 24

Faces 320× 240 160 52× 52

29
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4.3 Tracking Performance

In our tracker we tracked an object by generating the motion vector and then

rejecting the outliers using cascaded outlier rejection method. By using the outlier

rejection method our tracker has been able to track the object more accurately.

We have discarded 50

In the Hallway video sequence we took a 30x30 window to track the man

walking in the hallway. In the video sequence we tried tracking the man by

discarding the outliers and also keeping them.Fig. 4.1 shows the error in both

cases.

Figure 4.1: Error rate comparison using and not using a outlier method in Hallway

video sequence

As we can see from the Figure the error rate is higher when an outlier rejection

method is not use.

In the CarPhone video sequence we used a 52x52 window to track the face of

the man in the car. Fig. 4.2 shows the error of using the cascaded method.
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Figure 4.2: Error rate comparison using and not using a outlier method in Car-

Phone video sequence

We can see from the figure that in this case the error is almost same because

due to the slow changes in the motion. But still the tracker with the outlier

rejection method gives a slightly better performance.

The Salesman video sequence has a fast object moving in it. We used a 24x24

window to track the object. Fig. 4.3 shows the error of not using the outlier

rejection method:

We took the video sequence that we have created using a HD webcame and

tried to track the face using our tracker and it giva us the squence in Fig 4.4.

From Fig. 4.4 we can see that our tracker tracks the selected place which

is a 52x52 window sized almost accurately even when the images are not good

qualities.

Some other images showing tracking of the selected object throughout the video

sequences in Fig. 4.5, Fig. 4.6 and Fig. 4.7.
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Figure 4.3: Error rate comparison using and not using a outlier method in Sales-

man video sequence

(a) (b) (c)

Figure 4.4: Trajectory on the video sequence Face

From the given video sequences we can see that our tracker tracks the selected

object in most case. From the salesman video sequence we can tell that out tracker

in rotation invariant and is able to track a fast moving object. Our tracker is also

able to track a face very accurately throughout the video sequence.

4.4 Comparative Analysis

In this section we are going to compare our tracker with some state-of-the-art

tracker TLD, Boost tracker and SemiBoost tracker. We have taken the same
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(a) (b) (c)

Figure 4.5: Tracking the face in the CarPhone video sequence

(a) (b) (c)

Figure 4.6: Tracking the man in the Hallway video sequence

(a) (b) (c)

Figure 4.7: Tracking the object in the man’s hand in Salesman video sequence
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object with the same size of the bounding box and tried tracking the selected

object. We than compared their error with our tracker. In the Salesman video

sequence we get the graph in Fig. 4.8.

Figure 4.8: Comparison with other trackers in the Salesman video sequence

It is clear from the graph that our tracker gives the lowest error. As we can

see in SemiBoost tracker gives a really high error. But TLD and Boost tracker

gives a less error than the SemiBoost tracker. But our tracker is able to track

the object when TLD and Boost tracker gives a high error. So in case of rotation

invariant and fast motion our tracker gives the best output.

In the Hallway video sequence we get the graph in Fig. 4.9

Here we can see that Boost tracker and SemiBoost tracker gives high error.

But our tracker and TLD gives the best performance. In some frames our tracker

gives better output than TLD. But as TLD has better zooming capability it works

better in other frames.

In the CarPhone video sequence we get the graph in Fig. 4.10.

In this video sequence although all the trackers performs really good at first

but semiBoost tracker starts failing to track the object in the middle. As there

is lot of translational motion of the face in this video sequence that’s why all the

trackers performs well. But still we can see our tracker gives the best output than
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Figure 4.9: Comparison with other trackers in the Hallway video sequence

Figure 4.10: Comparison with other trackers in the CarPhone video sequence

all the other trackers.

Below we have given the comparison of the Frame rate of all the video sequence

and also their average error rate in Table 4.2 and Table 4.3.

From the table we can see that our tracking is showing small error rate than

the others. Though the frame rate is not more in all sequences but this doesn’t
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Table 4.2: Frame rate(FPS)

Video Sequence Our Tracker TLD Boost Tracker SemiBoost Tracker

Salesman 2.8997 9.2933 9.2100 40.4335

CarPhone 6.3802 11.3270 9.7082 24.4340

Hallway 3.8295 3.0956 13.5439 23.6292

Table 4.3: Average Error Rate(Pixel)

Video Sequence Our Tracker TLD Boost Tracker SemiBoost Tracker

Salesman 10.51 6.92 15.87 9.64

CarPhone 3.75 7.61 10.64 7.14

Hallway 7.9 13.5 15.87 9.64

hamper the accuracy of our tracker. In the salesman video the best was done

by our tracker. In this video the object was having fast movement and rotation.

In the carPhone video sequence the frame rate is low but it gives lowest average

error rate than the others. In the Hallway video sequence TLD shows the best

accuracy because it has zoom-in, zoom-out capabilities. But our tracker still

shows the closer error rate like TLD which is second best in this case.



Chapter 5

Conclusion

In this paper, we developed an object tracking system. Optical flow based

equation were used to generate the motion vector at the first stage. Then there

were seen noises whose motion vectors were spreading errors to the next stages.

The cascaded outlier rejection method was used then to find the noiseless set

of motion vectors. Three cascaded filter is used to calculate this and they take

into account the neighborhood pixels information. The final motion vector of the

object between two consecutive frames was determined by the global motion es-

timation method. It uses the transformational model with parametric equations.

The motivation behind every stage of this system was taken by very simple

logic but as we know, though the concept is simple, the implementation is not

always easy generally. In our case we have succeeded to implement it with very

good performance. Comparing with the other state of the art algorithms it is

performing very well in accuracy and in fast movement also. Sometimes it is

showing better performance than those trackers.

In terms of future work, we look forward to developing a long term tracker with

this short term tracker as the basis method. Some new challenges will also be

tried to solve with this system for example, the zoom invariance, partial occlusion,

and full occlusion. Though these facilities are supposed to be time consuming

we cannot afford to consume that much time because we have to track in fast

camera motion and as a real time tracker it shouldn’t.
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Chapter 6

Appendix

6.1 Snapshot Of The Code

The core code for our proposed tracker is given below:

1 vid = videoinput('winvideo',1,'RGB24 320x240');

2 triggerconfig(vid,'manual');

3 set(vid,'FramesPerTrigger',1);

4 set(vid,'TriggerRepeat', Inf);

5 start(vid);

6 preview(vid);

7 %im = zeros(640,480,3);

8 trigger(vid);

9 im1= getdata(vid,1);

10 tempimg1 = rgb2gray(im1);

11 x = 160;

12 y = 120;

13 a = 0;

14 b = 0;

15 winsize = 52;

16 blkSiz = 16;

17 outlier = 0.5;

18 MAXITER CAS = 1; % Maximum iterations for GD−GME with the cascade

19 MAXITER ORI = 6; % Maximum iterations for plain GD−GME

20 MAXITER LSS = 3; % Maximum iterations for LSS−ME

21 pC = 52;

22 pR = 52;
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23 bC=pC/blkSiz; % number of column in blocks

24 bR=pR/blkSiz; % number of row in blocks

25 [coorX,coorY]=ndgrid(1:49,1:49);

26

27 % the parameters for the cascade

28 GM TRAN = 1; % translational model

29 GM ISOT = 2; % isotripic model

30 GM AFFI = 3; % affine model

31 GM PERS = 4; % perspective model

32 HALFPIX=2; % Half pixel

33 iniMM=[];

34 tic;

35 for i = 1:100

36 trigger(vid);

37 im2= getdata(vid,1);

38 tempimg2 = rgb2gray(im2);

39 [m n] = size(tempimg2);

40 temp1 = extract(tempimg1,x,y,winsize/2,160,120);

41 temp2 = extract(tempimg2,x,y,winsize/2,160,120);

42 [px py] = lk2(temp1,temp2); %Implementing Lucas Kanade

43 iMap = MVRemCas(px, py, outlier, blkSiz); %Removing the outliers

44 m = mvGME NR test(GM TRAN, px(:), py(:), iMap(:),coorX(:) ...

,coorY(:), 6, outlier, iniMM); %Performing Global Motion ...

Estimation

45 a = ( m(1,1)*x + m(1,3)*2 ) ;

46 b = (m(1,5)*y + m(1,6)*2);

47 x = round(a);

48 y = round(b);

49 temp3 = bb(tempimg2,winsize/2,x,y);

50 tempimg1 = tempimg2;

51 imshow(temp3);

52 end;

53 toc;

54 stop(vid);

55 delete(vid);

56 clear vid;


