

1 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

OntoStore: Ontology-Driven Information Extraction for

Semantic Annotation of the Web

Authors

Md. Nizam Uddin Samrat Student Id: 084422

 Tanvir Ahmed Student Id: 084442

Supervisor

Mahmud Hasan

Assistant Professor

Department of Computer Science & Engineering (CSE)

Islamic University of Technology (IUT)

A Thesis submitted to the Department of Computer Science and Engineering (CSE) in

Partial Fulfillment of the requirements for the degree of

Bachelor of Science in CSE (Computer Science & Engineering)

Department of Computer Science & Information Technology (CIT)

Islamic University of Technology (IUT)

Organization of the Islamic Cooperation (OIC)

Gazipur, Bangladesh.

September, 2012

2 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

CERTIFICATE OF RESEARCH

This is to certify that the work presented in this thesis paper is the outcome of the

research carried out by the candidates under the supervision of Mr. Mahmud Hasan,

Assistant professor, Department of Computer Science and Engineering, IUT,

Gazipur. It is also declared that neither this thesis nor any part thereof has been

submitted anywhere else for the award of any degree or any judgment.

Authors ~

Signature of Supervisor ~

Signature of the Head of the Department ~

Prof. Dr. M. A. Mottalib

Head, Department of CSE, IUT

Md. Nizam Uddin Samrat

Tanvir Ahmed

Mahmud Hasan

Assistant professor

Department of CSE, IUT

3 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Abstract

Automated annotation of web pages is required for the successful implementation of

Semantic Web. OntoStore is a new ontology-driven domain-independent approach which

aims to provide a platform for the operation of semantic applications. The prototype of

OntoStore is fully functional and this paper explains the process of OntoStore, how it

operates, instance extraction and verification using OntoStore and a comparison with

existing systems.

Index Terms—Semantic Web, Semantic annotation, Information extraction, Ontology-

driven, Domain-independent.

4 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Acknowledgement

At the very beginning we express our heartiest gratitude to Almighty Allah for His divine

blessings which allowed us to bring this research work to life.

We are grateful and indebted to our supervisor Mr. Mahmud Hasan, Assistant

Professor, Department of Computer Science and Engineering, IUT. His supervision,

knowledge and relentless support have time and again proved to be invaluable and

allowed us to complete this endeavor successfully. Their patience and encouragement

allow us to stand where we stand today.

Our appreciation extends to all the respected faculty members of the Department of

Computer Science & Engineering especially Dr. Kamrul Hasan for the assistance they

have provided to us.

We are also grateful to Luke K. McDowell, Associate Professor, Department of

Computer Science, United States Naval Academy and Michael Cafarella, assistant

professor, Computer Science and Engineering, University of Michigan for their helpful

suggestions. We are also thankful to Google
TM

 for using their web service API.

Finally we would like to extend our gratitude to our batch mates, students, staffs and

everyone else who have contributed to this work in their own way.

5 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Table of Contents
Chapter 1.Introduction 1

1.1 Overview 1

1.2 Problem Statement 1

 1.2.1 Structure of HTML Documents 1

 1.2.2 Semantic Web – The Ultimate Solution 1

 1.2.3 Purpose of Semantic Web 2

 1.2.4 Operation of Semantic Web 2

 1.2.5 Semantic Web Requirements – Semantic Annotation 2

1.3 Research Challenges 3

1.4 Motivation 3

1.5 Thesis Outline 3

Chapter 2.Semantic Web Technologies 4

2.1 Ontology 4

 2.1.1 What is Ontology? 4

 2.1.2 How to Define Ontology 4

 2.1.3 Ontology and Reasoning 5

2.2 Resource Description Framework (RDF) 6

2.3 Approaches towards Implementation of Semantic Annotation 8

Chapter 3.Proposed Method 10

3.1 The Process of OntoStore 10

3.2 The Operation of OntoStore 11

3.3 The Method of Instance Extraction 12

3.4 Verification of Candidate Instances 13

Chapter 4.Experimental Analysis 14

4.1 Pattern Generation 14

4.2 Instance Extraction 15

4.3 Result Analysis 16

6 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Chapter 5.Related Works 18

4.1 OntoSyphon – an ontology driven domain-independent approach 18

 4.1.1 The Process of OntoSyphon 19

4.2 Domain-specific annotation with Armadillo 20

4.3 PANKOW 22

 4.3.1 The Process of PANKOW 22

Chapter 6.Conclusion 24

References 25

7 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Dedicated to our loving parents.

8 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Chapter 1

Introduction

1.1 Overview

The Internet and the World Wide Web have brought a revolution to information technology and

the daily lives of most people. Considering the structure of the World Wide Web we can define it

as Syntactic Web. The Syntactic Web is a place where computers do only the presentation and

people do the linking and interpreting. Then the question arises “Why not get computers to do

more of the hard work”?

Some examples of hard works using the Syntactic Web may include:

 Complex queries involving background knowledge like finding information about

animals that use sonar but are not bats, dolphins or whales.

 Locating information in data repositories like travel enquiries, prices of goods and

services or results of human genome experiments.

 Delegating complex tasks to web “agents” like booking a holiday next weekend

somewhere warm, not too far away, and where they speak Bengali or English.

1.2 Problem Statement

1.2.1 Structure of Html Documents

Currently the Syntactic Web is based mainly on documents written in HTML. Metadata tags

provide a method by which computers can categorize the content of web pages. These elements

can be used to define relationships for the enclosing HTML files only. Considering a typical web

page, semantic contents of the page are accessible to the humans but not to the computers. And

that is the reason why computers cannot perform the hard tasks described above.

1.2.2 Semantic Web – The ultimate solution

The word “semantic” stands for the “meaning of”. The semantic of something is the meaning of

something. Therefore we can say that, the Semantic Web is a Web with a meaning. The

Semantic Web is a web that is able to describe things in a way so that computer applications can

understand.

This is what the Semantic Web is all about. The Semantic Web is not about links between web

pages. Rather it describes the relationship between the things in the web.

9 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

1.2.3 Purpose of Semantic Web

The main purpose of the Semantic Web is to enable users to find, share, and combine

information more easily with less intervention. Humans are capable of using the Web to perform

complex tasks but machines cannot accomplish all of these tasks without human directions as

because web pages are designed to be read by people, not machines. The semantic web is a

vision of information that can be readily interpreted by machines, so machines can perform more

of the tedious work involved in finding, combining, and acting upon information on the web.

1.2.4 Operation of Semantic Web

Statements are built with syntax rules. The syntax of a language defines the rules for building the

language statements. But how can syntax become semantic and understandable by computer

applications? If we consider the following statements:

 Iron Maiden is a popular band from England.

 Nicko McBrain plays drums in Iron Maiden.

 "Fear of the dark" is the most popular song by Iron Maiden.

Sentences like the ones above can be understood by people. But how can they be understood by

computers?

Semantic web uses technologies like RDF (Resource Description Framework), OWL (Web

Ontology Language) and XML (Extensible Markup Language) which can describe arbitrary

things such as people, meetings, or airplane parts. These technologies are combined in order to

provide descriptions that supplement or replace the content of Web documents. Thus, content

may manifest itself as descriptive data stored in Web-accessible databases. The machine-

readable descriptions enable content managers to add meaning to the content to describe the

structure of the knowledge we have about that content. In this way, a machine can process

knowledge itself, instead of text, using processes similar to human deductive reasoning and

inference, thereby obtaining more meaningful results and helping computers to perform

automated information gathering and research.

1.2.5 Semantic Web Requirements – Semantic Annotation

The availability of web pages with proper semantic annotations is the first requirement for the

successful implementation of semantic web. Without the existence of annotated web pages it is

impossible to achieve semantic web. For this reason ontologists have developed different

ontologies so that web pages can be annotated with metadata in a systematic way. Usually there

are two ways of annotating web pages with metadata. First, we can provide the metadata

manually to annotate the page while developing it. Second, we can annotate the web pages in an

automatic or a semi-automatic way. The problem associated with the first approach is for the

traditional developers of web pages it is difficult to understand the concept of ontologies and the

other requirements of semantic web. As developing web pages with semantic annotation does not

10 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

provide any benefit immediately it is difficult to motivate them. So they need tools like

EasyRDF, Quest, BigData etc. that will help them to annotate the pages while developing. But

the question remains, what will happen to the millions of pages existing in the web currently?

For this reason automated annotation of web pages is required.

1.3 Research Challenges

In this paper we introduce a new ontology-driven domain-independent approach OntoStore,

which aims to extract the instances of an ontology form the web and tries to generate instances

for that ontology automatically based on the requirements of a semantic application.

1.4 Motivations

We motivation is to create a platform for semantic applications. We intend to accept requests for

ontologies from various semantic application developers and we aim to extract instances of those

ontologies from the web. We want to implement the annotation process by enriching the

ontologies based on the extracted instances. We let the semantic applications access the modified

ontology.

1.5 Thesis Outline

In Chapter 1 a brief introduction of the study has been provided. Chapter 2 contains a brief

description of some of the Semantic Web technologies. Chapter 3 elaborates on the proposed

methodology stating how OntoStore operates to extract the instances of the ontology classes.

Chapter 4 shows the results that were achieved implementing the proposed approach for

implementing the process. Finally Chapter 5 briefly states the possible future works and

concludes the paper.

11 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Chapter 2

Semantic Web Technologies

2.1 Ontology

2.1.1 What is Ontology?

In a widely-quoted definition, ontology is a specification of a conceptualization. Ontology allows

a programmer to specify, in an open, meaningful, way the concepts and relationships that

collectively characterize some domain. For example the wine ontology was developed initially

for a particular application, such as a stock-control system at a wine warehouse. Ontology may

be considered similar to a well-defined database schema. The advantage to ontology is that it is

an explicit, first-class description. So having been developed for one purpose, it can be published

and reused for other purposes. For example, a given winery may use the wine ontology to link its

production schedule to the stock system at the wine warehouse. Alternatively, a wine

recommendation program may use the wine ontology, and a description (ontology) of different

dishes to recommend wines for a given menu.

2.1.2 How to define Ontology

There are many ways of writing down ontology, and a variety of opinions as to what kinds of

definition should go in one. In practice, the contents of ontology are largely driven by the kinds

of application it will be used to support. RDFS is the weakest ontology language to write down

ontology. RDFS allows the ontologist to build a simple hierarchy of concepts, and a hierarchy of

properties. Let us consider the following trivial characterization in figure 1.

Figure-1: A simple concept hierarchy

Using RDFS, we can say that this ontology has five classes, and Plant is a sub-class of Organism

and so on. So every animal is also an organism. A good way to think of these classes is as

12 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

describing sets of individuals: organism is intended to describe a set of living things, some of

which are animals (i.e. a sub-set of the set of organisms is the set of animals), and some animals

are fish (a subset of the set of all animals is the set of all fish).

To describe the attributes of these classes, we can associate properties with the classes. For

example, animals have sensory organs (noses, eyes, etc.). A general property of an animal might

be senseOrgan, to denote any given sensory organs a particular animal has. In general, fish have

eyes, so a fish might have a eyes property to refer to a description of the particular eye structure

of some species. Since eyes are a type of sensory organ, we can capture this relationship between

these properties by saying that eye is a sub-property-of senseOrgan. Thus if a given fish has two

eyes, it also has two sense organs. (It may have more, but we know that it must have two).

We can describe this simple hierarchy with RDFS. In general, the class hierarchy is a graph

rather than a tree (i.e. not like Java class inheritance). The slime mold is popularly, though

perhaps not accurately, thought of as an organism that has characteristics of both plants and

animals. We might model a slime mold in this ontology as a class that has both plant and animal

classes among its super-classes. RDFS is too weak a language to express that a thing cannot be

both a plant and an animal (which is perhaps lucky for the slime molds). In RDFS, we can only

name the classes, We cannot construct expressions to describe interesting classes. However, for

many applications it is sufficient to state the basic vocabulary, and RDFS is perfectly well suited

to this.

Note also that we can both describe classes, in general terms, and we can describe particular

instances of those classes. So there may be a particular individual Fred who is a Fish (i.e. has

rdf:type Fish), and who has two eyes. His companion Freda, a Mexican Tetra, or blind cave fish,

has no eyes. One use of an ontology is to allow us to fill-in missing information about

individuals. Thus, though it is not stated directly, we can deduce that Fred is also an Animal and

an Organism. Assume that there was no rdf:type asserting that Freda is a Fish. We may still infer

Freda's rdf:type since Freda has lateral lines as sense organs, and these only occur in fish. In

RDFS, we state that the domain of the lateralLines property is the Fish class, so an RDFS

reasoner can infer that Freda must be a fish.

2.1.3 Ontology and Reasoning

One of the main reasons for building an ontology-based application is to use a reasoner to derive

additional truths about the concepts you are modeling. We saw a simple instance of this above:

the assertion "Fred is a Fish" entails the deduction "Fred is an Animal". There are many different

styles of automated reasoner, and very many different reasoning algorithms.

13 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

2.2 Resource Description Framework (RDF)

Semantic Web uses the RDF (Resource Description Framework) for describing information and

resources on the web. Putting information into RDF files, makes it possible for web applications

("web spiders") to search, discover, pick up, collect, analyze and process information from the

web. If information about music, cars, tickets, etc. were stored in RDF files, intelligent web

applications could collect information from many different sources, combine information, and

present it to users in a meaningful way.

RDF is best thought of in the form of node and arc diagrams.

Figure-2: A simple RDF

The resource, John Smith, is shown as an eclipse and is identified by a Uniform Resource

Identifier (URI), in this case “http://.../JohnSmith”.

Resources have properties. The figure shows only one property, John Smith's full name. A

property is represented by an arc, labeled with the name of a property. The name of a property is

also a URI, but as URI's are rather long and cumbersome, the diagram shows it in XML qname

form. The part before the ':' is called a namespace prefix and represents a namespace. The part

after the ':' is called a local name and represents a name in that namespace. Properties are

identified by a URI. The nsprefix:localname form is a shorthand for the URI of the namespace

concatenated with the localname.

Each property has a value. In this case the value is a literal, which for now we can think of as a

strings of characters, Literals are shown in rectangles.

In the first example, the property value was a literal. RDF properties can also take other

resources as their value. Using a common RDF technique, this example shows how to represent

the different parts of John Smith's name:

14 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Figure-3: A RDF with a resource as a property

Each arc in an RDF Model is called a statement. Each statement asserts a fact about a resource.

A statement has three parts:

 the subject is the resource from which the arc leaves.

 the predicate is the property that labels the arc.

 the object is the resource or literal pointed to by the arc.

A statement is sometimes called a triple, because of its three parts. The statements in figure-2

will generate a RDF file like the following :

<rdf:RDF

 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:vcard='http://www.w3.org/2001/vcard-rdf/3.0#'

 >

 <rdf:Description rdf:about='http://…/JohnSmith'>

 <vcard:FN>John Smith</vcard:FN>

 <vcard:N rdf:nodeID="A0"/>

 </rdf:Description>

 <rdf:Description rdf:nodeID="A0">

 <vcard:Given>John</vcard:Given>

 <vcard:Family>Smith</vcard:Family>

 </rdf:Description>

</rdf:RDF>

RDF is usually embedded in an <rdf:RDF> element. The RDF element defines the two

namespaces used in the document. There is then an <rdf:Description> element which describes

the resource whose URI is "http://.../JohnSmith". If the rdf:about attribute was missing, this

element would represent a blank node.

The <vcard:FN> element describes a property of the resource. The property name is the "FN" in

the vcard namespace. RDF converts this to a URI reference by concatenating the URI reference

15 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

for the namespace prefix and "FN", the local name part of the name. This gives a URI reference

of "http://www.w3.org/2001/vcard-rdf/3.0#FN". The value of the property is the literal "John

Smith".

The <vcard:N> element is a resource. In this case the resource is represented by a relative URI

reference. RDF converts this to an absolute URI reference by concatenating it with the base URI

of the current document.

One thing to be noticed, the blank node in the Model has been given a URI reference. It is no

longer blank.

2.3 Approaches towards implementation of Semantic annotation

The Semantic Web is not a very fast growing technology. One of the reasons for that is the

learning curve. RDF was developed by people with academic background in logic and artificial

intelligence. For traditional developers it is not very easy to understand. So far we have seen that

applications that use semantic web technologies can be very promising and useful. But the

success of these applications depends on the successful implementation of semantic web. And

the success of semantic web depends largely on the existence of a sufficient amount of high-

quality, relevant semantic data. But till now relatively little such content has emerged. So

researchers have investigated systems to assist users with producing (or annotating) such content,

as well as systems for automatically extracting semantic content from existing unstructured data

sources such as web pages.

According to Alex Iskold, there are two main approaches to implement Semantic Web

Annotation:

1) Bottom Up - involves embedding semantic annotations (meta-data) right into the data.

2) Top down - relies on analyzing existing information and producing semantic contents

automatically.

16 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Figure-4: Different approaches to semantic web

In the bottom-up approach semantic annotations are embedded into the data in a manual or semi-

automatic way. This annotation meant to be statically associated to the documents. Static

annotation can:

(1) be incomplete or incorrect when the creator is not skilled enough;

(2) become obsolete, i.e. not be aligned with page updates;

(3) Be devious, e.g. for spamming or dishonest purposes; professional spammers could

use manual annotation very effectively for their own purposes. For these reasons, Semantic Web

needs automatic methods for page annotation.

Most systems for automated content generation or page annotation are given a small to moderate

size of relevant data and the system sequentially processes each document. For each document,

the system tries to extract relevant information and encode it using the predicates and classes of a

given ontology. This extraction might utilize a domain-specific wrapper, constructed by hand or

via machine learning techniques. More recent domain-independent approaches have utilized a

named entity recognizer to identify interesting terms, and then used web searches to try to

determine the term’s class. In either case, these are document-driven systems whose workflow

follows the documents.

17 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Chapter 3

Proposed Method

3.1 The Process of OntoStore

OntoStore operates in an ontology-driven domain-independent manner. The objective of

OntoStore is to provide a platform for the operation of the semantically-aware applications. It

tries to extract the instances of a given set of ontologies that are required for the operation of a

semantic application. When a semantic application requires service from OntoStore it can

directly access the enriched ontologies to get the information required. The developer of a

semantic application must submit the list of the ontologies to OntoStore before manufacturing so

that OntoStore can search, store and annotate the instances of these ontologies and provide

service as soon as the product is launched. The process of OntoStore is described below:

Figure-5: the working algorithm of OntoStore

18 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Input: A set of ontologies.

Step 1: At step 1 OntoStore selects ontology from the given set of ontologies.

Step 2: OntoStore traverse through the classes(C) and subclasses of each ontology(O) in the

input set in a bottom-up manner and searches for the instances of each ontology class.

Step 3: The instances are verified and stored for annotating of web pages.

Output: Annotated web pages.

The working algorithm of OntoStore is given in figure 5.

3.2 The Operation of OntoStore

Initially OntoStore takes a given set of ontologies and process them sequentially for storing the

ontological instances into the RDF repository. First it selects an ontology(O) and traverse

through all the classes(C) and subclasses of it for applying Hurst Phrases to generate some

patterns(P1). Then it submits the pattern to Google
TM

 for making a web search. Form the search

result’s abstract it selects the candidate instances. Next, it adds the candidates with the used

patterns to generate new patterns(P2) which are also submitted to Google
TM

 for another web

search. From this search result we can get some candidate instances which are more reliable than

the candidates of the previous search. After that the results are verified. Finally the annotation

process is performed by enriching the ontology with the extracted instances.

Figure-6: The operation of OntoStore

19 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

When a semantic application requires service from OntoStore it can directly access the modified

ontology to get the information required. If an application requires using a new ontology then the

developer must submit the definition of the ontology to OntoStore before manufacturing the

application so that OntoStore can search, annotate and store the resources of the new ontology

and provide service as soon as the product is launched.

3.3 The Method of Instance Extraction

Initially OntoStore takes a given set of ontologies as input and process them sequentially for

extracting the ontological instances. First, it selects an ontology(O) and traverse through all the

classes(C) and subclasses of it in a bottom-up manner by applying Hearst Phrases[10] to generate

some patterns(P1). Then, the pattern is submitted to Google
TM

 for making a web search. Form

the abstract of the search results it extracts the candidate instances(IC). Next, it adds the

candidates with the patterns(P1) to generate new patterns(P2) which are also submitted to

Google
TM

 for another web search. From this search result we can get the final candidates(FC)

which are more reliable than the candidates of the previous search. After that, the candidate

instances(FC) are verified. The verification process is described in details in section 4. Finally

the annotation process is performed by adding the verified instances in the appropriate classes of

the ontology.

Figure-7: The method of instance extraction using OntoStore

20 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Figure 2 shows the method of instance extraction using OntoStore. The ontology Organism is

selected from the input ontology list and traversed in a bottom-up manner by OntoStore. Hearst

Phrases[10] are added with ontology classes to generate patterns(P1) like “mammals such as”,

“mammals including”, “mammals like”, “mammals especially”, “and/or other mammals” etc.

These patterns are submitted to perform a Google query and a list of initial candidate(IC)

instances are generated by extracting instances from the Google abstract. These candidate

instances are added with the existing patterns to generate new patterns(P2) like “mammals such

as tiger”, “mammals including tiger”, “mammals like tiger”, “mammals especially tiger”, “tiger

and/or other mammals” etc. These patterns are used for another web search and from the search

result the list of final candidates(FC) are generated. After that the candidates in the list are

verified. Finally the verified instances are added with the ontology classes to perform the

annotation.

3.4 Verification of Candidate Instances

OntoStore makes web searches for instance extraction in two different phases. From the first

search result it generates a list of initial candidate instances for an ontology class and these

candidate instances are used for the second web search. The second web search is done in order

to calculate the support value of an instance. The support(S) is calculated for each pair(i,c) by

counting how many times the pair(i,c) has occurred in the result pages(r) for each pattern(p) :

S(i,c) = /r

For example if the pair (tiger, mammal) occurs 10 times in 50 result pages the pair (tiger,

mammal) has the support value 0.2.Candidates having support(S) more than a threshold

value(TH) are considered as final instances. The threshold value for a class is determined by

analyzing the support value of all extracted instances of a class.

21 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Chapter 4

Experimental Analysis

Here we have used Java, JSON, JENA Ontology API and Netbeans IDE for implementing the

prototype of OntoStore. JSON was used for making web searches using the Google API. JENA

Ontology API was used for accessing ontology classes. Here we have simulated the OntoStore

prototype for the ontology described in figure-1.

4.1 Pattern Generation

The ontology classes were traversed in a reverse manner to generate patterns by adding Hearst

Phrases. These patterns were submitted for making web searches to extract initial candidates.

The initial candidates were added with the previous patterns to generate new patterns which were

also submitted for another web search. The purpose of the second web search is to verify the

initial candidates. The pattern generation process is described in details in table 1.

Table 1: Pattern generation process

Class Name Hearst Phrase Pattern Instance list New Pattern

Organism such as

including

like

especially

and other

or other

Organism such as

Organism including

Organism like

Organism especially

and other Organism

or other Organism

amoeba

paramecium

bacterium

virus

…

Organism such as amoeba

Organism including amoeba

Organism like amoeba

Organism especially amoeba

amoeba and other Organism

amoeba or other Organism

Plant such as

including

like

especially

and other

or other

Plant such as

Plant including

Plant like

Plant especially

and other Plant

or other Plant

orne

trematode

zoonoses

mascoma

…

Plant such as orne

Plant including orne

Plant like orne

Plant especially orne

orne and other Plant

orne or other Plant

Animal such as

including

like

especially

and other

or other

Animal such as

Animal including

Animal like

Animal especially

and other Animal

or other Animal

human

horse

birds

…

Animal such as human

Animal including human

Animal like human

Animal especially human

human and other Animal

human or other Animal

Mammal such as

including

like

especially

and other

or other

Mammal such as

Mammal including

Mammal like

Mammal especially

and other Mammal

or other Mammal

elephant

dolphins

whales

…

Mammal such as elephant

Mammal including elephant

Mammal like elephant

Mammal especially elephant

elephant and other Mammal

elephant or other Mammal

Fish such as

including

like

especially

and other

or other

Fish such as

Fish including

Fish like

Fish especially

and other Fish

or other Fish

tuna

sardine

salmon

…

Fish such as tuna

Fish including tuna

Fish like tuna

Fish especially tuna

tuna and other Fish

tuna or other Fish

22 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

4.2 Instance Extraction

Here we extracted the instances of each ontology class. For each instance we calculated the

support value by counting how many times the pattern has occurred within the Google abstract

of the search result. The following tables contain a list of extracted instances along with their

class and support value.

Table 2: List of extracted instances for the class Organism

Instance Class No. of pages Total occurrence Support

human Organism 48 48 1.00

amoeba Organism 48 15 0.3125

paramecium Organism 48 17 0.3541

virus Organism 48 32 0.67

yeast Organism 48 38 0.79

fungus Organism 48 26 0.54

bacteria Organism 48 48 1.00

living Organism 48 15 0.31

hydra Organism 48 8 0.17

cell Organism 48 29 0.604

protozoan Organism 48 5 0.104

organism Organism 48 8 0.17

Table 3: List of extracted instances for the class Mammal

Instance Class No. of pages Total occurrence Support

whale Mammal 48 25 0.52

elephant Mammal 48 25 0.52

dolphin Mammal 48 22 0.458

seal Mammal 48 17 0.354

mouse Mammal 48 28 0.58

bat Mammal 48 27 0.56

primate Mammal 48 19 0.39

veggie Mammal 48 1 0.02

meat Mammal 48 2 0.04

mafist Mammal 48 0 0.0

hippopotamus Mammal 48 1 0.02

rhinoceros Mammal 48 0 0.0

23 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Table 4: List of extracted instances for the class Fish

Instance Class No. of pages Total occurrence Support

sardines Fish 48 45 0.93

herring Fish 48 47 0.97

anchovies Fish 48 48 1.00

catfish Fish 48 43 0.89

cichlids Fish 48 44 0.91

tuna Fish 48 42 0.875

mackerel Fish 48 45 0.94

salmon Fish 48 41 0.85

spinach Fish 48 4 0.08

leafy Fish 48 6 0.125

anglers Fish 48 18 0.375

angelfish Fish 48 42 0.875

sharks Fish 48 42 0.875

4.3 Result Analysis

After extracting the candidate instances and calculating their support value we analyze the

support value of the instances. Here we can see even some valid instances of a class have poor

support value as well as some invalid instances have satisfactory support value. For this reason

candidates that has support value greater than a certain value called threshold value(TH) are

considered as valid instances. To determine the value of TH we analyze the data collected in table

1, 2 and 3.

Figure-8: Support value for instances of class Organism

24 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Figure-9: Support value for instances of class Mammal

Figure-10: Support value for instances of class Fish

After analyzing the support values for the instances of different classes we consider that

instances that have support value more than 0.5 can be considered as valid instances. Therefore ,

Threshold value (TH) = 0.5

25 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Chapter 5

Related Works

The operation of OntoStore is completely automated. Similar sort of approach is used by

OntoSyphon[1] an ontology-driven information extraction system. It also operates in an

automatic and unsupervised manner with less human intervention in order to learn all possible

information about an ontology available in the web. It extracts relatively shallow information

about the relations and instances of an ontology class from the web using Binding Engine[9].

PANKOW[3] is a document-driven domain independent system which annotates a given set of

web pages by extracting the candidate proper nouns and finding the class of them. It uses the

number of web pages in which a certain patterns appears to calculate the strength of it. C-

PANKOW[2] which is also a document-driven domain independent system is the successor of

PANKOW[3]. It scans through the web page for candidate instances and uses a pattern library to

execute Google query. Rather than downloading the entire search result pages it uses the Google

abstract. The operation of OntoSyphon[1] has similarity with the operation of OntoStore.

OntoSyphon[1] traverse through the ontology classes in a top-down manner but OntoStore uses a

bottom-up approach. OntoSyphon[1] uses the redundancy for instance verification but OntoStore

uses the threshold support value(TH) for the verification process. Both PANKOW[3] and C-

PANKOW[2] annotates a given set of documents by finding the classes of the candidate proper

nouns. All the candidates may not belong to the same ontology as a result by annotating the web

page all the instances of an ontology may not be found. On the other hand, the main focus of

OntoStore is to enrich ontologies by finding out all the instances of it. The process of

OntoSyphon, Armadillo and PANKOW are described below in details.

5.1 OntoSyphon – an ontology driven domain-independent approach:

OntoSyphon is an alternative ontology-driven information extraction (IE) system. Instead of

sequentially handling documents, OntoSyphon processes an ontology in some order. For each

ontological class or property, OntoSyphon searches a large corpus for instances and relations

than can be extracted. The redundancy in the web and information in the ontology is used to

verify the candidate instances, subclasses, and relations that were found. Compared to more

traditional document-driven IE, OntoSyphon’s ontology-driven IE extracts relatively shallow

information from a very large corpus of documents, instead of performing more exhaustive (and

expensive) processing of a small set of documents. Instead of trying to learn all possible

information about a particular document, it focuses on particular parts of an ontology and try to

learn all possible information about those ontological concepts from the web.

OntoSyphon operates in a fully automatic, unsupervised manner, and uses the web rather than a

domain-specific corpus be identified. The algorithm of OntoSyphon is stated below:

26 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Figure-11: OntoSyphon’s algorithm (bold lines), given a root class R, for populating an ontology O with

instances, and partial sample output (other lines). The text (oriole, Bird, 37) describes a candidate instance

that was extracted 37 times. Step 5 converts these counts into a confidence score or a probability, and

chooses the most likely class for candidates that had more than one possible class. “LA” is the “Learning

Accuracy” of the final pair.

5.1.1 Operation of OntoSyphon :

Figure 4 gives pseudocode for OntoSyphon’s operation. The input to OntoSyphon is an ontology

O and a root class R such as Animal. The search set is initialized to hold the root term R and all

subclasses of R. OntoSyphon then performs the following steps: pick a “promising” class C from

the ontology (step 1), instantiate several lexical phrases to extract instances of that class from the

web (steps 2-3), then repeat until a termination condition is met (step 4). Finally, use the

ontology and statistics obtained during the extraction to assess the probability of each candidate

instance (step 5). Below it is explained in more detail.

1) Identify a Promising Class: OntoSyphon must decide where to focus its limited

resources. For initial experiments, it was pragmatically chosen to completely explore all

subclasses of the user-provided root class.

2) Generate Phrases: Given a class C, lexico-syntactic phrases are searched that indicate

likely instances of C. For instance, phrases like “birds such as” are likely to be followed

by instances of the class Bird. Five Hearst phrase templates were used in the sample

output of Figure 4.

3) Search and extract: Next, it searches the web for occurrences of these phrases and

extract candidate instances. This could be done by submitting the phrases as queries to a

search engine, then downloading the result pages and performing extraction on them. For

efficiency, the Binding Engine (BE) was used. BE accepts queries like “birds such as

27 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

<NounPhrase>” and returns all possible fillers for the <NounPhrase> term in about a

minute, but for only a 90-million page fragment of the web.

4) Repeat : The entire process is repeated until the SearchSet is empty.

5) Assess Candidate Instances : The final step where the extracted instances are evaluated.

Overall, we can conclude that it is possible extracting instances from a web corpus using

OntoSyphon. But it has some limitations. OntoSyphon is not suited for populating every kind of

ontology. For instance, ontologies describing things or events that are mentioned only a handful

of times on the web are not well suited to the current strategy of using simple pattern-based

extractions followed by redundancy based assessment. Likewise, classes that are either complex

(NonBlandFish) or ambiguous (Player) will not yield good results.

5.2 Domain-specific annotation with Armadillo:

Armadillo is a system for producing automatic domain-specific annotation on large repositories

in a largely unsupervised way. It annotates by extracting information from different sources and

integrating the retrieved knowledge into a repository. The repository can be used both to access

the extracted information and to annotate the pages where the information was identified. Also

the link with the pages can be used by a user to verify the correctness and the provenance of the

information. Armadillo’s approach is illustrated in Figure 4.

Figure-12: Armadillo’s main algorithm

In the first step in the loop, possible annotations from a document are identified using an existing

lexicon (e.g. the one associated to the ontology). These are just potential annotations and must be

confirmed using some strategies (e.g. disambiguation or multiple evidence). Then other

annotations not provided by the lexicon are identified e.g. by learning from the context in which

the known ones were identified. All new annotations must be confirmed and can be used to learn

28 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

some new ones as well. They will then become part of the lexicon. Finally all annotations are

integrated (e.g. some entities are merged) and stored into a database.

Armadillo employs the following methodologies:

1) Adaptive Information Extraction from texts (IE): used for spotting information and to

further learning new instances.

2) Information Integration (II): used to

 (i) discover an initial set of information to be used to seed learning for IE

 (ii) confirm the newly acquired(extracted) information, e.g. using multiple evidence from

different sources. For example, a new piece of information is confirmed if it is found in

different (linguistic or semantic) contexts.

3) Web Services: the architecture is based on the concept of ”services”. Each service is

associated to some part of the ontology (e.g. a set of concepts and/or relations) and works

in an independent way. Each service can use other services (including external ones) for

performing some sub-tasks. For example a service for recognizing researchers names in a

University Web Site will use a Named Entity Recognition system as a sub-service that

will recognize potential names (i.e. generic people’s names) to be confirmed using some

internal strategies as real researchers names (e.g. as opposed to secretaries’ names).

Figure-13: The Armadillo architecture

4) RDF repository: where the extracted information is stored and the link with the pages is

maintained.

Overall we can say that, it is possible to annotate some web documents using Armadillo

automatically. But All the annotations are not reliable. Many IE systems are able to learn from

completely annotated documents only, so that all the annotated strings are considered positive

examples and the rest of the text is used as a set of counterexamples. This means that the system

29 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

is presented with positive examples, but the rest of the texts can never be considered as a set of

negative examples, because unannotated portions of text can contain instances that the system

has to discover, not counterexamples.

5.3 PANKOW (Pattern-based Annotation through Knowledge on the Web):

5.3.1 The process of PANKOW:

Figure-14: The process of PANKOW

Input: A web page.

Step 1: The system scans the Web page for phrases in the HTML text that might be categorized

as instances of the ontology. Candidate phrases are proper nouns, such as ‘Nelson Mandela’,

‘South Africa’, or ‘Victoria Falls’). A parts-of- speech tagger (cf. Section 3 and Section 5) is

used to find such candidate proper nouns. Thus, we end up with a

Result 1: Set of candidate proper nouns

Step 2: The system iterates through the candidate proper nouns. It introduces all candidate

proper nouns and all candidate ontology concepts into linguistic patterns to derive hypothesis

phrases. For instance, the candidate proper noun ‘South Africa’ and the concepts Country and

Hotel are composed into a pattern resulting in hypothesis phrases like ‘South Africa is a country’

and ‘South Africa is a hotel’.

Result 2: Set of hypothesis phrases.

Step 3: Then, Google
TM

 is queried for the hypothesis phrases through its Web service API

(Section 3.2). The API delivers as its results

Result 3: The number of hits for each hypothesis phrase.

30 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Step 4: The system sums up the query results to a total for each instance-concept pair. Then the

system categorizes the candidate proper nouns into their highest ranked concepts (cf. Section

3.3). Hence, it annotates a piece of text as describing an instance of that concept. Thus we have

Result 4: An ontologically annotated web page.

31 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

Chapter 6

Conclusion

Even though OntoStore introduces a different approach in web annotation it still has to face

some challenges. Among them time complexity is the most crucial one. OntoStore is supposed to

perform many queries in the web using Google. So it must perform the searching operations

within an acceptable time limit. For this reason we are using the Google abstract instead of

downloading the entire page for instance extraction for every web search. In order to ensure

correctness of the extracted instances we are using threshold support (TH) value. In future we

intend to determine the threshold value (TH) automatically by adjacent class verification. For

example for verifying the candidates of class mammal the adjacent class fish will be selected for

generating patterns like “fish such as tiger” , “fish including tiger” etc. to perform another web

search. From this search result we can get the support value(S) of the instances for the class fish.

We can compare these two support values and determine the threshold value (TH) automatically.

But the adjacent class verification process also requires a large number of queries from Google

which can be time consuming as well. To handle these issues we ensured the depth of searching

using OntoStore can be changed if required. We hope that our future works will increase the

efficiency and reliability of OntoStore.

32 OntoStore: Ontology-Driven Information Extraction for Semantic Annotation of the Web

References

[1] McDowell, L., Cafarella, M.: Ontology-driven Information Extraction with OntoSyphon. In:

Fifth int. Semantic Web Conference. (ISWC 2006)

[2] Cimiano, P., Ladwig, G., Staab, S.: Gimme’ the context: Context-driven automatic semantic

annotation with C-PANKOW. In: Proc. of the Fourteenth Int.WWW Conference. (2005)

[3] Cimiano, P., Handschuh, S., Staab, S.: Towards the Self-Annotating Web. In: Proc. of the

Thirteenth int. WWW Conference. (2004)

[4] Champa, S.,Dingli, A., Ciravegna, F.: Armadillo: harvesting information for the semantic

web. In: Proc. of the 27
th

 Annual Int. ACM SIGIR conference on Research and development

in information retrieval. (2004)

[5] Etzioni O., Fader A., Christensen J., Soderland S., Mausam : Open Information Extraction:

the second generation. In: International Joint Conference on Artificial Intelligence. (2011)

[6] Fader A., Soderland S., Etzioni O.: Identifying relations for open information extraction. In:

Conference on Empirical Methods in Natural Language Processing (2011)

[7] Guha, R., McCool, R., Miller, E.: Semantic search. In: World Wide Web. (2003)

[8] Celjusca, D., Vergas-Vera, M.: OntoSophie: A semi-automatic system for ontology

population from text. In: International Conference on Natural Language Processing (ICON).

(2004)

[9] Fader A., Soderland S., Etzioni O.: Extracting Sequence from the web. In: Annual Meeting

of the Association for Computational Linguistics. (2010)

[10] Etzioni O., Soderland S., Weld D., Banko M.: Open information extraction from the

web. In: Communications of the ACM. (2008)

[11] Davalcu, H., Vadrevu, S., Nagarajan, S.: OntoMiner: Bootstrapping and populating

ontologies from domain specific web sites. IEEE Intelligent Systems 18(5) (2003) 24-33

[12] Dill, S., Eiron, N., Gibson, D., Gruhl,D., Guha, R.: Semtag and seeker: Bootstrapping the

semantic web via automated semantic annotation. In: Proc. of the Twelfth Int. WWW

Conference. (2003)

[13] Cafarella, M., Etzioni, O.: A search engine for natural language applications. In: Proc. of

the Fourteenth Int.WWW Conference. (2005)

[14] Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Proc. of the

Fourteenth Int.Conf.on Computational Linguistics. (1992)

