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                                                                                        Abstract 

 

 

Compression of large DNA sequences has been a subject of great interest since the 

availability of genomic databases. Although only two bits are sufficient to encode four bases 

of DNA (namely A, G, T and C), the massive size DNA sequences forces the need for efficient 

compression. In this article we are going to propose an improved version of an existing   

algorithm known as “GtEncseq” which describes the procedure of storing multiple 

biological sequences of variable Character size, with customizable character 

transformations, “wildcard” and “separator” support, and a diverse group of internal 

representations optimized for different arrangements of wildcards and sequence lengths. 

Our main target is extensive compression of data with an attempt of eliminating the 

wildcard entries from the sequence but make it available for the reuse.  An efficient time 

requirement for encoding the desired sequence is also a note to consider. 
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Introduction 

 

The introduction of Biological sequencing has significantly accelerated biological research 

and discovery. The rapid growth of modern Biological sequencing technology has been 

revolutionary. Many Biological projects, mostly by scientific collaboration across various 

parts of the world, have generated the complete Biological sequencing of many animal, 

plant, and microbiological organs. Storing multiple biological sequences of different 

categories and retrieving these sequences separately as well as accessing any of these 

sequences randomly are the fundamental necessities in bioinformatics and therefore 

several algorithms have been developed to make these actions flexible and accurate. 

Representations of biological sequences of course need to support nucleotide and amino 

acid alphabets. Like notation for masked positions, uppercase and lowercase notation and 

with different sets of wildcard symbols (for sequence positions containing ambiguous 

nucleotides or amino acids), separator positions while dealing with multiple sequences. A 

flexible representation handles these variations in a sensible way. GtEncseq is one of the 

most recent and developed implementation that provides a variety of methods for random 

and sequential access to individual characters, individual sequences, wildcard sequences 

and also substrings. GtEncseq fully supports access to sequence descriptions, lengths, and 

original filenames in constant time per sequence. Regardless the fact that the performance 

evaluation of this data structure has superseded most of the other methods, potential flaws 

is still remaining. For gigabase genome sequences consisting billions of base pair sequences 

and millions of wildcard entries (human genome, 3.1 gigabases and approximate 237 

million wildcard entries [1]) can cause redundancy and wastage of memory. We are here to 

identify the limitations and drawbacks regarding the encoding of multiple BIOsequences 

and propose an improved structure which can overcome the existing setback of the 

algorithm and to present a flexible structure which can increase the performance regarding 

efficiency of storing genome data. 

Chapter 1 
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1.1 Overview   

Some of the research areas in genetics include Gene regulation, DNA sequence 

organization, Chromosomal structure and organization, Non-coding DNA types and 

functions, coordination of gene expression, protein synthesis, and post-translational events 

interaction of proteins in complex molecular machines, evolutionary conservation among 

organisms, Protein conservation, correlation of single-base DNA variations with health and 

disease, etc[7]. But to store these large volumes data in an efficient manner and with a 

lossless approach is an important aspect of Biological science.    

Genes basically are basically composed of one of the following four types of bases-adenine, 

cytosine, guanine, and thymine often abbreviated as A, C, G, and T. Many compression 

methods have been discovered to compress DNA sequences. Invariably, all the methods 

found so far take advantage of the fact that DNA sequences are made of only 4 alphabets 

[8]. But there are 21 other characters which are also used to represent protein or amino 

acid sequences. Among them N, S, Y, W, R, K ,V, B, D, H, M and their lowercase 

representations are known as wildcard entries [1]. These are ambiguous compounds and 

most of their functionality and physical significance is yet to be discovered. However, these 

characters can co-exist with large nucleotide sequences making the formations of large 

chunks. So, at first it is necessary to find the order in which the nucleotides or amino acids 

are arranged in the DNA. 

Deriving meaningful knowledge from DNA sequence will define biological research through 

the coming decades and require the combined effort of biologists, chemists, engineers, and 

computational scientists, among others. 

 

1.2 Motivation 

Genomic science is confronted with the volume of sequencing and resequencing data which 

is increasing at a higher pace than that of data storage and communication resources, 
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causing a shift of a significant part of research budgets from the sequencing component of a 

project to the computational one. Hence, being able to efficiently store sequencing and 

resequencing data is a problem of paramount importance. The human genome alone is 

made up of over 3 billion nucleotides or bases.  

The continuing exponential accumulation of full genome data, including full diploid human 

genomes, creates new challenges not only for understanding genomic structure, function 

and evolution, but also for the storage, navigation and privacy of genomic data. So it is 

necessary develop data structures and algorithms for the efficient storage of genomic and 

other sequence data that may also facilitate querying and protecting the data [10]. 

Genes basically are composed of one of the following four types of bases-adenine, cytosine, 

guanine, and thymine often abbreviated as A, C, G, and T. Finding the order in which the 

nucleotides are arranged in the DNA is a part of genome sequencing. Knowing the sequence 

of the genome is the first step towards understanding it. A genome sequence does contain 

some clues about where genes are, even though scientists are just learning to interpret 

these clues. 

In recent years, a substantial effort has been made for the application of textual data 

compression techniques to various computational biology tasks, ranging from storage and 

indexing of large datasets to comparison and reverse engineering of biological networks 

[9]. 

For a flexible and efficient sequence representation the sequence representation (including 

the pure sequence and related metadata) needs to be space efficient allowing fast retrieval 

of the content. The latter can be achieved using byte arrays, as in most common software 

tools. 

Another requirement is support for storing multiple sequences in one representation. An 

intuitive representation of a collection of sequences is a linear concatenation of all 

individual sequences, with additional information to mark the sequence boundaries. For 

index-based techniques, the sequences are usually addressed by absolute sequence 



 

 

11 

 

positions, so one also needs to be able to map absolute sequence positions to relative 

positions [1].   

 

1.3  Problem statement  

The primary problems associated with compressed storing of high dimensional multiple 

biological sequences are handling wildcard characters and distinguishing among two 

different sequences. Meanwhile it is also difficult to maintain a minimal rate of time and 

space complexity while performing those operations. If the length of the wildcard sequence 

chunk is very large or if there is repetitive chunks along the sequence then it becomes 

difficult. So for these worst-case scenarios, the complexities rise.    

 

1.4  Research challenges  

To start with the challenges first it is found that the largeness of data size. While 

implementing the GtEncseq algorithm we found that for a FASTA-formatted input file of 

37.54 GB size, which contains around 26,015,933 sequences [1]. Currently, publicly 

available genomes are typically stored as flat text files in GenBank, but this approach is 

unlikely to scale up in many ways. The storage of the diploid genomes of all currently living 

humans using this simple approach would take ‘GenBank’, without counting headers or any 

additional annotations, on the order of 36×1018 bytes, or 36M Terabytes, an amount 

difficult to store or download over the Internet, even using standard compression 

technologies (e.g. gzip) [10]. So for the in unavailability of a large number of data and due 

to a considerable amount of lower configurations for our available equipments compared 

to them, we needed to generate sample data to do the simulation. Then encoding such large 

sequence character by character without losing any data is also another sort of challenge. 

Again, for wildcard sequences with large number of wildcard characters, the decoding time 

complexity becomes high. Finally, accessing the data and retrieving the information with 

accuracy and flexibility is necessary to maintain. 
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            1.5      Scope 

The scopes for the study are manifold. “GtEncseq” is a new approach in the field of 

sequence storing and retrieving and the improvement of this method will certainly enable 

us to store very large number of datasets in an efficient way. It also gives us the easy access 

to the unused or rather unknown compounds and sequences of DNA and allows us to 

manage those data distinctly. Also storing multiple sequences in one representation is also 

very much efficient and retrieving each individual sequence is also possible. 

 

1.6  Thesis outline 

In Chapter 1 brief introduction of study and our work has been provided. Besides the 

motivational factors behind the thesis, scopes and challenges are also mentioned briefly. In 

chapter 2 the literature reviews are described where few background topics along with 

related algorithms for our thesis are mentioned. In the later part of the chapter the 

introduction and analysis for the algorithm that we have worked on and improved are 

provided. In chapter 3 our proposed method as well as discussion and mathematical 

analysis is described. The implementation part is briefly described in chapter 4. Chapter 5 

introduces result and data analysis. Finally in chapter 6 we have drawn the conclusion with 

some mentions of future scopes for improvement for our work. 
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                                                                                                                  Literature Review 

               2.1    Background studies 

• Genes basically are composed of one of the following four types of bases-adenine, 

cytosine, guanine, and thymine often abbreviated as A, C, G, and T. Finding the order 

in which the nucleotides are arranged in the DNA is a part of genome sequencing.  

• Multiple sequencing: refers to a linear concatenation of all individual sequences, 

with additional information to mark the sequence boundaries (separators). 

• Wildcards: ambiguous nucleotides or amino acids. 

• GenBank: The GenBank sequence database is an open access, annotated collection of 

all publicly available nucleotide sequences and their protein translations. 

• FASTA: FASTA format is a text-based format for representing either nucleotide 

sequences or peptide sequences, in which nucleotides or amino acids are 

represented using single-letter codes. The format also allows for sequence names 

and comments to precede the sequences.  

• BLAST :  Basic Local Alignment Search Tool. Input to these tools is FASTA, GeneBank 

or ASN.1. While DNA sequences are stored in a byte compressed format, protein 

sequences are stored as simple byte arrays. 

• BLAT: BLAT is an alignment tool like BLAST, but it is structured differently. On DNA, 

BLAT works by keeping an index of an entire genome in memory. Thus, the target 

database of BLAT is not a set of GenBank sequences, but instead an index derived 

from the assembly of the entire genome. 

• gzip: The format is designed to allow single pass compression without any 

backwards seek, and without a priori knowledge of the uncompressed input size or 

the available size on the output media.   

                                                                                     Chapter 2 
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        2.2    Related works 

Many algorithms and data structures have been developed considering the fact in mind 

that the amount of research being increased in the field of gene sequencing, the volume of 

data is also increasing. Korodi and Tabusan [11] proposed an algorithm for the lossless 

compression of DNA files which contain annotation text besides nucleotide sequence. First, 

a grammar is specifically designed to capture the regularities of the annotation text. A 

revertible transformation uses the grammar rules in order to equivalently represent the 

original file as a collection of parsed segments and a sequence of decisions made by the 

grammar parser. 

Another simple and less efficient method was published by Sheng Bao, Shi Chen, Zhi-Qiang 

Jing and Ran Ren [4] where they used a new DNA sequence compression algorithm which 

is based on LUT and LZ77 algorithm. Combined a LUT-based precoding routine and LZ77 

compression routine, this algorithm can approach a compression ratio1 of 1.9bits /base 

and even lower. They created a Look Up Table (LUT) which describes a mapping 

relationship between DNA segment and its corresponding characters.  

Every three characters in source DNA sequence (without N2) will be mapped into a 

character chosen from the character set which consists of 64 ASCII characters. The braces 

behind each character contain the corresponding ASCII codes of these characters. For easy 

implementation, characters a, t, g, c and A, T, G, C no longer appear in pre-coded file. 

For instance, if a segment “ACTGTCGATGCC” has been read, in the destination file, it was 

represent as “j2X6”. Obviously, the destination file was case-sensitive. 

The character N refers to the segment which is unknown. When being encounter a serial of 

successive Ns, the algorithm inserts two “/” into destination file to identify the starting and 

end place of these successive Ns. There is a number which equals to the number of Ns 

between the “/” pair. For instance, if segment”NNNNNN” has been read, in the destination 

file, it was representing them as “/6/”. 

Another paper by Srinivasa K. G, Jagadish M, Venugopal K R and LMPatnaik [7], propose an 

encoding scheme to compress non repeat regions of DNA sequences, based on dynamic 
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programming approach. In order to test the efficiency of the method we incorporate the 

encoding scheme in a DNA-specifi c algorithm, DNAPack.  

For example, the sequence AGTC would be taken as AATT and ATTA. The decoding 

procedure requires both the sequences, with four possible combinations of A and T 

representing each base as shown in a table in fig. 2 

                                              

                            Fig 1:  Mapping Scheme for Decoding of LUT and LZ77 algorithm 

The above substitutions are made to the entire DNA sequence. Let the pass 1 substitution 

sequence be S1 and pass 2 sequence be S2. If the length of the sequences is l then each 

linear sequence is transformed to a matrix of dimension α×β where α ∗ β = l. The 

transformation is done row-wise and hence the entry in ith row and jth column (zero-

indexed) would correspond to alphabet in i ∗ β + j position in the sequence. 

The choice of α and β can be made in different ways. A simple approach would be to break 

the sequence into multiple sequences each of length of a perfect square, chosen greedily, 

and represent each sub-sequence as a square matrix. This is always possible since any 

number can be represented as sum of squares. A more efficient way to determine the split 

is to consider all possible combinations of α and β and take the combination that leads to 

maximum compression ratio. 

This is increases the complexity considerably but can be made non-prohibitive if the length 

of the longest sequence is restricted to a certain maximum value. The encoding and 

decoding of S1 and S2 are done independently. The compression technique works on the 

matrices obtained by the sequences. The encoding idea is based on the idea of recursively 

dividing the matrix into sub-matrices until each sub-matrix is composed of a single 

alphabet.  
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Another Algorithm is proposed by A. Cannane and H. Williams, known as RAY method, 

allows random access so that specific sections of the compressed data can be individually 

accessed. 

RAY makes multiple passes over the input data. These passes incrementally construct a 

dictionary of symbol sequences that are repeated in the text, with each pass discovering 

longer sequences. Once the dictionary has been built, the data and dictionary can be coded 

using mechanisms such as Huffman coding, which in this application are reasonably 

efficient due to the fact that most of the occurrences of the most common symbols have 

typically been removed, reducing their frequency and thus reducing the difference between 

the 0-order entropy and whole-bit coding that can result from a Huffman process. 

 

 

 

Another algorithm was proposed by Shanika Kuruppu, Bryan Beresford-Smith, Thomas 

Conway, and Justin Zobel [2] used RAY such that it is efficient for DNA compression. First, a 

symbol is defined to be a substring of, say, 16 consecutive symbols in the first iteration 

(first execution of steps 1-4 in RAY). The motivation here is that almost all substrings of 

length 16 or 16-mers occur with reasonable frequency in large DNA collections, and thus 

naive RAY would in four iterations discover the vast majority of these 16-mers as 

dictionary entries.  

 

 

 

     

            2.3     GtEncseq Data Structure 

This is developed by Sascha Steinbiss and Stefan Kurtz. The GtEncseq Data Structure is 

used for storing multiple biological sequences of variable alphabet size, with customizable 



 

 

17 

 

character transformations, wildcard support, and an assortment of internal 

representations optimized for different distributions of wildcards and sequence lengths. 

Representations of biological sequences of course need to support nucleotide and amino 

acid alphabets. However, these come in many different variations, like notation for masked 

positions, uppercase and lowercase notation and with different sets of wildcard symbols 

(for sequence positions containing ambiguous nucleotides or amino acids). 

 

       2.4  Implementation comparison of GtEncseq with various other 

methods 

In many cases it is necessary to read the sequence in different reading directions (forward, 

reverse) and, in case of DNA optionally deliver the Watson-Crick complement of a sequence 

of nucleotides. Other applications require enumeration of k-mers or codon translation. 

Current sizes of sequence collections are too large to allow converting or storing these in 

different formats. Therefore, software implementing a sequence representation needs to 

accept common sequence formats (e.g. FASTA, GenBank, EMBL, FASTQ), ideally 

compressed (gzip or bzip2) and uncompressed. While the time-critical low-level part of the 

code should be implemented in a fast, compiled language like C or C++, it is important to 

support popular scripting languages like Python or Ruby. 

A widespread sequence representation is produced by the formatdb/makedatabase tool 

from the (Basic Local Alignment Search Tool) BLAST software package. Input to these tools 

is FASTA, GeneBank or ASN.1. While DNA sequences are stored in a byte compressed 

format, protein sequences are stored as simple byte arrays. An API to this sequence 

representation is implemented in the NCBI C/C++ Toolkit [12].  

Another widely used sequence representation is the disk-based “2bit” format of the BLAT 

alignment software [13], which is written in C. It is restricted to DNA sequences in which all 

non-ACGT characters are automatically mapped to N before encoding takes place. The 

input sequences must be uncompressed plain sequences or multiple FASTA files. 
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The SeqAn C++ library [14] provides another sequence representation, specifically 

designed to be used by other software developers. It allows arbitrarily large alphabets and 

stores the sequences in an alphabet size-dependent, compressed bit representation. The 

generic programming approach applied in SeqAn facilitates extensive compile-time 

optimizations done by the C++ compiler. Therefore SeqAn is only usable in C++ programs. 

 

           2.5     Implementation of GtEncseq Data Structure 

The implementation occurs maintaining two parts. The first part describes the data 

structures and retrieval algorithms we use. Special focus is on the efficient handling of 

wildcard characters and separator positions. 

The second part of this section gives an overview of the application programming interface 

(API). 

 

                       2.5.1 Sequence Representation 

Given a set of sequences, each over the input alphabet Σ∪ � where Σ denotes the set of 

regular characters and  �  denotes the set of ambiguity characters, here called wildcards. In 

many applications, it is convenient or sometimes even necessary to divide the set of regular 

characters into � disjoint subsets of equivalent characters A regular character is encoded 

into the ordinal number of the set it belongs to, i.e. a ∈ �� is encoded into i.  A wildcard is 

encoded into some integer # ≥ � . To conveniently handle a set of, say q, sequences  	
,	�.... 

, 	�−�, each character of each 	� is encoded, 0 ≤  ≤ � − 1 and concatenated the resulting 

sequence of integers into one long sequence T, separating two consecutive sequences by 

some integer  $ ≥  � such that $≠ #. $ is the sequence separator. T is a sequence of integers 

from the set {0,...,α- 1} ∪ {#, $}. The total length of T and by |T| and  the number of 

sequences it represents is ||T||. 

Suppose that each sequence 	�  comes with a description string  �� . Let D be the 

concatenation of all descriptions in the order consistent with the order of the 	�  in T, using 
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the new line character as a separator between two consecutive descriptions. The queries to 

be solved for T and D: 

     

 

Fig 2.2: The queries to be solved for T and D 

In the following, the explanations of how to represent T and the input sequences to 

efficiently answer these queries are presented: 

Answering char (T, j): 

• It is usually better to represent the wildcards and separators in    additional data 

structures. T can be stored in 2 .|T| bits as in each position one of four different 

integers are stored.  

•  To decide T[j] = {#,$} a new data structure needed to be used. The  positions of all 

separators ($) in T are stored in an array S of length ||T||-1. To save space we 

virtually divide the positions from 0 to ||T|| into units of size 2^h for some h = 8, 16, 

32…. 

• For any j’ satisfying T[j] != $, j' is stored as an integer j' mod 2^h using h bits, 

belonging to unit j'/2^h. 
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• For each p={0…j'/2^h} additionally store the smallest index F_s(P) in S where a 

value belonging to unit p' for some p'>= p is stored. 

• Then, the values belonging to unit p are stored in S[F_s(p)…..F_s(p+1)-1]. For a given 

position, say j, the unit number p = j/2^h and perform a binary search determining 

if j mod 2^h occurs in the unit. 

• The described representation requires 

                                               

   bytes, where ω is 4 or 8 depending on whether we use the 32-bit or 64-    bit 

version of the                    representation and h  {8,16,32}.This representation is 

referred to by S-unit(h). 

• To decide T[j]= #, we store all ranges of consecutive wildcard positions as pairs T(j’, 

l). Here, j’ is the start position of a range and l is its length.  Two tables, one for 

positions and one for lengths, each with r values, the size of this representation is 

                                                    

• bytes. Given |T|, r , and ω we choose h={8,16,32} minimizing (2). This 

representation is referred to by W-unit(h'). 

The representation of wildcard and separator sequences are representated in the 

following figure:  
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                                                  Fig 2.3: the GtEncseq algorithm representation 

Answering substring (T, j ,L): 

To answer substring (T, j,L):, only two binary searches for the first position are necessary 

(one for separators and one for wildcard ranges). 

Answering seqnum (T,j): 

 First  determine the unit number  and perform a binary search in unit p to determine some 

value �� such that either ��is the first value in this unit and j mod 2� < �� or �� is the largest 

value in unit p smaller than j mod 2� . 

Answering seqstart (T, i): 

In case all sequences have equal length, say m, the ith sequence starts at position i.(m + 1 ) 

for all 0≤  ≤ ||�|| − 1. Thus, the query can be answered in constant time and constant 

space. 
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Answering description (D, i): 

To answer the query in constant time, we store the positions of all but the last newline-

characters in D. 

 

                          2.5.2   Application Programming Interface 

API for Encoded Sequence Access: 

The central class in the encoded sequence interface presented here is called GtEncseq. 

GtEncseq objects allow random and sequential access to any substring of the sequence. 

In addition to character and substring queries, the GtEncseq allows to retrieve the following 

metadata: 

1. The number of sequences, a sequence description of unlimited length for each individual 

sequence 	�, 

2. The length of each individual sequence 	�(|	�|), the starting position of each sequence in 

T. 

3. The length of the concatenated sequence (|T|), 

4. The number and names of the original input files, 

5. The starting positions of each input file in the concatenated sequence, 

6. The distribution of encoded characters and the number of wildcards and wildcard 

ranges. 

API for Encoded Sequence Creation and Loading: 

The first task is encoding, that is, creating a persistent sequence representation on file. 

Encoding is done by an instance of the GtEncseqEncoder class. Use of the encoded sequence 

requires loading these tables, which use (GtEncseqLoader) returns a GtEncseq object. 



 

 

23 

 

GtEncseqBuilder class implements stateful building of a GtEncseq in memory by 

successively concatenating C strings. 

Alphabet Mapping Definitions: 

Alphabet definitions are stored in an alphabet definition file in which the characters 

appearing on the ith line 0 ≤  ≤ � − 1 are encoded by the integer i. The characters 

appearing in the last line are the wildcards. 

For example, consider the following alphabet definition: 

aA  

cC  

gG 

tTuU 

nsywrkvbdhmNSYWRKVBDHM 

This encodes a and A by 0, c and C by 1, g and G by 2, t, T, u, and U by 3. The characters N, S, 

Y, W, R, K, V, B, D, H, and M (including their lower case versions) are wildcards. When 

decoded back to printable ASCII characters, the first character of each line is used to 

represent characters from the respective line. These are the lower case DNA characters a, c, 

g, t, and n. While this approach cannot reproduce the original sequence, but rather a 

sequence of representative characters from each line, additional data structures  are used 

to also (optionally) retrieve the original sequence. 

These data structures use a similar combination of the unit-based approach described and 

bit compression to store positions where a character other than the most frequent 

character in the line occurs, and a bit-compressed integer to identify the correct character 

at that position in the set of characters for the class in question. This is a simple and 

efficient way to implement fully lossless storage, which is useful in situations where, for 

example, input sequences are soft masked by lower case characters. 
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        2.6   Performance comparison with existing models  

Before elaborating the topic we need some overview regarding current data analysis 

models which have been used effectively. Previously we have talked about BLAST and 

BLAST. Another very efficient model is “gzip”. The format was designed to allow single pass 

compression without any backwards seek, and without a priori knowledge of the 

uncompressed input size or the available size on the output media. If input does not come 

from a regular disk file, the file modification time is set to the time at which compression 

started. 

 

Also “bzip2” is a popular model. bzip 2 is a freely available, patent free (see below), high-

quality data compressor. It typically compresses files to within 10% to 15% of the best 

available techniques (the PPM family of statistical compressors), whilst being around twice 

as fast at compression and six times faster at decompression. 

 
 

 
Fig 2.4: comparison for various DNA and protein datasets using different compression 

model 
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Proposed method 

 

We have designed a data structure modifying the existing GtEncseq method for better   

storage facilities. Our proposal consists of followings:  

• Decreasing the concatenated sequence length T. 

• Keeping wildcard characters apart from the concatenated sequence into another 

table for simplicity and reduced storage. 

• Using efficient data structure to decode the encoded sequence while necessary. 

• Making either sequential or random access efficient despite modification.       
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          3.1   Modified representation of wildcards  

 

Fig3.1: Wildcard representation for modified algorithm. 

In the sequence above represents start position in unit. The sequence in middle represents 

wildcard length. The sequence below shows the wildcard of our proposed method. Here we 

can find that the first encounter of wildcard sequence is found at the index 72486550. So in 

our modified sequence we are using only one index indicating the start position. In the Ws 

we are storing the bit compressed values of every wildcard characters. In main sequence 

the there are 8446 (72494995-72486550) indexes for first wildcard sequence. So in Ws 

array index 0 to 8445 occupies the first sequence. Similarly second sequence starts at 

72491153 and we keep only one index in the main sequence for that and use index 8446 to 

17264 of Ws. Though the index positions for main sequence are changed for these 

transformations, we can easily access to previous indexes as we are keeping tracks of each 

wildcard sequence length. Just adding the length with the previously encountered wildcard 

sequence start position will result the original indexes. 

Similarly we can store the separator indexes in another array and can access from the main 

sequence without losing data.  
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             3.2  Mathematical analysis of our proposed data structure 

To solve char (T, j), we extract the ��� pair of bits from the representation of T and interpret 

it as an integer b. If 

b ≠ α, then b = T[j] and we determine it in the following way.  

To decide T[j] = $, we store the positions of all separators in T in an array S of length ||T|| - 

1. 

 

Consider j = 72486551. Now we convert value of j to original sequence value and find the 

exact lower value of the wildcard or separator start position. Here 72486551/ 2�� = 1106. 

By unit 1106 we obtain unit start position and length from W. So the absolute start position 

of this wildcard is 1106 ∗ 2�� + 3734 = 72486550. The difference between the asked 

position and the obtained wildcard start sequence is 72486551 - 72486550 = 1, which is 

less than the length of the wildcard.  

 

So for this query T[j] = #. Which is exactly T[j] = W [100+1] =W [101] = H. Time 

requirement and space requirement will be same.  

 

Again, 

Considering j = 72499598; where j is the index to access. Let wildcard sequence counter 

c=1. 

Converting this value to absolute sequence value   72499598/2�� =1106(Unit Value). 

Absolute start position of wildcard = 1106 * 2�� + 3734 = 72486550. The difference 

between j and absolute wildcard start sequence is 72499598 - 72486550 = 13048 which is 

larger than the length of wildcard. The value of regular character count is 4602 which is 

equal to the difference (4602) between 13048 and 8446. So, T[j] = T 

[72486550+8446+4602]= integer representation. 

 

Finally, 
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Considering j = 72508702; where j is the index to access.  Let wildcard sequence counter 

c=1. Converting this value to absolute sequence value 72508702/2��=1106(Unit Value). In 

Fs we see there is one separator in this unit and its start position at s[13]. After co-ordinate 

transformation, we obtain correct separator position 1106 * 2��+ 25886 = 72508700. 

So, T[j] = $. 
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Chapter 4 
                                                                                    Implementation 

 
      4.1   Used hardware and software     
 
We used a machine consisting 32-bit Intel core i5 microprocessor with 4 GB RAM. 

We used Java platform (Netbeans IDE 6.9.1) for the purpose of encoding, decoding, finding 

time and space requirements, queries and for building a front end which allow user input 

and display the outputs of these operations. 

 

 

       4.2   Input Specifications   

 

As our primary concern of this thesis is to improve the efficiency of the existing “GtEncseq” 

data structure in terms of space requirements and time requirements for encoding 

purposes of large multiple sequences those also consist a considerable amount of wildcard 

characters, we generated test data of variable sizes. As a 32-bit machine only can support 

up to 10� Boolean array indexes, we are only allowed to make the input according to array 

size. This is applicable for both main sequence and for the wildcard sequence. We are 

generating input of multiple sequences where wildcard characters have been placed within 

the nucleotide sequences. We are using a newline which performs as a separator between 

two sequences. 

 

 

       4.3   Procedural analysis 

 

For the input we are using text files of variable sizes which contain the test sequences 

presented in FASTA format. We have used separate arrays for both the encoded main 

sequence and wildcard sequence. 
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• Encoding 

 

While iterating through the input, the program looks for either any of the nucleotide 

character, wildcard or separator. If any of the A, T, C or G is found, it encodes into binary 00, 

01, 10 and 11. Each time a nucleotide is found, it is encoded in similar fashion and then 

concatenates with the previous 2-bit binary. For separators, the index value is stored. 

Another array is made to store the wildcard characters. Whenever such a character is 

found, it is encoded to the binary ‘10’ in the main sequence and the start position of this 

character is stored. Then as long as the wildcard sequence continues, the characters are 

encoded into a 5-bit binary representation whose value is previously determined. Then 

same iteration and concatenation occurs until the sequence ends. These values are stored 

in the array. Finally the length of the total wildcard sequence is calculated and stored. So, 

for any number of wildcard sequence, we have to represent it only with a 2-bit binary in 

the main encoded sequence.  

This procedure is clarified in the following flowcharts:   
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                                Fig 4.1: Encoding steps of the improved algorithm 
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• Decoding 

 

While decoding the binary representation, whenever the program encounters any of the 

binary 00, 01 and 11, it decodes to its corresponding character. For the binary ‘10’, three 

possibilities arise. First it looks into the separator index and matches the index number of 

the binary. If matches, it concatenates a newline. Else it checks for wildcards and decodes 

the corresponding 5-bit binary similarly. This continues until the wildcard length ends. If 

none of these are true, then the program concatenates the character ‘C’ with the decoded 

sequence. Fig. shows the steps for decoding.  

 

• Implementing queries 

 

There are some query specifications which must be performed accurately with the 

algorithm. If these queries can produce the expected result for our improved algorithm 

then it can be said that the algorithm is working as it is expected. The description of these 

functions was discussed earlier at section 5.3.1. We have used five global functions to 

perform the same operations. 

 

1. Finding a specific Character 

We have taken the index number of the main sequence as the input parameter. Then it is 

checked against the encoded sequence and finally outputs the desired character by 

decoding. To find the character for a position, both main sequence and wildcard sequence 

indexes needed to be accessed.  If the given index is for a separator, it outputs a newline. 

 

2. Finding a substring   

The input parameters were given as two integer values which represent as the starting and 

ending index for the required substring. The output returns the exact subsequence within 

the range. We have used a built in function to find substring. 
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3. Find the sequence start position 

The input parameter was given as an integer value which defines the sequence number. 

The output returns the index number from which the sequence has been started. 

 

4. Find the sequence number of a given index  

The input parameter was given as an integer value which defines the index number of a 

character from the main sequence. The output returns the sequence number where the 

character is placed. Accessing both main sequence and wildcard sequence is required for 

calculation purpose.  

 

5. Find Description 

This function takes the input of an entire sequence number at displays it in output. 

 

The decoding procedure is clarified in the following flowcharts:   
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                                          Fig 4.2:  Decoding steps of the improved algorithm 
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    4.4    Interface 
 

 
                                               Fig 4.3: Interface before taking input 

 

 
                            Fig 4.4: Interface after taking a sample input and encoding 
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Chapter 5 
                                                     Result Analysis and Discussion 

 
       5.1   Research data 
 
The input data was collected from the database 

https://www.ebi.ac.uk/ipd/mhc/download.html 

We took the nucleotide and protein samples in FASTA format for “Canine” and took it from 

https://www.ebi.ac.uk/ipd/mhc/dla/index.html   

 

We have generated five input text files all consists of variable sizes of DNA sequence 

manipulated with wildcard characters of different length. At first we have run the test for 

our proposed data structure and then we have used the same input files to find the output 

for the existing algorithm. In both cases we have collected the required memory space and 

time for encoding the whole input file 

 

The following table shows the comparison regarding space requirement between our 

proposed method and GtEncseq data structure: 

Table 5.1: space requirement for our proposed method and GtEncseq 

Main sequence  
size(MB) 

Size obtained by our 
proposed 
method(MB) 

Size obtained using 
GtEncseq algorithm(MB) 

Memory requirement 
decreased by 

 0.35 0.08 0.09 11.1% 

1.0 0.23 0.26 11.5% 

2.01 0.46 0.53 13.2% 
7.77 1.75 2.04 14.21% 

10.2 2.33 2.71 14.02% 
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The following table shows the comparison regarding encoding time requirement between 

our proposed method and GtEncseq data structure: 

Table 5.2: encoding time requirement for our proposed method and GtEncseq 

Main sequence  
size(MB) 

Encoding time for our 
proposed method(ms) 

Encoding time for 
GtEncseq algorithm(ms) 

Encoding time 
decreased by 

1.34 230 244 5.73% 
3.69 486 565 13.98% 

6.36 809 848 4.6% 

7.77 919 1054 12.81% 

10.2 1270 1373 7.50% 

 

        5.2   Analysis and comparison  

We have calculated the encoded sequence space against the main sequence space for both 

the existing and proposed algorithm. 

Also we have used the built-in JAVA function to calculate the encoding time for both the 

algorithms. 

 We have generated the percentage of reduced required space for every sample data. It is 

clear in the data table that for various sizes of input data the efficiency is increased and saw 

that the memory space required for encoded sequence in our proposed existing algorithm 

is less than the requirement for the existing algorithm. The compression efficiency 

increment is proportional to the increment of main sequence data size. For example for 1.0 

MB input data the storage requirement for our proposed method is 11.5% lower than the 

existing method, and for 10.2 MB data the percentage increases up to 14.02% . 

Encoding time efficiency also increases in our proposed method. This time the increment is 

non-linear, but for every input size, there is a substantial amount of efficiency. 

We have prepared graphical representations where the comparison is shown among the 

methods (fig. 5.1 and 5.2). 
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The drawback of the proposed algorithm is the increased amount of decoding time than 

that of the existing algorithm. This can be explained by the fact that we are following a 

linear approach while decoding the encoded data and as soon as the program finds a 

wildcard sequence start position, it needs to add the sequence length for retrieving the 

exact indexes of the original sequence. This addition operation for every wildcard sequence 

appearance takes more decoding time than the existing algorithm.    

 

 

 Fig 5.1: graphical representation regarding space requirement for encoded sequence 

between the existing and proposed algorithm. 
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 Fig 5.2: graphical representation regarding time requirement for encoded sequence 

between the existing and proposed algorithm. 
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Chapter 6 
                                            Conclusion and future scope 

 
 

Our proposed method will save a large amount of space and it will be a lossless method. 

The encoded sequence is much smaller than the GtEncseq representation, especially in the 

presence of large number of wildcard chunks. Still there are opportunities to improve its 

performance in terms of time requirement for accessing main sequence and decoding the 

encoded sequence. To work with huge amount of data (Gigabyte data) is another goal to 

achieve. For this, we require higher configuration machineries which are not available for 

the moment. 

.   
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Appendix 

 
 

 

• Used Java classes and Functions: 

 

� Classes: 

 

� GtAlphabet.java 

� Mainframe.java 

� MainClass.java 

 
� Functions: 

        

� public static void main(String[] args) {} 
� public void openFile(String file) {} 
� public void readFile() {} 
� public void closeFile() {} 
� public String noOfSubbSequence(){} 
� public String totalLength(){ 
� public String encodeSequence() {} 
� public String decodeSequence() {} 
� public String getSubstring(int j, int l){} 
� public String getChar(int temp) {} 
� public String getSequenceNumber(int temp) {} 
� public String getSequenceStartPosition(int temp) {} 
� public String getDescription(int temp) {} 
� public MainFrame() {} 
� private void chooseFileButtonActionPerformed(java.awt.event.ActionEvent evt) 

{} 
� private void okButtonActionPerformed(java.awt.event.ActionEvent evt) {} 
� private void decodeButtonActionPerformed(java.awt.event.ActionEvent evt) {} 
� private void encodeButtonActionPerformed(java.awt.event.ActionEvent evt) {} 
� private void okButton2ActionPerformed(java.awt.event.ActionEvent evt) {} 
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