

Bachelor of Science in Computer Science and Engineering

An Improved
For Efficient Storage of Multiple BIOsequences

Assistant Professor, CSE Department

Computer Science and Engineering (CSE) Department

Islamic University Of Technology (IUT)

Organis

Bachelor of Science in Computer Science and Engineering

Thesis

An Improved Data Structure
For Efficient Storage of Multiple BIOsequences

Prepared By:
Md. Zahidul Hasan (084434)
Anik Islam Shimul (084441)

Co-Supervisor

Tareque Mohmud Chowdhury
Assistant Professor, CSE Department

Supervisor
Prof. Dr. M. A. Mottalib
Head, CSE Department

Computer Science and Engineering (CSE) Department

Islamic University Of Technology (IUT)

Organisation of Islamic Cooperation (OIC)

Gazipur, Bangladesh

October, 2012

Bachelor of Science in Computer Science and Engineering

For Efficient Storage of Multiple BIOsequences

Computer Science and Engineering (CSE) Department

i

Certified of Research

This is to certify that the work presented in this thesis is the result of the implementation of
“An Improved Data Structure for Efficient Storage of Multiple BIOsequences” which
has been supervised by Prof. Dr. M. A. Mottalib, Head, CSE Department and co-supervised
by Mr. Tareque Mohmud Chowdhury, Assistant Professor, CSE Department of Islamic
University of Technology (IUT) .

This thesis was undertaken as a partial fulfillment of requirements for the Bachelor of
Science degree in Computer Science and Engineering. It is also declared that this thesis
thereof has not been submitted anywhere else for the award of any degree or any
publication.

Authors:

 Md. Zahidul Hasan ---------------------------------------

Student ID: 084434 Signature

 Anik Islam Shimul ---------------------------------------

 Student ID: 084441 Signature

Co-supervisor:

Tareque Mohmud Chowdhury ---------------------------------------

Assistant Professor, CSE department Signature

Supervisor:

Prof. Dr. M. A. Mottalib ---------------------------------------

 Head, CSE Department Signature

Department of Computer Science and Engineering, IUT

October, 2012

ii

At first we would like to thank our respected supervisor Prof. Dr. M. A. Mottalib, Head, CSE

Department for his earnest help, guidance and motivation towards the completion of this

thesis work.

We convey our sincere gratitude to our co-supervisor Tareque Mohmud Chowdhury,

Assistant Professor, CSE department for his ideas, wise patronization and co-operation.

We would like to thank our parents for their consistent inspiration and encouragement for

us to consummate our goal.

We are grateful to all the teachers and members of the department of CSE for their

consistent support and enthusiasm.

Last but not the least we thank to our batch mates, our beloved friends, for their supports,

assists and for being there no matter what.

 Acknowledgment

iii

 Abstract

Compression of large DNA sequences has been a subject of great interest since the

availability of genomic databases. Although only two bits are sufficient to encode four bases

of DNA (namely A, G, T and C), the massive size DNA sequences forces the need for efficient

compression. In this article we are going to propose an improved version of an existing

algorithm known as “GtEncseq” which describes the procedure of storing multiple

biological sequences of variable Character size, with customizable character

transformations, “wildcard” and “separator” support, and a diverse group of internal

representations optimized for different arrangements of wildcards and sequence lengths.

Our main target is extensive compression of data with an attempt of eliminating the

wildcard entries from the sequence but make it available for the reuse. An efficient time

requirement for encoding the desired sequence is also a note to consider.

iv

 List of figures

Figure name Page

• Fig 2.1: Mapping Scheme for Decoding of LUT and LZ77 algorithm 15

• Fig 2.2: The queries to be solved for T and D 19

• Fig 2.3: The GtEncseq algorithm representation 21

• Fig 2.4: comparison for various DNA and protein datasets

using different compression model 24

• Fig 3.1: Wildcard representation 26

• Fig 4.1: Encoding steps of the improved algorithm 31

• Fig 4.2 : Decoding steps of the improved algorithm 34

• Fig 4.3: Interface before taking input 35

• Fig 4.4: Interface after taking a sample input and encoding 35

• Fig 5.1: graphical representation regarding space requirement

for encoded sequence between the existing and proposed algorithm 38

• Fig 5.2: graphical representation regarding time requirement

for encoded sequence between the existing and proposed algorithm 39

v

Table Name Page

• Table 5.1: space requirement for our proposed

method and GtEncseq 36

• Table 5.2: encoding time requirement for our proposed

method and GtEncseq 37

 List of tables

vi

Table of Contents

 Acknowledgement ii

 Abstract iii

 List of figures iv

 List of tables v

 Table of contents vi

Chapter

1

Introduction 8

 1.1 Overview 9

 1.2 Motivation 9

 1.3 Problem Statement 11

 1.4 Research Challenges 11

 1.5 Scope 12

 1.6 Thesis Outline 12

Chapter

2

Literature Review 13

 2.1 Background studies 13

 2.2 Related works 14

 2.3 GtEncseq Data Structure 17

 2.4 Implementation comparison of GtEncseq with various other

methods

17

 2.5 Implementation of GtEncseq Data Structure 18

 2.5.1 Sequence Representation 18

 2.5.2 Application Programming Interface 22

 2.6 Performance comparison with existing models 24

Chapter

3

Proposed Method
25

 3.1 Modified representation of wildcard 26

 3.2 Mathematical analysis of our proposed data structure 27

Chapter

4

Implementation 29

 4.1 Used hardware and software 29

vii

 4.2 Input Specifications 29

 4.3 Procedural analysis 29

 4.4 Interface 35

Chapter

5

Result Analysis and Discussion 36

 5.1 Research data 36

 5.2 Analysis and comparison 37

Chapter

6

Conclusion and Future Scope
40

 References 41

 Appendix 42

8

Introduction

The introduction of Biological sequencing has significantly accelerated biological research

and discovery. The rapid growth of modern Biological sequencing technology has been

revolutionary. Many Biological projects, mostly by scientific collaboration across various

parts of the world, have generated the complete Biological sequencing of many animal,

plant, and microbiological organs. Storing multiple biological sequences of different

categories and retrieving these sequences separately as well as accessing any of these

sequences randomly are the fundamental necessities in bioinformatics and therefore

several algorithms have been developed to make these actions flexible and accurate.

Representations of biological sequences of course need to support nucleotide and amino

acid alphabets. Like notation for masked positions, uppercase and lowercase notation and

with different sets of wildcard symbols (for sequence positions containing ambiguous

nucleotides or amino acids), separator positions while dealing with multiple sequences. A

flexible representation handles these variations in a sensible way. GtEncseq is one of the

most recent and developed implementation that provides a variety of methods for random

and sequential access to individual characters, individual sequences, wildcard sequences

and also substrings. GtEncseq fully supports access to sequence descriptions, lengths, and

original filenames in constant time per sequence. Regardless the fact that the performance

evaluation of this data structure has superseded most of the other methods, potential flaws

is still remaining. For gigabase genome sequences consisting billions of base pair sequences

and millions of wildcard entries (human genome, 3.1 gigabases and approximate 237

million wildcard entries [1]) can cause redundancy and wastage of memory. We are here to

identify the limitations and drawbacks regarding the encoding of multiple BIOsequences

and propose an improved structure which can overcome the existing setback of the

algorithm and to present a flexible structure which can increase the performance regarding

efficiency of storing genome data.

Chapter 1

9

1.1 Overview

Some of the research areas in genetics include Gene regulation, DNA sequence

organization, Chromosomal structure and organization, Non-coding DNA types and

functions, coordination of gene expression, protein synthesis, and post-translational events

interaction of proteins in complex molecular machines, evolutionary conservation among

organisms, Protein conservation, correlation of single-base DNA variations with health and

disease, etc[7]. But to store these large volumes data in an efficient manner and with a

lossless approach is an important aspect of Biological science.

Genes basically are basically composed of one of the following four types of bases-adenine,

cytosine, guanine, and thymine often abbreviated as A, C, G, and T. Many compression

methods have been discovered to compress DNA sequences. Invariably, all the methods

found so far take advantage of the fact that DNA sequences are made of only 4 alphabets

[8]. But there are 21 other characters which are also used to represent protein or amino

acid sequences. Among them N, S, Y, W, R, K ,V, B, D, H, M and their lowercase

representations are known as wildcard entries [1]. These are ambiguous compounds and

most of their functionality and physical significance is yet to be discovered. However, these

characters can co-exist with large nucleotide sequences making the formations of large

chunks. So, at first it is necessary to find the order in which the nucleotides or amino acids

are arranged in the DNA.

Deriving meaningful knowledge from DNA sequence will define biological research through

the coming decades and require the combined effort of biologists, chemists, engineers, and

computational scientists, among others.

1.2 Motivation

Genomic science is confronted with the volume of sequencing and resequencing data which

is increasing at a higher pace than that of data storage and communication resources,

10

causing a shift of a significant part of research budgets from the sequencing component of a

project to the computational one. Hence, being able to efficiently store sequencing and

resequencing data is a problem of paramount importance. The human genome alone is

made up of over 3 billion nucleotides or bases.

The continuing exponential accumulation of full genome data, including full diploid human

genomes, creates new challenges not only for understanding genomic structure, function

and evolution, but also for the storage, navigation and privacy of genomic data. So it is

necessary develop data structures and algorithms for the efficient storage of genomic and

other sequence data that may also facilitate querying and protecting the data [10].

Genes basically are composed of one of the following four types of bases-adenine, cytosine,

guanine, and thymine often abbreviated as A, C, G, and T. Finding the order in which the

nucleotides are arranged in the DNA is a part of genome sequencing. Knowing the sequence

of the genome is the first step towards understanding it. A genome sequence does contain

some clues about where genes are, even though scientists are just learning to interpret

these clues.

In recent years, a substantial effort has been made for the application of textual data

compression techniques to various computational biology tasks, ranging from storage and

indexing of large datasets to comparison and reverse engineering of biological networks

[9].

For a flexible and efficient sequence representation the sequence representation (including

the pure sequence and related metadata) needs to be space efficient allowing fast retrieval

of the content. The latter can be achieved using byte arrays, as in most common software

tools.

Another requirement is support for storing multiple sequences in one representation. An

intuitive representation of a collection of sequences is a linear concatenation of all

individual sequences, with additional information to mark the sequence boundaries. For

index-based techniques, the sequences are usually addressed by absolute sequence

11

positions, so one also needs to be able to map absolute sequence positions to relative

positions [1].

1.3 Problem statement

The primary problems associated with compressed storing of high dimensional multiple

biological sequences are handling wildcard characters and distinguishing among two

different sequences. Meanwhile it is also difficult to maintain a minimal rate of time and

space complexity while performing those operations. If the length of the wildcard sequence

chunk is very large or if there is repetitive chunks along the sequence then it becomes

difficult. So for these worst-case scenarios, the complexities rise.

1.4 Research challenges

To start with the challenges first it is found that the largeness of data size. While

implementing the GtEncseq algorithm we found that for a FASTA-formatted input file of

37.54 GB size, which contains around 26,015,933 sequences [1]. Currently, publicly

available genomes are typically stored as flat text files in GenBank, but this approach is

unlikely to scale up in many ways. The storage of the diploid genomes of all currently living

humans using this simple approach would take ‘GenBank’, without counting headers or any

additional annotations, on the order of 36×1018 bytes, or 36M Terabytes, an amount

difficult to store or download over the Internet, even using standard compression

technologies (e.g. gzip) [10]. So for the in unavailability of a large number of data and due

to a considerable amount of lower configurations for our available equipments compared

to them, we needed to generate sample data to do the simulation. Then encoding such large

sequence character by character without losing any data is also another sort of challenge.

Again, for wildcard sequences with large number of wildcard characters, the decoding time

complexity becomes high. Finally, accessing the data and retrieving the information with

accuracy and flexibility is necessary to maintain.

12

 1.5 Scope

The scopes for the study are manifold. “GtEncseq” is a new approach in the field of

sequence storing and retrieving and the improvement of this method will certainly enable

us to store very large number of datasets in an efficient way. It also gives us the easy access

to the unused or rather unknown compounds and sequences of DNA and allows us to

manage those data distinctly. Also storing multiple sequences in one representation is also

very much efficient and retrieving each individual sequence is also possible.

1.6 Thesis outline

In Chapter 1 brief introduction of study and our work has been provided. Besides the

motivational factors behind the thesis, scopes and challenges are also mentioned briefly. In

chapter 2 the literature reviews are described where few background topics along with

related algorithms for our thesis are mentioned. In the later part of the chapter the

introduction and analysis for the algorithm that we have worked on and improved are

provided. In chapter 3 our proposed method as well as discussion and mathematical

analysis is described. The implementation part is briefly described in chapter 4. Chapter 5

introduces result and data analysis. Finally in chapter 6 we have drawn the conclusion with

some mentions of future scopes for improvement for our work.

13

 Literature Review

 2.1 Background studies

• Genes basically are composed of one of the following four types of bases-adenine,

cytosine, guanine, and thymine often abbreviated as A, C, G, and T. Finding the order

in which the nucleotides are arranged in the DNA is a part of genome sequencing.

• Multiple sequencing: refers to a linear concatenation of all individual sequences,

with additional information to mark the sequence boundaries (separators).

• Wildcards: ambiguous nucleotides or amino acids.

• GenBank: The GenBank sequence database is an open access, annotated collection of

all publicly available nucleotide sequences and their protein translations.

• FASTA: FASTA format is a text-based format for representing either nucleotide

sequences or peptide sequences, in which nucleotides or amino acids are

represented using single-letter codes. The format also allows for sequence names

and comments to precede the sequences.

• BLAST : Basic Local Alignment Search Tool. Input to these tools is FASTA, GeneBank

or ASN.1. While DNA sequences are stored in a byte compressed format, protein

sequences are stored as simple byte arrays.

• BLAT: BLAT is an alignment tool like BLAST, but it is structured differently. On DNA,

BLAT works by keeping an index of an entire genome in memory. Thus, the target

database of BLAT is not a set of GenBank sequences, but instead an index derived

from the assembly of the entire genome.

• gzip: The format is designed to allow single pass compression without any

backwards seek, and without a priori knowledge of the uncompressed input size or

the available size on the output media.

 Chapter 2

14

 2.2 Related works

Many algorithms and data structures have been developed considering the fact in mind

that the amount of research being increased in the field of gene sequencing, the volume of

data is also increasing. Korodi and Tabusan [11] proposed an algorithm for the lossless

compression of DNA files which contain annotation text besides nucleotide sequence. First,

a grammar is specifically designed to capture the regularities of the annotation text. A

revertible transformation uses the grammar rules in order to equivalently represent the

original file as a collection of parsed segments and a sequence of decisions made by the

grammar parser.

Another simple and less efficient method was published by Sheng Bao, Shi Chen, Zhi-Qiang

Jing and Ran Ren [4] where they used a new DNA sequence compression algorithm which

is based on LUT and LZ77 algorithm. Combined a LUT-based precoding routine and LZ77

compression routine, this algorithm can approach a compression ratio1 of 1.9bits /base

and even lower. They created a Look Up Table (LUT) which describes a mapping

relationship between DNA segment and its corresponding characters.

Every three characters in source DNA sequence (without N2) will be mapped into a

character chosen from the character set which consists of 64 ASCII characters. The braces

behind each character contain the corresponding ASCII codes of these characters. For easy

implementation, characters a, t, g, c and A, T, G, C no longer appear in pre-coded file.

For instance, if a segment “ACTGTCGATGCC” has been read, in the destination file, it was

represent as “j2X6”. Obviously, the destination file was case-sensitive.

The character N refers to the segment which is unknown. When being encounter a serial of

successive Ns, the algorithm inserts two “/” into destination file to identify the starting and

end place of these successive Ns. There is a number which equals to the number of Ns

between the “/” pair. For instance, if segment”NNNNNN” has been read, in the destination

file, it was representing them as “/6/”.

Another paper by Srinivasa K. G, Jagadish M, Venugopal K R and LMPatnaik [7], propose an

encoding scheme to compress non repeat regions of DNA sequences, based on dynamic

15

programming approach. In order to test the efficiency of the method we incorporate the

encoding scheme in a DNA-specifi c algorithm, DNAPack.

For example, the sequence AGTC would be taken as AATT and ATTA. The decoding

procedure requires both the sequences, with four possible combinations of A and T

representing each base as shown in a table in fig. 2

 Fig 1: Mapping Scheme for Decoding of LUT and LZ77 algorithm

The above substitutions are made to the entire DNA sequence. Let the pass 1 substitution

sequence be S1 and pass 2 sequence be S2. If the length of the sequences is l then each

linear sequence is transformed to a matrix of dimension α×β where α ∗ β = l. The

transformation is done row-wise and hence the entry in ith row and jth column (zero-

indexed) would correspond to alphabet in i ∗ β + j position in the sequence.

The choice of α and β can be made in different ways. A simple approach would be to break

the sequence into multiple sequences each of length of a perfect square, chosen greedily,

and represent each sub-sequence as a square matrix. This is always possible since any

number can be represented as sum of squares. A more efficient way to determine the split

is to consider all possible combinations of α and β and take the combination that leads to

maximum compression ratio.

This is increases the complexity considerably but can be made non-prohibitive if the length

of the longest sequence is restricted to a certain maximum value. The encoding and

decoding of S1 and S2 are done independently. The compression technique works on the

matrices obtained by the sequences. The encoding idea is based on the idea of recursively

dividing the matrix into sub-matrices until each sub-matrix is composed of a single

alphabet.

16

Another Algorithm is proposed by A. Cannane and H. Williams, known as RAY method,

allows random access so that specific sections of the compressed data can be individually

accessed.

RAY makes multiple passes over the input data. These passes incrementally construct a

dictionary of symbol sequences that are repeated in the text, with each pass discovering

longer sequences. Once the dictionary has been built, the data and dictionary can be coded

using mechanisms such as Huffman coding, which in this application are reasonably

efficient due to the fact that most of the occurrences of the most common symbols have

typically been removed, reducing their frequency and thus reducing the difference between

the 0-order entropy and whole-bit coding that can result from a Huffman process.

Another algorithm was proposed by Shanika Kuruppu, Bryan Beresford-Smith, Thomas

Conway, and Justin Zobel [2] used RAY such that it is efficient for DNA compression. First, a

symbol is defined to be a substring of, say, 16 consecutive symbols in the first iteration

(first execution of steps 1-4 in RAY). The motivation here is that almost all substrings of

length 16 or 16-mers occur with reasonable frequency in large DNA collections, and thus

naive RAY would in four iterations discover the vast majority of these 16-mers as

dictionary entries.

 2.3 GtEncseq Data Structure

This is developed by Sascha Steinbiss and Stefan Kurtz. The GtEncseq Data Structure is

used for storing multiple biological sequences of variable alphabet size, with customizable

17

character transformations, wildcard support, and an assortment of internal

representations optimized for different distributions of wildcards and sequence lengths.

Representations of biological sequences of course need to support nucleotide and amino

acid alphabets. However, these come in many different variations, like notation for masked

positions, uppercase and lowercase notation and with different sets of wildcard symbols

(for sequence positions containing ambiguous nucleotides or amino acids).

 2.4 Implementation comparison of GtEncseq with various other

methods

In many cases it is necessary to read the sequence in different reading directions (forward,

reverse) and, in case of DNA optionally deliver the Watson-Crick complement of a sequence

of nucleotides. Other applications require enumeration of k-mers or codon translation.

Current sizes of sequence collections are too large to allow converting or storing these in

different formats. Therefore, software implementing a sequence representation needs to

accept common sequence formats (e.g. FASTA, GenBank, EMBL, FASTQ), ideally

compressed (gzip or bzip2) and uncompressed. While the time-critical low-level part of the

code should be implemented in a fast, compiled language like C or C++, it is important to

support popular scripting languages like Python or Ruby.

A widespread sequence representation is produced by the formatdb/makedatabase tool

from the (Basic Local Alignment Search Tool) BLAST software package. Input to these tools

is FASTA, GeneBank or ASN.1. While DNA sequences are stored in a byte compressed

format, protein sequences are stored as simple byte arrays. An API to this sequence

representation is implemented in the NCBI C/C++ Toolkit [12].

Another widely used sequence representation is the disk-based “2bit” format of the BLAT

alignment software [13], which is written in C. It is restricted to DNA sequences in which all

non-ACGT characters are automatically mapped to N before encoding takes place. The

input sequences must be uncompressed plain sequences or multiple FASTA files.

18

The SeqAn C++ library [14] provides another sequence representation, specifically

designed to be used by other software developers. It allows arbitrarily large alphabets and

stores the sequences in an alphabet size-dependent, compressed bit representation. The

generic programming approach applied in SeqAn facilitates extensive compile-time

optimizations done by the C++ compiler. Therefore SeqAn is only usable in C++ programs.

 2.5 Implementation of GtEncseq Data Structure

The implementation occurs maintaining two parts. The first part describes the data

structures and retrieval algorithms we use. Special focus is on the efficient handling of

wildcard characters and separator positions.

The second part of this section gives an overview of the application programming interface

(API).

 2.5.1 Sequence Representation

Given a set of sequences, each over the input alphabet Σ∪ � where Σ denotes the set of

regular characters and � denotes the set of ambiguity characters, here called wildcards. In

many applications, it is convenient or sometimes even necessary to divide the set of regular

characters into � disjoint subsets of equivalent characters A regular character is encoded

into the ordinal number of the set it belongs to, i.e. a ∈ �� is encoded into i. A wildcard is

encoded into some integer # ≥ � . To conveniently handle a set of, say q, sequences 	
,	�....

, 	�−�, each character of each 	� is encoded, 0 ≤ ≤ � − 1 and concatenated the resulting

sequence of integers into one long sequence T, separating two consecutive sequences by

some integer $ ≥ � such that $≠ #. $ is the sequence separator. T is a sequence of integers

from the set {0,...,α- 1} ∪ {#, $}. The total length of T and by |T| and the number of

sequences it represents is ||T||.

Suppose that each sequence 	� comes with a description string �� . Let D be the

concatenation of all descriptions in the order consistent with the order of the 	� in T, using

19

the new line character as a separator between two consecutive descriptions. The queries to

be solved for T and D:

Fig 2.2: The queries to be solved for T and D

In the following, the explanations of how to represent T and the input sequences to

efficiently answer these queries are presented:

Answering char (T, j):

• It is usually better to represent the wildcards and separators in additional data

structures. T can be stored in 2 .|T| bits as in each position one of four different

integers are stored.

• To decide T[j] = {#,$} a new data structure needed to be used. The positions of all

separators ($) in T are stored in an array S of length ||T||-1. To save space we

virtually divide the positions from 0 to ||T|| into units of size 2^h for some h = 8, 16,

32….

• For any j’ satisfying T[j] != $, j' is stored as an integer j' mod 2^h using h bits,

belonging to unit j'/2^h.

20

• For each p={0…j'/2^h} additionally store the smallest index F_s(P) in S where a

value belonging to unit p' for some p'>= p is stored.

• Then, the values belonging to unit p are stored in S[F_s(p)…..F_s(p+1)-1]. For a given

position, say j, the unit number p = j/2^h and perform a binary search determining

if j mod 2^h occurs in the unit.

• The described representation requires

 bytes, where ω is 4 or 8 depending on whether we use the 32-bit or 64- bit

version of the representation and h {8,16,32}.This representation is

referred to by S-unit(h).

• To decide T[j]= #, we store all ranges of consecutive wildcard positions as pairs T(j’,

l). Here, j’ is the start position of a range and l is its length. Two tables, one for

positions and one for lengths, each with r values, the size of this representation is

• bytes. Given |T|, r , and ω we choose h={8,16,32} minimizing (2). This

representation is referred to by W-unit(h').

The representation of wildcard and separator sequences are representated in the

following figure:

21

 Fig 2.3: the GtEncseq algorithm representation

Answering substring (T, j ,L):

To answer substring (T, j,L):, only two binary searches for the first position are necessary

(one for separators and one for wildcard ranges).

Answering seqnum (T,j):

 First determine the unit number and perform a binary search in unit p to determine some

value �� such that either ��is the first value in this unit and j mod 2� < �� or �� is the largest

value in unit p smaller than j mod 2� .

Answering seqstart (T, i):

In case all sequences have equal length, say m, the ith sequence starts at position i.(m + 1)

for all 0≤ ≤ ||�|| − 1. Thus, the query can be answered in constant time and constant

space.

22

Answering description (D, i):

To answer the query in constant time, we store the positions of all but the last newline-

characters in D.

 2.5.2 Application Programming Interface

API for Encoded Sequence Access:

The central class in the encoded sequence interface presented here is called GtEncseq.

GtEncseq objects allow random and sequential access to any substring of the sequence.

In addition to character and substring queries, the GtEncseq allows to retrieve the following

metadata:

1. The number of sequences, a sequence description of unlimited length for each individual

sequence 	�,

2. The length of each individual sequence 	�(|	�|), the starting position of each sequence in

T.

3. The length of the concatenated sequence (|T|),

4. The number and names of the original input files,

5. The starting positions of each input file in the concatenated sequence,

6. The distribution of encoded characters and the number of wildcards and wildcard

ranges.

API for Encoded Sequence Creation and Loading:

The first task is encoding, that is, creating a persistent sequence representation on file.

Encoding is done by an instance of the GtEncseqEncoder class. Use of the encoded sequence

requires loading these tables, which use (GtEncseqLoader) returns a GtEncseq object.

23

GtEncseqBuilder class implements stateful building of a GtEncseq in memory by

successively concatenating C strings.

Alphabet Mapping Definitions:

Alphabet definitions are stored in an alphabet definition file in which the characters

appearing on the ith line 0 ≤ ≤ � − 1 are encoded by the integer i. The characters

appearing in the last line are the wildcards.

For example, consider the following alphabet definition:

aA

cC

gG

tTuU

nsywrkvbdhmNSYWRKVBDHM

This encodes a and A by 0, c and C by 1, g and G by 2, t, T, u, and U by 3. The characters N, S,

Y, W, R, K, V, B, D, H, and M (including their lower case versions) are wildcards. When

decoded back to printable ASCII characters, the first character of each line is used to

represent characters from the respective line. These are the lower case DNA characters a, c,

g, t, and n. While this approach cannot reproduce the original sequence, but rather a

sequence of representative characters from each line, additional data structures are used

to also (optionally) retrieve the original sequence.

These data structures use a similar combination of the unit-based approach described and

bit compression to store positions where a character other than the most frequent

character in the line occurs, and a bit-compressed integer to identify the correct character

at that position in the set of characters for the class in question. This is a simple and

efficient way to implement fully lossless storage, which is useful in situations where, for

example, input sequences are soft masked by lower case characters.

24

 2.6 Performance comparison with existing models

Before elaborating the topic we need some overview regarding current data analysis

models which have been used effectively. Previously we have talked about BLAST and

BLAST. Another very efficient model is “gzip”. The format was designed to allow single pass

compression without any backwards seek, and without a priori knowledge of the

uncompressed input size or the available size on the output media. If input does not come

from a regular disk file, the file modification time is set to the time at which compression

started.

Also “bzip2” is a popular model. bzip 2 is a freely available, patent free (see below), high-

quality data compressor. It typically compresses files to within 10% to 15% of the best

available techniques (the PPM family of statistical compressors), whilst being around twice

as fast at compression and six times faster at decompression.

Fig 2.4: comparison for various DNA and protein datasets using different compression

model

25

Proposed method

We have designed a data structure modifying the existing GtEncseq method for better

storage facilities. Our proposal consists of followings:

• Decreasing the concatenated sequence length T.

• Keeping wildcard characters apart from the concatenated sequence into another

table for simplicity and reduced storage.

• Using efficient data structure to decode the encoded sequence while necessary.

• Making either sequential or random access efficient despite modification.

Chapter 3

26

 3.1 Modified representation of wildcards

Fig3.1: Wildcard representation for modified algorithm.

In the sequence above represents start position in unit. The sequence in middle represents

wildcard length. The sequence below shows the wildcard of our proposed method. Here we

can find that the first encounter of wildcard sequence is found at the index 72486550. So in

our modified sequence we are using only one index indicating the start position. In the Ws

we are storing the bit compressed values of every wildcard characters. In main sequence

the there are 8446 (72494995-72486550) indexes for first wildcard sequence. So in Ws

array index 0 to 8445 occupies the first sequence. Similarly second sequence starts at

72491153 and we keep only one index in the main sequence for that and use index 8446 to

17264 of Ws. Though the index positions for main sequence are changed for these

transformations, we can easily access to previous indexes as we are keeping tracks of each

wildcard sequence length. Just adding the length with the previously encountered wildcard

sequence start position will result the original indexes.

Similarly we can store the separator indexes in another array and can access from the main

sequence without losing data.

27

 3.2 Mathematical analysis of our proposed data structure

To solve char (T, j), we extract the ��� pair of bits from the representation of T and interpret

it as an integer b. If

b ≠ α, then b = T[j] and we determine it in the following way.

To decide T[j] = $, we store the positions of all separators in T in an array S of length ||T|| -

1.

Consider j = 72486551. Now we convert value of j to original sequence value and find the

exact lower value of the wildcard or separator start position. Here 72486551/ 2�� = 1106.

By unit 1106 we obtain unit start position and length from W. So the absolute start position

of this wildcard is 1106 ∗ 2�� + 3734 = 72486550. The difference between the asked

position and the obtained wildcard start sequence is 72486551 - 72486550 = 1, which is

less than the length of the wildcard.

So for this query T[j] = #. Which is exactly T[j] = W [100+1] =W [101] = H. Time

requirement and space requirement will be same.

Again,

Considering j = 72499598; where j is the index to access. Let wildcard sequence counter

c=1.

Converting this value to absolute sequence value 72499598/2�� =1106(Unit Value).

Absolute start position of wildcard = 1106 * 2�� + 3734 = 72486550. The difference

between j and absolute wildcard start sequence is 72499598 - 72486550 = 13048 which is

larger than the length of wildcard. The value of regular character count is 4602 which is

equal to the difference (4602) between 13048 and 8446. So, T[j] = T

[72486550+8446+4602]= integer representation.

Finally,

28

Considering j = 72508702; where j is the index to access. Let wildcard sequence counter

c=1. Converting this value to absolute sequence value 72508702/2��=1106(Unit Value). In

Fs we see there is one separator in this unit and its start position at s[13]. After co-ordinate

transformation, we obtain correct separator position 1106 * 2��+ 25886 = 72508700.

So, T[j] = $.

29

Chapter 4
 Implementation

 4.1 Used hardware and software

We used a machine consisting 32-bit Intel core i5 microprocessor with 4 GB RAM.

We used Java platform (Netbeans IDE 6.9.1) for the purpose of encoding, decoding, finding

time and space requirements, queries and for building a front end which allow user input

and display the outputs of these operations.

 4.2 Input Specifications

As our primary concern of this thesis is to improve the efficiency of the existing “GtEncseq”

data structure in terms of space requirements and time requirements for encoding

purposes of large multiple sequences those also consist a considerable amount of wildcard

characters, we generated test data of variable sizes. As a 32-bit machine only can support

up to 10� Boolean array indexes, we are only allowed to make the input according to array

size. This is applicable for both main sequence and for the wildcard sequence. We are

generating input of multiple sequences where wildcard characters have been placed within

the nucleotide sequences. We are using a newline which performs as a separator between

two sequences.

 4.3 Procedural analysis

For the input we are using text files of variable sizes which contain the test sequences

presented in FASTA format. We have used separate arrays for both the encoded main

sequence and wildcard sequence.

30

• Encoding

While iterating through the input, the program looks for either any of the nucleotide

character, wildcard or separator. If any of the A, T, C or G is found, it encodes into binary 00,

01, 10 and 11. Each time a nucleotide is found, it is encoded in similar fashion and then

concatenates with the previous 2-bit binary. For separators, the index value is stored.

Another array is made to store the wildcard characters. Whenever such a character is

found, it is encoded to the binary ‘10’ in the main sequence and the start position of this

character is stored. Then as long as the wildcard sequence continues, the characters are

encoded into a 5-bit binary representation whose value is previously determined. Then

same iteration and concatenation occurs until the sequence ends. These values are stored

in the array. Finally the length of the total wildcard sequence is calculated and stored. So,

for any number of wildcard sequence, we have to represent it only with a 2-bit binary in

the main encoded sequence.

This procedure is clarified in the following flowcharts:

31

 Fig 4.1: Encoding steps of the improved algorithm

32

• Decoding

While decoding the binary representation, whenever the program encounters any of the

binary 00, 01 and 11, it decodes to its corresponding character. For the binary ‘10’, three

possibilities arise. First it looks into the separator index and matches the index number of

the binary. If matches, it concatenates a newline. Else it checks for wildcards and decodes

the corresponding 5-bit binary similarly. This continues until the wildcard length ends. If

none of these are true, then the program concatenates the character ‘C’ with the decoded

sequence. Fig. shows the steps for decoding.

• Implementing queries

There are some query specifications which must be performed accurately with the

algorithm. If these queries can produce the expected result for our improved algorithm

then it can be said that the algorithm is working as it is expected. The description of these

functions was discussed earlier at section 5.3.1. We have used five global functions to

perform the same operations.

1. Finding a specific Character

We have taken the index number of the main sequence as the input parameter. Then it is

checked against the encoded sequence and finally outputs the desired character by

decoding. To find the character for a position, both main sequence and wildcard sequence

indexes needed to be accessed. If the given index is for a separator, it outputs a newline.

2. Finding a substring

The input parameters were given as two integer values which represent as the starting and

ending index for the required substring. The output returns the exact subsequence within

the range. We have used a built in function to find substring.

33

3. Find the sequence start position

The input parameter was given as an integer value which defines the sequence number.

The output returns the index number from which the sequence has been started.

4. Find the sequence number of a given index

The input parameter was given as an integer value which defines the index number of a

character from the main sequence. The output returns the sequence number where the

character is placed. Accessing both main sequence and wildcard sequence is required for

calculation purpose.

5. Find Description

This function takes the input of an entire sequence number at displays it in output.

The decoding procedure is clarified in the following flowcharts:

34

 Fig 4.2: Decoding steps of the improved algorithm

35

 4.4 Interface

 Fig 4.3: Interface before taking input

 Fig 4.4: Interface after taking a sample input and encoding

36

Chapter 5
 Result Analysis and Discussion

 5.1 Research data

The input data was collected from the database

https://www.ebi.ac.uk/ipd/mhc/download.html

We took the nucleotide and protein samples in FASTA format for “Canine” and took it from

https://www.ebi.ac.uk/ipd/mhc/dla/index.html

We have generated five input text files all consists of variable sizes of DNA sequence

manipulated with wildcard characters of different length. At first we have run the test for

our proposed data structure and then we have used the same input files to find the output

for the existing algorithm. In both cases we have collected the required memory space and

time for encoding the whole input file

The following table shows the comparison regarding space requirement between our

proposed method and GtEncseq data structure:

Table 5.1: space requirement for our proposed method and GtEncseq

Main sequence
size(MB)

Size obtained by our
proposed
method(MB)

Size obtained using
GtEncseq algorithm(MB)

Memory requirement
decreased by

 0.35 0.08 0.09 11.1%

1.0 0.23 0.26 11.5%

2.01 0.46 0.53 13.2%
7.77 1.75 2.04 14.21%

10.2 2.33 2.71 14.02%

37

The following table shows the comparison regarding encoding time requirement between

our proposed method and GtEncseq data structure:

Table 5.2: encoding time requirement for our proposed method and GtEncseq

Main sequence
size(MB)

Encoding time for our
proposed method(ms)

Encoding time for
GtEncseq algorithm(ms)

Encoding time
decreased by

1.34 230 244 5.73%
3.69 486 565 13.98%

6.36 809 848 4.6%

7.77 919 1054 12.81%

10.2 1270 1373 7.50%

 5.2 Analysis and comparison

We have calculated the encoded sequence space against the main sequence space for both

the existing and proposed algorithm.

Also we have used the built-in JAVA function to calculate the encoding time for both the

algorithms.

 We have generated the percentage of reduced required space for every sample data. It is

clear in the data table that for various sizes of input data the efficiency is increased and saw

that the memory space required for encoded sequence in our proposed existing algorithm

is less than the requirement for the existing algorithm. The compression efficiency

increment is proportional to the increment of main sequence data size. For example for 1.0

MB input data the storage requirement for our proposed method is 11.5% lower than the

existing method, and for 10.2 MB data the percentage increases up to 14.02% .

Encoding time efficiency also increases in our proposed method. This time the increment is

non-linear, but for every input size, there is a substantial amount of efficiency.

We have prepared graphical representations where the comparison is shown among the

methods (fig. 5.1 and 5.2).

38

The drawback of the proposed algorithm is the increased amount of decoding time than

that of the existing algorithm. This can be explained by the fact that we are following a

linear approach while decoding the encoded data and as soon as the program finds a

wildcard sequence start position, it needs to add the sequence length for retrieving the

exact indexes of the original sequence. This addition operation for every wildcard sequence

appearance takes more decoding time than the existing algorithm.

 Fig 5.1: graphical representation regarding space requirement for encoded sequence

between the existing and proposed algorithm.

39

 Fig 5.2: graphical representation regarding time requirement for encoded sequence

between the existing and proposed algorithm.

40

Chapter 6
 Conclusion and future scope

Our proposed method will save a large amount of space and it will be a lossless method.

The encoded sequence is much smaller than the GtEncseq representation, especially in the

presence of large number of wildcard chunks. Still there are opportunities to improve its

performance in terms of time requirement for accessing main sequence and decoding the

encoded sequence. To work with huge amount of data (Gigabyte data) is another goal to

achieve. For this, we require higher configuration machineries which are not available for

the moment.

.

41

References

[1] Sascha Steinbiss and Stefan Kurtz, “A New Efficient Data Structure for Storage

And Retrieval of Multiple BIOsequences”.

[2] Shanika Kuruppu, Bryan Beresford-Smith, Thomas Conway, and Justin Zobel, ”Iterative

Dictionary Construction for Compression of Large DNA Data Sets”.

[3] Hieu Dinh and Sanguthevar Rajasekaran, “A memory-efficient data structure representing exact-

match overlap graphs with application for next-generation DNA assembly”.

[4] Sheng Bao, Shi Chen, Zhi-Qiang Jing and Ran Ren, ” A DNA Sequence Compression Algorithm

Based on LUT and LZ77”.

[5] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and E.W.Sayers, “GenBank,” Nucleic Acids

Research, vol. 38, (Database Issue), pp. D46-D51, 2010.

[6] A. Morgulis, G. Coulouris, Y. Raytselis, T.L. Madden, R. Agarwala, and A.A. Schaffer, “Database

Indexing for Production MegaBLAST Searches,” Bioinformatics, vol. 24, no. 16, pp. 1757-1764, 2008.

[7] Srinivasa K. G , Jagadish M , Venugopal K R ,LMPatnaik, “Efficient Compression of non-repetitive

DNA sequences using Dynamic Programming”.

[8] E. Rivals, J-P. Delahaye, M. Dauchet, and 0. Delgrange. A guaranteed compression scheme for

repetitive dna sequences.” LIFL Lille I Univerisity technical report, page 285, 1995.

[9] Raffaele Giancarlo∗, Davide Scaturro and Filippo Utro ,“Textual data compression in

computational biology: a synopsis” Dipartimento di Matematica ed Applicazioni, Università di
Palermo, Palermo, Italy.

[10] Marty C. Brandon, Douglas C. Wallace and Pierre Baldi, “Data structures and compression

algorithms for genomic sequence data”.
[11] Gergely Korodi and Ioan Tabus, “Compression of Annotated Nucleotide Sequences”.

[12] “The NCBI C Toolkit,” ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools, 2011.

[13] W.J. Kent, “BLAT-the BLAST-Like Alignment Tool,” Genome Research, vol. 12, no. 4, pp. 656-664,
2002

[14] A. Do ¨ ring, D. Weese, T. Rausch, and K. Reinert, “SeqAn an Efficient, Generic C++ Library for

Sequence Analysis,” BMC Bioinformatics, vol. 9, article 11, 2008.

42

Appendix

• Used Java classes and Functions:

� Classes:

� GtAlphabet.java

� Mainframe.java

� MainClass.java

� Functions:

� public static void main(String[] args) {}
� public void openFile(String file) {}
� public void readFile() {}
� public void closeFile() {}
� public String noOfSubbSequence(){}
� public String totalLength(){
� public String encodeSequence() {}
� public String decodeSequence() {}
� public String getSubstring(int j, int l){}
� public String getChar(int temp) {}
� public String getSequenceNumber(int temp) {}
� public String getSequenceStartPosition(int temp) {}
� public String getDescription(int temp) {}
� public MainFrame() {}
� private void chooseFileButtonActionPerformed(java.awt.event.ActionEvent evt)

{}
� private void okButtonActionPerformed(java.awt.event.ActionEvent evt) {}
� private void decodeButtonActionPerformed(java.awt.event.ActionEvent evt) {}
� private void encodeButtonActionPerformed(java.awt.event.ActionEvent evt) {}
� private void okButton2ActionPerformed(java.awt.event.ActionEvent evt) {}

43

