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ABSTRACT

The linear response of a cylindrical shell (thin cylinder) subjected to modal and
harmonic excitations are investigated. Natural frequencies and forced vibration
response are investigated for the simply supported-simply supported boundary
conditions. The equations of motion of the structure for the theoretical analysis
are obtained from Love’s equation and for computing results, programs are
written in MATLAB. Finite element method is used for numerical analysis (using
ANSYS MECHANICAL APDL). The natural frequencies obtained by numerical,
theoretical and experimental analyses were compared and showed good
agreement among the results.
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CHAPTER 1

INTRODUCTION

Thin walled cylindrical shells are very often in the field of engineering
applications. Shell structures are common especially in spacecraft, aircraft,
shipbuilding and automotive industries. They are also used as oil and gas
carrying pipelines. Present day sees a great increase in the applications of
cylindrical shells in the form of structural components for pressure vessels,
process equipments, missiles, rockets and civil engineering constructions. Most
of the failures occurring in these structures are due to dynamic loading. For
instance, the infamous tragic failure of NASA space shuttle CHALLENGER on 20t
January, 1986 was mainly due to structural failure. That’s why vibration analysis
of shell structures has been of great importance for last few decades.

The natural frequencies and mode shapes are important sources of information
for understanding and controlling the vibration of these structures.

Such cylindrical structures are often subjected to dynamic loading. Such as the
flow-induced vibrations in heat exchangers and pipelines, wave-loading on
submarines, the impact-loading of vehicles, the aero-elastic flutter of aircrafts,
vibrations of underground and under-sea pipe- lines and certain defense-related
equipment. Vibrations in the aforementioned pipelines are generally caused by
external driving agencies such as earthquakes, nuclear and other explosions,
wave-loadings, superfast trains and super-sonic jets. Thin-walled structures are
very prone to resonant vibrations because their eigenfrequencies lie in a very
narrow band. So it is essential for the designer to know the distribution of
eigenfrequencies of the proposed structure beforehand.

Therefore main focus of our work was to find out the natural frequencies of a
thin walled cylindrical shell (modal analysis) at different end conditions and
observe its behavior under external loading conditions (harmonic analysis).

This analysis consists of three phases namely Numerical Analysis, Analytical
analysis and experimental analysis. In numerical analysis ANSYS (Mechanical
APDL) was used to find the natural frequencies and extract the mode shapes and
to observe the response under external loading (Harmonic analysis). In analytic
analysis the Love’s approach was used to find the equations of motions and then
the eigenvalues were calculated. Then analytically harmonic analysis was carried



out. For experimental analysis an inductive proximity sensor was used to find
natural frequency of the shell.

LITERATURE REVIEW

As we have already known the importance of shell structure analysis from the
introduction before, now we'll look into various shell theories those have paved
the way to the present day extensive shell analysis.

Regarding researches of shell vibration, Leissa [l has collected most of the
results before 1973. Chung [2] and Greif and Chung B! used the Rayleigh-Ritz
method, for different boundary conditions, to find the natural frequencies.
Sharma and Johns [* 5] and Goldman [¢] calculated the natural frequencies and
modes for free and fixed boundary conditions. Stoke’s transformation technique
was applied by Chung [7] to solve the natural frequencies for different boundary
conditions. Mnev and Pertsev 8l Junger and Feit [} and Brown [10] have done
some research on vibration of shells with the interaction of internal fluid. Chu et
el. 111 used the energy method to obtain the frequency parameters. Recent works
include Goncalves’ [2] investigation of non-linear vibrations of thin-walled
cylinders with liquid interaction.

Markus [3] has provided an extensive analysis of cylindrical shells using
membrane as well as bending theory. He has discussed the cons and pros of the
membrane theory. He discussed various shell theories due to Donnell-Mushtari,
Love-Timoshenko, FlUgge, Sander etc.

In recent years Bert et al. 141 have given an analytical solution to the free
vibration of a composite material cylindrical shell with ring and stringer
stiffeners and compared the numerical values given by various shell theories, by
the use of dimensionless tracer coefficients. Mustafa and Ali [25-17] have predicted
natural frequencies of stringer stiffened and ring stiffened cylindrical shells
using semi-loof and facet shell finite elements on half and quarter models of the
shells, because of structural symmetry. They have compared the numerical
values obtained by them, with the experimental values of Hoppmann [18.They
have also given an energy method to study the natural frequencies of externally
and internally stinger stiffened cylindrical shells and ring stiffened shells.
Rinehart and Wang [19.20] have investigated the free vibration characteristics of
Simply-supported cylindrical shells stiffened by discrete longitudinal stiffeners
using energy method. They have compared the numerical values given by the
more exact F’lugge’s theory and Donnell’s approximate theory and shown that
Donnell’s approximate theory gives excellent results for the stiffened shells.

Previous studies confirmed that the effect of shear deformation can become
quite significant for small radius-to- thickness or length-to-thickness ratios, as
well as for shorter wavelengths of longer shells [21l. More recently, Bhimaraddi
(211 developed a two-dimensional (2-D) higher-order shell theory for free
vibration response of isotropic circular cylindrical shell and assumed the inner
and outer surfaces of the shell to be traction free. Also, Reddy and Liu [22]
presented a 2-D higher-order theory for laminated elastic shells.
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CHAPTER 2

BASICS OF VIBRATION

TYPES OF VIBRATION
FREE AND FORCED VIBRATION
FREE VIBRATION

After an initial disturbance, if a system is left to vibrate on its own then it is
called free vibration. In free vibration no external force is applied or acted on the
system. Oscillation of a simple pendulum is an example of free vibration.

FORCED VIBRATION

If a system is subjected to an external force (often repeating types) the resulting
vibration is known as forced vibration. The oscillation that arises in machine
such as diesel engine is an example of forced vibration.

UNDAMPED AND DAMPED VIBRATION
UNDAMPED VIBRATION

During oscillation if no energy is lost or dissipated due to friction or other
resistances then the vibration is known as undamped vibration. In an
undamped vibration the magnitude of amplitude is not changing with time.

N Pl 'y PN
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e \/ ~ Time
- .

Displacement Vs Time

Figure: undamped vibration



DAMPED VIBRATION:

During oscillation if energy is lost due to friction or other resistances then it is
called damped vibration. During damped vibration the magnitude of amplitude
or displacement is changed with time.

Displacement

-6 ; . : . : , .
0 1 2 3 4

Time

Figure: Damped vibration

LINEAR VIBRATION AND NONLINEAR VIBRATION:
LINEAR VIBRATION:

If all basic components of a vibratory system -the spring, the mass, and the
damper- behave linearly, the resulting vibration is known as the linear
vibration. If the vibration is linear then the principle of superposition holds.

Nonlinear vibration:

If any of the basic components of vibration behave nonlinearly then the vibration
is called nonlinear vibration. For nonlinear vibration the principle of
superposition is not valid.
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STEADY STATE VIBRATION OR RESPONSE

At forced vibration the system will tend to vibrate at its own natural frequency
and to follow the frequency of the external force applied. In the presence of
friction the portion of motion not sustained by the excitation force will gradually
die out. In other words due to friction the tendency of vibrating at natural
frequency will be eliminated. As a result the system will vibrate at the frequency
of external force only regardless of the initial conditions or the natural frequency
of the system. This part of sustained vibration is called the steady state
vibration or response of the system. Very often the steady state response is

required in vibration analysis because of its continuous effect.
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Figure: steady state vibration

THIN -WALLED CYLINDER

For the thin-walled assumption to be valid the vessel must have a wall thickness
of no more than about one-tenth (often cited as one twentieth) of its radius. This
allows for treating the wall as a surface, and subsequently using the Young-
Laplace equation for estimating the hoop stress created by an internal pressure
on a thin wall cylindrical pressure vessel:

__ Pr )
Og = i (For a cylinder)

__ Pr
Og = E(For a sphere)

11
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Where,

¢ Pisthe internal pressure

e tis the wall thickness

¢ risthe inside radius of the cylinder.
e Ugisthe hoop stress.

THICK-WALLED CYLINDER

When the cylinder to be studied has a r/t ratio of less than 10 (often cited as 20)
the thin-walled cylinder equations no longer hold since stresses vary
significantly between inside and outside surfaces and shear stress through the
cross section can no longer be neglected.

In order to calculate the stresses and strains here a set of equations known as the
Lamé equations must be used.

[
o ALr
J—r — _'._!. - T =
Td

B

Tg A -

T

Where,

e A and B are constants of integration, which may be discovered from the
boundary conditions
e risthe radius at the point of interest (e.g., at the inside or outside walls)

A and B may be found by inspection of the boundary conditions.

RESONANCE

A certain system has more than one natural frequency. If the frequency of the
external force coincides with one of the natural frequencies of the system, a
condition known as resonance occurs. When resonance happens, the amplitude
of vibration will increase without bound and is governed only by the amount of
damping present in the system and the system undergoes dangerously large
oscillations. Therefore, in order to avoid disastrous effects resulting from very
large amplitude of vibration at resonance the natural frequency of a system must
be known and properly taken care of. Otherwise failures of such structures as
buildings, bridges, turbines and airplane wings may be occurred.

12



Figure: resonance curve

MODAL ANALYSIS:

Modal analysis is the study of the dynamic properties of structures under
vibrational excitation.

Modal analysis is the field of measuring and analyzing the dynamic response of
structures and or fluids when excited by an input. Examples would include
measuring the vibration of a car's body when it is attached to an electromagnetic
shaker, or the Modal analysis is the study of the dynamic properties of structures
under vibrational excitation.

The goal of modal analysis in structural mechanics is to determine the natural
mode shapes and frequencies of an object or structure during free vibration. It is
common to use the finite element method (FEM) to perform this analysis
because, like other calculations using the FEM, the object being analyzed can
have arbitrary shape and the results of the calculations are acceptable. The types
of equations which arise from modal analysis are those seen in Eigen systems.
The physical interpretation of the eigenvalues and eigenvectors which come
from solving the system are that they represent the frequencies and
corresponding mode shapes. Sometimes, the only desired modes are the lowest
frequencies because they can be the most prominent modes at which the object
will vibrate, dominating all the higher frequency modes.

13



HARMONIC ANALYSIS

Any sustained cyclic load will produce a sustained cyclic response (a harmonic
response) in a structural system. Harmonic response analysis gives the ability to
predict the sustained dynamic behavior of your structures, thus enabling you to
verify whether or not your designs will successfully overcome resonance, fatigue,
and other harmful effects of forced vibrations.

Harmonic response analysis is a technique used to determine the steady-state
response of a linear structure to loads that vary sinusoidally (harmonically) with
time. The idea is to calculate the structure's response at several frequencies and
obtain a graph of some response quantity (usually displacements) versus
frequency. "Peak"” responses are then identified on the graph and stresses
reviewed at those peak frequencies.

This analysis technique calculates only the steady-state, forced vibrations of a

structure. The transient vibrations, which occur at the beginning of the
excitation, are not accounted for in a harmonic response analysis.

14



CHAPTER 3

NUMERICAL ANALYSIS FOR DETERMINING
NATURAL FREQUENCIES AND FORCED VIBRATION
RESPONSE OF A CIRCULAR CYLINDRICAL SHELL

NUMERICAL ANALYSIS

Numerical analysis is the study of algorithms or step by step process that use
numerical approximation (as opposed to general symbolic manipulations) for the
problems of mathematical analysis (as distinguished from discrete mathematics).

A numerical method which leads to a required result is often referred to as an
algorithm. More often than not, algorithms are iterative, i.e., they involve cycles
of identical computations, starting with the results of the preceding cycle. At the
end of a cycle, the result will be examined to find out whether it has the required
accuracy. The algorithm will stop, when the error becomes as small as desired.

USE OF ANSYS IN MODAL ANALYSIS

Modal analysis is generally used to determine the natural frequencies of different
structures. That later on serves as the starting point of another more detailed,
dynamic analysis such as transient harmonic analysis or a harmonic response
analysis.

Modal analysis in ANSYS family uses linear analysis method. Any sorts of
nonlinearities such as plasticity and contact (gap) elements are ignored even if
they are defined. We use ANSYS in finding natural frequencies of any structure
and extract mode shapes. One can choose from several mode extraction
methods: Block Lanczos, Supernode, PCG Lanczos, reduced, unsymmetric,
damped and QR damped.

COMPARING MODE-EXTRACTION METHODS

The basic equation solved in a typical undamped modal analysis is the classical
eigenvalue problem:

15



[Kl{p:} = wf [M]{¢;}

Where,

[K]= stiffness matrix

{¢;}= mode shape vector (eigenvector) of mode i

Q;= natural circular frequency of mode i (w? is the eigenvalue)

[M]= mass matrix

Many numerical methods are available to solve the above equation. ANSYS offers
these methods:

* Block Lanczos method

¢ PCG Lanczos method

¢ Supernode (SNODE) method

* Reduced (Householder) method

¢ Unsymmetric method

¢ Damped method (The damped method solves a different equation)

PROCESSES INVOLVED IN MODAL ANALYSIS IN ANSYS

The general process for a modal analysis involves following primary steps:

Building the model.
Apply the loads and obtain the solution.
Expand the modes.
Review the results.

W e

ANSYS SIMULATION OF A CYLINDRICAL SHELL

Now the process described above will be applied for a cylindrical shell to analyze
its natural frequencies and expand the mode shapes. One thing should be
mentioned over here that the simulation can be performed two ways: by coding
and by using the GUI (Graphical User Interface). We would be using here the
later one.

BUILDING THE MODEL IN ANSYS MECHANICAL
(APDL)

Firstly, the shell should be modeled.

16



1
HODES

inl}
M\ Annular Circular Area

&« Pick " Unpick

WP X
¥
Global X
4
z

-82275
-82775

OK Apply

Reset Cancel

He lxp

Entering work plane co-ordinates as (0, 0) we specified radiuses to be 0.02975
& 0.02775.0ne thing should kept in mind that all the units should be kept under
the same system throughout the whole simulation process. The annular circle
should look like below.

Secondly, the type of simulation to be done is to be selected. Steps involved:
Opening the GUI>Preferences>Structural

17



M\ Preferences for GUI Filtering
[KEY'WIL/PMETH] Preferences Far GUI Filkering

Individual disciplines) to show in the GUI

<l

Thermal

ArSYS Fluid

1 71 7

FLOTR.AM CFL
Electrormagnetic:

Magnetic-Modal
Magnetic-Edge

High Frequency

171 71 7

Electric

Moke: IF no individual disciplines are selected they will all shaow,

Dizcipline options

3

h-Method

4

p-Method Struct.,

" p-Method Eleckr.

(o]’ Cancel Help

Thirdly, constant material properties (such as Young’'s modulus of elasticity,
poison’s ratio and density) are to be defined. Main menu > Preprocessor>
Material Props > Material Models.

ANSY.

OCT 10 2012
1.1 =
A N\ Linear Isotropic Properties for Material Numb. ..
Material Models Defined Material Models Available Linear Isotropic Material Properties for Material Mumber 1
(58 Material Model Mumber 1 J (&8 Favorites T1
@ Struckural
2 Linear EX 2 AE+011]
@ Elastic PRV 0.3
@ Isotropic

@ Orthotropic
@ Anisotropic

(& Monlinear Add Temperature |De|ete Temperature | Graph
Densit
§ Dersiy 0K | Cancel | Help |
(&8 Thermal Expansion
& Damping :‘
J £ Frirkinn Crafficiank -

« i « i

For density,
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ANSYS

OCT 10
A A\ Density for Material Mumber 1
Matetial Madels Defined Material Madels Available Density for Material Number 1
@ Material Model Number 1 J (&8 Favorites T1
@ Density B Structural
@ Linear Isotropic 8 Linear DENS 7850|
@ Elastic
@ Isotropic
© Orthotropic
@ Anisatropic &dd Temperature |Delete Temperature | Graph
(8 Moninear ak | Cancel | Help |
@ Density
(8 Thermal Expansion
(s Damping
J JJ J £ Frictinn maaFFiciank J =

Then we have to generate the mesh. To do that we need to define the element
type. The meshing process can be told in a nutshell this way: at first the 2D
element PLANE 42 is added then the 3D element SOLID 45 is added. The 2D
element is meshed then extruded using 3D element. Thus whole object gets
extruded.

Main Menu>Preprocessor>Element Type>Add/Edit/Delete.

For selecting 2D PLANE 42:

A

Defined Element Types:
MNONE DEFINED

A Library of Element Types

Cnly structural element bypes ate shawn

Library of Element Types Structural Mass | [Quad dnode 42 A
Link d4node 182
Beanm Bnode 183
i Brode 82
ixi-hiar 4node 25
Shell Bnode 83 ¥
Solid-shel
Constraint s |Quad4n0de 42 |

Add... | | Element bype reference number

Close Help QK Apply ‘ Cancel Help
Path Uperations | |I-
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Then for selecting 3D element SOLID 45:

A

Defined Element Types:
Type 1 PLANE4Z
Type 2 S0LID4S

QCT 10
10:17:45

A Library of Element Types

Only structural element types are shown

Library of Element Types Structural Mass rS gnode 82 rS
Link. Ai-har 4node 25
Beam Bnode 83
Fipe: Brick dnode 45
Solid fnode 185
Shell 20node 186 v
Solid-Shell
Constraint it | Brick Snode 45

al| Elemnent tvpe reference number

PLANE 42

PLANE42 is used for 2-D modeling of solid structures. The element can be used
either as a plane element (plane stress or plane strain) or as an axisymmetric
element. The element is defined by four nodes having two degrees of freedom at
each node: translations in the nodal x and y directions. The element has

plasticity, creep, swelling, stress stiffening, large deflection, and large strain
capabilities.

®

EL

¥ Element Coordinate @
¥ System (showrn for I
o Sl KETORT=1) T

(Triangular ©ption - not recommended

¥ {or Radial) (1)

Fig: PLANE 42, Structural element
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SOLID 45

SOLID45 is used for the three-dimensional modeling of solid structures. The
element is defined by eight nodes having three degrees of freedom at each node:
translations in the nodal %, y, and z directions.

The element has plasticity, creep, swelling, stress stiffening, large deflection, and

large strain capabilities. A reduced integration option with hourglass control is
available.

oF
I EL
T
(Prism option)
Element Coordinate
Systern (showrn far MHOF
EETOFT(4=1) I
z EL
T
(Tetrahedral Option -
v Surface coordinate systern ot recommended)
hi

Fig:SOLID 45, Structural element.

Now the 2D element is meshed by specifying through mesh controls. Main
Menu>Preprocessor>Meshing>Mesh Tool

£ WorkMlane Parameters  [Macto  Memuitris  Help

7| E = Zv|| EN
J = g J ! Element Attributes:
RGRPH! | Global x| sst
e | | S rrart Size
N\ Global Element Sizes X -
[ESIZE] Global elemenk sizes and divisians (appliss anly I & oo
to "unsized” lines)
Size Controls:
SIZE Element edge length .00z
o Global Clear
NDIY No. of element divisions - l:l
Areas fot
- {used only i element edge lenath, SIZE, is blank or zero) A ﬂ
Lines Clear
Copy Flip
(=9 Cancel Help
Layer Clear
s 4 =T
Mesh: Areas -
Shape: (" Ti * Quad
 Free € Mapped ©
Mesh Clear
j Refine at: Elements >

Command (PREP7) mat=1 type=1 real=1 csys=0 secn=1 Refine
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Here for meshing purpose we have taken:

Edge length=0.002m. That is each small element has a side of .002m. Main
Menu> Preprocessor> Meshing> Mesh Tool

Step by step process:

1. “Size Controls Global” = [Set]
2. “Element edge length” = 0.002
3. [OK]

4. [Mesh]

5. [Pick All]

6. [Close] Warning. After that the 2D element is extruded: Main Menu>
Preprocessor> Modeling> Operate> Extrude> Elem Ext Opts

A Element Extrusion Options o

[EXTOPT] Element Ext Options

[TYPE] Element bype number | 2 SOLID4S j
1 PLAME4Z

MAT  Material number 2 S0LID4s

[MAT] Change default MAT Hone defined |

REAL Real constant set number ||_|5.3 Default ﬂ

[RE&L] Change Default REAL [Hore defined |

E3Y¥S Element coordinate sys ||_|5.3 Default j

[ESYS] Change Defaulk ESYS

Element sizing options For extrusion

] -
Yall Ma. Elem divs

VALZ  Spacing ratio

ACLEAR Clear areals) after ext ™ Mo

(0 Cancel Help
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Element type number is changed to SOLID 45 & No. Elem divs =88. Then the 2D
element is extruded: Main Menu> Preprocessor> Modeling> Operate>
Extrude> Areas> By XYZ Offset> [Pick All].

Here “Offsets for extrusion” =0, 0, 2.2.

Extrude Area by Offset

i pick " Unpick

Single " Box

Polygon ( Circle
™ Loop

Count = L]
Maximum = 1
Mirndizoam = 1

Area Mo. =

(¢ List of Ttems

" Min, Max, Inc

ELEMENTS
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The final meshed model looks like the above figure (zoomed view).

APPLYING THE LOADS AND OBTAINING THE
SOLUTION

This part can be described into several categories:

Step 1: Unselect 2-D elements.

Before applying constraints to the fixed end of the wing, unselect all PLANE42

elements used in the 2-D area mesh since they will not be used for the
1. Utility Menu> Select> Entities

2. (First drop down) “Elements”

3. (Second drop down) “By Attributes”

4. (Check) “Elem type num”

5. “Min,Max,Inc” =1

6. (Check) “Unselect”

7. [Apply].

analysis.

| = | B

N\ Select Entities

Elements A
By Attributes  ~

" Material num
* Elem type num
" Real set num
" Elem CS num
" Section ID num
" Layer num

Min.Max.Inc

0

" From Full
" Reselect
" Also Select
©~ Unselect
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0K Apply

Plot Replot
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Step 2: Apply constraints to the model.

Constraints will be applied to all nodes according to the end condition. Select all
nodes at z =0, then apply the displacement constraints.

1. (First drop down) “Nodes”

2. (Second drop down) “By Location”
3. (Check) “Z coordinates”
4.“Min,Max” =0

5. (Check) “From Full”

6. [Apply]

M\ Select Entities

Nodes M
By Location h

" ¥ coordinates
" ¥ coordinates
* 7 coordinates
Min,Max

1]

“ From Full
" Reselect
" Also Select
" Unselect

Sele All | Invert

Sele None|

oK Apply
Plot Replot

For the constraint of other side:

1. (First drop down) “Nodes”

2. (Second drop down) “By Location”
3. (Check) “Z coordinates”

4. “Min,Max” = 2.2

5. (Check) “Also Select”
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6. [Apply].

" ¥ coordinates
" % coordinates
* 7 coordinates
Min,Max

2.2

" From Full
" Reselect
* Also Select
" Unselect

Sele All | Invert |
Sele Nune| |

OK Apply
Replot
Help

Now the degrees of freedoms are specified at the two ends.

1. Main Menu> Preprocessor> Loads> Define Loads> Apply> Structural>
Displacement> On Nodes

2. [Pick All] to pick all selected nodes.
3. “DOFs to be constrained” = DX and DY

4. [OK] Note that by leaving “Displacement” blank, a default value of zero is
used.

Now, reselect all nodes.
5. (Second drop down) “By Num/Pick”
6. [Sele All] to immediately select all nodes from entire database.

7. [Cancel] to close dialog box.
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1

ELEMENTS

Now, before obtaining the solution the nodes of the whole structure are selected
again.

= g E A\ Select Entities

Nodes -
By Num{Pick ~

" Reselect
" #lso Select
T Unselect

Sele All Invert
Sele None
OK Apply
Plot Replot
Cancel Help

Step 3: Obtaining the Solution:

Specifying analysis type and options

We specified that the type of analysis is modal.

1. Main Menu> Solution> Analysis Type> New Analysis
2. (Check) “Modal”

3. [0K]
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A New Analysis

[AMTYPE] Twpe of analysis

04

Harrmonic

Transient

~
~

" Spectrum
(" Eigen Buckling
~

Substruckuring/CM3

Cancel Help

4. Main Menu> Solution> Analysis Type> Analysis Options

5. (Check) “Block Lanczos” (Block Lanczos is the default for a modal analysis.)

6. “No. of modes to extract” = 20
7.“No. of modes to expand” = 20
8. [0K]

9. [OK] all default values are acceptable for this analysis.

A Modal Analysis

[MODOPT] Made extraction method

Mo, of modes ko extract

" PCG Lanczos
" Reduced
" Unsymmetric
" Damped
" QR Damped

" Supernode

{must be specified for all methods except the Reduced method)

O

[M=PAND]
Expand mode shapes ¥ ‘es
MMODE Ma. of modes to expand
Elcale Calculate elem resulks? [~ Mo
[LUMPRM] Use lumped mass approx? [~ Mo
[PSTRES] Indl prestress effects? [~ Mo

Cancel Help
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Step 4: Solve.

1. Main Menu> Solution> Solve> Current LS

2. Review the information in the status window, and then choose: File> Close
(Windows).

N

Mote

@ Solution is done!

Preferences

=

=

Preprocessor
Solution
Analysis Type
E Define Loads
Load Step Opts
SE Management {CMS
El Results Tracking
= Solve
Current LS
Partial Solu
MManual Rezoning
Multi-field Set Up
ADAMS Connection
Diagnostics
E unabridged Menu
General Postproc
TimeHist Postpro

Toannalaaical Nak

H]

2 0L U

FPROBLEM DIMENSIONALITY . .
DEGREES OF FREEDOM. . -
ANALY¥SIS TYPE . . . _ -
EXTRACTION METHOD. -
EQUATION SOLUER OPTIOHN. .
HUMBER OF MODES TO EXTRACT
GLOBALLY ASSEMBLED MATRIX
HUMBER OF MODES TO EXPAND
ELEMENT RESULTS CALCULATION

LOATD S TEP
LOAD STEF MUMBER. . - e e e e e e .

PRINT OUTPUT CONTROLS . - - . - . [ _
DATABASE OUTPUT COWTROLS. . . . . . .

-
-
=]
4

[ R B —1
®x
=

P W

REVIEWING THE RESULTS

Listing the natural frequencies:

1. Main Menu> General Postproc> Results Summary.

2. [Close] after observing the listing.

A SET LIST Command

[T R R 1]

™

1

O NS

-3-D

-MODAL

-BLOCK LANCZOS
-SPARSE

- 18
-S¥MMETRIC

- 18

-OFF

OPFPTI OHNZSE

- 1
-HO PRINTOUT

-ALL DATA WRITTEN

File:

T

SET  TIME-FREQ

1 B.70188E-B3
2 34.870
3 34.870
4 135.40
5 135.48
6 381.47
7 381.47
8 528.37
? 528.37
i@ 729.82
11 811.28
12 811.28
13 1144.5
14 1144.5
15 1175.5
16 1458.3
1?7 1522.6
18 15%22.6
19 1627.2
28 1629.7

e b b b e e b b e e e b

INDER OF DATA SETS ON RESULTS FILE swsxxx
LOAD STEP  SUBSTEP CUMULATIVE

i 1
2 2
3 3
4 4
5 5
[ [
? ?
8 8
2 ?
18 i@
11 11
12 12
13 13
14 14
15 15
16 16
17?7 1?
18 18
19 19
28 28
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Animating the mode shapes:

To animate the mode shapes at first the corresponding set should be read.

N\ Animate Mode Shape

Animation data

No. of frames to create

Time delay {seconds) 2

Acceleration Tvpe

{* Linear
™ Sinusoidal
Nodal Solution Data
Display Tvpe DOF salution » | |Deformed Shape Y
Shress Def + undeformed
Strain-hotal Def + undef edge
Energy Translation Uy
Strain ener dens Ly
Strain-elastic 1z [
Strain-thermal
Shrain-plastic ¥ | | Defarmed Shape

Cancel Help

FIRST MODE:
1. Main Menu> General Postproc> Read Results> First Set
2. Utility Menu> PlotCtrls> Animate> Mode Shape.
ANSYS

OCT 10
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SECOND MODE:

1. Main Menu> General Postproc> Read Results> Next Set

2. Utility Menu> PlotCtrls> Animate> Mode Shape.

1

DISPLACEMENT

THIRD MODE:
1. Main Menu> General Postproc> Read Results> Next Set

2. Utility Menu> PlotCtrls> Animate> Mode Shape.
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FOURTH MODE:
1. Main Menu> General Postproc> Read Results> Next Set

2. Utility Menu> PlotCtrls> Animate> Mode Shape.

FIFTH MODE:
1. Main Menu> General Postproc> Read Results> Next Set

2. Utility Menu> PlotCtrls> Animate> Mode Shape.
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SIXTH MODE:
1. Main Menu> General Postproc> Read Results> Next Set

2. Utility Menu> PlotCtrls> Animate> Mode Shape.
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USE OF ANSYS IN HARMONIC ANALYSIS

Before performing the harmonic analysis the model is drawn again as previously
done in modal analysis and is meshed.

1. Define Analysis Type (Harmonic)

Solution >Analysis Type >New Analysis >Harmonic.

1
ELEMENTS

N\ New Analysis

[AMTYPE] Twpe of analysis

" Modal

{+ Harmonic

™ Transient

™ Spectrum

™ Eigen Buckling

" SubstructuringfCMs

814 Cancel Help

2. Setting options for analysis type:

Select: Solution > Analysis Type > Analysis Options. The following window
will appear

1
ELEMENTS

M\ Harmonic Analysis

[HROPT] Solution method

[HROUT] DOF printout: Formak |Rea| + imaginary

[LUMPM] Use lumped mass approx? [~ Mo

OF Cancel Help
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Clicking 'OK' will make the following window appear. The default settings
(shown below) are used.

1
ELEMENTS

A\ Full Harmonic Analysis

Options for Full Harmonic Analysis
[ESLY] Equation solver

Tolerance -

- walid for all except Sparse Solver
[PSTRES] Incl prestress effecks?

oK Cancel

3. Force application

At first the middle node is selected. Main menu > select> entities. Then

= g E N\ Select Entities

Nodes M
By Location ~

* X coordinates

¥ coordinates
" 2 coordinates
Min.Max

I

* From Full

" Reselect

" Also Select
" Unselect

Sele All Invert
Sele None
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Then,

I g E A\ Select Entities
Nodes -
By Locati -

" ¥ coordinates
¥ coordinates
" Z coordinates
Min,Max

0.02975

" From Full
* Reselect
" Also Select
T Unselect

Sele All Invert
Sele None

Nodes -
By Locati -

" ¥ coordinates
¥ coordinates
* Z coordinates

Min,Max

" From Full
* Reselect
" #lso Select
" Unselect

Sele All Invert
Sele None

0K | [Appl

The selected node can be visualized in the screen by: Main menu> Plot> Nodes.
It will show the selected node. Then the force is applied as such: Solution >
Define Loads > Apply > Structural > Force/Moment > on Nodes. Selecting
‘pick all’ selected the only visible node.
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Apply F/M on Hodes

* pick (" Unpick

i* ZBingle i Box

" Polygom (" gircle
~

Count = 0
Maximam = 16376
Minimam = 1
Node MNo. =

(¢ List of Items

(" Min, Max, Inc

Reseat | Cancel |

Pick a1l

acT 17
1

Then the amount of force applied is specified. Here direction of force applied was

along Y direction and amount of force applied was 10 N.

A Apply F/M on Nodes

[F] apply ForcefMoment on Modes

Lab  Direction of Forcefmom = -

Apply as |C0nstant value
IF Constant value then:

WALUE Real part of Forcefmom 10

WALUEZ Imag part of forcefmom

|

Ok Apply Cancel ‘
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1
NOLDES

The above snapshot actually shows the application of force in the direction of y
axis. Now all the nodes should be selected again to apply constrains at the two
furthest ends of the shell.

= g E % N\ Select Entities
Nodes A
By Num/Pick ~

“ From Full
" Reselect
" Also Select
" Unselect

0K Apply
Plot Replot

Cancel Help

After all the nodes are selected then constraints are applied. Element can be
selected as: main menu > plot> elements.
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Hodes
Elements

Lavered Elemerts ...

Materials
Data Tahles

Array Patameters .,

Muki-Plots
(omponents

In Nodes

In Node Components
“tom Reactions

“tom Mag Analy

1

NODES

After the elements were selected to view complete shell structure is shown in the
screen with a red arrow on the top of the shell just at the middle showing the

direction of the application of force.

4. Applying Constraints:

To apply the constraints the nodes where the constraints are to be applied
should be selected.
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Nodes of one end: Main menu>Select entities> (First drop down) Nodes>
(second dropdown) By location> (Select) Z coordinates.

Selecting the From Full, 0 is placed after Max, Min.

] E M % A Select Entities
Nodes -
By Locati -

" X coordinates
Y coordinates
+ 7 coordinates

Min, Max

" From Full
" Reselect
" Also Select
" Unselect

Sele All Invert
Sele None
OK | i
Plot Replot
Cancel Help

That is nodes at one end are already being selected. Now in almost similar way
nodes at other end i.e. at length 2.2 m are to be selected.

Nodes of other end: Main menu>Select entities> (First drop down) Nodes>
(second dropdown) By location> (Select) Z coordinates.

Selecting the ‘Also Select’, 2.2 is placed after Max, Min.

Thus nodes at both ends are selected. Now constraint is applied: Solution >
Define Loads > Apply > Structural > Displacement > On Nodes.

&

Apply UROT on Nodes

* pick " Unpick

(+ Zingle ( Box

" Polywon (" Circle
I~

Count = O
Mazimum = 16376
Miniwam = L

Node Mo, =

@+ List of Items

(" Min, Max, Inc

|

Reset Cancel
Pick All Help
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X and Y degrees of freedoms are being constrainted.

A Apply U ROT on Modes

[O] Apply Displacements {J,ROT) on Modes
LabZz DOFs to be constrained All DOF

VEL=
WVELY e

Apply as |Cnnstant value j

If Constank walue then:

WALUE Real part of disp

WALUEZ Imag patt of disp I:l
‘ Help

Cancel

And the setup looks like below-

OCT 17 2
11:17

K

Now for the analysis the nodes of the whole structure are to be selected. Main
menu>Select entities> (First drop down) Nodes > (second dropdown) By
Num/Pick. Then From Full’ is selected and ‘Sele all’ is pressed with mouse
button.
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Nodes -
By Num{Pick ~

" #lso Select
T Unselect

Sele All Invert
Sele None
OK Apply
Plot Replot
Cancel Help

5. Obtaining the solution:

Frequency steps and sub steps options are specified at first-
Frequency range: 0-50 Hz.

Number of substeps: to specify steps within the frequency range

A\ Harmonic Frequency and Substep Options

Harmonic Frequency and Substep Options

[HARFRCG] Harmonic Ffreq range | 1] | | 50

[MSIUEST] Murnber of subskeps

[KEC] sStepped or ramped b.c.

" Ramped

{* Stepped

(04 Cancel Help
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Solving: Solution > Solve > Current LS.

=1l 1
J ‘I ELEMENTS

SOLUTION OPTIONS

PROBLEM DIMENSIONALITY. . . . . . . . . . . . . 3-D
.| DEGREES OF FREEDOM. . . . . . ox” vy oz
| ANALYSIS TYPE . . . . . . . .. ...
SOLUTION METHOD. _ . . . _ _ . . . N\ Solve Current Load Step

COMPLEX DISPLACEMENT PRINT OPTION . .
GLOBALLY ASSEMBLED MATRIX . . . . . .

LOAD STEP

LOAD STEP NUMBER. . - . . = « « . - .
FREQUENCY RANGE . . . . . - - . . ..
NUMBER OF SUBSTEFS. . . . - . - . - .
STEP CHANGE BOUNDARY GONDITIONS . .
DATABASE OUTPUT CONTROLS. & - & . . L S Help

[SOLYE] Begin Solution of Current Load Step

Review the summary information in the lister windaw (entitled "/STATUS
Command"), then press OK ta start the solution,

Verification: Yes.

A Verity

Effl
{9y A checkof vour model data produced 2 wamings.
SHOUILD THE SOLY COMMARD BE EXECUTED?

Preferences

Preprocessor

[ Solution A
Analysis Type
Fast Sol'n Optn

[ Define Loads SOLUTION OFTIONS
Load Step Opts
= physi PROBLEM DIMENSTONALITY. . . . . . . .. . ... 3D
G SE’:'“ iwg|  DEGREES OF FREEDOH. . . . . . i ue oz
anagement { ANALYSIS TYPE . . v v v v v v v e v e e e u s HARMONLC
B Results Tracking SOLUTION METHOD. . - -+« o v FULL
3 Solve COMPLEX DISPLACEMENT PRINT OPTION . . . . . . . REAL AND TMAGINARY
& GLOBALLY ASSEMELED MATRIX . . . . . . - . . . . SYMMETRIC
Current LS
B From LS Files LOAD STEP OPTIONS
E] Partial Sol
Aadr ":. ": a LOAD STEP NUMBER. . . . o v v oo v e .. 1
[ Adaptive Mes FREQUENCY RANGE . . » -+ v v oo e e 9.0888 10 150.08
Manual Rezoning NUMBER OF SUBSTEPS. . . . . . . ... ... .. i
e STEP CHANGE BOUNDARY CONDITIONS . . . - . . . . YES
B M;'A;,IS"*[ ¢ t!’ PRINT OUTPUT CONTROLS . . . . - .+ v o oo o NO PRINTOUT
onnection | DaTARASE OUTPUT CONTROLS. . . - . .+ » - - . . . ALL DATA WRITTEN

Diagnostics
General Postproc
TimeHist Postpro
Topological Opt
ROM Tool
[ Desian¥olorer
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When the solution is done TimeHist PostPro is used to see the response of any

specific point on the structure.

After selecting the point of force application as the point of investigation through
the Variable Viewer the graph is plotted taking amplitude as y- axis and

frequency as x- axis.

1
POSTZ6

AMPLITUDE

]
|l
M|
M
M|
i
H
Bl
|
|

VO

This is amplitude Vs frequency (of applied force) curve.

The list of results-

Frequency Amplitude

1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000

0.716047E-04
0.717860E-04
0.720904E-04
0.725209E-04
0.730823E-04
0.737806E-04
0.746237E-04
0.756213E-04

Phase

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
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9.0000
10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24.000
25.000
26.000
27.000
28.000
29.000
30.000
31.000
32.000
33.000
34.000
35.000
36.000
37.000

0.767854E-04
0.781307E-04
0.796747E-04
0.814390E-04
0.834495E-04
0.857378E-04
0.883427E-04
0.913119E-04
0.947047E-04
0.985955E-04
0.103079E-03
0.108277E-03
0.114348E-03
0.121507E-03
0.130041E-03
0.140357E-03
0.153039E-03
0.168962E-03
0.189494E-03
0.216909E-03
0.255271E-03
0.312643E-03
0.407591E-03
0.594557E-03
0.113149E-02
0.170011E-01
0.126071E-02
0.597904E-03
0.387697E-03

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
180.000
180.000
180.000
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38.000 0.284582E-03 180.000
39.000 0.223386E-03 180.000
40.000 0.182901E-03 180.000
41.000 0.154156E-03 180.000
42.000 0.132710E-03 180.000
43.000 0.116108E-03 180.000
44.000 0.102885E-03 180.000
45.000 0.921125E-04 180.000
46.000 0.831735E-04 180.000
47.000 0.756414E-04 180.000
48.000 0.692125E-04 180.000
49.000 0.636642E-04 180.000
50.000 0.588301E-04 180.000

It clearly shows that when frequency of forced vibration reaches 1st natural
frequency the first resonance takes place i.e. amplitude increases dramatically
and later the response goes out of phase with the force and most of the
structures cannot sustain this high amplitude vibration.
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CHAPTER 4

ANALYTICAL ANALYSIS FOR DETERMINING
NATURAL FREQUENCIES AND FORCED VIBRATION
RESPONSE OF CIRCULAR CYLINDRICAL SHELL

In this chapter, we will look into a mathematical approach, as described by
Werner Soedel in the book titled “Vibrations of Shells and Plates, Third
Edition” to find out the natural frequencies of a simply supported circular
cylindrical shell and see that how the structure responds being subjected to a
harmonically varying load or a sinusoidal force. For that, equations of motion for
the shell are needed which requires a way to relate the motion of the structure to
the loads acting on it. This is done by first developing relationships between
stress and strain, as strain is technically deformation of the body so stresses can
be related to displacement of the structure which again warrants for the
relationships between strain and displacement. Augustus Edward Hough Love,
using Hamilton’s principle, defined motion under any type of pressure load.
Love’s equations can be used to determine equations of motion for different shell
type structures. Love extended work on shell vibration by Rayleigh, by
considering the coexistence of both the two classes of shells, defined by Rayleigh
earlier. These are -

1. One where the middle surface does not stretch and bending effects are the
only important ones, and

2. One where only the stretching of the middle surface is important and the
bending stiffness can be neglected.

The basic assumptions made for the following sections,

1. Shells are thin with respect to their radii of curvature, and
2. Deflections on the shell are reasonably small.
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SHELL COORDINATES AND INFINITESIMAL DISTANCES
IN SHELL LAYERS

Here we will assume that thin, isotropic, and homogeneous shells of constant
thickness have neutral surfaces, just as beams in transverse deflection have
neutral fibers. Stresses in such a neutral surface can be of the membrane type but
cannot be bending stresses. To locate any point on the neural surface of the shell
we will use curvilinear coordinate system. The location of point P on the neutral
surface in three dimensional Cartesian coordinates can be expressed by two
dimensional curvilinear surface coordinates as follows,

x1 = f1(ay, @), %2 = f2(a1, az), x3 = f3(ay, az) (1)
The location of P on the neutral surface can also be expressed by a vector,

T(ay, az) = f1(ay, az)eq + fo(ag, az)e; + f3(ag, ay)es 2)

X2
Fig 1. Reference surface

Now the infinitesimal distance between points P and P’ on the neutral surface is
the differential change, d7 of the vector 7 from P to P/,

dr = or daq + or d 3

The magnitude ds of d7 is given by,
(ds)? = dr.dr 4)

Simplifying this, we get,
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(ds)? = Af(day)® + A3 (da,)® (5)

Where,
ar or ar *
e ®)
1 60(1 60{1 60(1
And,
, or or or|
A2 | @)

- aaz . aaz - aaz

This equation is called the “fundamental form” and A; & A, are the “fundamental
form parameters” or “Lamé parameters”.

Now being specific to our structure of interest i.e. circular cylindrical shell, for
each point on shell surface there are two maximum and minimum radius of
curvature, whose directions are perpendicular to each other. These lines of
principal curvature are in this case parallel to the axis of revolution, where the
radius of curvature Rx=c0 (i.e. curvature 1/Rx=0) and along the circles, where the
radius of curvature Ry = a (i.e. curvaturel/Rg = 1/a).

Fig 2. Obtaining Lamé parameters for circular cylindrical shell
Therefore, the curvilinear coordinates are,
a,=x,a,=20 )

So, the position vector discussed before (eqn.2) becomes,
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T = xe; + acosfe; + asinfe; 9
Thus,

or or BF‘_A 4 10
da, ox " [ga =7 (10)
And,

or _or_ infe, + Oe; 11
da, 96 asinfe, + acosfe; (11)

or :
or, |% =A; = a/sin? 6 + cos? 0 = a (12)

The fundamental form is therefore,
(ds)? = (dx)? + a?(d8)> (13)

Recognizing that the fundamental form can be interpreted as defining the
hypotenuse ds of a right triangle whose sides are infinitesimal distancesalong
the surface coordinates of the shell, we may obtain 4; and A, in a simpler fashion
by expressing ds directly using inspection:

(ds)? = (dx)? + a*(d0)? (14)
By comparison with eqn.3, we get,
Ai=1,4,=a (15)

Now let us define a; coordinate to be perpendicular to a, a5 plane i.e. for circular
cylindrical shell it is the normal direction to the undeflected shell surface and a4
is 0 on neutral a,a; plane. If P1and Py’ are two points on different a, a5 planes
whose projections on the neutral surface are at infinitesimal distance, then the
distance between these two points, ds can be derived by similar mathematical
approach to be,

asz

d 2=A2(1
(ds) 1 +R1

)2 (day)? + A2 (1 + ﬁ)z (day)? + (das)? (16)
R,

Where, R{and R, are radius of curvatures.

This equation gives the distance between two points of an undeflected shell.

STRESS-STRAIN RELATIONSHIP

According to the coordinate system we have chosen, we have three mutually
perpendicular planes of strain and three shear strains. We assume that Hooke’s
law applies, therefore we have for a three dimensional element,
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€11 = = [011 — n(oz2 + 033)]

E
&2 = E[Uzz — p(oq1 + 033)]
£33 = E[Uas — p(o11 + 022)]
012
=g
013
=g
023
2=

(17)

(18)

(19)

(20)

(21)

(22)

Where, E= modulus of elasticity, G= modulus of rigidity, u= poision’s ratio,
011, 022, and 033 are normal stresses and 0,5, 03, and 0,3 are shear stresses. And,

012 = 021,013 = 031,023 = 032

(23)

We will later assume that transverse shear deflections can be neglected.This

implies that,

&13 = 0, &3 = 0

(24)

However, we will not neglect the integrated effect of the transverse shear

stresses g13anda;3.

Fig 3.Stresses acting on an element
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The normal stress, 33 which acts in the normal direction to the neutral surface,
will be neglected,

033 = 0 (25)

This is because we argue that on an unloaded outer shell surface it is 0, or if a
force acts on the shell, it is equivalent in magnitude to the external load on the
shell, which is a relatively small value in most cases. Only in the close vicinity of a
concentrated load do we reach magnitudes that would make the consideration of
o33worthwhile. Our equation system therefore reduces to,

1
€11 = E(O'u — 1oy3) (26)
8221
= E(O'zz — po11) (27)

012

_ -1z 28
€12 G ( )
And,
u

£33 = —E(‘Tu + 032) (29)

Only the first three relationships will be of importance in the following. Equation
(29) can later be used to calculate the constriction of the shell thickness during
vibration, which is of some interest to acousticians since it is an additional noise
generating mechanism, along with transverse deflection.

STRAIN-DISPLACEMENT RELATIONSHIPS

In a preceding section we have seen that the distance between two points P; and
P; of an undeflected shell,

3
(ds)? = ) gular, @y, a5)(dap? (30)
i=1

Where, short notations used are,

2
2 as
a3 (1+3) = gulaaa) (31)
2
2 a3
A3 (1 + R_z) = g22(ay, az, a3) (32)

52



1= g33(ay, a;z,as3) (33)

Now, if point P; originally located at(ay, a,, a3), is deflected in the a; direction by
U, in the a, direction by U,, and in the a3 direction by Uj;, it will be located at
(a1 + &, ay + &, az + &3). Deflections U; and coordinate changes ¢&; are related

by,

U; = gii(ay, az, a3)$; (34)

And, pointP;, originally at (a; + day,a; + day, az + das), will be located at
(a1 +day + &, +d&, ap +day + &, +d,, az + daz + &, + d&,) after deflection. The
distance, ds’ between P, and P; in the deflected state will therefore be,

3

(ds')* = Zgii (a1 + &1, 0z + &, a3 + &) (da; + d§;)? (35)
im1

gii(aq, a,, a3) varies continuously as a4, a, and a3 change, now taking Taylor
series expansion of g;;(a; + &;, a; + &,, a3 + &3) about the point (ay, @y, @3) and
further mathematical manipulation,

3 3

(ds')? = Z G da,da; (36)
i=1j=1
Where,
- ga 05 0§
Gij = gii"";aak $k 5ij+9iiaf“]_+gjja—ai (37)

Where, §;; is Kronecker delta notation.

s=fo i) (38)
And, i, j, & k refer to three principal coordinates.

Now for i = j, in general,

(ds)lzi = gii(da;)? (40)
(ds")f; = Gy(day)? (41)
and, i # j,

(ds)} = gu(da)* + gjj(daj)z (42)
(ds"? = Gy(day)? + G(day)” — 26 da;da; (43)
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Therefore, the normal strains are,

e = (ds")ii — (ds)ui _ |Gii _ 1= 148079 _
* (ds);; gii ii

Since,

Gii — gii
ii

«1

We have the expansion,

1+Gii_gii =1+16ii_gii_
ii 2 g

And,

T2 gy

Shear strains,

0;; fori = 1 and j = 2 is shown in the figure below,

Fig 4. Shear deformation in the plane of the reference surface.
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Using the cosine law, we may determine this angle,
(ds' ,Z] = (ds")% + (ds’)l?l- —2(ds")(ds")jjcos0;; (49)

From equation (41), (43) and (49),

cos0;; = (50)
GiiGjj
(7r ) =si % (51)
cos (= —¢&;j) = sing;j = ——
2z 7 GGy
Since for reasonable shear strain magnitudes
Singi]' = gij
And,
% . Sy (52)
VGiGjj  \9ugjj
So, shear strain,
G::
(‘;'i]' = J (53)

v iiGjj

Substituting equations (31) to (34) and (37) in eqn. (47) and for i=1, we finally
get,

_ 1 (aUl Uz 6A1 n A1> 54
f11 _Al(l +a3/R1) aal AZ aaz 3R1 ( )
Similarly, we can get,

_ 1 aUz U1 OAZ Az
22 = AZ (1 + a3/R2) (aaz A_16a1 + U3 R_2> (55)

_0U3 56
€33 = dets (56)

Again, Substituting equations (31) to (34) and (37) in eqn. (47) and for i=1, j=2,

€ _A1(1+a3/R1) ad ( U1 )

127 4,(1 + az/Ry) day \A;(1 + a3 /Ry)
A;(1+az/R;) @ ( U, )
A1(1+ az/Ry) da; \A;(1 + az/R;)

(57)

55



Similarly, we can get,

=4 (1+“3) 9 ( Uy )+ 1 9Us 58
f13 =41 (1t} ) 5as \ 011 + aa/RD) T 4,1+ as/Ry) dary (58)

f23 = A2 ( Rz) 00{3 (Az(l + ag/Rz)) Az(l + a3/R2) aaz ( )

These equations give relationships among strain, displacement and the structure
geometry.

LOVE SIMPLIFICATIONS

A E H Love had simplified the strain equations shown in the previous section
(eqgns. (54) to (59)) by assuming that for a thin walled shell the displacements in
the a; and a,directions vary linearly through the shell thickness, where as
displacements in the a5 direction are independent of a;.

Ui(ay, az,a3) = uq(ayg, az) + azfq(ay, az) (60)
Uz(ay, az,a3) = uz(aqg, az) + azf(ag, az) (61)
Us(ay, az,a3) = uz(ay, az) (62)

Where, ; and 3, represents angles.

Fig 5. [llustration of the Love’s assumption.
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If we assume that we may neglect shear deflection, which implies that the normal
shear strain deflection, which implies that the normal shear strains are 0,

€13 = 0 (63)
&3 = 0 (64‘)

Implying these assumptions (i.e. eqn. (60) to (64)) in the final strain equations of
the previous section we get,

€11 = &°11 + azkqy (65)
£y2 = €% + azky; (66)
€33 = 0 (67)
€12 = €12 + azkq; (68)
€13 = 0 (69)
&3 = 0 (70)
And,
u, 1 0u3
- ___ 3 71
B1 R, A4,0a, (71)
U, 1 au3
-4 ____3 72
B2 R, A, 0a, (72)

Where, the membrane strains (independent of a5) are,

1 6u1 Uy 6A1 Uus
1=+ o
Al aal AIAZ aaz R1

(73)

o _ 1 auz Uuq aAZ Uus
€227 AZ aaz A1A2 6(11 RZ

(74)

And where the bending strains (charge in curvature terms),

198, B2 044

k11 - A_laal AIAZ 60{2 (76)
19B, P1 04
kor = — 77
22 AZ aaz + A1A2 66(1 ( )
_ AZ a Bz Al a ﬁl
o T e (22) 3o 7%
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MEMBRANE FORCES AND BENDING MOMENTS

Here we integrate all stresses acting on a shell element whose dimensions are
infinitesimal in the a; and a, directions and equal to the shell thickness in
normal direction. Solving eqns. (26) to (28) for stresses yields,

A g (&11 + pE22) (79)
E

022 = 1— 2 (&22 + pHE11) (80)

012 = €126 (81)

Substituting eqns. (65), (66) and (68) gives,

E
01 =7 2 [£°11 + uE®, + az(kqq + pksz)] (82)
E o o
022 = 1— 2 [£°22 + pe°11 + az(kaz + pkqq)] (83)
012 = G(&°%2 + azkyy) (84)

Fig 6.An element cut from a shell that is of infinitesimal cross-sectional
dimensions, but extends through the entire thickness of the shell.
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Referring to the figure above the force in the a; direction acting on a strip of the
element face of height da; and width 4,(1 + a3/R,)da, is

as
0'11AZ (1 + _) dazdag
R;
Thus the total force acting on the element in the a; direction is,

a3:h/2 0(3
f 0'11A2 (1 + —> dazdag
az=—h/2 R;

and the force per unit length of neutral surface A,da, is

h/2 as
Nll = f 011 (1 + —) da3 (85)

~h/2 R;
Neglecting the second term in parentheses, we obtain

h/2
Nqq =f odaz (86)
)

Substituting value of ¢11from eqn. (82) we get,

Ny1 = K(£°11 + ne3) (87)
Where,
Eh
= (88)
1 — pu?

Here, K is called the membrane stiffness. Similarly, integrating o,, on the a, face
of the element with the shear stresses g,, = g, gives,

Ny = K(£°%; + 1eyy) (89)
Niz =Ny =——F—¢&°2 (90)

To obtain bending moments, first the bending moment is expressed about the
neutral surface due to element strip A, (1 + a3/R;)da,das,

011 0{3A2 (1 + as3 /Rz)daz da3
Thus the total bending moment acting on the element in the @, direction is
as :h/z
f 0'11“3142(1 + a3/R2)d0{2da3
a3:—h/2

So, the bending moment per unit length of neutral surface is

h/2
My = f o11a3(1+ az/R;)das 91)
—h/2
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Neglecting the second term in parentheses, we get
h/2

My = f o1azdas (92)
~h/2

Again, substituting value of 644 from eqn. (82) we get,

My = D(kqq + pky3) (93)
Where,
Eh3
D=— (94)
12(1 - p?)

D is called the bending stiffness. Similarly integrating o,, and g,, = g,; we can
obtain,

My, = D(kyz + pkqq) (95)
ki (96)

While we have assumed that strains €;, and €,5 due to transverse shear stresses
013 and a,5 are negligible, we will never neglect the transverse shear forces.

h/2

Q13 =f ozdaz 97)
—h/2

And,
h/2

Q23 =f oy3daz (98)
—h/2

These forces will be defined by resulting equations themselves.

Now If we solve equation eqns. (87), (89), (90), (93), (95), and (96) for the
strains, equations (82) to (84) become,

Ny1 12My4

011 = T h3 a3 (100)
Ny, 12M,,

097 = T + h3 a3 (101)
Ny, 12M,

012 = T h3 as3 (102)

Note that, it was assumed in this section that the reference surface is
halfway between the inner and outer surfaces of the shell.
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HAMILTON’S PRINCIPLE

Hamilton’s principle is a minimization principle that seems to apply to all of
mechanics and most classical physics. It is the end of a development that started
in the second century B.C. with Hero of Alexandria, who stated that light always
takes the shortest path. In 1834 Hamilton postulated that while there are usually
several possible paths along which a dynamic system may move from one point
to another in space and time, the path actually followed is the one that minimizes
the time integral of the difference between the kinetic and potential energies. In
terms of the calculus of variations, developed primarily by Euler and Bernoulli in
the 18th century, it is usually stated is

t2
5| K-U+w,)dt=0, 57, =0, t=ty,t, (103)

t1

Where 87, are the variations of displacements (virtual displacements), K is the
kinetic energy, U is the strain energy, W,,. is any additional energy input to the
system, and 4 is the variation, operationally equivalent to a total differential. In
general, Hamilton’s principle can be viewed as an axiom, replacing the axiom of
Newton’s second law for dynamic problems. In other words, we either accept
Newton’s second law as an axiom to derive Hamilton’s principle from it for
dynamic problems, or we accept Hamilton’s principle as an axiom and derive
Newton'’s second law from it.

LOVE’S EQUATIONS BY THE WAY OF HAMILTON'S
PRINCIPLE

Hamilton’s principle (multiplied here by -1 for convenience),
tz

6f (U-K—-W;,)dt=0 (104)
t1

Where, W, is the total input energy,
WianB-l_EL (105)

The times t; and t, are arbitrary, except that at t = t; and, t = t, all variations
are 0. The symbol & is the variational symbol and is treated mathematically like
differential symbol. Variational displacements are arbitrary.

From eqns. (104) and (105), we obtain (taking the variational operator inside
the integral),

t2

(60U — 6Eg — 6E; — 8K)dt =0 (106)
51
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Where,
8K =Variation in kinetic energy of one infinitesimal element,

8E; =The variation of energy introduced into the shell by distributed load
components

8Eg =Variation of energy due to boundary load
68U =Variation of strain energy stored in one infinitesimal element

Now, taking the time integral of these energy terms and subsequently
substituting them in eqn. (106) results into a complex equation constituting of
double and triple integrals. The equation can be satisfied only if each of the triple
and double integral parts is 0 individually. Moreover, since the variational
displacements are arbitrary, each integral equation can be satisfied only if the
coefficients of the variational displacement are 0. Thus the coefficients of the
triple integral set to zero give the following five equations:

d(N1142) 9(N2141) 04, 04, Q13 .
- - —N{y;—+N,,— — 4,4,— + A,4,ph
da, a, 126a2+ 225, M1z, + A14;phuy
= A;4,q, (107)
d(N1242) 9(N2241) 04, 04, Q23 .
- - —N{yy;—+ Ny ——44,— + A,4,ph
aa, aa, 126a1+ 1ge, M1z p + A14;phu,
= A,4,q, (108)
0(Q134;) 09(Q234,) Niy1 Ny,
— — A{A (— —) A{A,phii; = A,A 109
da, da, + 414, R, + R, + A14;phus 14243 ( )

Where, Q13 and Q.3 are defined by,

0(M114;) 0(M3z144) 04, 904,
M —Myy—— A4, =0 110
e, + e, + 250, 254, Q13414; (110)
0(M124;) 0(M3Aq) 04, 04,4
+ + M -M{{— - A{A, =0 111
e, da, 2154 3a, Q23414; (111)

These five equations are known as Love’s equations. They define the motion (or
static deflection, for all it matters) due to any type of pressure load. Shear
deflection and rotary inertia are not included.

EQUATIONS OF MOTION

Equations of motion for circular cylindrical shell can be obtained from Love's
equations. We have before that for the mentioned structure,

a=x,a, =0; R, =00,Rg=a (112)
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Fundamental form equation,

(ds)? = (dx)? + a*(de)? (113)
And, Lamé parameters,

Aj=14,=a (114)
Substituting eqns. (112) and (114) in Love’s equations and neglecting transverse

shear force, Q,3 and longitudinal force, N;; we can obtain the equations of
motion for circular cylindrical shell, they are,

ON,, 10N, . 0%u,
ox Ta o8 = Phoe (115)
ON,o 10Ngg Qo3 0%y
ax "a 00 ' a T 4o = ph at? (116)
0Q,3 10Qp3 Ngg 9P
ox Ta a8 Ta TI4x=Phop (117)
Where,
_OM,, 10My,
The strain-displacement relations become,
. du,
E%y = ax (120)
. 10uy ujy
SGG_EW-F; (121)
. dug 10u,
ol T (122)
ap
K,y ax" (123)
10B,
koo = 290 (124)
_0Bg 10,
kxo = 5%t a 00 (125)
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And, 8, and 3, become,

Bx = “x (126)
_ Ug 16u3

Bo = o ao0 (127)

NATURAL FREQUENCIES

SIMPLY SUPPORTED CIRCULAR CYLINDRICAL SHELL

For simply supported shell the boundary conditions are,

u3(0,0,t) =0 (128)
uy(0,6,t) =0 (129)
M,.(0,6,t) =0 (130)
N,,(0,6,t) =0 (131)
And,

us(L,0,t) =0 (132)
ug(L,6,t) =0 (133)
M, (L6,t)=0 (134)
N, (L 6,t) =0 (135)

Equations of motion for circular cylindrical shell can be obtained from eqns.
(115) to (117), by setting q; = 0, we get,

ON,, 10N,, *u,
ox a0 Phtae =0 (136)
ON,g 10Ngy Qo3 *uy
ox Ta o9 Ta Ptz =0 (137)
0Q,3 10Qp3 Ngg 0%u;

20Ce3s _Noo o -0 138
ax ‘a90 a P'age (138)

With all terms defined by eqns. (118) to (127).

At a natural frequency every point in the elastic system moves harmonically, we
may assume that,

u,(x,0,t) = U,(x,0)e/“t (139)
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uy(x,0,t) = Ug(x,0)e/t
uz(x,0,t) = Us(x,0)e/t
Substituting these into eqns. (136) to (138),

ON',, 10N'y, 2
ax +E 30 + phw“U, =0

aN’ 10N’ '
x0 10N g9 Qo3

257
dax a 00 a T pha"Up =0

Q'3 4 laQ'as Y

257 —
ax 2 90 + phw°U; =0

(140)

(141)

(142)

(143)

(144)

Circular cylindrical shell is treated as combination of ring and simply supported
beam and thus based on the experience of ring and simply supported beam, the

following solutions are assumed

mnx

U,(x,0) =Acos cosn(0 — ¢)
mnx

Ug(x,0) = Bsin sinn(0 — ¢)
mnx

U;(x,0) = Csin cosn(0 — ¢)

Utilizing these solutions the equations of motion ultimately become,

{phwz ~-K [(?)Z + 12;”(2)2]},4 + (K#Z?)B + (K%?) c=0

(5 5 ) o - (e ) [55C)  Q) }
e a e @ e

UK mm Kn
(e
a L aa

| ED ) ||e

2
2_plmm? L ™ Kl -
+{phw | () + @) - e =0
Or,
Phw2 — k11 ki ki3 A
k21 phw? — ky; k23 Bi=0
k31 k3 phw? — k33| \C
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(146)

(147)

(148)

(149)

(150)

(151)



kyy = K [(?)2 4 12;” (3)2] (152)
1+unmn

kiz = k31 = KTET (153)

ki3 = k31 = %? (154)

= (0 2) () + ()] 155)

== =303 (5 + @) aso

ksz = D [(?)2 + (g)z + % (157)

For a nontrivial solution, the determinant of equation (151) has to be 0.
Expanding the determinant gives,

w® + a0+t ayw?+a; =0 (158)
Where,
1
a = _p_h (k11 + kzz + k33) (159)
—1 2 2 2
“2 = ony? (K11kss + kazkss + kagkay — kzs — kiz — kis) (160)
1 ” 5 )
as = —(ph)3 (k11k23 + k22k13 + k33k12 + 2k12k23k13 - k11k22k33) (162)

In the above equations,
K = Membrane stiffness
D = Bending stiffness

L = Length of the shell

h = Thickness of the shell
a = Radius of the neutral membrane; (% + E)

2

p = Density of material
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m = 1,2, 3, ...; Longitudinal parameter
n=0123, ... ; Circumferential parameter

The solutions of this equation are,

2 2 [, a a
Wimn = ~3 /01~ 3a, coso— 5 (163)
2 2 [, a+2r aq
Wimn = ~3 |01~ 3a; cos 3 "3 (164)
2 2 [, a+4mr a,
W3mn = ~3 [0~ 3a, cos 3 "3 (165)

Where,

27az + 2a3 — 9a,a
a=cos 13 1 172 (166)

2 /(a2 - 3a,)’

Eqgn. (158) is a bicubic equation, therefore for every m, n combination, three
frequencies are obtained. The lowest is associated with the mode where the
transverse component dominates, while the other two are usually higher by an
order of magnitude and are associated with the mode where the displacements
in the tangent plane dominate. For every m, n combination, we therefore have
three different combinations of A, B, and C. The three mode component ratios for
every m, n combination are given by,

A; _ ki3 (Phwlgmn - kzz) — kq2k33

e 2 2 2 (167)
Ci (phwimn - kll)(phwimn - k22) - k12

B; ky3(phw?, —ki1) — ko1 k

i _ 23(P imn 11) 21K13 (168)

C; (phwtgmn - kll)(phwtgmn - k22) - k%z
Where,i =1, 2, 3.
These expressions are useful for forced vibration analysis.

We have used MATLAB to generate programs for calculating natural frequencies
of our simply supported circular cylindrical shell,
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MATLAB PROGRAME FOR DETERMINING NATURAL
FREQUENCY

E=input ('Modulus of elasticity = ");
mu=input ('Poissons ratio = ');
ro=input ('Density = ");

L=input ('Length = ");

OD=input ('Outer Diameter = '");

ID=input ('Inner Diameter
h=(0OD-1ID)/2;
a=ID/2+h/2;
y=input ('Highest value of m: ");
z=input ('Highest value of n: ");
omgasg=zeros(y,z+1);
omga=zeros(y,z+1);
freg=zeros(y,z+1);
format long e
K=(E*h)/(1-mu"2);
D=(E*h”"3)/(12* (1-mu”2));
for m=1l:y

for n=0:z

k1l = K*((m*pi/L)"2+((1-mu)/2)*(n/a)"2);

")

k12 = K*¥((l4mu)/2)* (m*pi/L)*(n/a);

k21 = k12;

k13 = (mu*K/a)* (m*pi/L);

k31 = k13;

k22 = (K+D/a”2)*(((1l-mu)/2)*(m*pi/L)" 2+ (n/a)"2);

k23 = —(K*n/a”2)-(D*n/a”2)*((m*pi/L) "2+ (n/a)"2);

k32 = k23;

k33 = D*((m*pi/L)"2+(n/a)"2) "2+ (K/a"2);

al = —(1/(ro*h))*(k11+k22+k33);

a2 = (1/(ro*h)”2)*(k11*k33+k22*k33+k11*k22-k23"2-
k1272-k13"2);

a3 =

(1/(ro*h)”~3)*(k11*k23"2+k22*k13"2+k33*k12"2+2*k12*k23*k13
-k11*k22*k33);

alpha = acos((27*a3+2*al"3-
9*al*a2)/(2*sqgrt((al”2-3*a2)"3)));

omgasqg(m,n+l) = —(2/3)*sgrt(al”2-
3*a2)*cos (alpha/3)-(al/3);

omga (m,n+1) = sqgrt(omgasqg(m,n+1l));

freg(m,n+l) = sqgrt(omgasqg(m,n+1))/(2*pi);

end
end
format bank
disp('Natural Frequencies : ')
disp(freq)
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RESULTS

Natural Frequencies (in Hertz):

** Along column, circumferential parameter, n varies from 0 to 10 and along
rows, the longitudinal parameter, m varies from 1 to 10 **

Columns 1 through 6

729.16 35.59 1617.30 457243 876594 14175.40
1458.32 136.82 1620.07 4575.06 8768.71 14178.25
2187.48 302.46 1626.11 4579.56 8773.35 14183.02
2916.64 528.33 1637.47 4586.10 8779.89 14189.70
3645.80 809.18 1656.86 459492 878836 14198.31
437496 1139.17 168741 4606.31 8798.83 14208.86
5104.12 1512.26 1732.41 4620.62 8811.36 14221.38
5833.28 192255 179494 4638.24 8826.02 14235.88
6562.44 2364.48 1877.57 4659.61 8842.90 14252.38
7291.60 283296 1982.06 4685.19 8862.10 1427091

Columns 7 through 11

20794.14 28619.67 37650.91 47887.27 59328.42
20797.04 28622.61 37653.87 47890.24 59331.41
20801.89 28627.51 37658.80 47895.20 59336.38
20808.68 28634.37 37665.71 47902.14 59343.35
20817.41 28643.19 37674.59 47911.06 59352.30
20828.10 28653.98 37685.44 4792197 59363.25
20840.74 28666.73 37698.28 4793486 59376.18
20855.35 2868145 37713.09 47949.74 59391.11
2087193 28698.15 37729.88 47966.61 59408.03
20890.49 28716.83 37748.66 4798546 59426.94

WHERE SPECIFICATIONS OF THE SIMPLY SUPPORTED CIRCULAR CYLINDRICAL
SHELL MODEL USED:

Density= 7850 kg/m3

Modulus of elasticity= 210e9 Pa
Poisson’s ratio= 0.3
Length=2.2m

Outer Diameter= 59.5 mm
Inner Diameter= 55.5 mm
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FORCED VIBRATION BY MODAL EXPANSION

In the previous section we have determined natural frequencies of circular
cylindrical shell. For the engineers, the ultimate reason for this preoccupation is
found in the study of the forced response of shells. For instance, knowing the
eigenvalues or natural frequencies makes it possible to obtain the forced
solution in terms of these eigenvalues. This approach is called spectral
representation or modal expansion and dates back to Bernoulli’'s work
(Bernoulli, 1755). Forces will be assumed to be independent of the motion of the
shell. This is an admissible approximation for most engineering shell vibration
cases.

MODAL PARTICIPATION FACTOR

Any disturbance excites the various natural modes of a shell in various amounts.
The amount of participation of each mode in the total dynamic response is
defined by the modal participation factor. This factor may turn out to be 0 for
certain modes and may approach large values for others, depending on the
nature of the excitation.

In a mathematical sense, the natural modes of a shell structure represent
orthogonal vectors that satisfy the boundary conditions of the structure. This
vector space can be used to represent any response of the structure. In cases of
finite-degree-of-freedom systems, the vector space is of finite dimension and the
number of vectors or natural modes is equal to the number of degrees of
freedom. For continuous systems, such as shells, the number of degrees of
freedom is infinite. This means that the general solution will be an infinite series,

ui(ay, ay, t) = Z Nk (f) Uy (ay, az) (169)
k=1

Where, i = 1,2,3. The U, are the natural mode components in the three
principal directions. The modal participation factors 7, are unknown and have
to be determined in the following.

The Love equations are of the form

L; {ug,uy,u3} — A, — phii, = —q; (170)

where A is an equivalent viscous damping factor. The viscous damping term was
introduced through the forcing term, replacing the original q; by q; — A4, . Also,
the damping factor is assumed to be the same in all three principal directions.
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The operators L; are defined, from Love’s equation, as

1 |0(N1142) 9(N3144) 04, 04,
L ) )] = N a2 a.
1{u1 b’ us} A1A2 [ aal + aaz + 12 aaz 22 66(1
a0, (171)
R,y
1 [d(N1243)  9(Nz244) 04, 04,
Ly{uy, up, us} = Npi o2 — Nyg =t
Z{ul uZ u3} A1A2 [ 00{1 + 00{2 + 21 aal 1 aaz
+ AIAZ% (172)
R;
1 [0(Qq342)  9(Q2341) Ni1 Ny ]
Li{uq,uy,usz} = + —A/A (—+—) 173
3{uq, up, uz} A1A2[ e, da, 12( Rk, 1R, (173)

All of the simplifications discussed previously can be applied here. Eqn. (169) is
general and will apply for all geometries and simplifications. Substituting eqn.
(169) in eqn. (170) gives,

[ee]

Z[UkLi{Uuu Uzp, Uz} — A Uy — phip Uy, | = —q; (174)
=1

However, from our eigenvalue analysis, we know that,
Li{U11 Uz Usi} = —phaiUs, (175)

Substituting this in eqn. gives,

[ee]

(phii, + A0y + phwin Uy = q; (176)
k=1

We know that the natural modes U;;, are orthogonal. As in a Fourier analysis,
here advantage of the orthogonality of the sine and cosine functions is taken.
Finally the form obtained is,

. A
Ty + p—hnk + wing = Fy 177)
Where,
1
Fp = f f (q1U1k + q2U3zk + q3U3;) A1Azda da;, (178)
thk az vaq
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Ny = f f (U3, + U%, + U3) A1Aydaqda, (179)

az Jvag

Thus, if we take k terms of the modal expansion series as approximation to an
infinite number, we have to solve the equation defining the modal participation
factors k times. There is no principal difficulty connected with this. The forcing
functions q;, q,, and g3 have to be given and the mode components U;, U, and
Usy, and the natural frequencies w; have to be known, either as direct functional
or numerical theoretical solutions of the eigenvalue problem or as experimental
data in functional or numerical form. The mass density per unit shell surface ph
is obviously also known and the damping factor A has to be given or has to be
estimated. For shells of nonuniform thickness, h has to be moved inside the
integrals.

SOLUTION OF MODAL PARTICIPATION FACTOR

The modal participation factor equation is a simple oscillator equation. Thus we
may interpret the forced vibration of shells by considering the shell as composed
of simple oscillators, where each oscillator consists of the shell restricted to
vibrate in one of its natural modes. All these oscillators respond simultaneously,
and the total shell vibration is simply the result of addition (superposition) of all
the individual vibrations.

The simple oscillator equation is solved by the Laplace transformation technique.
The solutions for subcritical, critical, and supercritical damping are derived, even
though only the first case is of real importance in shell vibration applications.

The modal participation factor equation can be written as

il + 28 Wil + i = Fi(t) (180)
Where,
Fu() faz fal(fhum + q2Uz + q3U3)A1Azdada; (181)
k =
phN,
= A 182
Sk = 2phw (182)

Where, &, is called the modal damping coefficient . It is analogous to the damping
coefficient in the simple oscillator problem.

Taking the Laplace transformation of Eq. (180), it can be solved for the modal
participation factor in the Laplace domain:

Fi(s) + 0 (0)(s + 2§ wy) + 1 (0)
(5 + &wp)? + wi(1 - &7)

Ni(s) = (183)
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The inverse transformation depends on whether the term 1 -&2 is positive, zero,
or negative. The positive case, when &, < 1, is the most common since it is very
difficult to dampen shells more than that. It is called the “subcritical case”. The
critical case occurs when &, = 1 and has no practical significance other than that
it defines the damping that causes an initial modal displacement to decay in the
fastest possible time without an oscillation. Supercritical damping &, > 1 occurs
only if a shell has such a high damping that it creeps back from an initial modal
displacement without overshooting the equilibrium position.

For the subcritical case (§{; < 1), we define a real and positive number y;:

Vi = 0 /1 - & (184)

The inverse Laplace transformation of Eq. (183) then gives

Mi(t) = &5 {1, (0) cos it + (O + (0] i

1 1
+ y—f Fr()e k=D giny, (t — 1)dt (185)
kJo

The solution is given in the form of the convolution integral since the forcing
function F (t)is at this point arbitrary. Once it is known, the convolution integral
can be evaluated. It is also possible to take the inverse Laplace transformation of
Eq. (183) with a known forcing function directly.

Vibrations caused by initial conditions will be oscillatory but will decay
exponentially with time. The convolution integral, when evaluated for a specific
forcing, will divide into a transient part and possibly a steady-state part if the
forcing is periodic. The transient part will decay exponentially with time.

A special case of considerable technical interest is when damping is 0. The
solution reduces to

sin wyt

t
N, (t) = 4 (0) cos wyt + 1, (0) + if Fi (1) sinwy(t — t)dt (186)
Wi Jo

Wy

Since most structures are very lightly damped, Eq. (186) in often used to get an
approximate response since it is much simpler to use.

Next, let us investigate the supercritical case (¢, > 1). In this case, the value of
1 — &2 is negative. Defining a real and positive number ¢,

£ = Wy /f,i -1 (187)

We obtain, taking the inverse Laplace transformation,
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inh
Mi(t) = &5 {3, (0) cosh et + [mi(O) g + e (0)] 2 |

1 1
+ S—f F (v)e k(=D gsinh g, (t — T)dT (188)
kJo
The vibrations caused by initial conditions are now non oscillatory, however, if
the forcing is periodic, an oscillatory steady-state solution will still result.

As a special case, we obtain the critical damping solution {, = 1 by reduction:

t
() = e” k. (0) + [ (0w + 11 ()]t } + fo Fi() e =0 (t — 1)dt (189)

STEADY-STATE HARMONIC RESPONSE

A technically important case occurs when the load on the shell varies
harmonically with time and when the onset of vibrations (the transient part) is
of no interest. Using a complex notation to get the response to both sine and
cosine loading, we may write the load as

qi(ay, az,t) = q;" (ay, az)e 7t (190)

Using eqn. (180), it becomes,

ik + 28 wpiy + iy = Fel®t (191)
Where,
* 1 * * *
Fp= thkf f (q1U1k + q2Uzk + q3U3)A1 Az dayda, (192)
an Jaq

At steady state, the response will be harmonic also but lagging behind by a phase
angle ¢y,

N = Akej(wt_¢k) (193)
Substituting this gives,

F”

Ae % = 194
k (w,zc - wz) +2j¢, wpw (194)
The magnitude of response is, therefore,
Fy
k== ; (195)
i1 — (/@ )?]? + 485 (w/ wy)?
The phase lag is,
_1 2§(w/wy)
_ 1
Pi = tan™ " -— (@/0)? (196)
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As expected, a shell will behave similarly to a collection of simple oscillators.
Whenever the excitation frequency coincides with one of the natural frequencies,
a peak in the response curve will occur. The harmonic response solution is the
same for subcritical and supercritical damping, except that for equal forcing, the
response amplitudes at resonance become less and less pronounced as damping
is increased until they are indistinguishable from the off-resonance response.

STEADY-STATE CIRCULAR  CYLINDRICAL  SHELL
RESPONSE TO HARMONIC POINT LOAD WITH ALL MODE
COMPONENTS CONSIDERED

For simply supported boundary conditions, there are two sets of natural modes

to consider. For¢ = 0,n =0,1,2,3, ... ... m=1,2,3, ... ,we have,
Amni mmnx

Uxmnicn) = cos( ) cosné (197)
Cmni L

Boni . mmx
Uemni(1)=—C sin
mni

sinn@ (198)

mmnx

Usmnin) = sin cosnb (199)

and for ¢ = m/(2n) the set of natural modes, which is orthogonal to the modes of
eqns. (197)-(199), is

Anmni (mnx

Usmni2) = cos ) sinnf (200)
Cmni L
Bni mrnx
Ugmniz) = — ™ sin cos n@ (201)
Cmni
. mmx
Usmnicz) = sin sinnf (202)

Apni/ Cmni and Byypi/ Cmni are obtained from eqns. (167) and (168).

Note thati = 1, 2, 3, corresponding to each of the natural frequencies for a given
(m,n) combination. In most engineering applications, the natural frequencies
associated with i = 2 and 3 are so high that the contribution of these modes can
be neglected. But we consider them here.

The force shown in fig. 7 results in following loading description,

q:(x,6,t) =0 (203)

qo(x,0,t) =0 (204)
o1

q3(x,0,t) = F3e1“’ta6(9 —0")6(x — x¥) (205)
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Where, imaginary part of e/*¢ represents sin wt.

Fy sin oot

Fig. 7 Circular cylindrical shell acted on by a point force

For each set of natural modes solution i.e. displacement of a point on the shell
surface in three principle coordinate directions is determined and then they are

added together for the complete solution.

The final solutions for displacement of a point on the shell surface in three

principle coordinate directions are,

mrx ) cos(mztx) cosn(0 — 0") sin(wt — Pni)

3, & & Fy(Am) gin(
=) e

Up
3 @© @ F, (gm"i) sin(7) sin( ) sinn (8 — 6°) sin(@t — Gy
355
i=1m=1n=0 thmnif(w)
Uz
23: i i F3 sin(mix ) sin(mzrx) cosn(0 — 0*) sin(wt — P,,;)
=1 m=1n=0 thmnif(w)
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c Coni
Nmni mnit ) mnit
Amni ,
[( ) + 1]Lam ;ifn=0
Cmm
And,

o \21? o \?2
f(w) = w,zmli\/[l - (wmm_) ] + 480 0 (wmm_)

@ mni is determined from the eqn. (196).

(209)

(210)

To determine the response of our simply supported circular cylindrical shell
being subjected to a sinusoidal actuation based on the theories described in the
preceding sections, we have written programs on MATLAB which given in the

following section.

MATLAB PROGRAMS

To obtain motion of any specific point on the shell surface, while the shell is
being excited by a sinusoidal force of constant amplitude and frequency, in terms
of displacement (in a3 direction) against time the following program has been

used

disp ('INPUT ALL DATAS IN SI UNIT'")

E=input ('Modulus of elasticity = ");
mu=input ('Poissons ratio = ');
ro=input ('Density = ");

L=input ('Length = ");

OD=input ('Outer Diameter = '");

ID=input ('Inner Diameter
h=(0OD-ID)/2;
a=ID/2+h/2;
y=input ('Highest value of m: ');
z=input ('Highest value of n: ");

")

P3=input ('Enter maximum value of force
f=input ('Excitation frequency (in Hertz)
Imda=input ('Equivalent viscous damping factor

")
u3=0;

disp('Enter location of harmonic load')

loadx=input('x = ');

loadth=input ('Theta (in radians) =
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disp('Enter location of the point of investigation')
x=input ('X = '");
th=input ('Theta (in radians) = ");
omgaextn=f*2*pi; t=1:0.01:10;
omgasqg=zeros(y,z+1,3);
omga=zeros(y,z+1,3);
freg=zeros(y,z+1,3);
AbyC=zeros(y,z+1,3);
BbyC=zeros(y, z+1,3)
N=zeros(y,z+1,3);
format long e
K=(E*h)/(1-mu”2);
D=(E*h"3)/(12* (1-mu"2));
for i=1:3
for m=1l:y

for n=0:z

k1l = K*¥((m*pi/L)"2+((1-mu)/2)*(n/a)"2);

k12 = K*¥((l4mu)/2)* (m*pi/L)*(n/a);

14

k21 = k12;

k13 = (mu*K/a)* (m*pi/L);

k31 = k13;

k22 = (K+D/a"2)*(((1l-mu)/2)* (m*pi/L)" 2+ (n/a)"2);

k23 = —(K*n/a"2)-(D*n/a”2)*((m*pi/L)" 2+ (n/a)"2);

k32 = k23;

k33 = D*((m*pi/L)"2+(n/a)”"2) "2+ (K/a"2);

al = —(1/(ro*h))*(k1l1l+k22+k33);

a2 = (1/(ro*h)”2)*(k11*k33+k22*k33+k11*k22-k23"2-
k1272-k1372) ;

a3 =

(1/(ro*h)”~3)*(k11*k23"2+k22*k13"2+k33*k12"2+2*k12*k23*k13
-k11*k22*k33);
alpha = acos((27*a3+2*al"3-
9%*al*a2)/(2*sqrt((al”2-3*a2)"3)));
if i==
omgasqg(m,n+1,i) = —(2/3)*sqgrt(al”2-
3*a2)*cos (alpha/3)-(al/3);
elseif i==2
omgasq(m,n+1,1i) = —(2/3)*sqgrt(al”2-
3*a2)*cos ((alpha+2*pi)/3)-(al/3);
else
omgasq(m,n+1,1i) = —(2/3)*sqgrt(al”2-
3*a2)*cos((alpha+4*pi)/3)-(al/3);
end

m,n+1l,1) = sgrt(omgasqg(m,n+1,1i));

m,n+1,1) = sqgrt(omgasqg(m,n+l,1i))/(2*pi);
AbyC(m,n+1,1i) = —(k1l3*(ro*h* (omga(m,n+1,1i))"2-

k22)-k12*k23)/((ro*h* (omga (m,n+1,1))"2-

k1l)*(ro*h* (omga(m,n+1,1))"2-k22)-k12"2);

omga
freqg

~—~ o~ o~ —~
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BbyC(m,n+1,i) = —(k23* (ro*h* (omga(m,n+1,1i))"2-
k11)-k21*k13)/((ro*h* (omga(m,n+1,1))"2-
k11l)*(ro*h* (omga(m,n+1,1))"2-k22)-k12"2);
if ((ro*h* (omga(m,n+1,1i))"2-
k1l1l)*(ro*h* (omga(m,n+1,1i))"2-k22)-k12"2)==0
nom=0; denom=1;
else
zeta=1lmda/ (2*ro*h*omga (m,n+1, 1)) ;
phi=atan (2*zeta* (omgaextn/omga (m,n+1,1i))/ (1-
(omgaextn/omga (m,n+1,1))"2));
nom=P3*sin (m*pi*loadx/L)*sin(m*pi*x/L)*cos(n* (th-
loadth) ) *sin (omgaextn*t-phi) ;
if n==
N(m,n+1,i)=((AbyC(m,n+1,1))"2+1)*L*a*pi;
else

N(m,n+1,1i)=((AbyC(m,n+1,1i)) "2+ (BbyC(m,n+1,1))"2+1)*L*a*pi
/2;

end

denom =ro*h*N(m,n+1,1i)* (omga(m,n+1,1i))"2*sqrt((1-
(omgaextn/omga (m,n+1,1i))"2)"2+4*zeta”2* (omgaextn/omga (m, n
+1,1))72);

end

u3=u3+nom/denom;

end

end

end
plot (t,u3),grid

RESULTS

Motion of the point on the shell where force applied:

Displacement (rm)

79



The following input parameters were defined:
Modulus of elasticity = 210e9 Pa

Poisson’s ratio = 0.3

Density = 7850 kg/m3

Length=2.2m

Outer Diameter =.0595 m

Inner Diameter =.0555 m

Highest value of m: 100
Highest value of n: 100

Enter maximum value of force : 10 N
Excitation frequency (in Hertz) : 36
Equivalent viscous damping factor (in Ns/m) : 175
Location of harmonic load,

x=11m

Theta (in radians) = pi

Location of the point of investigation,
X=11m

Theta (in radians) = pi

Then, for the amplitudes of displacement of points on a line along the length of
the circular cylindrical shell at any given angle (i.e. a, coordinate), following
program has been used,

disp ('INPUT ALL VALUES IN SI UNIT'")

E=input ('Modulus of elasticity = "');
mu=input ('Poissons ratio = ');

ro=input ('Density = ");

L=input ('Length (in meters)= ");

OD=input ('Outer Diameter (in meters)= ');
ID=input ('Inner Diameter (in meters)= ');

h=(0OD-ID)/2;
a=ID/2+h/2;
y=input ('Highest value of m: ");
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z=input ('Highest value of n: ");
P3=input ('Enter maximum value of force : '");
f=input ('Excitation frequency (in Hertz) : '");
Imda=input ('Equivalent viscous damping factor (in Ns/m)
")
u3=zeros(1,L/0.01+1);
disp('Enter location of harmonic load')
loadx=input ('x (in meters)= '");
loadth=input ('Theta (in radians) = ');
disp('Enter the angle at which displacement along the
shell length is required')
x=0:0.01:L;
th=input ('Theta (in radians) = ");
omgaextn=f*2*pi;
omgasqg=zeros(y,z+1,3);
omga=zeros(y,z+1,3);
freq=zeros(y,z+1,3);
AbyC=zeros(y,z+1,3);
BbyC=zeros(y, z+1, 3)
N=zeros(y,z+1,3);
format long e
K=(E*h)/(1-mu"2);
D=(E*h"3)/(12* (1-mu”2));
for i=1:3
for m=1:y

for n=0:z

k1l = K*((m*pi/L) "2+ ((1l-mu)/2)*(n/a)"2);

k12 = K*((l4mu)/2)* (m*pi/L)*(n/a);

’

k21 = k12;

k13 = (mu*K/a)* (m*pi/L);

k31 = k13;

k22 = (K+D/a”2)*(((1l-mu)/2)*(m*pi/L)" 2+ (n/a)"2);

k23 = —(K*n/a"2)-(D*n/a”2)* ((m*pi/L) "2+ (n/a)"2);

k32 = k23;

k33 = D*((m*pi/L)"2+(n/a)"2) "2+ (K/a"2);

al = —(1/(ro*h))*(k11+k22+k33);

a2 = (1/(ro*h)"2)*(k11*k33+k22*k33+k11*k22-k23"2—
k1272-k1372);

a3 =

(1/(ro*h)"3)*(k11*k23724k22*k13"2+k33*k127242*k12*k23*k13
-k11*k22*k33);

alpha = acos((27*a3+2*al"3-
9*al*a2)/(2*sqrt((al”2-3*a2)"3)));

if i==
omgasqg(m,n+1,i) = —(2/3)*sqgrt(al”2-
3*a2)*cos (alpha/3)-(al/3);
elseif i==
omgasqg(m,n+1l,i) = —-(2/3)*sqgrt(al”2-
3*a2)*cos((alpha+2*pi)/3)-(al/3);
else
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omgasqg(m,n+1,i) = —-(2/3)*sqgrt(al”2-
3*a2)*cos((alpha+4*pi)/3)-(al/3);
end

omga (m,n+1,1) sqrt (omgasqg(m,n+1,1));
freg(m,n+1,1) sgrt (omgasg(m,n+1,1))/(2*pi);
AbyC(m,n+1,1) -(k13*(ro*h* (omga(m,n+1,1))"2-
k22)-k12*k23)/((ro*h* (omga (m,n+1,1))"2-
k1ll) *(ro*h* (omga (m,n+1,1i))"2-k22)-k12"2);
BbyC(m,n+1,1i) = —-(k23* (ro*h* (omga (m,n+1,1i))"2-
k11)-k21*k13)/((ro*h* (omga(m,n+1,1))"2-
k11l)* (ro*h* (omga (m,n+1l,1i)) " 2-k22)-k12"2);
if ((ro*h* (omga(m,n+1,1i))"2-
k1ll)*(ro*h* (omga(m,n+1,1))"2-k22)-k12"2)==0
nom=0; denom=1;
else
zeta=1lmda/ (2*ro*h*omga (m, n+1, 1)) ;
phi=atan (2*zeta* (omgaextn/omga (m,n+1,1i))/(1-
(omgaextn/omga (m,n+1,1))"2));
nom=P3*sin (m*pi*loadx/L)*sin(m*pi*x/L)*cos(n* (th—

loadth)) ;
if n==
N(m,n+1,i)=((AbyC(m,n+1,1i))"2+1)*L*a*pi;
else
N(m,n+1,i)=((AbyC(m,n+1,1i)) "2+ (BbyC(m,n+1,1))"2+1)*L*a*pi
/2;
end

denom =ro*h*N(m,n+1,1i)*(omga(m,n+1,1))"2*sqgrt((1-
(omgaextn/omga (m,n+1,1i))"2)"2+4*zeta”2* (omgaextn/omga (m, n
+1,1))72);
end
u3=u3+nom./denom;
end
end
end
plot (x,u3),grid
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RESULTS

Amplitude, {m)
= =
o oo

=
.

02

. i i

0 0s 1

The following input parameters were defined:
Modulus of elasticity = 210e9 Pa

Poisson’s ratio = 0.3

Density = 7850 kg/m3

Length=2.2m

Outer Diameter =.0595 m

Inner Diameter =.0555 m

Highest value of m: 100

Highest value of n: 100

Enter maximum value of force: 10 N
Excitation frequency (in Hertz): 36
Equivalent viscous damping factor (in Ns/m): 175
Location of harmonic load,

x=11m

Theta (in radians) = pi

83

15 2 25
Distance of any point on the shell from one end along the length, {m)



Enter the angle at which displacement along the shell length is required,

Theta (in radians) = pi

And, for resonance curve the following program is used,

disp('INPUT ALL DATAS IN SI UNIT'")

E=input ('Modulus of elasticity = ");
mu=input ('Poissons ratio = ');
ro=input ('Density = ");

L=input ('Length = ");

OD=input ('Outer Diameter = ");

ID=input ('Inner Diameter
h=(0OD-ID)/2;
a=ID/2+h/2;

")

y=input ('Highest value of m: ");
z=input ('Highest value of n: ");
P3=input ('Enter maximum value of force : '");

disp('Enter frequency range (must be integer values, in
Hertz) ')

fl=input ('Start (1Hz or higher)= "); f2=input('End= '");
Imda=input ('Equivalent viscous damping factor (in Ns/m)
")

u3s=zeros (1l,f2-f1+1);

disp('Enter location of harmonic load')

loadx=input ('x = ");

loadth=input ('Theta (in radians) = ');

disp('Enter location of the point of investigation')
x=input ('X = ");

th=input ('Theta (in radians) = ");

format long e
K=(E*h)/ (1-mu”2);
D=(E*h"3)/(12* (1-mu"2));
for f=f1:£2
u3=0; omgaextn=f*2*pi;
omgasqg=zeros(y,z+1,3);
omga=zeros(y,z+1,3);
freq=zeros(y,z+1,3);
AbyC=zeros(y,z+1,3);
BbyC=zeros (y, z+1,3)
N=zeros(y,z+1,3);

14

for i=1:3
for m=1:y
for n=0:z

k1l = K*((m*pi/L) "2+ ((1l-mu)/2)*(n/a)"2);
k12 = K*((l+mu)/2)* (m*pi/L)*(n/a);
k21 = k12;
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k13 = (mu*K/a)* (m*pi/L);

k31 = k13;

k22 = (K+D/a”2)*(((1l-mu)/2)* (m*pi/L) "2+ (n/a)"2);
k23 = —(K*n/a"2)-(D*n/a”2)* ((m*pi/L) "2+ (n/a)"2);
k32 = k23;

k33 = D* ((m*pi/L) "2+ (n/a)"2)"2+(K/a"2);

al = —(1/(ro*h))*(k11+k22+k33);

a2 = (1/(ro*h)"2)*(k11*k33+k22*k33+k11*k22-k23"2—
k1272-k1372);

a3 =

(1/(ro*h)”~3)*(k11*k2372+k22*k13"2+k33*k12"2+2*k12*k23*k13
-k11*k22*k33);
alpha = acos((27*a3+2*al"3-
9*al*a2)/(2*sqgrt((al”2-3*a2)"3)));
if i==
omgasqg(m,n+1,1i) = —(2/3)*sqgrt(al”2-
3*a2)*cos (alpha/3)-(al/3);
elseif i==2
omgasq(m,n+1,1i) = —(2/3)*sqgrt(al”2-
3*a2)*cos((alpha+2*pi)/3)-(al/3);
else
omgasqg(m,n+1,i) = —-(2/3)*sqgrt(al”2-
3*a2)*cos ((alpha+4*pi)/3)-(al/3);
end

omga (m,n+1,1) = sqgrt(omgasg(m,n+1,1i));
freq(m,n+1,1i) = sqgrt(omgasg(m,n+l,1))/(2*pi);
AbyC(m,n+1,1) = —-(k1l3*(ro*h*(omga(m,n+1,1))"2-
k22)-k12*k23)/((ro*h* (omga (m,n+1,1))"2-
k1ll) *(ro*h* (omga (m,n+1,1i))"2-k22)-k12"2);
BbyC(m,n+1,i) = —(k23*(ro*h* (omga(m,n+1,1i))"2-
k11)-k21*k13)/((ro*h* (omga(m,n+1,1))"2-
k11l)* (ro*h* (omga (m,n+1l,1i))"2-k22)-k12"2);
if ((ro*h*(omga(m,n+1,1i))"2-
k1l)*(ro*h* (omga(m,n+1,1))"2-k22)-k12"2)==0
nom=0; denom=1;
else
zeta=1lmda/ (2*ro*h*omga (m,n+1, 1)) ;
phi=atan (2*zeta* (omgaextn/omga (m,n+1,1i))/ (1-
(omgaextn/omga (m,n+1,1))"2));
nom=P3*sin(m*pi*loadx/L)*sin(m*pi*x/L)*cos(n* (th—-
loadth)) ;
if n==
N(m,n+1,1)=((AbyC(m,n+1,1i))"2+1) *L*a*pi;
else

N(m,n+1,1)=((AbyC(m,n+1,1)) "2+ (BbyC(m,n+1,1))"2+1)*L*a*pi

/2;
end
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denom =ro*h*N(m,n+1,1i)*(omga(m,n+1,1))"2*sqgrt((1-
(omgaextn/omga (m,n+1,1i))"2)"2+4*zeta”2* (omgaextn/omga (m, n

+1,1))72);
end
u3=u3+nom/denom;
end

end

end

u3s (1, £)=u3;

end

f=f1:£f2;

plot (f,u3s),grid

RESULTS

Resonance curve for the point on the circular cylindrical shell where force is

applied,

S o O 1 O S

..............................

Amplitude {m3}

..............................

0 10 0 0 1 £ B0 70
Frequency (Hz

The following input parameters were defined:
Modulus of elasticity = 210e9 Pa

Poisson’s ratio = 0.3

Density = 7850 kg/m3

Length=22m
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Outer Diameter =.0595 m

Inner Diameter =.0555 m

Highest value of m: 100

Highest value of n: 100

Maximum value of force: 10 N

Frequency range (must be integer values, in Hertz)
Start (1Hz or higher) = 1 Hz

End= 100 Hz

Equivalent viscous damping factor (in Ns/m) : 175
Location of harmonic load,

x=11m

Theta (in radians) = pi

Location of the point of investigation,

X=11m

Theta (in radians) = pi
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CHAPTER 5

EXPERIMENTAL WORK

EQUIPMENTS:

Cylindrical pipe

Supports (for providing simply support)
Proximity sensor

Aluminum foils

Hammer

Oscilloscope

Cements, rods, sands etc for making concrete base

PROBLEM SPECIFICATION:

MATERIAL FOR SHELL:

NoulhE WD =

MILD STEEL

PROPERTIES OF MILD STEEL:
MODULUS OF RIGIDITY: 210 GPa
DENSITY: 7850 kg/m3

POISSON RATIO: 0.3

MEASUREMENTS OF THE PIPE:
LENGTH: 2.59 m (8.5 feet)

RADIUS: 59.5 mm

THICKNESS: 2 mm

DISTANCE BETWEEN 2 SUPPORTS: 2.2 m
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DESCRIPTION OF THE PROXIMITY SENSOR

Approvals and Safety Considerations
The ECL202/ECL202e is compliant with the following CE directives:

Safety: 61010-1:2001
EMC: 61326-1, 61326-2-3

To maintain compliance with these standards, the following operating conditions
must be maintained:

e AllI/0 connecting cables must be less than three meters in length

e AC power cables must be rated at a minimum of 250 Vand 5 A

e AC power must be connected to a grounded mains outlet rated less than
20A

e Power supply must have CE certification and provide safety isolation from
the mains according to [EC60950 or 61010.

e Sensors must not be attached to parts operating at hazardous voltages in
excess of 30 VRMS or 60 VDC

e All external connections must be SELV (Safety Extra Low Voltage).

e Use of the equipment in any other manner may impair the safety and EMI
protections of the equipment.

DESCRIPTION

The Lion Precision ECL202 Eddy-Current Displacement Sensor provides high-
resolution, noncontact measurement of position changes of a conductive target.
The system consists of driver electronics and a probe calibrated for a specific
material and range. The calibration information is detailed on a calibration
certificate which is shipped with the system. The ECL202 provides a linear
analog voltage proportional to changes in the target position and a digital
switched (setpoint) output with a user programmed switching setpoint.

QUICK START INSTRUCTIONS

1. Connect the probe to the ECL202. The ECL202 is calibrated to a specific probe
identified by serial number. The probe serial number must match the “USE
PROBE S/N” label on the front of the ECL202.

2. Connect the output to a monitoring device.
3. Connect then apply power.

4. Adjust the probe position so the Range Indicator shows green
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FRONT PANEL CONTROLS AND INDICATORS

LED Range Indicator

The Range Indicator monitors and displays the probe position within its
calibrated range. The graphic below shows the indicator condition at various
points within the calibrated range.

CALIBRATED RAMNGE

ECL202 B e el

FAR

HEAR

O
TN

Figure: LED RANGE INDICATOR

The LED Range Indicator is independent of the output voltage and not affected
by the Offset button. Shifting the output voltage by using the Offset button may
allow an apparently valid output voltage to exist while the probe is out of range.
When the Near or Far LED is red, the probe is out of range and the output voltage
is not a reliable indication of the target position.

Offset Button

Pushing the Offset button shifts the DC level of the output voltage to the center of
the voltage range (i.e. 5 V for a 0-10 V output). The button will only function
when the probe is in the center 20% of its calibrated range (center green LED). If
the center green LED on the Range Indicator is not on, the Offset button will not
function. This function establishes a repeatable master point for reference
measurements.

1. Place good part in the measurement area.

2. Position probe to center 20% of range (center indicator LED).

3. Press Offset button.

4. All subsequent measurements indicate deviation from center of range (5 V).
Resetting Offset

Hold the Offset button for four seconds to remove any output DC shift.
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Set point Button

The ECL202 provides an adjustable set point at which a switched output
activates. The output switch closes when the output voltage is more positive
(larger gap) than the user-adjusted set point. Pressing the Set point button will
set the threshold voltage to the current output voltage. The set point includes a
0.085V hysteresis, requiring that the sensor output drop 0.085V below the set
point voltage before the switched output opens.

Analog Output Signal

The output signal is an analog voltage of 0-10 VDC. The output voltage is
proportional to the probe-target gap. As the probe-target gap increases, the
voltage becomes more positive. See the included calibration certificate for
specific information.

Interpreting the Output Voltage

Output voltage change for a given change in the probe-target gap is called
sensitivity. The sensitivity of the sensor is listed on the calibration certificate.

Change in gap calculation:

Gap Change = Voltage Change / Sensitivity

For example: With a sensitivity of 1V/2 um and a voltage change of
+3V, the probe-target gap has increased by 6 pm.

Remote Offset and Setpoint

The front panel Offset and Set point buttons can be activated remotely. Each
remote input connects to an optoisolator. The functions are activated by
applying 15-24 V to the remote control input terminals.

Note: Because the remote operation mimics front panel operation, activating the
Offset function for more than four seconds will restore factory default value for
Offset.

Setpoint Switch Output

When the output voltage is more positive than the user adjusted setpoint voltage,
the output switch contacts will close. These contacts have a maximum resistance
of 2.5 and can conduct up to 250 mA. The maximum voltage that can be
switched is 30VAC/60VDC. The output is a solid state switch closure and can
conduct AC or DC.
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MAXIMIZING PERFORMANCE

Extension Cables

Sensors which are calibrated with a probe extension cable must be operated
with the extension cable to meet specifications. Operating without the extension
cable will result in inaccurate measurements.

Probe Mounting

If multiple probes are mounted together, they must be separated by at least
three probe diameters to prevent interference between the channels. The area
within 3 probe diameters to the sides and 1.5 diameters behind should be kept
clear of any metallic objects other than the object to be measured. Otherwise,
custom calibration will be required.

No mataliic
1.5% I'nmll‘l'l.il‘m Insir g

-i - i;?il Brid
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e 1.15x :st : =

v

e | i

Ungrounded Targets

Ungrounded targets have the potential to inject noise into the sensor. If the
output is unusually noisy, be sure the target is grounded. On moving/rotating
targets this can be accomplished with a small metal brush or thin piece of metal
which is connected to ground.
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CONNECTING TO THE ECL202

N

Wy

Top Hear\

— Remote Offset =
= Remote Offset +
=~ Mo Connection
— No Connection

Remote Threshold -+
Remote Threshold +

Switch
Switch j

Eddy-Current Displacement Sensor LION

All connections SELV |Safety Extra Low Voltage] BRECISION

Output Signal

Output Signal Ground
Power Ground
15-24V=== 170mA Input

= Bandwidth Select Jumpes

: :: Ea:lz {None=15kHz)
— 10kHz
>~
h@{s\
Bottom Front Bottom Rear /
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SPECIFICATIONS:

Parameter Specification Notes
Power Requirement 15-24 VDC,2.5W
Resolution 0.006 to 0.008%F.S. See
@15kHz Nonferrous | (ECL202) calibration
(Typical)*.2 0.3 um or higher (ECL202¢) | Sheet for
Ferrous | 0,007 to 0.1%F.s. (ECL202) | Specifics
0.3 pm or higher (ECL202¢)
Linearity +0.2%F.S.
Error Band1 +0.4%F.S.
Analog Outputl 0-10VDC,0 ,15mA
max
Analog Output Update | 15 pS
Rate
Setpoint Switch Output | Solid state switch
closure:
On state: 2.5 ,250 mA
max
Off state: 30 VAC/60
VDC
max
Remote Setpoint and 15-24 VDC to activate, Optoisolator
Offset 3-7mA inputs
Inputs
Driver Operating 4°C-50°C, IP40
Environment
Probe Standard | -25°C to +125°C, IP67
Probes
Operating
Environment| High -25°C to +200°C, IP63
temp
Temp Probes

Actual values depend on probe and range and are listed on the calibration
certificate shipped with the product. Contact Lion Precision for replacement
certificates.

In High EMI environments (10 V/m), output noise levels may rise to 30 mV
causing resolution to be reduced to 0.3%.
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EXPERIMENTAL RIG

1. Two metal plates were taken.

2.In each plate a hole (Radius: 59.5 mm) was made to accommodate the shell
into it.

3. The shell was entered into the holes of the plates by press fit. The joints at the
both ends of the shell with the plates were made in such a way that there was no
gap between the shell and the holes of the plates.

4. A concrete base was made in order to make the set up more stable.

Figure: Simply supported cylindrical shell
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PROCEDURE OF THE EXPERIMENT

The proximity sensor was positioned approximately in the range of 4.0 mm from
the outer surface of the shell. The output of the sensor was connected to the

oscilloscope.

A piece of Aluminum foil was stick with the outer surface of the shell by glue.
Point to be added that this proximity sensor works on the metal surface too.

ALUMINUM
FOIL PAPER

PROXIMITY
SENSOR

Figure: sensor and shell

The distance between the shell and sensor was determined by the green
indicator of the probe.

The shell was hit by the hammer.

The frequency was measured from the oscilloscope for the 15t mode.
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oscilloscope

cylindrical

_ proximity =
_sensor

Figure: Experimental set-up.

EXPERIMENTAL RESULT:

NATURAL FREQUENCY FOR THE FIRST MODE= 35 Hz
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CHAPTER 6

COMPARISON AND CONCLUSION

The comparison of the first natural frequency obtained by the three types of
analyses are shown in the Table below

Type of Analysis Frequency (Hz) Difference with
respect analytical
analysis (%)

Numerical 34.07 4.27
Analytical 35.59 0.00
Experimental 35.00 1.66

From the above comparison, it can be seen that there is no significant difference
between the analytical and experimental results, but there is a slight difference
(4.27 %) in between the Numerical and Analytical results. To find out the reason
of this difference, we have investigated the natural frequencies of the circular
cylindrical shell of varying diameter, keeping the length and thickness constant
and the results are shown below.

Outer Diameter (mm) First Natural Frequency (Hz)
Numerical Analytical | Difference with
respect
analytical

analysis (%)

59.5 34.07 35.59 4.27

119 68.83 68.41 0.61

200 114.40 114.41 0.00009

300 82.14 or 82.26 82.25 0.0013 or 0.00012

400 80.71 or 80.75 80.75 0.0005 or 0.00

Analyzing the above results we can infer that the numerical and analytical results
get closer as the radius of curvature of the shell increase. The reason may be for
this is that the element we have used for 2D meshing namely “Plane 42” is very
stiff for bending. Again in experimental analysis certainly little air damping was
present which we have not considered during Numerical and Analytical analysis.

In the forced vibration analysis, we could not compare the Numerical and
Analytical data because the damping effects were not properly taken into
account which is beyond the scope of the current study. What we did was the
consideration of air damping for analytical purpose and as there was no external
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damping specified during numerical analysis therefore only the structural
damping came into account by default.

FUTURE WORKS

In the present study we could not experimentally analyze forced vibration, so we
are going to do that and also higher natural frequencies can be obtained
experimentally by the process. We will also work on determination of structural
damping theoretically so that results of analytical and numerical analysis for
forced vibration can be compared. Then we are going to use dampers in all of the
analyses processes to damp the natural frequency and reduce the response of the
structure at these critical frequencies and examine the structure for different end
conditions. Moreover we are going to analyze fluid induced vibration for both
flow through and over the shell and try to introduce control mechanisms.
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