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ABSTRACT 

The linear response of a cylindrical shell (thin cylinder) subjected to modal and 

harmonic excitations are investigated. Natural frequencies and forced vibration 

response are investigated for the simply supported-simply supported boundary 

conditions. The equations of motion of the structure for the theoretical analysis 

are obtained from Love’s equation and for computing results, programs are 

written in MATLAB. Finite element method is used for numerical analysis (using 

ANSYS MECHANICAL APDL). The natural frequencies obtained by numerical, 

theoretical and experimental analyses were compared and showed good 

agreement among the results. 
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CHAPTER 1 

INTRODUCTION 

 

Thin walled cylindrical shells are very often in the field of engineering 

applications. Shell structures are common especially in spacecraft, aircraft, 

shipbuilding and automotive industries. They are also used as oil and gas 

carrying pipelines. Present day sees a great increase in the applications of 

cylindrical shells in the form of structural components for pressure vessels, 

process equipments, missiles, rockets and civil engineering constructions. Most 

of the failures occurring in these structures are due to dynamic loading. For 

instance, the infamous tragic failure of NASA space shuttle CHALLENGER on 20th 

January, 1986 was mainly due to structural failure. That’s why vibration analysis 

of shell structures has been of great importance for last few decades. 

The natural frequencies and mode shapes are important sources of information 

for understanding and controlling the vibration of these structures. 

Such cylindrical structures are often subjected to dynamic loading. Such as the  

flow-induced vibrations in heat exchangers and pipelines, wave-loading on 

submarines, the impact-loading of  vehicles, the aero-elastic flutter of aircrafts, 

vibrations of underground and under-sea pipe- lines  and certain defense-related 

equipment. Vibrations in the aforementioned pipelines are generally caused by 

external driving agencies such as earthquakes, nuclear and other explosions, 

wave-loadings, superfast trains and super-sonic jets.  Thin-walled structures are 

very prone to resonant vibrations because their eigenfrequencies lie in a very 

narrow band.  So it is essential for the designer to know the distribution of 

eigenfrequencies of the proposed structure beforehand. 

Therefore main focus of our work was to find out the natural frequencies of a 

thin walled cylindrical shell (modal analysis) at different end conditions and 

observe its behavior under external loading conditions (harmonic analysis). 

This analysis consists of three phases namely Numerical Analysis, Analytical 

analysis and experimental analysis. In numerical analysis ANSYS (Mechanical 

APDL) was used to find the natural frequencies and extract the mode shapes and 

to observe the response under external loading (Harmonic analysis). In analytic 

analysis the Love’s approach was used to find the equations of motions and then 

the eigenvalues were calculated. Then analytically harmonic analysis was carried 
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out. For experimental analysis an inductive proximity sensor was used to find 

natural frequency of the shell. 

LITERATURE REVIEW 
As we have already known the importance of shell structure analysis from the 
introduction before, now we’ll look into various shell theories those have paved 
the way to the present day extensive shell analysis. 

Regarding researches of shell vibration, Leissa [1] has collected most of the 
results before 1973. Chung [2] and Greif and Chung [3] used the Rayleigh-Ritz 
method, for different boundary conditions, to find the natural frequencies. 
Sharma and Johns [4, 5] and Goldman [6] calculated the natural frequencies and 
modes for free and fixed boundary conditions. Stoke’s transformation technique 
was applied by Chung [7] to solve the natural frequencies for different boundary 
conditions. Mnev and Pertsev [8], Junger and Feit [9], and Brown [1O] have done 
some research on vibration of shells with the interaction of internal fluid. Chu et 
el. [11] used the energy method to obtain the frequency parameters. Recent works 
include Goncalves’ [12] investigation of non-linear vibrations of thin-walled 
cylinders with liquid interaction. 
 
Markus [13] has provided an extensive analysis of cylindrical shells using 
membrane as well as bending theory. He has discussed the cons and pros of the 
membrane theory. He discussed various shell theories due to Donnell-Mushtari, 
Love-Timoshenko, FlÜgge, Sander etc. 
 
In recent years Bert et al. [14] have given an analytical solution to the free 
vibration of a composite material cylindrical shell with ring and stringer 
stiffeners and compared the numerical values given by various shell theories, by 
the use of dimensionless tracer coefficients. Mustafa and Ali [15-17] have predicted 
natural frequencies of stringer stiffened and ring stiffened cylindrical shells 
using semi-loof and facet shell finite elements on half and quarter models of the 
shells, because of structural symmetry. They have compared the numerical 
values obtained by them, with the experimental values of Hoppmann [18].They 
have also given an energy method to study the natural frequencies of externally 
and internally stinger stiffened cylindrical shells and ring stiffened shells. 
Rinehart and Wang [19, 20] have investigated the free vibration characteristics of 
Simply-supported cylindrical shells stiffened by discrete longitudinal stiffeners 
using energy method. They have compared the numerical values given by the 
more exact F’lugge’s theory and Donnell’s approximate theory and shown that 
Donnell’s approximate theory gives excellent results for the stiffened shells. 
 
Previous studies confirmed that the effect of shear deformation can become 
quite significant for small radius-to- thickness or length-to-thickness ratios, as 
well as for shorter wavelengths of longer shells [21]

. More recently, Bhimaraddi 
[21] developed a two-dimensional (2-D) higher-order shell theory for free 
vibration response of isotropic circular cylindrical shell and assumed the inner 
and outer surfaces of the shell to be traction free. Also, Reddy and Liu [22] 
presented a 2-D higher-order theory for laminated elastic shells. 



CHAPTER 2

BASICS OF VIBRATION

 

TYPES OF VIBRATION

FREE AND FORCED VIBRATION

FREE VIBRATION 

After an initial disturbance, if a system is left to vibrate on its own then it is 
called free vibration. In free vibration no external force is applied or acted on the 
system. Oscillation of a si

FORCED VIBRATION 

If a system is subjected to an external force (often repeating types) the resulting 
vibration is known as forced vibration. The oscillation that arises in machine 
such as diesel engine is an e

UNDAMPED AND DAMPED VIBRATION

UNDAMPED VIBRATION

During oscillation if no energy is lost or dissipated due to friction or other 
resistances then the vibration is known as 
undamped vibration the 
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BASICS OF VIBRATION 

TYPES OF VIBRATION 

FREE AND FORCED VIBRATION 

After an initial disturbance, if a system is left to vibrate on its own then it is 
called free vibration. In free vibration no external force is applied or acted on the 
system. Oscillation of a simple pendulum is an example of free vibration.

If a system is subjected to an external force (often repeating types) the resulting 
vibration is known as forced vibration. The oscillation that arises in machine 
such as diesel engine is an example of forced vibration. 

UNDAMPED AND DAMPED VIBRATION 

UNDAMPED VIBRATION 

During oscillation if no energy is lost or dissipated due to friction or other 
resistances then the vibration is known as undamped vibration
undamped vibration the magnitude of amplitude is not changing with time.

                                Figure:  undamped vibration  

After an initial disturbance, if a system is left to vibrate on its own then it is 
called free vibration. In free vibration no external force is applied or acted on the 

mple pendulum is an example of free vibration. 

If a system is subjected to an external force (often repeating types) the resulting 
vibration is known as forced vibration. The oscillation that arises in machine 

During oscillation if no energy is lost or dissipated due to friction or other 
undamped vibration. In an 

magnitude of amplitude is not changing with time. 

 



 

DAMPED VIBRATION: 

During oscillation if energy is lost due to friction or other resistances then it is 
called damped vibration

or displacement is changed with time.

 

LINEAR VIBRATION AND NONLINEAR VIBRATION:

LINEAR VIBRATION: 

If all basic components of a vibratory system 
damper- behave linearly, the resulting vibration is known as the 
vibration. If the vibration is linear then the principle of superposition holds.

Nonlinear vibration: 

If any of the basic components of vibration behave nonlinearly then the vibr
is called nonlinear vibration

superposition is not valid.
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During oscillation if energy is lost due to friction or other resistances then it is 
ation. During damped vibration the magnitude of amplitude 

or displacement is changed with time. 

 

Figure:  Damped vibration 

LINEAR VIBRATION AND NONLINEAR VIBRATION: 

If all basic components of a vibratory system –the spring, the mass, an
behave linearly, the resulting vibration is known as the 
. If the vibration is linear then the principle of superposition holds.

If any of the basic components of vibration behave nonlinearly then the vibr
nonlinear vibration. For nonlinear vibration the principle of 

superposition is not valid. 

During oscillation if energy is lost due to friction or other resistances then it is 
. During damped vibration the magnitude of amplitude 

 

the spring, the mass, and the 
behave linearly, the resulting vibration is known as the linear 
. If the vibration is linear then the principle of superposition holds. 

If any of the basic components of vibration behave nonlinearly then the vibration 
. For nonlinear vibration the principle of 
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STEADY STATE VIBRATION OR RESPONSE 

At forced vibration the system will tend to vibrate at its own natural frequency 
and to follow the frequency of the external force applied. In the presence of 
friction the portion of motion not sustained by the excitation force will gradually 
die out. In other words due to friction the tendency of vibrating at natural 
frequency will be eliminated. As a result the system will vibrate at the frequency 
of external force only regardless of the initial conditions or the natural frequency 
of the system. This part of sustained vibration is called the steady state 
vibration or response of the system. Very often the steady state response is 
required in vibration analysis because of its continuous effect. 

 

Figure: steady state vibration 

THIN –WALLED CYLINDER 

For the thin-walled assumption to be valid the vessel must have a wall thickness 
of no more than about one-tenth (often cited as one twentieth) of its radius. This 
allows for treating the wall as a surface, and subsequently using the Young–
Laplace equation for estimating the hoop stress created by an internal pressure 
on a thin wall cylindrical pressure vessel: 

�� � ���    (For a cylinder) 

�� � ����(For a sphere) 

 



 

Where, 

• P is the internal pressure
• t is the wall thickness
• r is the inside radius of the cylinder.
•  is the hoop stress

THICK-WALLED CYLINDER

When the cylinder to be studied has a 
the thin-walled cylinder equations no longer hold since stresses vary 
significantly between inside and outside surfaces and shear stress through the 
cross section can no longer be neglected.

In order to calculate the stresses and strains here a set of equations known as the 
Lamé equations must be used.

 

Where, 

• A and B are constants of integration, which may be discovered from the 
boundary conditions

• r is the radius at the point of interest (e.g., at the inside or outside walls)

A and B may be found by inspection of the boundary conditions.

RESONANCE 

A certain system has more than one natural frequency. If the frequency of the 
external force coincides 
condition known as resonance occurs. When resonance happens, the amplitude 
of vibration will increase without bound and is governed only by the amount of 
damping present in the system and the system unde
oscillations. Therefore, in order to avoid disastrous effects resulting from very 
large amplitude of vibration at resonance the natural frequency of a system must 
be known and properly taken care of. Otherwise failures of such struc
buildings, bridges, turbines and airplane wings may be occurred.
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is the internal pressure 
is the wall thickness 
is the inside radius of the cylinder. 

is the hoop stress. 

WALLED CYLINDER 

When the cylinder to be studied has a r/t ratio of less than 10 (often cited as 20) 
walled cylinder equations no longer hold since stresses vary 

significantly between inside and outside surfaces and shear stress through the 
cross section can no longer be neglected. 

the stresses and strains here a set of equations known as the 
equations must be used. 

 

 

are constants of integration, which may be discovered from the 
boundary conditions 

is the radius at the point of interest (e.g., at the inside or outside walls)

may be found by inspection of the boundary conditions. 

A certain system has more than one natural frequency. If the frequency of the 
external force coincides with one of the natural frequencies of the system, a 
condition known as resonance occurs. When resonance happens, the amplitude 
of vibration will increase without bound and is governed only by the amount of 
damping present in the system and the system undergoes dangerously large 
oscillations. Therefore, in order to avoid disastrous effects resulting from very 
large amplitude of vibration at resonance the natural frequency of a system must 
be known and properly taken care of. Otherwise failures of such struc
buildings, bridges, turbines and airplane wings may be occurred. 

ratio of less than 10 (often cited as 20) 
walled cylinder equations no longer hold since stresses vary 

significantly between inside and outside surfaces and shear stress through the 

the stresses and strains here a set of equations known as the 

are constants of integration, which may be discovered from the 

is the radius at the point of interest (e.g., at the inside or outside walls) 

A certain system has more than one natural frequency. If the frequency of the 
with one of the natural frequencies of the system, a 

condition known as resonance occurs. When resonance happens, the amplitude 
of vibration will increase without bound and is governed only by the amount of 

rgoes dangerously large 
oscillations. Therefore, in order to avoid disastrous effects resulting from very 
large amplitude of vibration at resonance the natural frequency of a system must 
be known and properly taken care of. Otherwise failures of such structures as 
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Figure: resonance curve 

 

MODAL ANALYSIS: 

Modal analysis is the study of the dynamic properties of structures under 
vibrational excitation. 

Modal analysis is the field of measuring and analyzing the dynamic response of 
structures and or fluids when excited by an input. Examples would include 
measuring the vibration of a car's body when it is attached to an electromagnetic 
shaker, or the Modal analysis is the study of the dynamic properties of structures 
under vibrational excitation. 

The goal of modal analysis in structural mechanics is to determine the natural 
mode shapes and frequencies of an object or structure during free vibration. It is 
common to use the finite element method (FEM) to perform this analysis 
because, like other calculations using the FEM, the object being analyzed can 
have arbitrary shape and the results of the calculations are acceptable. The types 
of equations which arise from modal analysis are those seen in Eigen systems. 
The physical interpretation of the eigenvalues and eigenvectors which come 
from solving the system are that they represent the frequencies and 
corresponding mode shapes. Sometimes, the only desired modes are the lowest 
frequencies because they can be the most prominent modes at which the object 
will vibrate, dominating all the higher frequency modes.  
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HARMONIC ANALYSIS 

Any sustained cyclic load will produce a sustained cyclic response (a harmonic 
response) in a structural system. Harmonic response analysis gives the ability to 
predict the sustained dynamic behavior of your structures, thus enabling you to 
verify whether or not your designs will successfully overcome resonance, fatigue, 
and other harmful effects of forced vibrations. 

Harmonic response analysis is a technique used to determine the steady-state 
response of a linear structure to loads that vary sinusoidally (harmonically) with 
time. The idea is to calculate the structure's response at several frequencies and 
obtain a graph of some response quantity (usually displacements) versus 
frequency. "Peak" responses are then identified on the graph and stresses 
reviewed at those peak frequencies.  

This analysis technique calculates only the steady-state, forced vibrations of a 
structure. The transient vibrations, which occur at the beginning of the 
excitation, are not accounted for in a harmonic response analysis. 
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CHAPTER 3 

NUMERICAL ANALYSIS FOR DETERMINING 

NATURAL FREQUENCIES AND FORCED VIBRATION 

RESPONSE OF A CIRCULAR CYLINDRICAL SHELL 

 

 

NUMERICAL ANALYSIS  

Numerical analysis is the study of algorithms or step by step process that use 
numerical approximation (as opposed to general symbolic manipulations) for the 
problems of mathematical analysis (as distinguished from discrete mathematics). 

A numerical method which leads to a required result is often referred to as an 
algorithm. More often than not, algorithms are iterative, i.e., they involve cycles 
of identical computations, starting with the results of the preceding cycle. At the 
end of a cycle, the result will be examined to find out whether it has the required 
accuracy. The algorithm will stop, when the error becomes as small as desired. 

USE OF ANSYS IN MODAL ANALYSIS 

Modal analysis is generally used to determine the natural frequencies of different 
structures. That later on serves as the starting point of another more detailed, 
dynamic analysis such as transient harmonic analysis or a harmonic response 
analysis. 

Modal analysis in ANSYS family uses linear analysis method. Any sorts of 
nonlinearities such as plasticity and contact (gap) elements are ignored even if 
they are defined. We use ANSYS in finding natural frequencies of any structure 
and extract mode shapes. One can choose from several mode extraction 
methods: Block Lanczos, Supernode, PCG Lanczos, reduced, unsymmetric, 
damped and QR damped. 

COMPARING MODE-EXTRACTION METHODS 
 
The basic equation solved in a typical undamped modal analysis is the classical 
eigenvalue problem: 
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 �	
��� � ����
��� 
 
Where,  
 �	
= stiffness matrix 
 ���= mode shape vector (eigenvector) of mode i 
 �= natural circular frequency of mode i (�� is the eigenvalue) 
 ��
= mass matrix 
Many numerical methods are available to solve the above equation. ANSYS offers 
these methods: 
• Block Lanczos method 
• PCG Lanczos method 
• Supernode (SNODE) method 
• Reduced (Householder) method 
• Unsymmetric method 
• Damped method (The damped method solves a different equation) 

PROCESSES INVOLVED IN MODAL ANALYSIS IN ANSYS 

The general process for a modal analysis involves following primary steps: 

1. Building the model. 
2. Apply the loads and obtain the solution. 
3. Expand the modes. 
4. Review the results. 

ANSYS SIMULATION OF A CYLINDRICAL SHELL 

Now the process described above will be applied for a cylindrical shell to analyze 
its natural frequencies and expand the mode shapes. One thing should be 
mentioned over here that the simulation can be performed two ways: by coding 
and by using the GUI (Graphical User Interface). We would be using here the 
later one.  

BUILDING THE MODEL IN ANSYS MECHANICAL 

(APDL) 

Firstly, the shell should be modeled. 
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Entering work plane co-ordinates as (0, 0) we specified radiuses to be 0.02975 

& 0.02775.One thing should kept in mind that all the units should be kept under 

the same system throughout the whole simulation process. The annular circle 

should look like below.  

 

 

Secondly, the type of simulation to be done is to be selected. Steps involved: 

Opening the GUI>Preferences>Structural 
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Thirdly, constant material properties (such as Young’s modulus of elasticity, 

poison’s ratio and density) are to be defined. Main menu > Preprocessor> 

Material Props > Material Models. 

 

For density, 
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Then we have to generate the mesh. To do that we need to define the element 

type. The meshing process can be told in a nutshell this way: at first the 2D 

element PLANE 42 is added then the 3D element SOLID 45 is added. The 2D 

element is meshed then extruded using 3D element. Thus whole object gets 

extruded. 

 

Main Menu>Preprocessor>Element Type>Add/Edit/Delete.  

For selecting 2D PLANE 42: 

 

 



20 

 

Then for selecting 3D element SOLID 45: 

 

 

 

PLANE 42 

PLANE42 is used for 2-D modeling of solid structures. The element can be used 

either as a plane element (plane stress or plane strain) or as an axisymmetric 

element. The element is defined by four nodes having two degrees of freedom at 

each node: translations in the nodal x and y directions. The element has 

plasticity, creep, swelling, stress stiffening, large deflection, and large strain 

capabilities. 

 

Fig: PLANE 42, Structural element 
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SOLID 45 

SOLID45 is used for the three-dimensional modeling of solid structures. The 
element is defined by eight nodes having three degrees of freedom at each node: 
translations in the nodal x, y, and z directions.  

The element has plasticity, creep, swelling, stress stiffening, large deflection, and 
large strain capabilities. A reduced integration option with hourglass control is 
available. 

Fig:SOLID 45, Structural element. 

Now the 2D element is meshed by specifying through mesh controls. Main 

Menu>Preprocessor>Meshing>Mesh Tool  
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Here for meshing purpose we have taken:  

Edge length=0.002m. That is each small element has a side of .002m. Main 

Menu> Preprocessor> Meshing> Mesh Tool 

Step by step process: 

1. “Size Controls Global” = [Set] 

2. “Element edge length” = 0.002 

3. [OK] 

4. [Mesh] 

5. [Pick All] 

6. [Close] Warning. After that the 2D element is extruded: Main Menu> 

Preprocessor> Modeling> Operate> Extrude> Elem Ext Opts 
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Element type number is changed to SOLID 45 & No. Elem divs =88. Then the 2D 

element is extruded: Main Menu> Preprocessor> Modeling> Operate> 

Extrude> Areas> By XYZ Offset> [Pick All]. 

Here “Offsets for extrusion” = 0, 0, 2.2. 
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The final meshed model looks like the above figure (zoomed view). 

APPLYING THE LOADS AND OBTAINING THE 

SOLUTION 

This part can be described into several categories: 

Step 1: Unselect 2-D elements. 

Before applying constraints to the fixed end of the wing, unselect all PLANE42 

elements used in the 2-D area mesh since they will not be used for the analysis. 

1. Utility Menu> Select> Entities 

2. (First drop down) “Elements” 

3. (Second drop down) “By Attributes” 

4. (Check) “Elem type num” 

5. “Min,Max,Inc” = 1 

6. (Check) “Unselect” 

7. [Apply]. 
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Step 2: Apply constraints to the model. 

Constraints will be applied to all nodes according to the end condition. Select all 
nodes at z =0, then apply the displacement constraints. 

1. (First drop down) “Nodes” 

2. (Second drop down) “By Location” 

3. (Check) “Z coordinates” 

4. “Min,Max” = 0 

5. (Check) “From Full” 

6. [Apply] 

 

 

For the constraint of other side: 

1. (First drop down) “Nodes” 

2. (Second drop down) “By Location” 

3. (Check) “Z coordinates” 

4. “Min,Max” = 2.2 

5. (Check) “Also Select” 
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6. [Apply]. 

 

 

Now the degrees of freedoms are specified at the two ends. 

1. Main Menu> Preprocessor> Loads> Define Loads> Apply> Structural> 

Displacement> On Nodes 

2. [Pick All] to pick all selected nodes. 

3. “DOFs to be constrained” = DX and DY 

4. [OK] Note that by leaving “Displacement” blank, a default value of zero is 

used. 

Now, reselect all nodes. 

5. (Second drop down) “By Num/Pick” 

6. [Sele All] to immediately select all nodes from entire database. 

7. [Cancel] to close dialog box. 
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Now, before obtaining the solution the nodes of the whole structure are selected 
again.

 

 

Step 3: Obtaining the Solution: 

Specifying analysis type and options 

We specified that the type of analysis is modal. 

1. Main Menu> Solution> Analysis Type> New Analysis 

2. (Check) “Modal” 

3. [OK] 

 



28 

 

 

 

 

4. Main Menu> Solution> Analysis Type> Analysis Options 

5. (Check) “Block Lanczos” (Block Lanczos is the default for a modal analysis.) 

6. “No. of modes to extract” = 20 

7. “No. of modes to expand” = 20 

8. [OK] 

9. [OK] all default values are acceptable for this analysis. 

 



29 

 

Step 4: Solve. 

1. Main Menu> Solution> Solve> Current LS 

2. Review the information in the status window, and then choose: File> Close 
(Windows). 

 

REVIEWING THE RESULTS 

Listing the natural frequencies: 

1. Main Menu> General Postproc> Results Summary. 

2. [Close] after observing the listing. 
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 Animating the mode shapes: 

To animate the mode shapes at first the corresponding set should be read. 

 

FIRST MODE: 

1. Main Menu> General Postproc> Read Results> First Set 

2. Utility Menu> PlotCtrls> Animate> Mode Shape. 
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SECOND MODE: 

1. Main Menu> General Postproc> Read Results> Next Set 

2. Utility Menu> PlotCtrls> Animate> Mode Shape. 

 

 

THIRD MODE: 

1. Main Menu> General Postproc> Read Results> Next Set 

2. Utility Menu> PlotCtrls> Animate> Mode Shape. 
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FOURTH MODE: 

1. Main Menu> General Postproc> Read Results> Next Set 

2. Utility Menu> PlotCtrls> Animate> Mode Shape. 

 

 

FIFTH MODE: 

1. Main Menu> General Postproc> Read Results> Next Set 

2. Utility Menu> PlotCtrls> Animate> Mode Shape. 
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SIXTH MODE: 

1. Main Menu> General Postproc> Read Results> Next Set 

2. Utility Menu> PlotCtrls> Animate> Mode Shape. 
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USE OF ANSYS IN HARMONIC ANALYSIS 

Before performing the harmonic analysis the model is drawn again as previously 

done in modal analysis and is meshed.   

1. Define Analysis Type (Harmonic)  

Solution >Analysis Type >New Analysis >Harmonic.

 

2. Setting options for analysis type:  

Select: Solution > Analysis Type > Analysis Options. The following window 

will appear 
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Clicking 'OK' will make the following window appear. The default settings 

(shown below) are used. 

 

 

 

3. Force application 

At first the middle node is selected. Main menu > select> entities. Then  

 



36 

 

Then, 

 

 

 

The selected node can be visualized in the screen by: Main menu> Plot> Nodes. 

It will show the selected node. Then the force is applied as such: Solution > 

Define Loads > Apply > Structural > Force/Moment > on Nodes. Selecting 

‘pick all’ selected the only visible node. 
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. 

 

Then the amount of force applied is specified. Here direction of force applied was 

along Y direction and amount of force applied was 10 N.
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The above snapshot actually shows the application of force in the direction of y 

axis. Now all the nodes should be selected again to apply constrains at the two 

furthest ends of the shell. 

 

 

 

 

After all the nodes are selected then constraints are applied. Element can be 

selected as: main menu > plot> elements. 
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After the elements were selected to view complete shell structure is shown in the 

screen with a red arrow on the top of the shell just at the middle showing the 

direction of the application of force. 

 

 

 

4. Applying Constraints: 

To apply the constraints the nodes where the constraints are to be applied 

should be selected. 
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Nodes of one end: Main menu>Select entities> (First drop down) Nodes> 

(second dropdown) By location> (Select) Z coordinates. 

 Selecting the From Full, 0 is placed after Max, Min. 

 

That is nodes at one end are already being selected. Now in almost similar way 

nodes at other end i.e. at length 2.2 m are to be selected. 

Nodes of other end: Main menu>Select entities> (First drop down) Nodes> 

(second dropdown) By location> (Select) Z coordinates. 

 Selecting the ‘Also Select’, 2.2 is placed after Max, Min. 

Thus nodes at both ends are selected. Now constraint is applied: Solution > 

Define Loads > Apply > Structural > Displacement > On Nodes.
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X and Y degrees of freedoms are being constrainted. 

 

And the setup looks like below-

 

Now for the analysis the nodes of the whole structure are to be selected. Main 

menu>Select entities> (First drop down) Nodes > (second dropdown) By 

Num/Pick. Then ‘From Full’ is selected and ‘Sele all’ is pressed with mouse 

button. 
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5. Obtaining the solution: 

Frequency steps and sub steps options are specified at first- 

Frequency range: 0-50 Hz. 

Number of substeps: to specify steps within the frequency range 
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Solving: Solution > Solve > Current LS. 

 

Verification: Yes.
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When the solution is done TimeHist PostPro is used to see the response of any 

specific point on the structure. 

After selecting the point of force application as the point of investigation through 

the Variable Viewer the graph is plotted taking amplitude as y- axis and 

frequency as x- axis. 

 

 

This is amplitude Vs frequency (of applied force) curve.  

 

The list of results- 

Frequency     Amplitude        Phase 

   1.0000        0.716047E-04   0.00000     

   2.0000        0.717860E-04   0.00000     

   3.0000        0.720904E-04   0.00000     

   4.0000        0.725209E-04   0.00000     

   5.0000        0.730823E-04   0.00000     

   6.0000        0.737806E-04   0.00000     

   7.0000        0.746237E-04   0.00000     

   8.0000        0.756213E-04   0.00000     
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   9.0000        0.767854E-04   0.00000     

   10.000        0.781307E-04   0.00000     

   11.000        0.796747E-04   0.00000     

   12.000        0.814390E-04   0.00000     

   13.000        0.834495E-04   0.00000     

   14.000        0.857378E-04   0.00000     

   15.000        0.883427E-04   0.00000     

   16.000        0.913119E-04   0.00000     

   17.000        0.947047E-04   0.00000     

   18.000        0.985955E-04   0.00000     

   19.000        0.103079E-03   0.00000     

   20.000        0.108277E-03   0.00000     

   21.000        0.114348E-03   0.00000     

   22.000        0.121507E-03   0.00000     

   23.000        0.130041E-03   0.00000     

   24.000        0.140357E-03   0.00000     

   25.000        0.153039E-03   0.00000     

   26.000        0.168962E-03   0.00000     

   27.000        0.189494E-03   0.00000     

   28.000        0.216909E-03   0.00000     

   29.000        0.255271E-03   0.00000     

   30.000        0.312643E-03   0.00000     

   31.000        0.407591E-03   0.00000     

   32.000        0.594557E-03   0.00000     

   33.000        0.113149E-02   0.00000     

   34.000        0.170011E-01   0.00000     

   35.000        0.126071E-02   180.000     

   36.000        0.597904E-03   180.000     

   37.000        0.387697E-03   180.000     
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   38.000        0.284582E-03   180.000     

   39.000        0.223386E-03   180.000     

   40.000        0.182901E-03   180.000     

   41.000        0.154156E-03   180.000     

   42.000        0.132710E-03   180.000     

   43.000        0.116108E-03   180.000     

   44.000        0.102885E-03   180.000     

   45.000        0.921125E-04   180.000     

   46.000        0.831735E-04   180.000     

   47.000        0.756414E-04   180.000     

   48.000        0.692125E-04   180.000     

   49.000        0.636642E-04   180.000     

   50.000        0.588301E-04   180.000     

 

It clearly shows that when frequency of forced vibration reaches 1st natural 

frequency the first resonance takes place i.e. amplitude increases dramatically 

and later the response goes out of phase with the force and most of the 

structures cannot sustain this high amplitude vibration.  
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CHAPTER 4 

ANALYTICAL ANALYSIS FOR DETERMINING 

NATURAL FREQUENCIES AND FORCED VIBRATION 

RESPONSE OF CIRCULAR CYLINDRICAL SHELL                            

 

 

In this chapter, we will look into a mathematical approach, as described by 

Werner Soedel in the book titled “Vibrations of Shells and Plates, Third 

Edition” to find out the natural frequencies of a simply supported circular 

cylindrical shell and see that how the structure responds being subjected to a 

harmonically varying load or a sinusoidal force. For that, equations of motion for 

the shell are needed which requires a way to relate the motion of the structure to 

the loads acting on it. This is done by first developing relationships between 

stress and strain, as strain is technically deformation of the body so stresses can 

be related to displacement of the structure which again warrants for the 

relationships between strain and displacement. Augustus Edward Hough Love, 

using Hamilton’s principle, defined motion under any type of pressure load. 

Love’s equations can be used to determine equations of motion for different shell 

type structures. Love extended work on shell vibration by Rayleigh, by 

considering the coexistence of both the two classes of shells, defined by Rayleigh 

earlier. These are –  

1. One where the middle surface does not stretch and bending effects are the 

only important ones, and  

2. One where only the stretching of the middle surface is important and the 

bending stiffness can be neglected. 

The basic assumptions made for the following sections, 

1. Shells are thin with respect to their radii of curvature, and 
2. Deflections on the shell are reasonably small. 
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SHELL COORDINATES AND INFINITESIMAL DISTANCES 

IN SHELL LAYERS 

 
Here we will assume that thin, isotropic, and homogeneous shells of constant 
thickness have neutral surfaces, just as beams in transverse deflection have 
neutral fibers. Stresses in such a neutral surface can be of the membrane type but 
cannot be bending stresses. To locate any point on the neural surface of the shell 
we will use curvilinear coordinate system. The location of point P on the neutral 
surface in three dimensional Cartesian coordinates can be expressed by two 
dimensional curvilinear surface coordinates as follows, 
 �� � �����, ���, 

�� � �����, ���,  
�� � �����, ���                                                                  ��� 

 

The location of P on the neutral surface can also be expressed by a vector, 
 �����, ��� � �����, �������� � �����, �������� � �����, ����� ����                                                     ���

 
 

 

'  

 

 Fig 1. Reference surface 
 
Now the infinitesimal distance between points P and P′ on the neutral surface is 
the differential change,  �� of the vector �� from P to P′, 
  �� � !��!��  �� � !��!�� ��                                                                                                                  ��� 
 
The magnitude  " of  �� is given by, 
 � "�� �  ��.  ��                                                                                                                                       �$�                                                                    
 
Simplifying this, we get, 
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� "�� � %��� ���� � %��� ����                                                                                                        �&� 
 
Where, 
 

%�� � !��!�� · !��!�� � ( !��!��(
�                                                                                                                   �)� 

 
And, 
 

%�� � !��!�� · !��!�� � ( !��!��(
�                                                                                                                   �*� 

 
This equation is called the “fundamental form” and  +, & +� are the “fundamental 
form parameters” or “Lamé parameters”. 
 
Now being specific to our structure of interest i.e. circular cylindrical shell, for 
each point on shell surface there are two maximum and minimum radius of 
curvature, whose directions are perpendicular to each other. These lines of 
principal curvature are in this case parallel to the axis of revolution, where the 
radius of curvature Rx=∞ (i.e. curvature 1/Rx=0) and along the circles, where the 
radius of curvature -� � . (i.e. curvature1/-� � 1/.). 
 
 

 
 

 

Fig 2. Obtaining Lamé parameters for circular cylindrical shell 
 
Therefore, the curvilinear coordinates are, 
 �� � � ,�� � 1                                                                                                                         �2� 

 
So, the position vector discussed before (eqn.2) becomes, 
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�� � ������ � 345"1����� � 3"61�����                                                                                                       �7� 
 

Thus, 
 !��!�� � !��!� � �����    5�,   ( !��!��( � %� � �                                                                                        ��8� 
 
And, 
 !��!�� � !��!1 � 93"61����� � 345"1�����                                                                                             ���� 
 5�, (!��!1( � %� � 3:;<=� 1 � >?;� 1 � 3                                                                                   ���� 
 
The fundamental form is therefore, 
 � "�� � � ��� � 3�� 1��                                                                                                              ���� 
 
Recognizing that the fundamental form can be interpreted as defining the 
hypotenuse  " of a right triangle whose sides are infinitesimal distancesalong 
the surface coordinates of the shell, we may obtain +, and +� in a simpler fashion 
by expressing  " directly using inspection: 
 � "�� � � ��� � 3�� 1��                                                                                                              ��$� 
 
By comparison with eqn.3, we get, 
 %� � �, %� � 3                                                                                                                                    (15) 

 
Now let us define @A coordinate to be perpendicular to @�@A plane i.e. for circular 
cylindrical shell it is the normal direction to the undeflected shell surface and @A 
is 0 on neutral @�@A plane. If P1 and P1′ are two points on different @�@A planes 
whose projections on the neutral surface are at infinitesimal distance, then the 
distance between these two points,  " can be derived by similar mathematical 
approach to be, 
 � "�� � %�� B� � ��C�D� � ���� � %�� B� � ��C�D� � ���� � � ����                                      ��)� 
 
Where, C�and C� are radius of curvatures. 
 
This equation gives the distance between two points of an undeflected shell.  
 

STRESS-STRAIN RELATIONSHIP 
 
According to the coordinate system we have chosen, we have three mutually 
perpendicular planes of strain and three shear strains. We assume that Hooke’s 
law applies, therefore we have for a three dimensional element, 
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E�� � �F �G�� 9 H�G�� � G���
                                                                                          ��*� 
 E�� � �F �G�� 9 H�G�� � G���
                                                                                          ��2� 
 E�� � �F �G�� 9 H�G�� � G���
                                                                                          ��7� 
 E�� � G��I                                                                                                                                 ��8� 
 E�� � G��I                                                                                                                                 ���� 
 E�� � G��I                                                                                                                                 ���� 
 

Where, E= modulus of elasticity, G= modulus of rigidity, J= poision’s ratio, �,,, ���, and �AA are normal stresses and �,�, �,A, and ��A are shear stresses. And, 
 G�� � G��, G�� � G��, G�� � G��                                                                                    ���� 
 
We will later assume that transverse shear deflections can be neglected.This 
implies that, 
 E�� � 8, E�� � 8                                                                                                                   ��$� 
 
However, we will not neglect the integrated effect of the transverse shear 
stresses G��andG��. 
 

 

Fig 3.Stresses acting on an element 
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The normal stress, G�� which acts in the normal direction to the neutral surface, 
will be neglected, 
 G�� � 8                                                                                                                                    ��&� 
 
This is because we argue that on an unloaded outer shell surface it is 0, or if a 
force acts on the shell, it is equivalent in magnitude to the external load on the 
shell, which is a relatively small value in most cases. Only in the close vicinity of a 
concentrated load do we reach magnitudes that would make the consideration of G��worthwhile. Our equation system therefore reduces to, 
 E�� � �F �G�� 9 HG���                                                                                                          ��)� 
 E��� �F �G�� 9 HG���                                                                                                                 ��*� 
 E�� � G��I                                                                                                                                 ��2� 
 
And,  
 E�� � 9HF �G�� � G���                                                                                                        ��7� 
 
Only the first three relationships will be of importance in the following. Equation 
(29) can later be used to calculate the constriction of the shell thickness during 
vibration, which is of some interest to acousticians since it is an additional noise 
generating mechanism, along with transverse deflection. 

 

 
STRAIN-DISPLACEMENT RELATIONSHIPS 

 
In a preceding section we have seen that the distance between two points K, and K,L of an undeflected shell, 
 

� "�� �MN���, ��, ���� ����
O�                                                                                                ��8� 

 
Where, short notations used are, 
 %�� B� � ��C�D� � N�����, ��, ���                                                                                                    ���� 
 %�� B� � ��C�D� � N�����, ��, ���                                                                                                    ���� 
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 � � N�����, ��, ���                                                                                                                           ���� 
 
Now, if point K, originally located at�@,, @�, @A�, is deflected in the @, direction by P,, in the @� direction by  P�, and in the @A direction by PA, it will be located at 
(@, � Q,, @� � Q�, @A � QA). Deflections PR and coordinate changes  QR are related 
by, 
 S � :N���, ��, ���T                                                                                                                    ��$� 
 

And, pointK,L , originally at �@1 � U@1, @2 � U@2, @3 � U@3 ), will be located at �@1 � U@1 � Q1 � UQ1, @2 � U@2 � Q2 � UQ2, @3 � U@3 � Q3 � UQ3) after deflection. The 

distance, UXY between  K, and  K,L in the deflected state will therefore be, 
 

� "L�� � MN�
O� ��� � T�, �� � T�, �� � T��� � �  T��                                                   ��&� 

 N���, ��, ��� varies continuously as @,, @� and @A change, now taking Taylor 
series expansion of N��� � T�, �� � T�, �� � T�� about the point �@,, @�, @A�  and 
further mathematical manipulation, 
 

� "L�� �MMIZ � �Z�
ZO�

�
O�                                                                                                             ��)� 

 
Where, 
 

IZ � [N �M!N!�\ T\
�

\O� ]^Z � N !T!�Z � NZZ !TZ!�                                                                    ��*� 
 
Where, ^Z is Kronecker delta notation. 

 ^Z � _�,       � Z8,       ` Za                                                                                                                                  ��2� 
 
And, , Z, & \ refer to three principal coordinates. 
 
Now for c � d, in general, 
 � "�� � N� ���                                                                                                                             �$8� 
 � "L�� � I� ���                                                                                                                            �$�� 
 

and, c ` d, 
 � "�Z� � N� ��� � NZZe �Zf�                                                                                      �$�� 
 � "L�Z� � I� ��� � IZZe �Zf� 9 �IZ � �Z                                                                      �$�� 
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Therefore, the normal strains are, 
 

E � � "L� 9 � "�� "� � gIN 9 � � g� � I 9 NN 9 �                                                       �$$� 
Since, 
 I 9 NN h �                                                                                                                                        �$&� 
 
We have the expansion, 
 

g�� I 9 NN � � � ��I 9 NN 9ii                                                                                    �$)� 
 
And, 
 E � ��I 9 NN                                                                                                                                   �$*� 
 
Shear strains, 
 EZ � j� 9 1Z                                                                                                                                         �$2� 
 
 1Z for c � 1 and d � 2 is shown in the figure below, 

 

 
Fig 4. Shear deformation in the plane of the reference surface. 
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Using the cosine law, we may determine this angle, 
 � "L�Z� � � "L�� � � "L�ZZ� 9 �� "L�� "L�ZZ45"1Z                                                                �$7� 
 
From equation (41), (43) and (49), 
 45"1Z � IZ:IIZZ                                                                                                                                �&8� 
 45" kj� 9 EZl � "6EZ � IZ:IIZZ                                                                                             �&�� 
 

Since for reasonable shear strain magnitudes 
 "6EZ m EZ 
 
And, 
 IZ:IIZZ m IZ:NNZZ                                                                                                                              �&�� 
 

So, shear strain, 
 EZ � IZ:NNZZ                                                                                                                                        �&�� 
 

 
Substituting equations (31) to (34) and (37) in eqn. (47) and for i=1, we finally 
get, 
 E�� � �%��� � �� C�⁄ � B!S�!�� �S�%� !%�!�� � S� %�C�D                                                                    �&$� 
 

Similarly, we can get, 
 E�� � �%��� � �� C�⁄ � B!S�!�� �S�%� !%�!�� � S� %�C�D                                                                    �&&� 
 E�� � !S�!��                                                                                                                                             �&)� 
 
Again, Substituting equations (31) to (34) and (37) in eqn. (47) and for i=1, j=2, 
 E�� � %��� � �� C�⁄ �%��� � �� C�⁄ � !!�� B S�%��� � �� C�⁄ �D� %��� � �� C�⁄ �%��� � �� C�⁄ � !!�� B S�%��� � �� C�⁄ �D                                                     �&*� 
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Similarly, we can get, 
 E�� � %� B� � ��C�D !!�� B S�%��� � �� C�⁄ �D � �%��� � �� C�⁄ � !S�!��                                     �&2� 
 E�� � %� B� � ��C�D !!�� B S�%��� � �� C�⁄ �D � �%��� � �� C�⁄ � !S�!��                                     �&7� 
 

These equations give relationships among strain, displacement and the structure 
geometry. 

 

 

LOVE SIMPLIFICATIONS 

 
A E H Love had simplified the strain equations shown in the previous section 
(eqns. (54) to (59)) by assuming that for a thin walled shell the displacements in 
the @, and @�directions vary linearly through the shell thickness, where as 
displacements in the @A direction are independent of @A. 
 S����, ��, ��� � o����, ��� � ��p����, ���                                                                           �)8� 
 S����, ��, ��� � o����, ��� � ��p����, ���                                                                           �)�� 
 S����, ��, ��� � o����, ���                                                                                                           �)�� 
 
Where, q, and q� represents angles. 

 

 
Fig 5. Illustration of the Love’s assumption. 
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If we assume that we may neglect shear deflection, which implies that the normal 
shear strain deflection, which implies that the normal shear strains are 0, 
 E�� � 8                                                                                                                                                   �)�� 
 E�� � 8                                                                                                                                                   �)$� 
 

Implying these assumptions (i.e. eqn. (60) to (64)) in the final strain equations of 
the previous section we get, 
 E�� � E°�� � ��\��                                                                                                                            �)&� 
 E�� � E°�� � ��\��                                                                                                                            �))� 
 E�� � 8                                                                                                                                                   �)*� 
 E�� � E°�� � ��\��                                                                                                                            �)2� 
 E�� � 8                                                                                                                                                   �)7� 
 E�� � 8                                                                                                                                                   �*8� 
 

And, 
 p� � o�C� 9 �%� !o�!��                                                                                                                              �*�� 
 p� � o�C� 9 �%� !o�!��                                                                                                                              �*�� 
 

Where, the membrane strains (independent of @A) are, 

 E°�� � �%� !o�!�� � o�%�%� !%�!�� � o�C�                                                                                       �*�� 
 E°�� � �%� !o�!�� � o�%�%� !%�!�� � o�C�                                                                                       �*$� 
 E°�� � %�%� !!�� Bo�%�D� %�%� !!�� Bo�%�D                                                                                   �*&� 
 

And where the bending strains (charge in curvature terms), 
 \�� � �%� !p�!�� � p�%�%� !%�!��                                                                                                               �*)� 
 \�� � �%� !p�!�� � p�%�%� !%�!��                                                                                                               �**� 
 

\�� � %�%� !!�� sp�%�t� %�%� !!�� sp�%�t                                                                                                 �*2� 
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MEMBRANE FORCES AND BENDING MOMENTS 

 
Here we integrate all stresses acting on a shell element whose dimensions are 
infinitesimal in the @, and @� directions and equal to the shell thickness in 
normal direction. Solving eqns. (26) to (28) for stresses yields, 
 G�� � F� 9 H� �E�� � HE���                                                                                                              �*7� 
 G�� � F� 9 H� �E�� � HE���                                                                                                              �28� 
 G�� � E��I                                                                                                                                           �2�� 
 

Substituting eqns. (65), (66) and (68) gives, 
 

G�� � F� 9 H� �E°�� � HE°�� � ���\�� � H\���
                                                                       �2�� 
G�� � F� 9 H� �E°�� � HE°�� � ���\�� � H\���
                                                                       �2�� 
G�� � I�E°�� � ��\���                                                                                                                    �2$� 
 

 

Fig 6.An element cut from a shell that is of infinitesimal cross-sectional 
dimensions, but extends through the entire thickness of the shell. 
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Referring to the figure above the force in the @, direction acting on a strip of the 
element face of height U@A and width +��1 � @A -�⁄ �U@� is 

G��%� B� � ��C�D �� �� 

Thus the total force acting on the element in the @, direction is, 

u G��%� B� � ��C�D �� ��
��Ov/�
��Owv/�  

and the force per unit length of neutral surface +�U@� is 

x�� � u G�� B� � ��C�D ��
v/�
wv/�                                                                                                       �2&� 

Neglecting the second term in parentheses, we obtain 

x�� � u G�� ��v/�
wv/�                                                                                                                           �2)� 

Substituting value of G��from eqn. (82) we get, 

x�� � 	�E°�� � HE°���                                                                                                                    �2*� 
Where,  

	 � Fv� 9 H�                                                                                                                                           �22� 
Here, 	 is called the membrane stiffness.  Similarly, integrating ��� on the @� face 
of the element with the shear stresses �,� � ��,  gives, 
 x�� � 	�E°�� � HE°���                                                                                                                    �27� 
 x�� � x�� � 	�� 9 H�� E°��                                                                                                            �78� 
 

To obtain bending moments, first the bending moment is expressed about the 
neutral surface due to element strip +��1 � @A -�⁄ �U@�U@A, 
 G����%��� � �� C�⁄ � �� �� 
 

Thus the total bending moment acting on the element in the @, direction is 
 

u G����%��� � �� C�⁄ � �� ����Ov/�
��Owv/�  

 

So, the bending moment per unit length of neutral surface is 
 

��� � u G������ � �� C�⁄ � ��v/�
wv/�                                                                                            �7�� 
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Neglecting the second term in parentheses, we get 

��� � u G���� ��v/�
wv/�                                                                                                                     �7�� 

Again, substituting value of G��from eqn. (82) we get, 

��� � y�\�� � H\���                                                                                                                      �7�� 
Where, 

y � Fv����� 9 H��                                                                                                                                 �7$� 
y is called the bending stiffness. Similarly integrating ��� and �,� � ��, we can 
obtain, 

��� � y�\�� � H\���                                                                                                                      �7&� 
��� � ��� � y�� 9 H�� \��                                                                                                           �7)� 
While we have assumed that strains z,� and z�A due to transverse shear stresses �,A and ��A are negligible, we will never neglect the transverse shear forces. 

{�� � u G�� ��v/�
wv/�                                                                                                                           �7*� 

And, 

{�� � u G�� ��v/�
wv/�                                                                                                                           �72� 

These forces will be defined by resulting equations themselves. 

Now If we solve equation eqns. (87), (89), (90), (93), (95), and (96) for the 

strains, equations (82) to (84) become, 

G�� � x��v � �����v� ��                                                                                                                 ��88� 
G�� � x��v � �����v� ��                                                                                                                 ��8�� 
G�� � x��v � �����v� ��                                                                                                                 ��8�� 
Note that, it was assumed in this section that the reference surface is 
halfway between the inner and outer surfaces of the shell. 
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HAMILTON’S PRINCIPLE 
 
Hamilton’s principle is a minimization principle that seems to apply to all of 
mechanics and most classical physics. It is the end of a development that started 
in the second century B.C. with Hero of Alexandria, who stated that light always 
takes the shortest path. In 1834 Hamilton postulated that while there are usually 
several possible paths along which a dynamic system may move from one point 
to another in space and time, the path actually followed is the one that minimizes 
the time integral of the difference between the kinetic and potential energies. In 
terms of the calculus of variations, developed primarily by Euler and Bernoulli in 
the 18th century, it is usually stated is 
 ^u �	 9 S�|64�}�

}�  } � 8 ,                 ^�~� � 8 ,        } � }�, }�                                           ��8�� 
 

Where ^�~�  are the variations of displacements (virtual displacements), 	 is the 
kinetic energy, S is the strain energy, |64  is any additional energy input to the 
system, and ^ is the variation, operationally equivalent to a total differential. In 
general, Hamilton’s principle can be viewed as an axiom, replacing the axiom of 
Newton’s second law for dynamic problems. In other words, we either accept 
Newton’s second law as an axiom to derive Hamilton’s principle from it for 
dynamic problems, or we accept Hamilton’s principle as an axiom and derive 
Newton’s second law from it. 
 

 

 

LOVE’S EQUATIONS BY THE WAY OF HAMILTON’S 
PRINCIPLE 
 
Hamilton’s principle (multiplied here by −1 for convenience), 
 

^u �S 9	9|6�}�
}�  } � 8                                                                                                         ��8$� 

 

Where, |6 is the total input energy, 
 |6 � F� � F�                                                                                                                                 ��8&� 
 

The times �, and �� are arbitrary, except that at  � � �, and, � � �� all variations 
are 0. The symbol ^ is the variational symbol and is treated mathematically like 
differential symbol. Variational displacements are arbitrary. 
 
From eqns. (104) and (105), we obtain (taking the variational operator inside 
the integral), 
 

u �^S 9 ^F� 9 ^F� 9 ^	�}�
}�  } � 8                                                                                          ��8)� 
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Where,  
 ^	 �Variation in kinetic energy of one infinitesimal element, 
 ^F� �The variation of energy introduced into the shell by distributed load 
components 
 ^F� �Variation of energy due to boundary load 
 ^S �Variation of strain energy stored in one infinitesimal element 
 
Now, taking the time integral of these energy terms and subsequently 
substituting them in eqn. (106) results into a complex equation constituting of 
double and triple integrals. The equation can be satisfied only if each of the triple 
and double integral parts is 0 individually. Moreover, since the variational 
displacements are arbitrary, each integral equation can be satisfied only if the 
coefficients of the variational displacement are 0. Thus the coefficients of the 
triple integral set to zero give the following five equations: 
 9!�x��%��!�� 9 !�x��%��!�� 9x�� !%�!�� � x�� !%�!�� 9 %�%�{��C� � %�%��vo� �� %�%���                                                                                                             ��8*� 
 9!�x��%��!�� 9 !�x��%��!�� 9x�� !%�!�� � x�� !%�!�� 9 %�%�{��C� � %�%��vo� �� %�%���                                                                                                             ��82� 
 9!�{��%��!�� 9 !�{��%��!�� � %�%� Bx��C� � x��C� D � %�%��vo� � � %�%���                      ��87� 
 

Where, {�� and {�� are defined by, 
 !����%��!�� � !����%��!�� ���� !%�!�� 9��� !%�!�� 9{��%�%� � 8                                     ���8� 
 !����%��!�� � !����%��!�� ���� !%�!�� 9��� !%�!�� 9{��%�%� � 8                                     ����� 
 
These five equations are known as Love’s equations. They define the motion (or 
static deflection, for all it matters) due to any type of pressure load. Shear 
deflection and rotary inertia are not included. 
 
 

EQUATIONS OF MOTION 

 
Equations of motion for circular cylindrical shell can be obtained from Love’s 
equations. We have before that for the mentioned structure, 
 �� � �,�� � 1 ;          C� � ∞, C1 � 3                                                                                      ����� 
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Fundamental form equation, 
 � "�� � � ��� � 3�� 1��                                                                                                            ����� 
 

And, Lamé parameters, 
 %� � �, %� � 3                                                                                                                                  ���$� 
 

Substituting eqns. (112) and (114) in Love’s equations and neglecting transverse 
shear force, ��A and longitudinal force, �,, we can obtain the equations of 
motion for circular cylindrical shell, they are, 
 !x��!� � �3!x1�!1 � �� � �v!�o�!}�                                                                                                 ���&� 
 !x�1!� � �3!x11!1 � {1�3 � �1 � �v!�o1!}�                                                                                    ���)� 
 !{��!� � �3!{1�!1 9 x113 � �� � �v!�o�!}�                                                                                    ���*� 
 

Where, 
 {�� � !���!� � �3!�1�!1                                                                                                                   ���2� 
 {1� � !��1!� � �3!�11!1                                                                                                                   ���7� 
 

The strain-displacement relations become, 
 E°�� � !o�!�                                                                                                                                          ���8� 
 E°11 � �3!o1!1 � o�3                                                                                                                           ����� 
 E°�1 � !o1!� � �3!o�!1                                                                                                                        ����� 
 \�� � !p�!�                                                                                                                                           ����� 
 \11 � �3!p1!1                                                                                                                                       ���$� 
 \�1 � !p1!� � �3!p�!1                                                                                                                         ���&� 
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And, q, and q� become, 
 p� � 9!o�!�                                                                                                                                        ���)� 
 p1 � o13 9 �3!o�!1                                                                                                                              ���*� 
 

 

NATURAL FREQUENCIES 

 
SIMPLY SUPPORTED CIRCULAR CYLINDRICAL SHELL 
 

For simply supported shell the boundary conditions are, 

 o��8, 1, }� � 8                                                                                                                                   ���2� 
 o1�8, 1, }� � 8                                                                                                                                   ���7� 
 ����8, 1, }� � 8                                                                                                                                ���8� 
 x���8, 1, }� � 8                                                                                                                                ����� 
 

And, 
 o���, 1, }� � 8                                                                                                                                   ����� 
 o1��, 1, }� � 8                                                                                                                                   ����� 
 �����, 1, }� � 8                                                                                                                                ���$� 
 x����, 1, }� � 8                                                                                                                                 ���&� 
 

Equations of motion for circular cylindrical shell can be obtained from eqns. 
(115) to (117), by setting �R � 0, we get, 
 !x��!� � �3!x1�!1 9 �v!�o�!}�  � 8                                                                                                  ���)� 
 !x�1!� � �3!x11!1 � {1�3 9 �v!�o1!}� � 8                                                                                      ���*� 
 !{��!� � �3!{1�!1 9 x113 9 �v!�o�!}� � 8                                                                                      ���2� 
 

With all terms defined by eqns. (118) to (127). 
 
At a natural frequency every point in the elastic system moves harmonically, we 
may assume that, 
 o���, 1, }� � S���, 1��Z�}                                                                                                             ���7� 
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 o1��, 1, }� � S1��, 1��Z�}                                                                                                             ��$8� 
 o���, 1, }� � S���, 1��Z�}                                                                                                             ��$�� 
 

Substituting these into eqns. (136) to (138), 
 !xY��!� � �3!xY1�!1 � �v��S� � 8                                                                                                ��$�� 
 !xY�1!� � �3!xY11!1 � {Y1�3 � �v��S1 � 8                                                                                  ��$�� 
 !{Y��!� � �3!{Y1�!1 9 xY113 � �v��S� � 8                                                                                  ��$$� 
 

Circular cylindrical shell is treated as combination of ring and simply supported 
beam and thus based on the experience of ring and simply supported beam, the 
following solutions are assumed 
 S���, 1� � % >?;�j�� >?;6�1 9 ��                                                                                        ��$&� 

 S1��, 1� � �;<=�j�� ;<=6�1 9 ��                                                                                        ��$)� 
 S���, 1� � � ;<=�j�� >?; 6�1 9 ��                                                                                        ��$*� 
 
Utilizing these solutions the equations of motion ultimately become, 
 

��v�� 9	�k�j� l� � � 9 H� k63l���% � B	� � H� 63�j�  D� � k	H3�j� l� � 8      ��$2� 
 

B	� � H� 63�j�  D % � ��v�� 9 B	� y3�D �� 9 H� k�j� l� � k63l����
� �9	3 63 9y3 63 �k�j� l� � k63l���� � 8                                                  ��$7� 

 BH	3 �j� D% � �9	3 63
9 y3 63 �k�j� l� � k63l����                                                                                   
� ��v�� 9 y�k�j� l� � k63l��

� 9 	3��� � 8                                           ��&8� 
Or, 
 

��v�� 9\�� \�� \��\�� �v�� 9 \�� \��\�� \�� �v�� 9 \��� �
%��� � 8                                                           ��&�� 
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Where, 
 \�� � 	 �k�j� l� � � 9 H� k63l��                                                                                                 ��&�� 
 \�� � \�� � 	�� H� 63�j�                                                                                                           ��&�� 
 \�� � \�� � H	3 �j�                                                                                                                       ��&$� 
 \�� � B	� y3�D �� 9 H� k�j� l� � k63l��                                                                                  ��&&� 
 \�� � \�� � 9	3 63 9 y3 63 �k�j� l� � k63l��                                                                           ��&)� 
 

\�� � y�k�j� l� � k63l��
� � 	3�                                                                                                 ��&*� 

 

For a nontrivial solution, the determinant of equation (151) has to be 0. 
Expanding the determinant gives, 
 �) � 3��$ � 3��� � 3� � 8                                                                                                      ��&2� 
 

Where,  
 3� � 9 ��v �\�� � \�� � \���                                                                                                      ��&7� 
 3� � ���v�� e\��\�� � \��\�� � \��\�� 9 \��� 9 \��� 9 \��� f                                          ��)8� 
 3� � ���v�� e\��\��� � \��\��� � \��\��� � �\��\��\�� 9 \��\��\��f                        ��)�� 
 
In the above equations, 
 	 � Membrane stiffness 
 y � Bending stiffness 
 � � Length of the shell 
 v � Thickness of the shell 
 3 � Radius of the neutral membrane; k��� � ��l 

 � � Density of material 
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 � � 1, 2, 3, ……; Longitudinal parameter 
 6 �0, 1, 2, 3, ……. ; Circumferential parameter 
 
The solutions of this equation are,  
 ���6� � 9���3�� 9 �3� >?;�� 9 3��                                                                                           ��)�� 
 ���6� � 9���3�� 9 �3� >?;� � �j� 9 3��                                                                                ��)$� 
 ���6� � 9���3�� 9 �3� >?;� � $j� 9 3��                                                                                ��)&� 
 

Where, 
 

� � >?;w� �*3� � �3�� 9 73�3�
��e3�� 9 �3�f�                                                                                                ��))� 

 

Eqn. (158) is a bicubic equation, therefore for every m, n combination, three 
frequencies are obtained. The lowest is associated with the mode where the 
transverse component dominates, while the other two are usually higher by an 
order of magnitude and are associated with the mode where the displacements 
in the tangent plane dominate. For every m, n combination, we therefore have 
three different combinations of A, B, and C. The three mode component ratios for 
every m, n combination are given by, 
 %� � 9 \��e�v��6� 9 \��f 9 \��\��e�v��6� 9 \��fe�v��6� 9 \��f 9 \���                                                                    ��)*� 
 �� � 9 \��e�v��6� 9\��f 9 \��\��e�v��6� 9 \��fe�v��6� 9 \��f 9 \���                                                                    ��)2� 
 

Where, c � 1, 2, 3. 
 
These expressions are useful for forced vibration analysis. 
 
We have used MATLAB to generate programs for calculating natural frequencies 
of our simply supported circular cylindrical shell, 
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MATLAB PROGRAME FOR DETERMINING NATURAL 

FREQUENCY 

 
E=input('Modulus of elasticity = '); 

mu=input('Poissons ratio = '); 

ro=input('Density = '); 

L=input('Length = '); 

OD=input('Outer Diameter = '); 

ID=input('Inner Diameter = '); 

h=(OD-ID)/2; 

a=ID/2+h/2; 

y=input('Highest value of m: '); 

z=input('Highest value of n: '); 

omgasq=zeros(y,z+1); 

omga=zeros(y,z+1); 

freq=zeros(y,z+1); 

format long e 

K=(E*h)/(1-mu^2); 

D=(E*h^3)/(12*(1-mu^2)); 

for m=1:y 

    for n=0:z 

        k11 = K*((m*pi/L)^2+((1-mu)/2)*(n/a)^2); 

        k12 = K*((1+mu)/2)*(m*pi/L)*(n/a); 

        k21 = k12; 

        k13 = (mu*K/a)*(m*pi/L); 

        k31 = k13; 

        k22 = (K+D/a^2)*(((1-mu)/2)*(m*pi/L)^2+(n/a)^2); 

        k23 = -(K*n/a^2)-(D*n/a^2)*((m*pi/L)^2+(n/a)^2); 

        k32 = k23; 

        k33 = D*((m*pi/L)^2+(n/a)^2)^2+(K/a^2); 

        a1 = -(1/(ro*h))*(k11+k22+k33); 

        a2 = (1/(ro*h)^2)*(k11*k33+k22*k33+k11*k22-k23^2-

k12^2-k13^2); 

        a3 = 

(1/(ro*h)^3)*(k11*k23^2+k22*k13^2+k33*k12^2+2*k12*k23*k13

-k11*k22*k33); 

        alpha = acos((27*a3+2*a1^3-

9*a1*a2)/(2*sqrt((a1^2-3*a2)^3))); 

        omgasq(m,n+1) = -(2/3)*sqrt(a1^2-

3*a2)*cos(alpha/3)-(a1/3); 

        omga(m,n+1) = sqrt(omgasq(m,n+1)); 

        freq(m,n+1) = sqrt(omgasq(m,n+1))/(2*pi); 

    end 

end 

format bank 

disp('Natural Frequencies : ') 

disp(freq) 
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RESULTS 
 
Natural Frequencies (in Hertz): 
 
** Along column, circumferential parameter, n varies from 0 to 10 and along 
rows, the longitudinal parameter, m varies from 1 to 10 ** 
   
 
Columns 1 through 6 
 
        729.16          35.59          1617.30       4572.43       8765.94      14175.40 
       1458.32        136.82        1620.07       4575.06       8768.71      14178.25 
       2187.48        302.46        1626.11       4579.56       8773.35      14183.02 
       2916.64        528.33        1637.47       4586.10       8779.89      14189.70 
       3645.80        809.18        1656.86       4594.92       8788.36      14198.31 
       4374.96       1139.17       1687.41       4606.31       8798.83      14208.86 
       5104.12       1512.26       1732.41       4620.62       8811.36      14221.38 
       5833.28       1922.55       1794.94       4638.24       8826.02      14235.88 
       6562.44       2364.48       1877.57       4659.61       8842.90      14252.38 
       7291.60       2832.96       1982.06       4685.19       8862.10      14270.91 
 
  Columns 7 through 11 
 
      20794.14      28619.67      37650.91      47887.27      59328.42 
      20797.04      28622.61      37653.87      47890.24      59331.41 
      20801.89      28627.51      37658.80      47895.20      59336.38 
      20808.68      28634.37      37665.71      47902.14      59343.35 
      20817.41      28643.19      37674.59      47911.06      59352.30 
      20828.10      28653.98      37685.44      47921.97      59363.25 
      20840.74      28666.73      37698.28      47934.86      59376.18 
      20855.35      28681.45      37713.09      47949.74      59391.11 
      20871.93      28698.15      37729.88      47966.61      59408.03 
      20890.49      28716.83      37748.66      47985.46      59426.94 
 
 
 
WHERE SPECIFICATIONS OF THE SIMPLY SUPPORTED CIRCULAR CYLINDRICAL 
SHELL MODEL USED: 
 
Density= 7850 kg/m3 

Modulus of elasticity= 210e9 Pa 
Poisson’s ratio= 0.3 
Length= 2.2 m 
Outer Diameter= 59.5 mm 
Inner Diameter= 55.5 mm 
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FORCED VIBRATION BY MODAL EXPANSION 
 
In the previous section we have determined natural frequencies of circular 
cylindrical shell. For the engineers, the ultimate reason for this preoccupation is 
found in the study of the forced response of shells. For instance, knowing the 
eigenvalues or natural frequencies makes it possible to obtain the forced 
solution in terms of these eigenvalues. This approach is called spectral 
representation or modal expansion and dates back to Bernoulli’s work 
(Bernoulli, 1755). Forces will be assumed to be independent of the motion of the 
shell. This is an admissible approximation for most engineering shell vibration 
cases. 
 

MODAL PARTICIPATION FACTOR 

Any disturbance excites the various natural modes of a shell in various amounts. 
The amount of participation of each mode in the total dynamic response is 
defined by the modal participation factor. This factor may turn out to be 0 for 
certain modes and may approach large values for others, depending on the 
nature of the excitation. 

In a mathematical sense, the natural modes of a shell structure represent 
orthogonal vectors that satisfy the boundary conditions of the structure. This 
vector space can be used to represent any response of the structure. In cases of 
finite-degree-of-freedom systems, the vector space is of finite dimension and the 
number of vectors or natural modes is equal to the number of degrees of 
freedom. For continuous systems, such as shells, the number of degrees of 
freedom is infinite. This means that the general solution will be an infinite series, 
 

o���, ��, }� � M�\�
\O� �u�S\���, ���                                                                                      ��)7� 

 

Where, c � 1, 2, 3.  The PR�  are the natural mode components in the three 
principal directions. The modal participation factors  ��  are unknown and have 
to be determined in the following.  

The Love equations are of the form 

� �o�, o�, o�� 9 �o~  9 �vo~� � 9�                                                                                          ��*8� 
 

where ¡ is an equivalent viscous damping factor. The viscous damping term was 
introduced through the forcing term, replacing the original �R  by �R 9 ¡¢£   . Also, 
the damping factor is assumed to be the same in all three principal directions.  
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The operators ¤R are defined, from Love’s equation, as 

���o�, o�, o�� � �%�%� �!�x��%��!�� � !�x��%��!�� � x�� !%�!�� 9 x�� !%�!��� %�%�{��C� ¥                                                                                                        ��*�� 
���o�, o�, o�� � �%�%� �!�x��%��!�� � !�x��%��!�� � x�� !%�!�� 9 x�� !%�!��� %�%�{��C� ¥                                                                                                        ��*�� 
���o�, o�, o�� � �%�%� �!�{��%��!�� � !�{��%��!�� 9 %�%� Bx��C� �x��C� D�                          ��*�� 
 

All of the simplifications discussed previously can be applied here. Eqn. (169) is 
general and will apply for all geometries and simplifications. Substituting eqn.  
(169) in eqn. (170) gives, 

M¦�\��S�\, S�\, S�\� 9 ��\  S~\ 9 �v��  \S\ § � 9��
\O�                                                      ��*$� 
However, from our eigenvalue analysis, we know that, 

��S�\, S�\, S�\� � 9�v�\�S\                                                                                                  ��*&� 
Substituting this in eqn. gives, 

M��v�� \ � ��  \ � �v�\��\�S\ � ��
\O�                                                                                      ��*)� 
We know that the natural modes PR�  are orthogonal. As in a Fourier analysis, 
here advantage of the orthogonality of the sine and cosine functions is taken. 
Finally the form obtained is, 

�� \ � ��v�  \ ��\��\ � ¨\                                                                                                              ��**� 
Where,  

¨\ � ��vx\u u ���S�\ � ��S�\ � ��S�\� 
��

 
�� %�%� �� ��                                            ��*2� 
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x\ � u u �S�\� �S�\� � S�\� � 
��

 
�� %�%� �� ��                                                                      ��*7� 

Thus, if we take © terms of the modal expansion series as approximation to an 
infinite number, we have to solve the equation defining the modal participation 
factors © times. There is no principal difficulty connected with this. The forcing 
functions �,, ��, and �A have to be given and the mode components P,�, P�� and PA� and the natural frequencies ª�  have to be known, either as direct functional 
or numerical theoretical solutions of the eigenvalue problem or as experimental 
data in functional or numerical form. The mass density per unit shell surface «¬ 
is obviously also known and the damping factor ¡ has to be given or has to be 
estimated. For shells of nonuniform thickness, ¬ has to be moved inside the 
integrals. 

 

SOLUTION OF MODAL PARTICIPATION FACTOR 

The modal participation factor equation is a simple oscillator equation. Thus we 
may interpret the forced vibration of shells by considering the shell as composed 
of simple oscillators, where each oscillator consists of the shell restricted to 
vibrate in one of its natural modes. All these oscillators respond simultaneously, 
and the total shell vibration is simply the result of addition (superposition) of all 
the individual vibrations. 

The simple oscillator equation is solved by the Laplace transformation technique. 
The solutions for subcritical, critical, and supercritical damping are derived, even 
though only the first case is of real importance in shell vibration applications. 

The modal participation factor equation can be written as 

�� \ � �T\�\�  \ ��\��\ � ¨\�}�                                                                                                  ��28� 
Where,  

¨\�}� �   ���S�\ � ��S�\ � ��S�\�%�%� �� �� �� �� �vx\                                                    ��2�� 
T\ � ���v�\                                                                                                                                       ��2�� 
Where, T\ is called the modal damping coefficient . It is analogous to the damping 

coefficient in the simple oscillator problem. 

Taking the Laplace transformation of Eq. (180), it can be solved for the modal 

participation factor in the Laplace domain: 

�\�"� � ¨\�"� � �\�8��" � �T\�\� � �  \�8��" � T\�\�� ��\��� 9 T\��                                                                         ��2��    
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The inverse transformation depends on whether the term 1 –Q�� is positive, zero, 

or negative. The positive case, when Q� ® 1, is the most common since it is very 

difficult to dampen shells more than that. It is called the “subcritical case”. The 

critical case occurs when Q� � 1 and has no practical significance other than that 

it defines the damping that causes an initial modal displacement to decay in the 

fastest possible time without an oscillation. Supercritical damping Q� ¯ 1 occurs 

only if a shell has such a high damping that it creeps back from an initial modal 

displacement without overshooting the equilibrium position. 

For the subcritical case �Q� ® 1�, we define a real and positive number  °�: 

±\ � �\��9 T\�                                                                                                                              ��2$� 
The inverse Laplace transformation of Eq. (183) then gives 

�\�}� � �wT\�\} _�\�8� 45"±\} � ��\�8�T\�\ � �  \�8�
 "6±\}±\  ²
� �±\u ¨\�³��wT\�\�}w³�   "6±\�} 9 ³� ³�

8                                               ��2&�    
The solution is given in the form of the convolution integral since the forcing 

function �́���is at this point arbitrary. Once it is known, the convolution integral 

can be evaluated. It is also possible to take the inverse Laplace transformation of 

Eq. (183) with a known forcing function directly. 

Vibrations caused by initial conditions will be oscillatory but will decay 

exponentially with time. The convolution integral, when evaluated for a specific 

forcing, will divide into a transient part and possibly a steady-state part if the 

forcing is periodic. The transient part will decay exponentially with time. 

A special case of considerable technical interest is when damping is 0. The 

solution reduces to 

�\�}� � �\�8� 45"�\} � �  \�8� "6�\}�\ � ��\u ¨\�³� "6�\�} 9 ³� ³}
8                     ��2)�    

Since most structures are very lightly damped, Eq. (186) in often used to get an 

approximate response since it is much simpler to use. 

Next, let us investigate the supercritical case �Q� ¯ 1�. In this case, the value of 1 9 Q�� is negative. Defining a real and positive number z� , 

E\ � �\�T\� 9 �                                                                                                                               ��2*� 
We obtain, taking the inverse Laplace transformation, 
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�\�}� � �wT\�\} _�\�8� 45"v E\} � ��\�8�T\�\ � �  \�8�
 "6v E\}E\  ²
� �E\u ¨\�³��wT\�\�}w³�   "6vE\�} 9 ³� ³�

8                                             ��22� 
The vibrations caused by initial conditions are now non oscillatory, however, if 

the forcing is periodic, an oscillatory steady-state solution will still result. 

As a special case, we obtain the critical damping solution Q� � 1  by reduction: 

�\�}� � �w�\}��\�8� � ��\�8��\ � �  \�8�
} � � u ¨\�³�}
8 �w�\�}w³��} 9 ³� ³            ��27� 

 

STEADY-STATE HARMONIC RESPONSE 

A technically important case occurs when the load on the shell varies 
harmonically with time and when the onset of vibrations (the transient part) is 
of no interest. Using a complex notation to get the response to both sine and 
cosine loading, we may write the load as 

����, ��, }� � �µ���, ����wZ�}                                                                                                 ��78� 
Using eqn. (180), it becomes, 

�� \ � �T\�\�  \ ��\��\ � ¨\µ�Z�}                                                                                               ��7�� 
Where,  

¨\µ � ��vx\u u ���µS�\ � ��µS�\ � ��µS�\�%�%�  �� �� 
��

 
��                                            ��7�� 

At steady state, the response will be harmonic also but lagging behind by a phase 
angle ¶�, 

�\ � %\�Z��}w�\�                                                                                                                              ��7�� 
Substituting this gives, 

%\�9Z�\ � ¨\µk�\� 9��l��ZT\�\�                                                                                             ��7$� 
The magnitude of response is, therefore, 

%\ � ¨\µ�\�:�� 9 �� �\⁄ ��
� � $T\��� �\⁄ ��                                                                             ��7&� 
The phase lag is, 

�\ � ·¸=w� �T\��/�\�� 9 �� �\⁄ ��                                                                                                             ��7)� 
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As expected, a shell will behave similarly to a collection of simple oscillators. 
Whenever the excitation frequency coincides with one of the natural frequencies, 
a peak in the response curve will occur. The harmonic response solution is the 
same for subcritical and supercritical damping, except that for equal forcing, the 
response amplitudes at resonance become less and less pronounced as damping 
is increased until they are indistinguishable from the off-resonance response. 

 

STEADY-STATE CIRCULAR CYLINDRICAL SHELL 

RESPONSE TO HARMONIC POINT LOAD WITH ALL MODE 
COMPONENTS CONSIDERED 

For simply supported boundary conditions, there are two sets of natural modes 
to consider. For ¶ � 0, ¹ � 0, 1, 2, 3,…… ,» � 1, 2, 3, ………, we have, 

S��6��� � %�6��6 >?;��j�� � >?;61                                                                                          ��7*�    
S1�6��� � ��6��6 ;<=�j�� ;<=61                                                                                              ��72�    
S��6��� � ;<=�j�� >?; 61                                                                                                        ��77� 
and for ¶ � ¼/�2¹� the set of natural modes, which is orthogonal to the modes of 
eqns. (197)–(199), is 

S��6��� � %�6��6 >?;��j�� � ;<=61                                                                                           ��88�    
S1�6��� � 9��6��6 "6�j�� 45" 61                                                                                         ��8��    
S��6��� � ;<=�j�� ;<=61                                                                                                         ��8��    
+½¾R/¿½¾R and À½¾R/¿½¾R are obtained from eqns. (167) and (168). 

Note that c � 1, 2, 3, corresponding to each of the natural frequencies for a given �», ¹� combination. In most engineering applications, the natural frequencies 

associated with c � 2 and 3 are so high that the contribution of these modes can 

be neglected. But we consider them here. 

The force shown in fig. 7 results in following loading description, 

����, 1, }� � 8                                                                                                                                   ��8��    
�1��, 1, }� � 8                                                                                                                                   ��8$�    
����, 1, }� � ¨��Z�} �3^�1 9 1µ�^�� 9 �µ�                                                                              ��8&�    
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Where, imaginary part of �Z�} represents sinª�. 

 

Fig. 7 Circular cylindrical shell acted on by a point force 

For each set of natural modes solution i.e. displacement of a point on the shell 
surface in three principle coordinate directions is determined and then they are 
added together for the complete solution.  

The final solutions for displacement of a point on the shell surface in three 
principle coordinate directions are, 

 

o�
�MM M¨��%�6��6� "6��j�µ� � 45"��j�� � 45"6�1 9 1µ� "6��} 9 ��6��vx�6����

�
6O8

�
�O�

�
O�          ��8)� 

 

o1
�MM M¨����6��6� ;<=��j�µ� � ;<=��j�� � ;<=6�1 9 1µ� ;<=��} 9��6��vx�6����
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6O8

�
�O�

�
O�           ��8*� 
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Where,  

x�6
ÄÅÆ
ÅÇ�B%�6��6D

� � B��6��6D
� � �
�3j�        � 6 ` 8

�B%�6��6D
� � �
�3j                    ;  � 6 � 8       a                                                             ��87� 

And,  

���� � ��6� g�� 9 B ���6D��
� � $T�6� B ���6D�                                                                ���8� 

��6 is determined from the eqn. (196). 

 

To determine the response of our simply supported circular cylindrical shell 
being subjected to a sinusoidal actuation based on the theories described in the 
preceding sections, we have written programs on MATLAB which given in the 
following section. 

 

MATLAB PROGRAMS 

To obtain motion of any specific point on the shell surface, while the shell is 
being excited by a sinusoidal force of constant amplitude and frequency, in terms 
of displacement (in @A direction) against time the following program has been 
used 

 

disp('INPUT ALL DATAS IN SI UNIT') 

E=input('Modulus of elasticity = '); 

mu=input('Poissons ratio = '); 

ro=input('Density = '); 

L=input('Length = '); 

OD=input('Outer Diameter = '); 

ID=input('Inner Diameter = '); 

h=(OD-ID)/2; 

a=ID/2+h/2; 

y=input('Highest value of m: '); 

z=input('Highest value of n: '); 

P3=input('Enter maximum value of force : '); 

f=input('Excitation frequency (in Hertz) : '); 

lmda=input('Equivalent viscous damping factor (in Ns/m) : 

'); 

u3=0; 

disp('Enter location of harmonic load') 

loadx=input('x = '); 

loadth=input('Theta (in radians) = '); 
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disp('Enter location of the point of investigation') 

x=input('X = ');  

th=input('Theta (in radians) = '); 

omgaextn=f*2*pi; t=1:0.01:10; 

omgasq=zeros(y,z+1,3); 

omga=zeros(y,z+1,3); 

freq=zeros(y,z+1,3); 

AbyC=zeros(y,z+1,3); 

BbyC=zeros(y,z+1,3); 

N=zeros(y,z+1,3); 

format long e 

K=(E*h)/(1-mu^2); 

D=(E*h^3)/(12*(1-mu^2)); 

for i=1:3 

    for m=1:y 

        for n=0:z 

        k11 = K*((m*pi/L)^2+((1-mu)/2)*(n/a)^2); 

        k12 = K*((1+mu)/2)*(m*pi/L)*(n/a); 

        k21 = k12; 

        k13 = (mu*K/a)*(m*pi/L); 

        k31 = k13; 

        k22 = (K+D/a^2)*(((1-mu)/2)*(m*pi/L)^2+(n/a)^2); 

        k23 = -(K*n/a^2)-(D*n/a^2)*((m*pi/L)^2+(n/a)^2); 

        k32 = k23; 

        k33 = D*((m*pi/L)^2+(n/a)^2)^2+(K/a^2); 

        a1 = -(1/(ro*h))*(k11+k22+k33); 

        a2 = (1/(ro*h)^2)*(k11*k33+k22*k33+k11*k22-k23^2-

k12^2-k13^2); 

        a3 = 

(1/(ro*h)^3)*(k11*k23^2+k22*k13^2+k33*k12^2+2*k12*k23*k13

-k11*k22*k33); 

        alpha = acos((27*a3+2*a1^3-

9*a1*a2)/(2*sqrt((a1^2-3*a2)^3))); 

        if i==1 

        omgasq(m,n+1,i) = -(2/3)*sqrt(a1^2-

3*a2)*cos(alpha/3)-(a1/3); 

        elseif i==2 

            omgasq(m,n+1,i) = -(2/3)*sqrt(a1^2-

3*a2)*cos((alpha+2*pi)/3)-(a1/3); 

        else 

            omgasq(m,n+1,i) = -(2/3)*sqrt(a1^2-

3*a2)*cos((alpha+4*pi)/3)-(a1/3); 

        end 

                 

        omga(m,n+1,i) = sqrt(omgasq(m,n+1,i)); 

        freq(m,n+1,i) = sqrt(omgasq(m,n+1,i))/(2*pi); 

        AbyC(m,n+1,i) = -(k13*(ro*h*(omga(m,n+1,i))^2-

k22)-k12*k23)/((ro*h*(omga(m,n+1,i))^2-

k11)*(ro*h*(omga(m,n+1,i))^2-k22)-k12^2); 
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        BbyC(m,n+1,i) = -(k23*(ro*h*(omga(m,n+1,i))^2-

k11)-k21*k13)/((ro*h*(omga(m,n+1,i))^2-

k11)*(ro*h*(omga(m,n+1,i))^2-k22)-k12^2); 

        if ((ro*h*(omga(m,n+1,i))^2-

k11)*(ro*h*(omga(m,n+1,i))^2-k22)-k12^2)==0 

            nom=0; denom=1; 

        else 

            zeta=lmda/(2*ro*h*omga(m,n+1,i)); 

        phi=atan(2*zeta*(omgaextn/omga(m,n+1,i))/(1-

(omgaextn/omga(m,n+1,i))^2)); 

        nom=P3*sin(m*pi*loadx/L)*sin(m*pi*x/L)*cos(n*(th-

loadth))*sin(omgaextn*t-phi); 

        if n==0 

            N(m,n+1,i)=((AbyC(m,n+1,i))^2+1)*L*a*pi; 

        else 

            

N(m,n+1,i)=((AbyC(m,n+1,i))^2+(BbyC(m,n+1,i))^2+1)*L*a*pi

/2; 

        end 

        denom =ro*h*N(m,n+1,i)*(omga(m,n+1,i))^2*sqrt((1-

(omgaextn/omga(m,n+1,i))^2)^2+4*zeta^2*(omgaextn/omga(m,n

+1,i))^2); 

        end 

        u3=u3+nom/denom;        

        end 

    end 

end 

plot(t,u3),grid 

 

RESULTS 

Motion of the point on the shell where force applied: 
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The following input parameters were defined: 

Modulus of elasticity = 210e9 Pa 

Poisson’s ratio = 0.3 

Density = 7850 kg/m3 

Length = 2.2 m 

Outer Diameter = .0595 m 

Inner Diameter = .0555 m 

Highest value of m: 100 

Highest value of n: 100 

Enter maximum value of force : 10 N 

Excitation frequency (in Hertz) : 36 

Equivalent viscous damping factor (in Ns/m) : 175 

Location of harmonic load, 

x = 1.1 m 

Theta (in radians) = pi 

Location of the point of investigation, 

X = 1.1 m 

Theta (in radians) = pi 

 

Then, for the amplitudes of displacement of points on a line along the length of 
the circular cylindrical shell at any given angle (i.e. @� coordinate), following 
program has been used, 

 

disp('INPUT ALL VALUES IN SI UNIT') 

E=input('Modulus of elasticity = '); 

mu=input('Poissons ratio = '); 

ro=input('Density = '); 

L=input('Length (in meters)= '); 

OD=input('Outer Diameter (in meters)= '); 

ID=input('Inner Diameter (in meters)= '); 

h=(OD-ID)/2; 

a=ID/2+h/2; 

y=input('Highest value of m: '); 



81 

 

z=input('Highest value of n: '); 

P3=input('Enter maximum value of force : '); 

f=input('Excitation frequency (in Hertz) : '); 

lmda=input('Equivalent viscous damping factor (in Ns/m) : 

'); 

u3=zeros(1,L/0.01+1); 

disp('Enter location of harmonic load') 

loadx=input('x (in meters)= '); 

loadth=input('Theta (in radians) = '); 

disp('Enter the angle at which displacement along the 

shell length is required') 

x=0:0.01:L;  

th=input('Theta (in radians) = '); 

omgaextn=f*2*pi; 

omgasq=zeros(y,z+1,3); 

omga=zeros(y,z+1,3); 

freq=zeros(y,z+1,3); 

AbyC=zeros(y,z+1,3); 

BbyC=zeros(y,z+1,3); 

N=zeros(y,z+1,3); 

format long e 

K=(E*h)/(1-mu^2); 

D=(E*h^3)/(12*(1-mu^2)); 

for i=1:3 

    for m=1:y 

        for n=0:z 

        k11 = K*((m*pi/L)^2+((1-mu)/2)*(n/a)^2); 

        k12 = K*((1+mu)/2)*(m*pi/L)*(n/a); 

        k21 = k12; 

        k13 = (mu*K/a)*(m*pi/L); 

        k31 = k13; 

        k22 = (K+D/a^2)*(((1-mu)/2)*(m*pi/L)^2+(n/a)^2); 

        k23 = -(K*n/a^2)-(D*n/a^2)*((m*pi/L)^2+(n/a)^2); 

        k32 = k23; 

        k33 = D*((m*pi/L)^2+(n/a)^2)^2+(K/a^2); 

        a1 = -(1/(ro*h))*(k11+k22+k33); 

        a2 = (1/(ro*h)^2)*(k11*k33+k22*k33+k11*k22-k23^2-

k12^2-k13^2); 

        a3 = 

(1/(ro*h)^3)*(k11*k23^2+k22*k13^2+k33*k12^2+2*k12*k23*k13

-k11*k22*k33); 

        alpha = acos((27*a3+2*a1^3-

9*a1*a2)/(2*sqrt((a1^2-3*a2)^3))); 

        if i==1 

        omgasq(m,n+1,i) = -(2/3)*sqrt(a1^2-

3*a2)*cos(alpha/3)-(a1/3); 

        elseif i==2 

            omgasq(m,n+1,i) = -(2/3)*sqrt(a1^2-

3*a2)*cos((alpha+2*pi)/3)-(a1/3); 

        else 



82 

 

            omgasq(m,n+1,i) = -(2/3)*sqrt(a1^2-

3*a2)*cos((alpha+4*pi)/3)-(a1/3); 

        end 

                 

        omga(m,n+1,i) = sqrt(omgasq(m,n+1,i)); 

        freq(m,n+1,i) = sqrt(omgasq(m,n+1,i))/(2*pi); 

        AbyC(m,n+1,i) = -(k13*(ro*h*(omga(m,n+1,i))^2-

k22)-k12*k23)/((ro*h*(omga(m,n+1,i))^2-

k11)*(ro*h*(omga(m,n+1,i))^2-k22)-k12^2); 

        BbyC(m,n+1,i) = -(k23*(ro*h*(omga(m,n+1,i))^2-

k11)-k21*k13)/((ro*h*(omga(m,n+1,i))^2-

k11)*(ro*h*(omga(m,n+1,i))^2-k22)-k12^2); 

        if ((ro*h*(omga(m,n+1,i))^2-

k11)*(ro*h*(omga(m,n+1,i))^2-k22)-k12^2)==0 

            nom=0; denom=1; 

        else 

            zeta=lmda/(2*ro*h*omga(m,n+1,i)); 

        phi=atan(2*zeta*(omgaextn/omga(m,n+1,i))/(1-

(omgaextn/omga(m,n+1,i))^2)); 

        nom=P3*sin(m*pi*loadx/L)*sin(m*pi*x/L)*cos(n*(th-

loadth)); 

        if n==0 

            N(m,n+1,i)=((AbyC(m,n+1,i))^2+1)*L*a*pi; 

        else 

            

N(m,n+1,i)=((AbyC(m,n+1,i))^2+(BbyC(m,n+1,i))^2+1)*L*a*pi

/2; 

        end 

        denom =ro*h*N(m,n+1,i)*(omga(m,n+1,i))^2*sqrt((1-

(omgaextn/omga(m,n+1,i))^2)^2+4*zeta^2*(omgaextn/omga(m,n

+1,i))^2); 

        end 

        u3=u3+nom./denom;        

        end 

    end 

end 

plot(x,u3),grid 
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RESULTS 
 
 

 
 

The following input parameters were defined: 

Modulus of elasticity = 210e9 Pa 

Poisson’s ratio = 0.3 

Density = 7850 kg/m3 

Length = 2.2 m 

Outer Diameter = .0595 m 

Inner Diameter = .0555 m 

Highest value of m: 100 

Highest value of n: 100 

Enter maximum value of force: 10 N 

Excitation frequency (in Hertz): 36 

Equivalent viscous damping factor (in Ns/m): 175 

Location of harmonic load, 

x = 1.1 m 

Theta (in radians) = pi 
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Enter the angle at which displacement along the shell length is required, 

Theta (in radians) = pi 

 

And, for resonance curve the following program is used, 

 

disp('INPUT ALL DATAS IN SI UNIT') 

E=input('Modulus of elasticity = '); 

mu=input('Poissons ratio = '); 

ro=input('Density = '); 

L=input('Length = '); 

OD=input('Outer Diameter = '); 

ID=input('Inner Diameter = '); 

h=(OD-ID)/2; 

a=ID/2+h/2; 

y=input('Highest value of m: '); 

z=input('Highest value of n: '); 

P3=input('Enter maximum value of force : '); 

disp('Enter frequency range (must be integer values,in 

Hertz)') 

f1=input('Start (1Hz or higher)= '); f2=input('End= '); 

lmda=input('Equivalent viscous damping factor (in Ns/m) : 

'); 

u3s=zeros(1,f2-f1+1); 

disp('Enter location of harmonic load') 

loadx=input('x = '); 

loadth=input('Theta (in radians) = '); 

disp('Enter location of the point of investigation') 

x=input('X = ');  

th=input('Theta (in radians) = '); 

format long e 

K=(E*h)/(1-mu^2); 

D=(E*h^3)/(12*(1-mu^2)); 

for f=f1:f2 

    u3=0; omgaextn=f*2*pi; 

    omgasq=zeros(y,z+1,3); 

omga=zeros(y,z+1,3); 

freq=zeros(y,z+1,3); 

AbyC=zeros(y,z+1,3); 

BbyC=zeros(y,z+1,3); 

N=zeros(y,z+1,3); 

  

for i=1:3 

    for m=1:y 

        for n=0:z 

        k11 = K*((m*pi/L)^2+((1-mu)/2)*(n/a)^2); 

        k12 = K*((1+mu)/2)*(m*pi/L)*(n/a); 

        k21 = k12; 



85 

 

        k13 = (mu*K/a)*(m*pi/L); 

        k31 = k13; 

        k22 = (K+D/a^2)*(((1-mu)/2)*(m*pi/L)^2+(n/a)^2); 

        k23 = -(K*n/a^2)-(D*n/a^2)*((m*pi/L)^2+(n/a)^2); 

        k32 = k23; 

        k33 = D*((m*pi/L)^2+(n/a)^2)^2+(K/a^2); 

        a1 = -(1/(ro*h))*(k11+k22+k33); 

        a2 = (1/(ro*h)^2)*(k11*k33+k22*k33+k11*k22-k23^2-

k12^2-k13^2); 

        a3 = 

(1/(ro*h)^3)*(k11*k23^2+k22*k13^2+k33*k12^2+2*k12*k23*k13

-k11*k22*k33); 

        alpha = acos((27*a3+2*a1^3-

9*a1*a2)/(2*sqrt((a1^2-3*a2)^3))); 

        if i==1 

        omgasq(m,n+1,i) = -(2/3)*sqrt(a1^2-

3*a2)*cos(alpha/3)-(a1/3); 

        elseif i==2 

            omgasq(m,n+1,i) = -(2/3)*sqrt(a1^2-

3*a2)*cos((alpha+2*pi)/3)-(a1/3); 

        else 

            omgasq(m,n+1,i) = -(2/3)*sqrt(a1^2-

3*a2)*cos((alpha+4*pi)/3)-(a1/3); 

        end 

                 

        omga(m,n+1,i) = sqrt(omgasq(m,n+1,i)); 

        freq(m,n+1,i) = sqrt(omgasq(m,n+1,i))/(2*pi); 

        AbyC(m,n+1,i) = -(k13*(ro*h*(omga(m,n+1,i))^2-

k22)-k12*k23)/((ro*h*(omga(m,n+1,i))^2-

k11)*(ro*h*(omga(m,n+1,i))^2-k22)-k12^2); 

        BbyC(m,n+1,i) = -(k23*(ro*h*(omga(m,n+1,i))^2-

k11)-k21*k13)/((ro*h*(omga(m,n+1,i))^2-

k11)*(ro*h*(omga(m,n+1,i))^2-k22)-k12^2); 

        if ((ro*h*(omga(m,n+1,i))^2-

k11)*(ro*h*(omga(m,n+1,i))^2-k22)-k12^2)==0 

            nom=0; denom=1; 

        else 

            zeta=lmda/(2*ro*h*omga(m,n+1,i)); 

        phi=atan(2*zeta*(omgaextn/omga(m,n+1,i))/(1-

(omgaextn/omga(m,n+1,i))^2)); 

        nom=P3*sin(m*pi*loadx/L)*sin(m*pi*x/L)*cos(n*(th-

loadth)); 

        if n==0 

            N(m,n+1,i)=((AbyC(m,n+1,i))^2+1)*L*a*pi; 

        else 

            

N(m,n+1,i)=((AbyC(m,n+1,i))^2+(BbyC(m,n+1,i))^2+1)*L*a*pi

/2; 

        end 
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        denom =ro*h*N(m,n+1,i)*(omga(m,n+1,i))^2*sqrt((1-

(omgaextn/omga(m,n+1,i))^2)^2+4*zeta^2*(omgaextn/omga(m,n

+1,i))^2); 

        end 

        u3=u3+nom/denom;        

        end 

    end 

end 

u3s(1,f)=u3; 

end 

f=f1:f2; 

plot(f,u3s),grid 

 

RESULTS 

Resonance curve for the point on the circular cylindrical shell where force is 
applied, 

 

The following input parameters were defined: 

Modulus of elasticity = 210e9 Pa 

Poisson’s ratio = 0.3 

Density = 7850 kg/m3 

Length = 2.2 m 
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Outer Diameter = .0595 m 

Inner Diameter = .0555 m 

Highest value of m: 100 

Highest value of n: 100 

Maximum value of force: 10 N 

Frequency range (must be integer values, in Hertz) 

Start (1Hz or higher) = 1 Hz 

End= 100 Hz 

Equivalent viscous damping factor (in Ns/m) : 175 

Location of harmonic load, 

x = 1.1 m 

Theta (in radians) = pi 

Location of the point of investigation, 

X = 1.1 m 

Theta (in radians) = pi 
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CHAPTER 5 

EXPERIMENTAL WORK 

 

EQUIPMENTS: 

1. Cylindrical pipe 
2. Supports (for providing simply support) 
3. Proximity sensor 
4. Aluminum foils 
5. Hammer 
6. Oscilloscope 
7. Cements, rods, sands etc for making concrete base 

PROBLEM SPECIFICATION: 

MATERIAL FOR SHELL: 

 MILD STEEL 

PROPERTIES OF MILD STEEL: 

MODULUS OF RIGIDITY: 210 GPa 

DENSITY: 7850 kg/m3   

POISSON RATIO: 0.3 

MEASUREMENTS OF THE PIPE: 

LENGTH:  2.59 m (8.5 feet) 

RADIUS:     59.5 mm 

THICKNESS:  2 mm 

DISTANCE BETWEEN 2 SUPPORTS: 2.2 m 
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DESCRIPTION OF THE PROXIMITY SENSOR 

Approvals and Safety Considerations  

 The ECL202/ECL202e is compliant with the following CE directives:  

Safety: 61010-1:2001  

EMC: 61326-1, 61326-2-3  

To maintain compliance with these standards, the following operating conditions 
must be maintained:  

• All I/O connecting cables must be less than three meters in length  
• AC power cables must be rated at a minimum of 250 V and 5 A  
• AC power must be connected to a grounded mains outlet rated less than 

20 A   
• Power supply must have CE certification and provide safety isolation from 

the mains according to IEC60950 or 61010.  
• Sensors must not be attached to parts operating at hazardous voltages in 

excess of 30 VRMS or 60 VDC  
• All external connections must be SELV (Safety Extra Low Voltage). 
• Use of the equipment in any other manner may impair the safety and EMI 

protections of the equipment. 

DESCRIPTION    

The Lion Precision ECL202 Eddy-Current Displacement Sensor provides high-
resolution, noncontact measurement of position changes of a conductive target. 
The system consists of driver electronics and a probe calibrated for a specific 
material and range. The calibration information is detailed on a calibration 
certificate which is shipped with the system. The ECL202 provides a linear 
analog voltage proportional to changes in the target position and a digital 
switched (setpoint) output with a user programmed switching setpoint. 

QUICK START INSTRUCTIONS  

1.  Connect the probe to the ECL202. The ECL202 is calibrated to a specific probe 
identified by serial number. The probe serial number must match the “USE 
PROBE S/N” label on the front of the ECL202.  

2.  Connect the output to a monitoring device.  

3.  Connect then apply power.  

4.  Adjust the probe position so the Range Indicator shows green 
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FRONT PANEL CONTROLS AND INDICATORS  

LED Range Indicator  

The Range Indicator monitors and displays the probe position within its 
calibrated range. The graphic below shows the indicator condition at various 
points within the calibrated range. 

 

Figure: LED RANGE INDICATOR 

The LED Range Indicator is independent of the output voltage and not affected 
by the Offset button. Shifting the output voltage by using the Offset button may 
allow an apparently valid output voltage to exist while the probe is out of range. 
When the Near or Far LED is red, the probe is out of range and the output voltage 
is not a reliable indication of the target position. 

Offset Button  

Pushing the Offset button shifts the DC level of the output voltage to the center of 
the voltage range (i.e. 5 V for a 0-10 V output). The button will only function 
when the probe is in the center 20% of its calibrated range (center green LED). If 
the center green LED on the Range Indicator is not on, the Offset button will not 
function. This function establishes a repeatable master point for reference 
measurements.   

1.  Place good part in the measurement area.  

2.  Position probe to center 20% of range (center indicator LED). 

3. Press Offset button.  

4.  All subsequent measurements indicate deviation from center of range (5 V). 

Resetting Offset  

Hold the Offset button for four seconds to remove any output DC shift. 
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Set point Button      

The ECL202 provides an adjustable set point at which a switched output 
activates. The output switch closes when the output voltage is more positive 
(larger gap) than the user-adjusted set point. Pressing the Set point button will 
set the threshold voltage to the current output voltage. The set point includes a 
0.085V hysteresis, requiring that the sensor output drop 0.085V below the set 
point voltage before the switched output opens. 

Analog Output Signal  

The output signal is an analog voltage of 0-10 VDC. The output voltage is 
proportional to the probe-target gap. As the probe-target gap increases, the 
voltage becomes more positive. See the included calibration certificate for 
specific information.  

Interpreting the Output Voltage  

Output voltage change for a given change in the probe-target gap is called 
sensitivity. The sensitivity of the sensor is listed on the calibration certificate.  

Change in gap calculation:  

Gap Change = Voltage Change / Sensitivity  

For example: With a sensitivity of 1V/2 µm and a voltage change of  

+3 V, the probe-target gap has increased by 6 µm. 

Remote Offset and Setpoint  

The front panel Offset and Set point buttons can be activated remotely. Each 
remote input connects to an optoisolator.  The functions are activated by 
applying 15-24 V to the remote control input terminals.  

Note: Because the remote operation mimics front panel operation, activating the 
Offset function for more than four seconds will restore factory default value for 
Offset.  

Setpoint Switch Output  

When the output voltage is more positive than the user adjusted setpoint voltage, 
the output switch contacts will close. These contacts have a maximum resistance 
of 2.5   and can conduct up to 250 mA. The maximum voltage that can be 
switched is 30VAC/60VDC. The output is a solid state switch closure and can 
conduct AC or DC. 
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MAXIMIZING PERFORMANCE  

Extension Cables  

Sensors which are calibrated with a probe extension cable must be operated 
with the extension cable to meet specifications. Operating without the extension 
cable will result in inaccurate measurements.   

Probe Mounting  

If multiple probes are mounted together, they must be separated by at least 
three probe diameters to prevent interference between the channels.  The area 
within 3 probe diameters to the sides and 1.5 diameters behind should be kept 
clear of any metallic objects other than the object to be measured. Otherwise, 
custom calibration will be required. 

 

 

 

 

Ungrounded Targets  

Ungrounded targets have the potential to inject noise into the sensor. If the 
output is unusually noisy, be sure the target is grounded. On moving/rotating 
targets this can be accomplished with a small metal brush or thin piece of metal 
which is connected to ground. 
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CONNECTING TO THE ECL202 
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SPECIFICATIONS: 

Parameter Specification Notes 

Power Requirement 15-24 VDC, 2.5 W  

Resolution          
@15kHz        Nonferrous 
(Typical)1, 2              
                             Ferrous               

0.006 to 0.008%F.S. 
(ECL202) 

 

0.3 µm or higher (ECL202e) 

0.007 to 0.1%F.S. (ECL202)  

0.3 µm or higher (ECL202e) 

See  
calibration  
sheet for  
specifics 

Linearity ±0.2%F.S.  

Error Band1 ±0.4%F.S.  

Analog Output1 
 

0-10 VDC, 0     , 15 mA 
max 

 

Analog Output Update 

Rate 

15 µS  

Setpoint Switch Output Solid state switch 
closure:  

On state: 2.5     , 250 mA 
max  
Off state: 30 VAC/60 
VDC  
max 

 

Remote Setpoint and 
Offset  
Inputs 

15-24 VDC to activate, 
3-7 mA 

Optoisolator  
inputs 

Driver Operating  
Environment 

4°C-50°C, IP40  

Probe                Standard  

                             Probes 
Operating  
Environment    High 
temp                                   

Temp                 Probes 

-25°C to +125°C, IP67   

 
 
-25°C to +200°C, IP63 

 

 

 

Actual values depend on probe and range and are listed on the calibration 
certificate shipped with the product. Contact Lion Precision for replacement 
certificates.  

In High EMI environments (10 V/m), output noise levels may rise to 30 mV 
causing resolution to be reduced to 0.3%. 
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EXPERIMENTAL RIG 

1. Two metal plates were taken.  

2. In each plate a hole (Radius: 59.5 mm) was made to accommodate the shell 
into it. 

3. The shell was entered into the holes of the plates by press fit. The joints at the 
both ends of the shell with the plates were made in such a way that there was no 
gap between the shell and the holes of the plates. 

4. A concrete base was made in order to make the set up more stable. 

 

 

Figure: Simply supported cylindrical shell 
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PROCEDURE OF THE EXPERIMENT 

The proximity sensor was positioned approximately in the range of 4.0 mm from 
the outer surface of the shell. The output of the sensor was connected to the 
oscilloscope. 

A piece of Aluminum foil was stick with the outer surface of the shell by glue. 
Point to be added that this proximity sensor works on the metal surface too.  

 

 

Figure: sensor and shell 

 

The distance between the shell and sensor was determined by the green 
indicator of the probe.  

The shell was hit by the hammer. 

 The frequency was measured from the oscilloscope for the 1st mode. 

 



97 

 

 

 

Figure: Experimental set-up. 

 

 

EXPERIMENTAL RESULT: 

NATURAL FREQUENCY FOR THE FIRST MODE= 35 Hz 
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CHAPTER 6 

COMPARISON AND CONCLUSION 

 

The comparison of the first natural frequency obtained by the three types of 

analyses are shown in the Table below 

Type of Analysis Frequency (Hz) Difference with 
respect analytical 

analysis (%) 

Numerical  34.07 4.27 
Analytical 35.59 0.00 

Experimental 35.00 1.66 
 

From the above comparison, it can be seen that there is no significant difference 

between the analytical and experimental results, but there is a slight difference 

(4.27 %) in between the Numerical and Analytical results. To find out the reason 

of this difference, we have investigated the natural frequencies of the circular 

cylindrical shell of varying diameter, keeping the length and thickness constant 

and the results are shown below. 

Outer Diameter (mm) First Natural Frequency (Hz) 

Numerical Analytical Difference with 
respect 

analytical 
analysis (%) 

59.5 34.07 35.59 4.27 
119 68.83 68.41 0.61 
200 114.40 114.41 0.00009 
300 82.14 or 82.26 82.25 0.0013 or 0.00012 
400 80.71 or 80.75 80.75 0.0005 or 0.00 

    

Analyzing the above results we can infer that the numerical and analytical results 

get closer as the radius of curvature of the shell increase. The reason may be for 

this is that the element we have used for 2D meshing namely “Plane 42” is very 

stiff for bending. Again in experimental analysis certainly little air damping was 

present which we have not considered during Numerical and Analytical analysis. 

In the forced vibration analysis, we could not compare the Numerical and 

Analytical data because the damping effects were not properly taken into 

account which is beyond the scope of the current study. What we did was the 

consideration of air damping for analytical purpose and as there was no external 
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damping specified during numerical analysis therefore only the structural 

damping came into account by default. 

 

FUTURE WORKS 

In the present study we could not experimentally analyze forced vibration, so we 

are going to do that and also higher natural frequencies can be obtained 

experimentally by the process. We will also work on determination of structural 

damping theoretically so that results of analytical and numerical analysis for 

forced vibration can be compared. Then we are going to use dampers in all of the 

analyses processes to damp the natural frequency and reduce the response of the 

structure at these critical frequencies and examine the structure for different end 

conditions. Moreover we are going to analyze fluid induced vibration for both 

flow through and over the shell and try to introduce control mechanisms.   
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