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ABSTRACT 

 

The objective of this thesis project is to investigate and understand the stability of 

power system, with the main focus on stability theories and power system modeling. 

The thesis looked into the effects that advanced control techniques have on electrical 

power generation system and transmission system. The thesis first explained the 

definition of power system stability and the need for power system stability studies. It 

then proceeded to discuss on the various stability problems after which the thesis 

provided a brief introduction on basic control theory and study. Next the thesis 

examined the concept of system stability and some stability theories. The thesis then 

performed a power system modeling and simulation of a two-machine, three bus power 

systems. The performance of the power system was simulated with the proposed 

advanced control technique. The operating points and system parameters were varied 

to test the robustness of the power system and the effectiveness of the proposed 

controller. Examples of the parameters that were varied include the fault position λ, the 

power angle δ and the mechanical power input Pm. Lastly, a conclusion was made on 

the overall effect of the controller on the power system and the performance of the 

power system when its parameters were varied. 
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1 CHAPTER 1 

     

1.1 Overview of the Thesis Topic 

 

An interconnected power system basically consists of several essential components. 

They are namely the generating units, the transmission lines, the loads, the transformer, 

static VAR compensators and lastly the HVDC lines [1]. During the operation of the 

generators, there may be some disturbances such as sustained oscillations in the speed 

or periodic variations in the torque that is applied to the generator. These disturbances 

may result in voltage or frequency fluctuation that may affect the other parts of the 

interconnected power system. External factors, such as lightning, can also cause 

disturbances to the power system. All these disturbances are termed as faults. When a 

fault occurs, it causes the motor to lose synchronism if the natural frequency of 

oscillation coincides with the frequency of oscillation of the generators. With these 

factors in mind, the basic condition for a power system with stability is synchronism. 

Besides this condition, there are other important condition such as steady-state stability, 

transient stability, harmonics and disturbance, collapse of voltage and the loss of 

reactive power 

1.2 Definition of Stability of a System 

The stability of a system is defined as the tendency and ability of the power system to 

develop restoring forces equal to or greater than the disturbing forces to maintain the 

state of equilibrium [2]. 

Let a system be in some equilibrium state. If upon an occurrence of a disturbance and 

the system is still able to achieve the equilibrium position, it is considered to be stable. 



2 

 

The system is also considered to be stable if it converges to another equilibrium position 

in the proximity of initial equilibrium point. If the physical state of the system differs 

such that certain physical variable increases with respect to time, the system is 

considered to be unstable.  

Therefore, the system is said to remain stable when the forces tending to hold the 

machines in-synchronism with one another are enough to overcome the disturbances. 

The system stability that is of most concern is the characteristic and the behavior of the 

power system after a disturbance. 

1.3 Why the need for power system stability? 

The power system industry is a field where there are constant changes. Power 

industries are restructured to cater to more users at lower prices and better power 

efficiency. Power systems are becoming more complex as they become inter-connected. 

Load demand also increases linearly with the increase in users. Since stability 

phenomena limits the transfer capability of the system, there is a need to ensure 

stability and reliability of the power system due to economic reasons. 

1.4 Stability studies 

The performance of a power system is affected when a fault occurs. This will result in 

insufficient or loss of power. In order to compensate for the fault and resume normal 

operation, corrective measures must be taken to bring the system back to its stable 

operating conditions. Controllers are used for this function. Some of the control 

methods used to prevent loss of synchronism in power systems are [19] [20]: 

(1)Excitation control: 

 During a fault the excitation level of the generator drops considerably. The excitation    

level is increased to counter the fault. 
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(2) An addition of a variable resistor at the terminals of the generator. This is to make 

sure that the power generated is balanced as compared to the power transmitted. 

(3) An addition of a variable series capacitor to the transmission lines. This is to reduce 

the overall reactance of the line. It will also increase the maximum power transfer 

capacity of the transmission line. 

(4) Turbine valve control: 

During a fault the electrical power output (Pe) of the generator decreases considerably. 

The turbine mechanical input power (Pm) is decreased to counter the decrease of Pe. 

Stability studies are generally categorized into two major areas: steady-state stability 

and transient stability [2]. Steady-state stability is the ability of the power system to 

regain synchronism after encountering slow and small disturbances. Example of slow 

and small disturbances is gradual power changes. The ability of the power system to 

regain synchronism after encountering small disturbance within a long time frame is 

known as dynamic stability. Transient stability studies refer to the effects of large and 

sudden disturbances. Examples of such faults are the sudden outrage of a transmission 

line or the sudden addition of removal of the loads. Transient stability occurs when the 

power system is able to withstand the transient conditions following a major 

disturbance. 

 When a major disturbance occurs, an imbalance is created between the generator and 

the load. The power balance at each generating unit (mechanical input power – 

electrical input power) differs from generator to generator. As a result, the rotor angles 

of the machines accelerate or decelerate beyond the synchronous speed of for time 

greater than zero (t > 0). This phenomenon is called the “swinging” of the machines. 

There are two possible scenarios when the rotor angles are plotted as a function of time: 
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(1) The rotor angle increases together and swings in unison and eventually settles at 

new angles. As the relative rotor angles do not increases, the system is stable and in       

synchronism. 

 

(2) One or more of the machine angles accelerates faster than the rest of the others. The 

relative rotor angle diverges as time increase. This condition is considered unstable or 

losing synchronism. 

These studies are important in the sense that they are helpful in determining critical 

information such as critical clearing time of the circuit breakers and the voltage level of 

the power system. 

 The main aim of this thesis project is to investigate the various power system stability 

problems, after which one important problem will be singled out for discussion and 

research. A proposed technique to solve the selected stability problem will also be 

explained in detail. 

To maintain synchronism within the distribution system can proved to be difficult as 

most modern power system are very large. For the purpose of this thesis report, a 

simplified two machine infinite bus power system is studied. 

1.5 Stability Theories 

The aim of this thesis report is to investigate the various power system stability 

problems, the effect of a fault on the stability condition of the system and also the post- 

stability condition of the system. This section will discuss about the concept and 

theories of stability study.  As mentioned previously, the main objective of stability 

studies is to determine whether the rotors of the machines being disturbed return to the 

original constant speed operation. There are three assumptions that are made in 

stability studies: 
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(i) We only consider the synchronous currents and voltages in the stator windings and 

the power system. DC offsets and harmonic components are also ignored. 

(ii) To represent unbalanced faults, symmetrical components are used. 

(iii) The generated voltage is considered to be unaffected by the speed variations of the           

machine. 

1.6 Swing Equation 

The Swing Equation governs the rotational dynamics of the synchronous machine in 

stability studies [2]. Under normal operating conditions, the relative position of the 

rotor axis and the resultant axis is fixed. The angle difference between the two axes is 

known as the power angle.                          

During disturbance to the machine, the rotor will accelerate or decelerate with respect 

to the synchronous rotating air gap mmf. The “Swing” equation describes this relative 

motion. If the rotor is able to resume its synchronous speed after this oscillation period, 

the generator will maintain its stability. The rotor will return to its original position if 

the disturbance is not created by any net changes in the power. However if the 

disturbance is created by a change in generation, load or network conditions, the rotor 

will be in a new operation power angle relative to the revolving field. 

 

The Swing Equation (pu) is given as:  

2H d2δ = Pm (pu) – Pe (pu) 

Ws dt2 

 

Where H is pu inertia constant, 

Ws is electrical synchronous speed 

δ is electrical power angle 
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Pm is shaft mechanical power input 

Pe is electrical power p 

d2δ/ dt2  is angular acceleration or deceleration due to excess or deficit power 

With this basic concept, we are now able to discuss and review the Equal Area Criterion 

concept in detail. 

1.7 Equal Area Criterion 

Equal Area Criterion is a stability method used for quick prediction of stability [16]. 

Based on the assumptions that the system is a purely reactive, a constant Pm and 

constant voltage behind transient reactance, it is found that if the transient stability limit 

is not exceeded, the electrical power angle δ oscillates around the equilibrium point 

with constant amplitude. Equal Area Criterion is the method which determines stability 

under transient conditions, without needing to solve the Swing Equation. 

Originally the motor of the machine is operating at the synchronous speed with a 

torque angle of δ0 . The mechanical power output Pm0 is equal to the electrical power 

input Pe . When the mechanical load is suddenly increased so that the power output is 

Pm1 , it is greater than the electrical power input at δ0 . The difference in the power comes 

from the kinetic energy stored in the rotating system. Thus it results in a decrease in 

speed. When the speed decreases, it will cause the torque angle δ to increase. 
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Figure 1: Electric power input to a motor as a function of torque angle δ 

 

 

As δ increases, the electrical power received will increase to a point where Pe Pm1 . We 

shall name this Point B. After passing through Point B, the electrical power Pe is greater 

than Pm1 . This will result in an increase in kinetic energy and speed. Thus between Point 

B and C, the speed will increase accordingly with δ , until the synchronous speed is 

again reached at Point C. 

 

Figure 2: Electric power input to a motor as a function of torque angle δ . The diagram shows when the load 

is suddenly increased from Pm0 to Pm1 , the motor will oscillate around δ1 and between δ0 and δ2 . 
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At Point C, the torque angle is δm . Pe is still greater than Pm1 and the speed of the motor 

will continue to increase. However, δ will start to decrease as soon as the speed of the 

motor exceeds the synchronous speed. Therefore the maximum value of δ is at Point C. 

As δ increases, Point B is reached again with the speed above the synchronous speed. 

The torque angle δ will continue to decrease until Point is achieved. This will imply that 

the motor is again operating at synchronous speed. The cycle is then repeated. 

 When the accelerating area (AA) is equal to the decelerating area (DA), the system is 

considered to be stable. 
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2 CHAPTER 2 

2.1 Lyapunov’s Theorem 

 

The stability of linear time-invariant systems can be determined by applying several 

known theorems such as Nyquist and Routh-Hurwitz. However, there was no 

systematic procedure to determine the stability of non-linear systems. 

In 1892, A. M. Lyapunov founded the general framework for the solution for the 

stability of nonlinear systems. Lyapunov founded two approaches to the problem of 

stability. The first one was known as the Lyapunov’s “First method” and the other was 

known as the “second method”. The latter method is also commonly known as the 

Direct Method [12]. 

The principle idea of the Direct Method is as follow: If the rate of change dt/de of the 

energy E(x)of an isolated physical system is negative for every state x except for a single 

equilibrium state e x ,then the energy will continue to decrease until it finally assumes its 

minimum value  E(x )e . 

This idea was developed into a mathematical form by Lyapunov. The energy function 

of E(x) was replaced by the scalar function V(x). For a given system, if V(x) is always 

positive except at x = 0 and its derivative V& (x) is less than 0 except at x = 0, then we 

say that the system has returned to the origin if it is disturbed. The origin is said to be 

stable if there exist a scalar function V(x) > 0 in the neighborhood of the origin such that 

V& (x) is less than or equal to 0 in that origin. The function V(x) is known as the 

Lyapunov function. The system equations are as shown below: 

 

x = f(x), f (0) = 0 
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2.2 Definition of stability 

 

An undisturbed motion xs is considered to be stable when the disturbed motion remains 

close to the undisturbed motion after encountering small disturbance. To elaborate on 

the above statement:  

(1) If small disturbances were encountered and the effect on the motion is small, the 

undisturbed motion is considered to be stable  

(2) If small disturbances were encountered and the effect on the motion is considerable, 

the undisturbed motion is termed “unstable”. 

(3) If small disturbances were encountered and the effect tends to disappear, the 

disturbed motion is considered “asymptotically stable”. 

(4) If regardless of the magnitude of the disturbances and the effect tends to disappear, 

the disturbed is considered “asymptotically stable in the large”. 
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2.2.1 Definition 1 

The origin is said to be stable in the sense of Lyapunov if for every real number ε 0 

and initial time tc c , there is a real number δ 0 which is dependent on ε and on t such 

that for all initial conditions it satisfy the following criteria:  

 
And the motion satisfies. 

 
 

 
Figure 3: Geometrical illustration of Stability 

 

The geometrical illustration of the definition is shown above. This stability concept of 

Lyapunov is a local concept as it does not indicate the value of δ that is to be chosen. 

The origin is considered to be unstable if the above condition is not satisfied. 

2.2.2 Definition 2 

The origin is said to be asymptotically stable if it is stable and that every motion starts 

close to the origin and converges to the origin as t tends towards infinity. 
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However this definition does not indicate the magnitude of the disturbances in order 

for the motions to converge to the origin. This definition is also considered a local 

concept. The geometrical illustration of Asymptotic Stability is shown below. 

 

 
 

Figure 4: Geometrical illustration of Asymptotic Stability 

 

 

 

2.2.3 Definition 3 

 

The origin is said to be asymptotically stable in the large when it is asymptotically 

stable and every motion starting at any point in the state space returns to the origin as t 

tends towards infinity. The geometrical illustration is shown below. 
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Figure 5: Geometric illustration of Asymptotic stability in the large 

 

This definition is useful in power system as the magnitude of the disturbance need not 

be considered. 

2.2.4 Definition 4 

 

A function V(x) is considered to be positive definite if V(x) = 0 and if it is around the 

origin V(x) 

 

2.2.5 Definition 5 

A function V(x) is considered to be positive semi-definite if V(0) = 0 and if it is around the 

origin  
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2.3 Lyapunov function for Linear Time Invariant System 

 

In this section we will examine the stability of linear time invariant system using the 

Lyapunov’smethod [12]. First let us consider a system: 

X=Ax 

Let the origin of the system be the only equilibrium point. The stability of the system 

can be examined by solving the eigenvalues of A and see whether any of it is in the 

right half plane. The stability of the system can also be determined by using the Routh 

Hurwitz method. However both methods failed to give insight into the class of A 

matrices that are stable, and the Lyapunov function is able to provide such information. 

By constructing the Lyapunov function of a quadratic form, we are able to obtain the 

conditions that affect the stability of the system. 

Consider the following matrix equation: 

 

 
Let λ1,λ2,.....λn be the eigen values of the matrix A. The above equation has a unique 

solution for  P if and only if: 

 

This will indicate that when A has no zero eigenvalues and no real eigenvalues which 

are of opposite sign, there is a unique solution. The system will satisfy the Lyapunov 



16 

 

matrix equation if the matrix A has no eigenvalues with positive real parts and has 

some distinct eigenvalues with zero real parts for a given Q > 0 and P > 0. 

2.4 Lyapunov function for Nonlinear System 

 

As we have examined in the previous section for a time linear invariant system, there is 

a systematic approach to solving for the stability of the system using the Lyapunov 

function. This section will attempt to examine a few different methods used to construct 

the Lyapunov functions for nonlinear systems [12]. The methods are as follow: 

1. The method based on first integrals 

 

2. The method based on quadratic forms 

 

3. The method based on solving the partial differential equation 

 

4. The method based on quadratic and integral of non-linearity type Lyapunov 

function 

 

Several of the methods will be explained and discussed in details. 

2.4.1 Method based on first integrals 

 

The basis of this method is to construct the Lyapunov functions using the linear 

combination of the first integrals of the system equations. Let us consider the following 

equation: 
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We understand that an integral is a differentiable function G(x1, x2,.....xn) defined in 

Domain D of the state space such that when x is establish a solution, G(x1, x2,.....xn)will 

have a constant value C. A conservative system can be defined by the existence of a first 

integral. A necessary condition to have a first integral is as follow. 

 

2.4.2 Method based on quadratic form 

The basis of this method is that the Lyapunov function is of the form of xTA(x)x . This 

method is also known as the Krasovskii’s method. Let us consider the autonomous 

system below: 

x = f(x), f(o) = 0 

Let us assume that f(x) has continues first partial derivatives. The Jacobian matrix is 

defined as follow 
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:  

 

Let’s define the Q(x) matrix is defined as Q(x) = P J(x) + JT (x) P.  

 if a positive definite matrix P is obtained such that the Q(x) matrix is negative definite, 

then the Origin of the system is considered to be asymptotically stable in the large. 

Let us consider the Lyapunov function below: 

V(x) = f T P F 

The assumption is made that the function is positive definite in the f space. V(x) is also 

positive definite in the x space as there is a one to one mapping between the x space and 

the f space. The derivative of V(x) is as follow: 
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V& (x) is considered negative definite as the term inside the bracket of the equation 

above is negative definite. Therefore the origin is asymptotically stable in the large. 

2.4.3 Methods based on Variable Gradient Method 

The basis of this method is that a vector V is assumed to have undetermined 

components. Both the V and V can be determined from the gradient function. Let’s 

consider the following equation: 

 

And   
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As the upper limit of the integral is x, it indicates that the line integral is to an arbitrary 

point in the x space. It is also independent of the path of the integration. 

 In order to determine the gradient V, there are certain procedures to the construction 

of V(x). 

They are as follow: 

1. The n dimensional curl of V is zero. 

2. V and V is determined from V for V > 0 and V <0. If V< 0, then actions must be    

taken to ensure that it is not zero along any other solution other than the origin. 

 

The matrix V will be in the form of: 

 

The αij s consist of a constant term αijk and a variable term αijv . The parameters may 

be considered to be constant unless cancellation or the generalized curl equations 

require a more complicated form. After obtaining the variable gradient the dV/dt 

equation will be formed, where 
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The dV/dt equation is constrained to be negative semi-definite. This will also give some 

constraint on the coefficients. The curl equation is used to determine the remaining 

unknown coefficients. We are then able to determine V from the known gradient. Lastly 

by applying the necessary theorem, we are able to the condition of stability of the 

system. 

2.4.4 Method based on Zubov’s Method 

This method is not only able to generate the Lyapunov function but it is also able to 

construct a region of attraction or an approximation to it. The method is based on 

solving a linear partial differential equation. When the solution obtained is if a closed 

form, we would have a unique Lyapunov function and an exact stability region. 

However, if the solution obtained is not of closed form, we would then solve for a series 

solution. In this way we are also able to get an approximation to the exact stability 

region. The theorem of this method is explained in the following.  

First we would let U be a set containing the origin. The conditions for U to be the exact 

domain of attraction such that the two functions V(x) and θ(x) are: 

1) V(x) is defined and continuos in U. θ(x) is defined and continuos in the entire state 

space. 

2) θ(x) is positive definite for all x. 

3) V(x) is positive definite in U with V(0) = 0. 

4) On the boundary of U, V(x) = 1. 

5) The following partial differential equation is satisfied. 
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As it is not possible to expect a closed form solution from the partial differential 

equation, the series solution is used to counter this problem. The equation x& f(x)may 

be expanded into the following: 

x Ax g(x) 

Where A is the linear part of the equation and g(x) is of second degree or higher. A is 

assumed to be stable and has all eigenvalues with negative real parts. φ(x) is chosen to 

be a positive definite quadratic form. The solution of the partial differential equation is 

as follow: 

 

V(x) V2(x) V3(x) ..... 

where V2(x) is quadratic in x and Vm(x) , where m = 3,4,5, …, are homogenous in degree 

m, meaning Vm ( x) = γmV(x) for any constant γ . In order to find Vm(x) , the original 

system differential equation is substituted with the above equation. Due to the 

assumption made on g(x) and Vm(x) , V2(x) is the Lyapunov function for the linear 

equation. Therefore, 

x Ax 

Vm(x) can be obtained from:  
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2.4.5 Other methods for nonlinear systems 

Previously we have examined the various methods that are used to determine the 

stability of the nonlinear systems that have no restrictions on the nonlinearities. 

However there are some scenarios where there are restrictions to the nonlinearities. This 

occurs when the nonlinearity lies in the first and the third quadrant or in a section 

thereof. A systematic approach will then be possible to construct the Lyapunov 

function. This section will attempt to examine one of the methods that are used to 

obtain the stability of such system. 

2.4.5.1 Popov’s Theorem 

Let’s consider the system below: 

 

Where A is a n x n matrix, 

x, b and c are n-vectors 

φ(σ) is a nonlinearity which lies in the first and third quadrant 

The block diagram of the system is shown below. 
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The transfer function of the system is: 

 

G(s) will have all poles with negative real parts if matrix A is a stable matrix. We will 

now look at the special cases where G(s) has poles which are on the imaginary axis. The 

case that we are examining is that G(s) has a single pole at the origin. This implies that 

matrix A has a zero eigenvalue. Therefore the state space is: 

 

where u = φ(σ) 

σ cTx dξ 
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The system is absolutely stable for all nonlinearities when the following sector 

condition is satisfied: 

0 φ(σ) kσ2  

or when a finite real q exist such that: 

 

One of the advantage of the Popov’s method is that we are able to construct the 

Lyapunov function in a systematic manner if we can establish absolute stability. The 

Lyapunov function is the quadratic and the integral of the nonlinearity. The 

construction of the Lyapunov function through the solution of nonlinear algebraic 

equations is as follow: 

ATP PA εQ uuT 
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We will be able to obtain the solution for q if the Popov’s criterion is satisfied. Thus the 

solution of the Lyapunov function will be in the form of: 

 

2.5 Continuation Method 

The Continuation Method is used to determine proximity to saddle-node bifurcations in 

dynamic system [17]. The principle behind the Continuation Method is that if a set of 

equations is underdetermined, where a single parameter is free to vary and the system 

is under constrained, the results of the solution will be curves and not points. The 

purpose of the Continuation Method is to determine the curves. In this section, a brief 

explanation of this method will be discussed.  

The continuation method uses a three-step approach to solve for the equilibrium points. 

As mentioned earlier, one of the parameter in the system is free to vary. The method is 

used to find the solution to the power flow equations for a given set of parameter 

values. The power flow equation is shown as follow: 

f (z, λ) = 0 

The loading factor λ is the varying parameter. However, the classical power flow 

Jacobian becomes unsatisfactory as the system gets closer to bifurcation. A 

parameterization will convert the Jacobian into non singular at the voltage collapse 

point. 
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Figure 7: Continuation method in state space and parameter space 

The figure above shows the Continuation method geometry in state space and 

parameter space.  The boldface curve represents the system equilibria as the parameters 

of the system changes. Let’s assume that the system is initially at the state (z1, λ1). The 

new equilibria (z2, λ2) can be predicted by using Δλ and the scaled tangent vectorΔz1 , 

where Δλ and Δz is given by:  

 

Where k = scaling constant 

The following steps are used to obtain the actual values of z2 and λ2. 
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2.5.1 Predictor 

 

The purpose of this procedure is to find the step Δzˆ and Δp . The equation is given as 

below. 

 

Therefore, by setting parameter p to λ and the state variable zˆ to z, 

 

The parameter p is likely to change to one of the bus voltage as the process approaches 

bifurcation and the loading factor λ will become part of zˆ . 

2.5.2 Corrector 

 

The purpose of this procedure is to find the intersection between the perpendicular 

plane to the tangent and the branch. The equations are as follow. 

f(zˆ,p) 0 

Δp(p p Δp) Δzˆ (zˆ zˆ1 Δzˆ) 0 
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The values of p1 and zˆ1 are obtained from the previous iteration. By setting the initial 

value of zˆ to zˆ1 Δzˆ and p to p1 +Δp , the equations above can be solved by one or two 

iterations. 

2.5.3 Parameterization 

This procedure is to check the relative changes in all system variables. The parameter p 

is then traded with the variable that presents the largest change. 

The Jacobian of equations is non-singular at the point of bifurcation. This is done by 

changing the parameter p from λ to a state variable zi z . The tangent vector dz/dλ is a 

scaled version of the right eigenvector v at the bifurcation point.  

As the method naturally goes around the collapse point, we are able to find the unstable 

side of the branch. 
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CHAPTER 3 

MODELLING OF POWER SYSTEM 
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3 CHAPTER 3 

3.1 Basic Control Theory 

 

In a control function block, the various parts of the system are broken down into the 

following function blocks. 

(1) The plant, which is the transmission network 

(2) The fault module 

(3) The control system, which is the controller 

 

The plant module consists of all the basic function of the transmission system. However 

it does not include the controller function. Thus the plant module is considered an open 

loop system as it has no feedback capability. The plant module will also only react to 

the faults with its own natural dynamics and damping system as it has not have any 

form of corrective functions. 

The function of the fault module is to provide the new line impedances and voltages 

when the fault occurs. The fault module will only generate one value of the line 

impedance, depending on the location of the fault. The plant module will then receive 

this value when there is an occurrence of the fault. Otherwise, the plant module will use 

its original value of line impedance. 

The controller module provides the feedback to the plant so that adjustment can be 

made to sustain the fault and regain its synchronism. The block diagrams of a system 

without controller and a system with control are shown as below. 
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Figure 8: Block diagram of system without control module 

 

 

Figure 9: Block diagram of system with controller 

The block diagram in Figure is a simplified closed loop control system. The output of 

the system r(t) is sent back to the comparator to be compared with the input u(t). The 

difference between the feedback and the input e(t) is then fed to the controller. The 

controller will perform and output the necessary control output y(t) to the plant 

module. The fault module, which acts as a disturbance, is also fed into the plant 

module. The cycle is then repeated. 
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3.2 Power System Modeling 

The power system modeling is based on a two-machine, three bus power system. The 

performance of the power system will be simulated with the proposed advanced 

control technique, Nonlinear Decentralized Controller [18]. The operating points and 

system parameters will be varied to test the robustness of the power system and the 

effectiveness of the proposed controller. The diagram of the model is shown below.. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Two-machine infinite bus power system 

 

3.3 Power system dynamic model 

 

Power System Plant Model [18] 

Mechanical Equations: 



34 

 

 

 

Electrical equations: 
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Excitation control loop: 

By applying direct feedback linearization compensation, 
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Steam valve control loop: 
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Using the parameters stated in (18), we can express gi( ) (the interconnected term) as 

the following nonlinear function regardless of uncertain E qi,E qj and network 

parameters.    

    The parameters that are used in the power system modeling are as shown below [18]: 

ω0 (rad/s) 314.159 

 

x12(p.u.) 0.55 

 

x13(p.u.) 0.53 

 

x23(p.u.) 0.6 
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Generator 1.                                        

xd(p.u.) 1.863 

x d(p.u.) 0.257 

xT(p.u.) 0.129 

xad(p.u.) 1.712 

T d0(p.u.) 6.9 

H(s) = 4 

D(p.u.) = 5 

Tm(s) 0.35 

Te(s) 0.1 

R = 0.05 

Km 1.0 

Ke 1.0 

kc 1 

Generator 2.                                             

xd(p.u.) 2.36 

x d(p.u.) 0.319 

xT(p.u.) 0.11 

xad(p.u.) 1.712 

T d0(p.u.) 7.96 

H(s) = 5.1 

D(p.u.) = 3 

Tm(s) 0.35 

Te(s) 0.1 

R = 0.05 

Km 1.0 

Ke 1.0 

kc 1 
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3.4 Nonlinear Decentralized Control Scheme 

Power systems are often modeled as large nonlinear highly structured system. This is 

due to the fact that the function of conventional linear control is limited as it can only 

deal with small disturbances about an operating point. Due to the physical limitations 

on the system structure, information transfers between the subsystems are unfeasible. 

In order to solve this problem, decentralized controllers are applied. 

 The proposed controller that is used for the power system modeling is the Nonlinear 

Decentralized Controller [18]. The excitation control and steam valve control are 

designed to enhance the transient stability. The design of the excitation control of the 

controller involves the application of robust back stepping. By bounding the 

interconnections with nonlinear functions instead of bounding them with first-order 

polynomials, conservatism of the controller gain is reduced.  

Persistent disturbances, such as permanent symmetrical three-phase short circuit fault 

and load changes, are applied to the system. The decentralized power controllers are 

then applied to restore and maintain the transient stability of the closed-loop system.  

The equations of the nonlinear decentralized controller are as follow: 
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4 CHAPTER 4 

4.1 Overview 

In this chapter, the power system model in Chapter 3 is simulated with the derived 

equations using the software MATLAB. The simulation results reflect the condition 

power system model when the fault occurs and the condition power system model with 

controller when the fault occurs. Various parameters are also varied and the results are 

catogorised into 5 different cases. 

In each case, both the simulation of system without controller and system with 

controller are examined. The simulation results consist of the relative speed, the power 

angle, the control input, the electrical power Pe and the terminal voltage Vt. The results 

of the simulations and their effects are then discussed. 

4.2 Simulation of system model 

4.2.1 CASE 1 

The parameters of the transmission line are shown as below: 

Reactance of transmission line X12 0.55p.u. 

Reactance of transmission line X13 0.53p.u. 

Reactance of transmission line X23 0.6p.u. 

Power angle δ10 60.78 

Power angle δ20 60.64 

Mechanical power Pm10 1.10p.u. 

Mechanical power Pm20 1.01p.u. 

Terminal voltage of generator Vt10 1.0p.u. 

Terminal voltage of generator Vt20 1.0p.u. 

Fault position λ 0.2 
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Simulation of results without Controller 

Subsystem 1 

 

Figure 11: Case 1: Results of Subsystem 1 without controller 

Subsystem 2 

 

Figure 12: Case 1: Results of Subsystem 2 without controller 
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Firstly, the simulation result for the system model without the controller is examined. 

When the symmetrical three-phase short circuit fault occurs at the transmission line 

between Generator 1 and Generator 2 at λ 0.2 , the condition of the system is very 

unstable. The dynamics of the system is expected to change accordingly after 

occurrence of the fault. From the equations that were given in Chapter 3, we can see 

that when there are changes in the network impedances, there is an affect on the EMF in 

the quadrature axis Eq. This will in turn affect the value of the electrical power Pe. With 

the change in Pe, the swing equation will change accordingly and the acceleration of the 

system will be affected. Likewise, both the power angle δ and relative speed ω will be 

affected. 

From Figure 5 and Figure 6, we can see that at the approximately t = 0.1 sec, there are 

changes to the system conditions. When the three phase symmetrical fault occurs at t = 

0.1 sec, we can see a sudden drop in Pe due to the reduction in line impedances. Also, as 

the current at the line where the fault occur is able to find another route with relatively 

less impedance to flow, it results in the fluctuation in Vt. The oscillation shown in the 

relative speed and the power angle is the result of the natural damping of the system. 

The system tries to regain synchronism after encountering the fault. 
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Simulation of results with Nonlinear Decentralized Controller 

Subsystem 1 

 
 

Figure 13: Case 1: Results of Subsystem 1 with controller 

 

 

 

 

 

Subsystem 2 

 

 
 

Figure 14: Case 1: Results of Subsystem 2 with controller 

 



46 

 

When the nonlinear decentralized controller is applied to the system model, there is a 

significant improvement in the condition of the system. The controller improved the 

transient stability of the system model. The disturbances caused by the fault are also 

reduced to a considerably small amount. The oscillations of the power angle are also 

dampened. 

4.2.2 CASE 2: Variation of parameters 

The system parameters are changed to simulate new results for the system model. This 

is to examine the robustness of the controller and its ability to adapt to new conditions. 

The parameters of the transmission line are shown as below: 

Reactance of transmission line X12 0.55p.u. 

Reactance of transmission line X13 0.53p.u. 

Reactance of transmission line X23 0.6p.u. 

Power angle δ10 18.51 

Power angle δ20 23.68 

Mechanical power Pm10 0.32p.u. 

Mechanical power Pm20 0.42p.u. 

Terminal voltage of generator Vt10 1.0p.u. 

Terminal voltage of generator Vt20 1.0p.u. 

Fault position λ 0.05 
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Simulation of results without Controller 

Subsystem 1 

 

 
 

Figure 15: Case 2: Results of Subsystem 1 without controller 

 

Subsystem 2 

 
 

Figure 16: Case 2: Results of Subsystem 2 without controller 
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Without the nonlinear decentralized controller, the system model is again unable to 

regain its synchronism upon encountering the fault. The condition of the system is 

unstable. 

Simulation of results with Nonlinear Decentralized Controller 

Subsystem 1 

 
 

Figure 17: Case 2: Results of Subsystem 1 with controller 

 

Subsystem 2 

 

Figure 18: Case 2: Results of Subsystem 2 with controller 
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It is observed that even with different system parameters, the system is able to return to 

synchronism and stable conditions with the introduction of the nonlinear decentralized 

controller.  

The controller is effective in enhancing the transient stability of the system model even 

with variations in system parameters, operating points and fault location. 

4.2.3 CASE 3: Variation of parameters power angle δ and 

mechanical power Pm 

 

For Case 3, four of the parameters are varied, namely the power angles δ10 and δ20 , and 

the mechanical input power Pm10 and Pm20. The fault location remains the same as Case 2. 

The objective of Case 3 is to examine the condition of the system model when the 

system parameters are changed but with the fault occurring at the same fault location. 

The results will be then compared to Case 2 and discussion will be made.  

The parameters of the transmission line are shown as below: 

Reactance of transmission line X12 0.55p.u. 

Reactance of transmission line X13 0.53p.u. 

Reactance of transmission line X23 0.6p.u. 

Power angle δ10 30.5 

Power angle δ20 32.5 

Mechanical power Pm10 0.57p.u. 

Mechanical power Pm20 0.56p.u. 

Terminal voltage of generator Vt10 1.0p.u. 

Terminal voltage of generator Vt20 1.0p.u. 

Fault position λ 0.05 

 

 

 

 

 

Simulation of results without Controller 
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Subsystem 1 

 
 

Figure 19: Case 3: Results of Subsystem 1 without controller 

 

 

Subsystem 2 

 
 

Figure 20: Case 3: Results of Subsystem 2 without controller 
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The results yield from Case 3 is similar to the results from Case 1 and 2. The system 

model is unable to regain its synchronism upon the occurrence of a fault. However 

comparing the above results with the results from Case 2, it can assume that the level of 

disturbance in Case 3 is highersince the relative speed ω, the power angle δ, the 

mechanical power input Pe and the terminal voltage Vt produced a zero value for 

Subsystem 2. 

 

 

Simulation of results with Nonlinear Decentralized Controller 

Subsystem 1 

 

 
 

Figure 21: Case 3: Results for Subsystem 1 with controller 
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Subsystem 2 

 
Figure 22: Case 3: Results for Subsystem 2 with controller 

 

From the above results, we can see that the system model is able to regain synchronism 

and equilibrium with the aid of the nonlinear decentralized controller. The result also 

proved that the controller is capable and robust enough to handle the occurrence of the 

fault and the variation in the system parameters. 

4.2.3.1 Comparison of Case 2 and Case 3 

 
The effects of varying the power angle δ and mechanical power Pm on the system are as follow: 

4.2.3.1.1 Effect on ω and δ 

CASE2                                                                  CASE3 

                                                                                                                 
 

Figure 23: Comparing ω and δ of Subsystem 1 for Case 2 and Case 3 
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CASE 2                                                                                      CASE 3 

 

                
 

Figure 24: Comparing ω and δ of Subsystem 2 for Case 2 and Case 3 

 

Firstly, the effect on the δ is examined. From the figures above, it can be seen that the 

oscillation is smaller with smaller initial power angles (Case 2) as compared to larger 

initial power angles  

(Case 3). The rate of damping is also considerably faster.  

Next, the effect on the ω is observed. It can be seen that the amplitude of the oscillations 

reduces as the initial angle is smaller. 

4.2.3.1.2 Effect on Pe 

 

CASE 2                                                          CASE 3 

         
 

Figure 25: Comparing Pe of Subsystem 1 for Case 2 and Case 3 

 

 

 

 

 

CASE 2                                                                                                              CASE 3 
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                                   Figure 26: Comparing Pe of Subsystem 2 for Case 2 and Case 3 

 

From the figures above, it can be seen that the oscillations after the occurrence of the 

fault tends to be larger with larger initial values of δ (Case 3). The rate of damping of 

Case 2 is also faster as compared to Case 3 as Case 2 has a smaller value of δ. The value 

of the electrical power Pe is also approximately the same as the value of the mechanical 

input power Pm. 

4.2.4 CASE 4: Variation of fault position λ 

For Case 4, the network parameters are identical to Case 3 but the fault location is 

changed. This  is to examine the effect of the fault location of the performance of the  

system. The results will be then compared to Case 2 and discussion will be made. 

The parameters of the transmission line are shown as below: 

Reactance of transmission line X12 0.55p.u. 

Reactance of transmission line X13 0.53p.u. 

Reactance of transmission line X23 0.6p.u. 

Power angle δ10 30.5 

Power angle δ20 32.5 

Mechanical power Pm10 0.57p.u. 

Mechanical power Pm20 0.56p.u. 

Terminal voltage of generator Vt10 1.0p.u. 

Terminal voltage of generator Vt20 1.0p.u. 

Fault position λ 0.5 

Simulation of results without Controller 

Subsystem 1 



55 

 

 
 

Figure 27: Case 4: Results of Subsystem 1 without controller 

 

 

 

Subsystem 2 

 

 
 

Figure 28: Case 4: Results of Subsystem 2 without controller 
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The results shown above are again similar to the previous cases that were discussed 

earlier. The system model is unable to sustain the fault and loses its synchronism. 

Simulation of results with Nonlinear Decentralized Controller 

Subsystem 1 

 
 

Figure 29: Case 4: Results for Subsystem 1 with controller 

 

Subsystem 2 

 
 

Figure 30: Case 4: Results for Subsystem 2 with controller 
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The introduction of the nonlinear decentralized controller is able to improve and 

enhance the transient stability of the system model even with a variation in the fault 

location λ. 

4.2.4.1 Comparison of Case 3 and Case 4 

 

The effects of varying the fault location λ on the system are as follow: 

4.2.4.1.1 Effect on ω and δ 

 

CASE 2                                                                                   CASE3  

 
      

Figure 31: Comparing ω and δ of Subsystem 1 for Case 3 and Case 4 

 

 

 

CASE 2                                                                                                              CASE 3  

 

    
 

Figure 32: Comparing ω and δ of Subsystem 2 for Case 3 and Case 4 

 

 

It is observed from the figures above that a smaller λ (Case 3) produced more oscillation 

in the Wave form of ω. This shows that faults which are nearer to the generator bus are 
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more disruptive as compared to faults further down the transmission line. The variation 

of the fault location seems to have little effect on δ. 

4.2.4.1.2 Effect on Pe 

CASE 2                                                                                                     CASE 3 

 

    
 

Figure 33: Comparing Pe of Subsystem 1 for Case 2 and Case 3 

 

CASE 2                                                                                                                   CASE 3 

 

      
 

Figure 34: Comparing Pe of Subsystem 2 for Case 3 and Case 4 

 

From the figures above, it can be seen that there are more fluctuations in the waveform 

for a smaller value of λ (Case 3). When the fault location is nearer to the generator bus, 

the Pe of the system model will take a longer time to regain stability. 

4.2.5 CASE 5 

For Case 5, all the systems parameters are changed except for the terminal voltage of the 

generators and the reactance of the transmission lines.  

The parameters of the transmission line are shown as below: 

Reactance of transmission line X12 0.55p.u. 
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Reactance of transmission line X13 0.53p.u. 

Reactance of transmission line X23 0.6p.u. 

Power angle δ10 64.08 

Power angle δ20 65.33 

Mechanical power Pm10 0.95p.u. 

Mechanical power Pm20 0.95p.u. 

Terminal voltage of generator Vt10 1.0p.u. 

Terminal voltage of generator Vt20 1.0p.u. 

Fault position λ 0.5 

 

Simulation of results without Controller 

Subsystem 1 

 
 

Figure 35: Case 5: Results of Subsystem 1 without controller 
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Subsystem 2 

 
 

Figure 36: Case 5: Results of Subsystem 2 without controller 

 

Without the aid of the controller, the condition of the system model is unstable. The 

system is unable to sustain its equilibrium and after the occurrence of the fault. 

Simulation of results with Nonlinear Decentralized Controller 

Subsystem 1 

 

 
 

Figure 37: Case 5: Results of Subsystem 1 with controller 
Subsystem 2 
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Figure 38: Case 5: Results of Subsystem 2 with controller 

 

The results yield above is similar to the previous cases. With the aid of the controller, 

the transient stability of the system is enhanced. It has also proven once again that the 

nonlinear decentralized controller is robust enough to handle any uncertain network 

parameters. 

4.2.6 CASE 6: Variation of parameters system reactance x12, x13 

and x23 

 

For Case 6, the system parameters are similar to Case 5 but the reactances of the 

transmission lines are altered. The results of Case 5 and Case 6 will be compared to 

examine the effect on the system due to the different reactance. 

The parameters of the transmission line are shown as below: 

Reactance of transmission line X12 0.7p.u. 

Reactance of transmission line X13 0.7p.u. 

Reactance of transmission line X23 0.7p.u. 

Power angle δ10 64.08 

Power angle δ20 65.33 
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Mechanical power Pm10 0.95p.u. 

Mechanical power Pm20 0.95p.u. 

Terminal voltage of generator Vt10 1.0p.u. 

Terminal voltage of generator Vt20 1.0p.u. 

Fault position λ 0.5 

 

 

 

 

Simulation of results without Controller 

Subsystem 1 

 

 
 

Figure 39: Case 6: Results of Subsystem 1 without controller 
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Subsystem 2 

 
 

Figure 40: Case 6: Results of Subsystem 2 without controller 

 

 

 

 

Simulation of results with Nonlinear Decentralized Controller 

Subsystem 1 

 
 

Figure 41: Case 6: Results of Subsystem 1 with controller 
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Subsystem 2 

 
 

 
Figure 42: Case 6: Results of Subsystem 2 with controller 

 

 

4.2.6.1 Comparison of Case 5 and Case 6 

From the figures, it can be seen that when the reactance of the transmission line is 

varied, there is not much effect on the performance of the system model that is running 

on the same network parameters. This shows that even when there are sudden changes 

to the reactance of the transmission lines, the controller is able to sustain the fault and 

bring the system back to the stable condition. Thus the nonlinear decentralized 

controller is robust and is able to adapt to any uncertain network conditions. 
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4.3 MULTI-MACHINE SYSTEM 

Multimachine equation can be written similar to the one-machine system connected to 

the infinite Bus. In order to reduce the complexity of the transient stability analysis, 

similar simplifying are mode as Follows. 

1. Each synchronous machine is represented by a constant voltage source behind 

the direct   axis transient reactance. This representation neglects the effect of 

saliency and constant flux linkage. 

2. The governor’s actions are neglected and the inputs are assumed to remain 

constant during the period of simulation. 

3. Using the Perrault bus voltage , all loads are converted to equivalent admittances 

to ground and are assumed to remain constant  

4. Damping or asynchronous power are ignored  

5. The mechanical rotor angle of each machine coincides with the angle of the 

voltage behind the machine reactance. 

6. Machines belonging to the same station swing together and are said to be 

coherent. A group of Coherent machine is represented by one equivalent 

machine. 

The first step in the transient stability analysis is to solve the initial load flow and to 

determine the initial bus voltage magnitudes and phase angle. The machine current 

prior to disturbance are Calculated from  
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Where m is the number of generator.  is the terminal voltage of the ith 

generator, and are the generator real and reactive powers. All unknown values are 

determined from the initial power flow solution. The generator armature resistances are 

usually neglected and the voltage behind the transient reactance is then obtained. 

 

Next, all loads are converted to equivalent admittances by relation 

 

4.4 MUULTIMACHINE TRANSIENT STABILITY 

The classical transient stability study is based on the application os a three-phase fault. 

A solid three-phase fault at bus k in the network result in =0. This is simulated by 

removing the kth row and column from the Perrault bus admittance matrix. The 

newbus admittance matrix is reduced by eliminating all nodes except the internal 

generator nodes. The generator excitation voltage during the fault and post fault modes 

is assumed to remain constant. The electrical power of the ith generator in terms of the 

new reduced bus admittances matrices are obtained from the swing equation with 

damping neglected for machine i becomes. 
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Where are the elements of the fault reduced bus admittance matrix, and  is the 

inertia constant of machine  expressed on the common MVA base . if  is the inertia 

costant of machine  expressed on the machine rated MVA  then  is given by 

 

Showing the electrical power of the  generator by  and transforming into state 

Variable mode yield.  

 

  



68 

 

4.5 MULTIMACHINE TRANSIENT STABILITY 

System consideration with 6 buses 

 

 
 

LOAD DATE  

 

 

 

GENERATION SCHEDULE 

 

 

 

 

LINE DATA 
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Phase fault occurs on line 4-1 near bus 1  

Fault clearing time at 0.4s system is unstable  

 
Figure 43:  Plots of angle differences 
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Figure 44: Plots of angle differences 

 

  Critical clearing time is 0.36s  

 
Figure 45: Plots of angle differences 
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Figure 46: Plots of angle differences 

By Removing the line 1-5 Fault Clearing time at 0.33s  system is stable   

 

Figure 47: Plots of angle differences 

Critical clearing time is 0.335s  
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Figure 48: Plots of angle differences 
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5 CHAPTER 5 

5.1 Conclusion 

As the economic demand and environmental pressure continues to mount, large-scale 

power system around the world are getting more and more interconnected. The 

modern power systems are also much more complex. The ability to maintain system 

stability in a deregulated power system environment is a major challenge. Stability 

phenomena can cause significant damage economically, thus the limits of stability and 

the reliability and efficiency of the power system are much sought after issues. 

 This thesis attempted to provide an insight into the various power system stability 

issues. In the first part of the thesis, the definition of power system stability was 

discussed. Several reasons were also provided to justify the need to study the area 

power system stability. Some basic stability theorems were discussed briefly in order to 

aid understanding in the topic. In the second part of the thesis, several advanced 

stability theorem and techniques were examined. These techniques were useful in 

determining the stability of complex power systems. 

In the latter part of the thesis, a power system modelling was attempted. Simulations 

were performed on the power system model to acquire the conditions of the system 

model in an event of an occurrence of a three phase symmetrical fault. A proposed 

nonlinear decentralized control scheme was then implemented to the power system 

model. Comparisons were then made to examine the effect of the controller. Various 

system operating points were also varied to test the robustness of the controller. 

From the various simulation results, it can be seen that the nonlinear decentralized 

controller is effective in enhancing the transient stability of the system model. The 

proposed controller ensured the overall stability of the system model. It is also robust 

. 
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enough to withstand uncertain network parameters. The simulation results showed that 

the transient stability of the system model was enhanced and synchronism regained 

regardless of the location of the three-phase symmetrical fault, the variations in the 

system operating points and network parameters and the persistent disturbances. 

In conclusion, as power systems are growing at a tremendous rate and are getting more 

interconnected, transient stability is an important area of study. The financial gain and 

economic pressure also encourage the exploration of methods to maintain and enhance 

the transient stability of the power systems. 

 

  



76 

 

 
 
 
 
 
 
 
 
 

REFERENCES 

  



77 

 

6 REFERENCES 

[1] M .A Pai, Power System Stability New York: North-Holland, 1981 

 

[2] H. Saadat, Power System Analysis McGraw-Hill International Editions, 1999 

 

[3] L. Z. Racz and B. Bokay, Power System Stability Amsterdam; New York: Elsevier, 

1988 

 

[4] I. A. Hiskens and D. J. Hills, “Energy Functions, Transient Stability and Voltage 

Behaviour in Power System with Non-Linear Loads”, IEEE Trans. on Power Systems, 

Vol 4, No.4, October 1989 

 

[5] P. A Lof and G. Andersson, “Voltage Stability Indices for Stressed Power System”, 

EEE Trans. on Power System, Vol 8, No.1, February 1993 

 

[6] Y. Y. Wang, L. Gao, D. J. Hills and R. H. Middleton, “Transient Stability 

Enhancement and Voltage Regulation of Power System”, IEEE Trans. on Power System, 

Vol.8, No.2, May 1993 

 

[7] D. J. Hill and I. M. Y. Mareels, “Stability Theory for Differential/ Algebraic Systems 

with Application to Power System”, IEEE Trans. on Circuit and System, Vol.37, No.11, 

November 1990 

 

[8] D. J. Hills and I. A. Hiskens, “Dynamic Analysis of Voltage Collapse in Power 

Systems”, Department of Electrical & Computer Engineering, The University of 

Newcastle, University Drive, Callaghan, NSW 2308, Australia, December 1992 

 

[9] Y. V. Makarov, Z. Y. Dong and D. J. Hills, “A General Method for Small Signal 

Stability Analysis”, Department of Electrical Engineering, The University of Sydney, 

NSW 2006, Australia 

 

[10] M. Sharma, “Power System Security Assessment in a Competitive Market”, School 

of Information Technology and Electrical Engineering, 

University of Queensland, Australia, 

 

[11] Glover / Sarma, Power system analysis and design PWS Publishers Boston, 1987 

 



78 

 

[12] M. A. Pai, Power System Stability Volume 3: Analysis by the Direct Method of 

Lyapunov, New York: North-Holland, 1981 

 

[13] Selden B. Crary, Power System Stability Volume 2: Transient Stability, 

New York: John Wiley & Sons INC, 1962 

 

[14] Allan M. Krall, Stability Techniques for Continuous Linear Systems, 

Thomas Nelson and Sons Ltd, 1967 

 

[15] Edward Wilson Kimbark, Power System Stability Volume 1: Elements of Stability 

Calculations, John Wiley & Sons INC, 1957 

 

[16] William D. Stevenson, Jr, Elements of Power System Analysis, McGraw-Hill Book 

Company INC, 1962 

 

[17] Claudio A. Canizares and Fernando L. Alvarado, “Point of Collapse and Continuous 

Methods for large AC/ DC system”, IEEE Transaction on Power System, Volume 8, No. 

1, February 1993 

 

[18] Yi Guo, David J. Hill and Youyi Wang, “Nonlinear decentralized control of large-

scale power systems”, Automatica, December 1999 

 

[19] S S Choi, G Shrestha and F Jiang, “Power System Stability Enhancement by 

Variable Series Compensation”, IPEC 95, Precedings of the International Power 

Engineering Conference, Vol 1, NTU, Singapore, 27 Feb – 1 Mar 1995 

 

[20] J J Grainger, W D Stevenson, Jr, Power System Analysis, McGraw – Hill, 1994 

 

 

 

 

 

 



79 

 

 

 

 

 

  



80 

 

 
 
 
 
 
 
 
 
 
 

APPENDIX 

  



81 

 

7 APPENDIX 

FUNCTION PROGRAME OF SINGLE MACHINE 

INFINITE BUS  
 

 
     %program for transient stability of 

single machine connected to infinite 

     %bus this program simulates Example 

12.10 using point by point method 

     clear 

     t=0 

     tf=0 

     tfinal=0.5 

     tc=0.125 

     tstep=0.05 

     M=2.52/(180*50)i=2 

     delta=21.64*pi/180 

     ddelta=0 

     time(1)=0 

     ang(1)=21.64 

     pm=0.9 

     pmaxbf=2.44 

     pmaxdf=0.88 

     pmaxaf=2.00 

 

    while t<tfinal, 

    if (t==tf), 

    paminus=0.9-pmaxbf*sin(delta) 

    paplus=0.9-pmaxdf*sin(delta) 

    paav=(paminus+paplus)/2 

    pa=paav 

    end 

    if(t==tc), 

    paminus=0.9-pmaxdf*sin(delta) 

    paplus=0.9-pmaxaf*sin(delta) 

    paav=(paminus+paplus)/2 

    pa=paav 

    end 

    if(t>tf& t<tc), 

    pa=pm-pmaxdf*sin(delta) 

    end 

    if(t>tc), 

    pa=pm-pmaxaf*sin(delta) 

    end 

    t,pa 
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    ddelta=ddelta+(tstep*tstep*pa/M) 

    delta=(delta*180/pi+ddelta)*pi/180 

    deltadeg=delta*180/pi 

    t=t+tstep 

    pause 

    time(i)=t 

    ang(i)=deltadeg 

    ang(i)=deltadeg 

    i=i+1 

    end 

    axis([0 0.6 0 160]) 

    plot(time,ang 
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FUNCTIN PROGRAM OF MULTIMACHINE 

TRANSIENT STABILITY 
  

 
          % This function forms the bus admittance 

matrix including load 

    % admittances after removal of faulted 

line. The corresponding reduced 

    % bus admittance matrix is obtained for 

transient stability study. 

    % Copyright (c) 1998 by H. Saadat 

    function [Yaf]=ybusaf(linedata, yload, 

nbus1,nbust, nbrt); 

    global Pm f H E  Y thngg 

 

    nl=linedata(:, 1);  nr=linedata(:, 2); 

    remove = 0; 

 

    rtn=1; 

    while remove ~= 1 

    fprintf('\nFault is cleared by opening a 

line. The bus to bus nos. of the\n') 

    fprintf('line to be removed must be 

entered within brackets, e.g. [5, 7]\n') 

    fline=input('Enter the bus to bus Nos. of 

line to be removed -> '); 

    nrmv=length(fline); 

    rtn=isempty(fline);  

    while (rtn==1 | nrmv~=2) 

    fline=input('Enter the bus to bus Nos. of 

line to be removed -> '); 

    rtn=isempty(fline);  

    nrmv=length(fline); 

    end 

    nlf=fline(1); nrf=fline(2); 

    for k=1:nbrt 

    ifnl(k)==nlf& nr(k)==nrf 

    remove = 1; 

       m=k; 

    else, end 

    end 

    if remove ~= 1 

    fprintf('\nThe line to be removed does 

not exist in the line data. Try 

again.\n\n') 

    end 

    end 
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    linedat2(1:m-1,:)= linedata(1:m-1,:); 

    linedat2(m:nbrt-

1,:)=linedata(m+1:nbrt,:); 

 

   linedat0=linedata; 

   linedata=linedat2; 

   lfybus 

 

   for k=1:nbust 

   Ybus(k,k)=Ybus(k,k)+yload(k); 

   end 

 

   YLL=Ybus(1:nbus1, 1:nbus1); 

   YGG = Ybus(nbus1+1:nbust, nbus1+1:nbust); 

   YLG = Ybus(1:nbus1, nbus1+1:nbust); 

   Yaf=YGG-YLG.'*inv(YLL)*YLG; 

   linedata=linedat0; 

 

 


