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                                      Introduction: 

1.1 Background of project 

          There is a wide variety of electric traction systems around the world, which have been 

built according to the type of railway, its location and the technology available at 

the time of the installation. Many installations seen today were first built up to 100 

years ago, some when electric traction was barely out its diapers, so to speak, and 

this has had a great influence on what is seen today. 

In the last 20 years there has been a gigantic acceleration in railway traction 

development. This has run in parallel with the development of power electronics 

and microprocessors. What have been the accepted norms for the industry for, 

sometimes, 80 years, have suddenly been thrown out and replaced by fundamental 

changes in design, manufacture and operation. Many of these developments are 

highly technical and complex, the details of which are therefore beyond the scope 

of these texts. 

Because these changes have been so rapid, there are still plenty of examples of the 

original technology around and in regular use, so I have covered these in my 

articles. This is useful, since it helps the reader to get to grips with the modern stuff 

To begin with, the electric railway needs a power supply that the trains can access 

at all times. It must be safe, economical and user friendly. It can use either DC 

(direct current) or AC (alternating current), the former being, for many years, 

simpler for railway traction purposes, the latter being better over long distances 

and cheaper to install but, until recently, more complicated to control at train level. 
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Transmission of power is always along the track by means of an overhead wire or 

at ground level, using an extra, third rail laid close to the running rails. AC systems 

always use overhead wires, DC can use either an overhead wire or a third rail; both 

are common. Both overhead systems require at least one collector attached to the 

train so it can always be in contact with the power. Overhead current collectors use 

a "pantograph", so called because that was the shape of most of them until about 30 

years ago. The return circuit is via the running rails back to the substation. The 

running rails are at earth potential and are connected to the substation. 

On modern high speed trains current collection from the overhead line is assured 

by a pantograph that have to assure a steady mechanical and electrical contact 

between overhead line and the power equipment of the train. Dynamical 

interaction between the moving pantograph and the flexible structure of the 

overhead line cause heavy fluctuations of the contact forces between the sliding 

surfaces of sliding bows and contact wire. Loss of contact between pantograph and 

catenary produces excessive wear and over heating of sliding surfaces and reduced 

mechanical and electrical reliability of catenary, pantograph, train power 

equipment. As visible in figure 1, pantograph “contact shoes” are placed on 

“sliding bows” that are linked to the “head” of the “mobile frame” trough a 

“suspension system” with several degree of freedom that is usually deigned in 

order to reduce contact force fluctuations due to the pantograph-catenary 

interaction. The “moving frame” is usually a four bar linkage (other kinematical 

scheme used for symmetric pantograph are less diffused for high speed trains) 

whose kinematical behavior is optimized in order to obtain a vertical trajectory of 

the “head” on which are placed “contact shoes”. Angular alignment between the 

“head” and the ground is usually assured by an “auxiliary rod”. Auxiliary rod is 

linked to a member of the four bar linkage at one end. The constraint between the 
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head and the auxiliary rod is variable according the different design of the 

pantograph, however three solutions are more often used: 

• A rotoidal joint 

• Rotoidal joint and a spring/damper controlled compliance to reduce kinematical 

errors 

• A cam constraint (Ansaldo ATR95) 

The static force needed to lift up the pantograph and assure a known static force is 

assured by a pneumatic actuator. Transmission ratio between actuator and the 

mobile frame is often optimized in order to obtain a constant transmission ratio 

from the pressure inside the actuator to the static force between sliding surfaces. At 

the hand one or more dampers are usually place between the “mobile frame” and 

the “lower frame” that is constrained by the electrical insulators to the roof. 

Dampers have mainly two functions: 

• Increase the mobile frame damping in order to prevent resonant/anti-resonant 

motion of the frame itself that can negatively influence the response of suspension 

system under the sliding bow. 

• Dissipate mechanical energy and limit the speed of the mobile frame when the 

pantograph is lifted up or collapsed from/to the train roof 

 

                            
                        Figure: picture of a pantograph system operating for a high speed train. 
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In this project, we will improve the control system of the pantograph system by 

using a controller. Different controller can be use for this purse but in our project 

PID (proportional-integral-derivative) is used to get a better output. 

 

A project on Improvement of high speed pantograph control system with PID has 

carried out by Yssef Ali Sabri (082416), Mamadou Thiam (113415), Mohamed 

Abdullahi students of Bachelor of science in Electrical and Electronic Engineering 

(BscEE).The main objective of this project is to show how actually ,with the new 

technology in place, lightning and surge are protected in a roof mounted solar 

panel. To perform this we will literally focus on the part of the theory because of  

the none availability of the materials .But in the other way it can be the first steps 

to think about how to implement this use of solar energy in the sunny countries. 

 

1.2 Objectives 

 

     The objectives of this project are: 

i. To fulfill the requirement for the subject EEE-4800, Engineering Project. 

ii. To explorer and apply the knowledge gain in lectures into practical applications. 

iii. To control the pantograph of high speed train with PID controller using 

MATLAB application. 

iv. To compare and analyze the result between the simulation result without PID 

controller and with PID controller applied. 

. 
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LITERATURE REVIEW: 

 

2.1 Pantograph and catenary system 
 

        A pantograph is a device that collects electric current from overhead lines for 

electric trains or trams. The most common type of pantograph today is the so called 

half-pantograph (sometimes ’Z’-shaped), as shown in Fig.2.1, which has evolved 

to provide a more compact and responsive single arm design at high speeds as 

trains get faster. The electric transmission system for modern electric rail systems 

consists of an upper load carrying wire (known as a catenary) from which is 

suspended a contact wire as shown in Fig.2.1 The pantograph is spring loaded and 

pushes a contact shoe up against the contact wire to draw the electricity needed to 

run the train. As the train moves, the contact shoe slides along the wire and can set 

up acoustical standing waves in the wires which break the contact and degrade 

current collection. Therefore, the force applied by the pantograph to the catenary is 

regulated to avoid loss of contact due to excessive transient motion. 

 

 

Figure 2.1: (a) The (asymmetrical) ’Z’-shaped pantograph. This pantograph is single-arm. 
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   Figure 2.1(b): High-speed rail system showing pantograph and catenary 

  

 

2.2 Control theory 

 

  Control theory is an interdisciplinary branch of engineering and mathematics that 

deals with the behavior of dynamical systems. The desired output of a system is 

called the reference. When one or more output variables of a system need to follow 

a certain reference over time, a controller manipulates the inputs to a system to 

obtain the desired effect on the output of the system. 

 

      

 
Figure 2.2: Concept of the Feedback Loop to Control the Dynamic Behavior of the Reference 

 

         If we consider an automobile cruise control, it is design to maintain the speed 

of the vehicle at a constant speed set by the driver. In this case the system is the 

vehicle. The vehicle speed is the output and the control is the vehicle throttle which 
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influences the engine torque output. One way to implement cruise control is by 

locking the throttle at the desired speed but when encounter a hill the vehicle will 

slow down going up and accelerate going down. In fact, any parameter different 

than what was assumed at design time will translate into a proportional error in the 

output velocity, including exact mass of the 6 vehicle, wind resistance, and tire 

pressure. This type of controller is called an open-loop controller because there is 

no direct connection between the output of the system (the engine torque) and the 

actual conditions encountered; that is to say, the system does not and cannot 

compensate for unexpected forces. For a closed-loop control system, a sensor will 

monitor the vehicle speed and feedback the data to its computer and continuously 

adjusting its control input or the throttle as needed to ensure the control error to a 

minimum therefore maintaining the desired speed of the vehicle. Feedback on how 

the system is actually performing allows the controller (vehicle's on board 

computer) to dynamically compensate for disturbances to the system, such as 

changes in slope of the ground or wind speed. An ideal feedback control system 

cancels out all errors, effectively mitigating the effects of any forces that may or 

may not arise during operation and producing a response in the system that 

perfectly matches the user's wishes. 

 

2.2.1 Open-loop transfer function 

     A generic open-loop system starts with a subsystem called an input transducer, 

which converts the form of the input to that used by the controller. The controller 

drives a process or a plant. The input is sometimes called the reference, while the 

output can be called the controlled variable. Other signals, such as disturbances, 

are shown added to the controller and process outputs via summing junctions, 

which yield the algebraic sum of their input signals using associated signs. For 

example, the plant can be a furnace or air conditioning system, where the output 
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variable is temperature. The controller in a heating system consists of fuel valves 

and the electrical system that operates the valves. 

The distinguishing characteristic of an open-loop system is that it cannot 

compensate for any disturbances that add to the controller’s driving signal 

(Disturbance 1 in Figure 4. For example, if the controller is an electronic amplifier 

and Disturbance 1 is noise, then any additive amplifier noise at the first summing 

junction will also drive the process, corrupting the output with the effect of the 

noise. The output of an open-loop system is corrupted not only by signals that add 

to the controller’s commands but also by disturbances at the output (Disturbance 2 

in Figure 4). The system cannot correct for these disturbances, either. Open-loop 

systems, then, do not correct for disturbances and are simply commanded by the 

input. For example, toasters are open-loop systems, as anyone with burnt toast can 

attest. The controlled variable (output) of a toaster is the color of the toast. The 

device is designed with the assumption that the toast will be darker the longer it is 

subjected to heat. The toaster does not measure the color of the toast; it does not 

correct for the fact that the toast is rye, white, or sourdough, nor does it correct for 

the fact that toast comes in different thicknesses. 

           

                                        Figure 2.2.1: Open-loop transfer function 

 

 ( )  
 ( )

 ( )
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2.2.2 Closed-loop transfer function  

       The output of the system y(t) is fed back through a sensor measurement F to 

the reference value r(t). The controller C then takes the error e (difference) 

between the reference and the output to change the inputs u to the system under 

control P. This is shown in the figure. This kind of controller is a closed-loop 

controller or feedback controller. This is called a single-input-single-output (SISO) 

control system; MIMO (i.e. Multi-Input-Multi-Output) systems, with more than 

one input/output, are common. In such cases variables are represented through 

vectors instead of simple scalar values. For some distributed parameter systems the 

vectors may be infinite-dimensional (typically functions) 

                   

                       Figure 2.2.2: Close-loop controller or feedback controller 

 

        If we assume the controller C, the plant P, and the sensor F are linear and 

time invariant (i.e.: elements of their transfer function C(s), P(s), and F(s) do not 

depend on time), the systems above can be analyzed using the Laplace transform 

on the variables. This gives the following relations: 

 

 )  ( )   ( ) ( ) 

 

 )  ( )   ( ) ( ) 
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 )  ( )   ( )   ( ) ( ) 

Solving for  ( ) in term of  ( ) gives: 

 

 ( )  (
 ( ) ( )

   ( ) ( ) ( )
) ( )   ( ) ( ) 

The expression   ( )  (
 ( ) ( )

   ( ) ( ) ( )
)  is referred to as the close-loop 

transfer function of the system. The numerator is the forward (open-loop) gain 

from r to y, and the denominator is one plus the gain in going around the feedback 

loop, the so-called loop gain. If, | ( )    ( )|, i.e. it has a large norm with 

each value of s, and if | ( )   | , then Y(s) is approximately equal to R(s). 

This means simply setting the reference controls the output. 

 

2.2.3 PID controller 

          PID Control (proportional-integral-derivative) is by far the widest type of 

automatic control used in industry. Even though it has a relatively simple 

algorithm/structure, there are many subtle variations in how it is applied in 

industry. A proportional–integral–derivative controller (PID controller) is a generic 

control loop feedback mechanism widely used in industrial control systems. A 

PID controller will correct the error between the output and the desired input or set 

point by calculating and give an output of correction that will adjust the process 

accordingly. A PID controller has the general form 

 

 ( )     ( )    ∫  ( )   
 

 

   
  

  
 

Where    is proportional gain,    is the integral gain, and    is the derivative gain. 
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The PID controller calculation involves three separate parameters; the 

Proportional, the Integral and Derivative value. The Proportional value determines 

the reaction to the current error, the Integral determines the reaction based on the 

sum of recent errors and the Derivative determines the reaction to the rate at which 

the error has been changing. The weighted sum of these three actions is used to 

adjust the pantograph controller and make it more effective. 

 

 

 

2.3 MATLAB 

      MATLAB is a high-performance language for technical computing. It 

integrates computation, visualization, and programming in an easy-to-use 

environment where problems and solutions are expressed in familiar mathematical 

notation. Typical uses include: 

• Math and computation 

• Algorithm development 

• Data acquisition 

• Modeling, simulation, and prototyping 

• Data analysis, exploration, and visualization 

• Scientific and engineering graphics 

• Application development, including graphical user interface building  

 

            MATLAB is an interactive system whose basic data element is an array 

that does not require dimensioning. This allows you to solve many technical 

computing problems, especially those with matrix and vector formulations, in a 
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fraction of the time it would take to write a program in a scalar non-interactive 

language such as C or For tran. The name MATLAB stands for matrix laboratory. 

MATLAB was originally written to provide easy access to matrix software 

developed by the LINPACK and EISPACK projects. Today, MATLAB engines 

incorporate the LAPACK and BLAS libraries, embedding the state of the art in 

software for matrix computation. 

 

            MATLAB has evolved over a period of years with input from many users. 

In university environments, it is the standard instructional tool for introductory and 

advanced courses in mathematics, engineering, and science. In industry, MATLAB 

is the tool of choice for high-productivity research, development, and analysis.  

            MATLAB features a family of add-on application-specific solutions called 

toolboxes. Very important to most users of MATLAB, toolboxes allow you to 

learn and apply specialized technology. Toolboxes are comprehensive collections 

of MATLAB functions (M-files) that extend the MATLAB environment to solve 

particular classes of problems. Areas in which toolboxes are available include 

signal processing, control systems, neural networks, fuzzy logic, wavelets, 

simulation, and many others. 

           When you start MATLAB, the MATLAB desktop appears, containing tools 

(graphical user interfaces) for managing files, variables, and applications 

associated with MATLAB. The following illustration shows the default desktop. 

You can customize the arrangement of tools and documents to suit your needs. 
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                       Figure 2.3: MATLAB default command window 
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24 
 

                                                    METHODOLOGY 

 

3.1 System Description 

Fig.3.1 shows the pantograph and the catenary coupling. The contact between the 

head of the pantograph and the catenary is represented by a spring. The output 

force is proportional to the displacement of this spring, which is the difference 

between the catenary and pantograph head vertical positions. A simplified model is 

shown in Fig.3, where the catenary is represented by the spring,     . A functional 

block diagram in Fig.4 shows the following signals: the desired output force as the 

input; the force,   , applied to the bottom of the pantograph; the difference in 

displacement between the catenary and pantograph head; and the output contact 

force. It also shows block representing the input transducer, controller, actuator 

generating    , pantograph dynamics, spring described above, and output sensor. 

 

                  

Figure3.1: (a). Coupling of pantograph and catenary        (b) simplified representation showing the active 

control system. 
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3.2 Free body diagrams 

 

        A free-body diagram is a sketch of an object of interest with all the 

surrounding objects stripped away and all of the forces acting on the body shown. 

The drawing of a free-body diagram is an important step in the solving of 

mechanics problems since it helps to visualize all the forces acting on a single 

object. The net external force acting on the object must be obtained in order to 

apply Newton's Second Law to the motion of the object. 

 

                           
  

                           

                                       Figure 3.2: free body diagrams                

            

3.3 Writing the Equations 

 
 

1)            (     )     (     )     
    

 
 
 

2)    (     )     (     )     (       )     
    

 
 
 

http://hyperphysics.phy-astr.gsu.edu/hbase/force.html#defor
http://hyperphysics.phy-astr.gsu.edu/hbase/newt.html#fma
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3)       (       )       
 
 

               
3.4.1 Block Diagram reduction 
 
3.4.1. a) Open-loop transfer function 
 

            
 
 
 
 
 



27 
 

     
 
 

 

              
 
 
 
 
 

            
 
 
 

 
 
 
 
 



28 
 

                    
 

                                   ( )   
    

   
                open-loop transfer function 

 

 ( )  
                   

                                          
 

 

3.4.1. b) Close-loop transfer function 
 
 

             
 

 

 

 

 

                                                                                                                 

 

 

 

 

𝐺(𝑠)𝐾𝑎𝑣𝑒  
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 ( )  
  ( )    

    ( )    
 

 

 ( )  
  ( )       

    ( )       
 

3.4 Block Diagram of active control system of pantograph 

 

 
          Figure: Functional block diagram of pantograph active control system 

 

3.5 Determine range of K using Routh Table 

 

 ( )  
  ( )    

    ( )    
 

 

The denominator of     ( )  ,        ( )     is called characteristic 

equation. 
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3.5.1 Finding the characteristic equation 

 

    ( )      
                                             

 (             ) 

 

                                                        (                 ) 

                  

3.5.2 Routh Table 

 

                1                        9784.90093                        3493192.9+34.94 

                 23.669              81190.038+0.6488k 

              150,408.7821-0.6488k                                    82680382+826.995k    

 

              
                             

                   
 

 

                82680382.75+826.995 

 

 

For column1                

For column2                 

For column3                 
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With choice of         , the open-loop transfer function become: 

 

                                             

Substitute      

                                               

 

                        (                    ) 

 

 

  

                             Real part                          Imaginary part          

 

   √   
                                                          

  (      )    
                                   

(
    

  
)
 
 (

  

  
)
 
                                                          

                 

                                                                               

            
                                                              

Dominant pole (near to the right half plane)           omitted pole (stable) 

 

 

 

3.6 Drawing the Root Locus (see root locus figure in results 4.1) 

 ( )  
          (         )

                                             
 

 

No of poles ( )    
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No of zeros( )    

No of asymptotes            

No of intersection with real axis  
         

   
 

                                                       

                

                    

Angle of asymptote = 
        

   
             

                                 =+60,-60,180 

3.7 Active pantograph with PID controller 

3.7.1. Ziegler-Nichols Tuning 

 
    In 1942 Ziegler and Nichols, both employees of Taylor Instruments, described 

simple mathematical procedures, the first and second methods respectively, for 

tuning PID controllers. These procedures are now accepted as standard in control 

systems practice. Both techniques make a priori assumptions on the system model, 

but do not require that these models be specifically known. Ziegler-Nichols 

formulae for specifying the controllers are based on plant step responses. 

Ziegler –Nichols developed two methods and in our project we are using the 

method known as second method. 

3.7.2 Ziegler-Nichols second method 

   The second method targets plants that can be rendered unstable under 

proportional control. The technique is designed to result in a closed loop system 

with 25% overshoot. This is rarely achieved as Ziegler and Nichols determined the 

adjustments based on a specific plant model.  

The steps for tuning a PID controller using the second method is as follows 

Using only proportional feedback control: 
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       1. Reduce the integrator and derivative gains to 0. 

       2. Increase Kp from 0 to some critical value Kp=Kcr at which sustained 

oscillations occur. If it does 

not occur then another method has to be applied. 

3. Note the value Kcr and the corresponding period of sustained oscillation, Pcr 

The controller gains are now specified as follows: 
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CHAPTER 4 
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RESULTS: 

4.1 Pantograph active control system 

 Unit step function: it is the response of the system using a step function as a 

test signal ( ramp or parabola could be use also to test the system’s stability) 

So the difference between the input and output for a prescribed test input 

when time is going to infinity is found and called steady state error. 

K=0.1 

 

 

Figure: Unit step function  

 

Comment: Our unit step function show oscillation at the beginning and then starts 

damping with 35% steady state error. So we can say the system is not stable. 

 Root Locus : 

Root Locus is the finest way to show the stability of a system when the order of the 

differential equation is more than two. 
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Root Locus shows how many poles and zeros do we have in the right half plane, in 

the left half plane or in    axis. 

 

Figure: Root Locus of the system. 

We get four poles and one zero, One pole is going to zero, The other one is going 

to infinity, the two others are going to the right half plane. 

The ratio of the distance of the two poles to the imaginary axis and the two others 

is less than infinity. 

So we can omit the two poles (Far from the right half plane) and the two remaining 

are called dominant pole. 

We can finally say that our system is unstable via Root Locus. 

 Nyquist plot: 
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Nyquist criterion is similar to root locus, it relates the stability of the system 

of close-loop to the open-loop frequency response and open-loop pole 

location.  

 

Figure: Nyquist plot of active pantograph control system 

The curve starts from omega equal to zero and goes to infinity and then it 

touches -1 which confirm our previous result via root locus (unstable). 

 Bode plot 

Bode plot is the diagram of phase (in degree) versus frequency (in rad/s) 
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Figure: bode plot of the active pantograph control system. 

 

In here our 

Gain margin = zero 

Phase margin =       

 Matlab codes: 

 Step function: 

clear all 
close all 
num=20.83; 
den=[1 101.71 171]; 
step(num,den) 

 

 Root locus: 

num=[0 0 0 1 -53.58]; 
den=[1 31.4 18805.32 292.4 172348178]; 
numa=[0 0 0 1]; 
dena=[1 4.0068 5.3515 2.3825]; 
k1=0:1:50; 
k2=50:5:200; 
k=[k1 k2]; 
r=rlocus(num,den,k); 
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plot(r,('o'); 
v=[-6 2 -4 4]; 
axis(v); 
hold on 
plot(a,'-') 
grid; 
titlle('Root-locus Plot') 

4.2 Pantograph active control system with PID controller 

 Unit step function: 

When PID controller is applied on the pantograph active system the result 

we had found increase. Here, there is no error with 0.09% percentage 

overshoot and 0.8s settling time. 

 

Figure: Unit step function of the pantograph active control system, with PID 

controller. 

 Root Locus: 

The root locus of the pantograph control system had two poles (dominant 

poles) and one zero. Applying PID controller on the system adds two poles 

and one zero. 
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So now, we have three poles and three zero and this result confirm the fact 

that our system is improved via unit step function. 

 

Figure: root locus of the active pantograph control system with PID 

controller 

 Bode plot: 

Bode diagram or bode plot of the active pantograph control system gives 

information about the stability of the system. It is just like root locus except 

it gives no information about the location of the poles. 

So we have one pole and two zeros after applying PID controller on the 

system. Therefore our system still yields three poles and three zero which 

confirm the result we got via root locus criterion of stability. 

Hence we can say that our system is stable with  

Gain margin (GM) = 95dB  

Phase margin (PM) = infinity. 
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Figure: bode plot of the active pantograph control system with PID 

controller 

 Nyquist diagram: 

The nyquist diagram of the active pantograph control system show that the 

curve touches -1 and that made the system unstable. Our diagram below 

shows that, when PID controller is applied on the system, It neither rotates 

around -1 nor touches -1. 

So, we can conclude that our system is stable now and that brings us to the 

same conclusion we got with root locus and bode plot. 
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Figure: Nyquist diagram of the active pantograph control system with PID 

controller. 

4.3 Matlab code of unit step function, root locus, bode plot and nyquist 

diagram and outputs graph (with PID) 

 

%P controller 
Ku=188145; 
omegad=92.82; 
zeta=7.95*10^(-5); 
omegan=92.83; 

  
%Kp=0.5*Ku; 
Kp=0.1; 

  
Kstar=Kp*.7883*1.535*10^6; 
ng=Kstar*[1 53.58]; 
dg=[1 23.589 9784.9 81190.04 3493192.9];roots(dg) 
sysg=tf(ng,dg); 
nh=[1];dh=[1]; 
sysh=tf(nh,dh); 
sys_cl=feedback(sysg,[1]); 

  
%pzmap(sys);pole(sys);zero(sys); 
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%subplot(2,2,1); 
rlocus(sysg); 
%[Kp,poles]=rlocfind(sysg); 
[mag,phase,w]=bode(sysg); 
w=.01:100:10000; 
%subplot(2,2,2); 
bode(sysg); 
%[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w); 
%subplot(2,2,3); 
t=0:0.1:100; 
step(sys_cl,t); 
%subplot(2,2,4); 
%Nyquist Plot 
nyquist(sysg); 

  

  
%impulse(sys_cl,t); 
%closed loop poles=-.00738+j92.83,-.00738-j92.83,-11.787+j32.07,-11.787-

j32.07 

  
a1=-0.00738;b1=92.83;a2=11.787;b2=32.07 
Kp=0.1 
ncl=Kstar*[1 53.58]; 
dcl=[1 2*(a1+a2) (a1^2+b1^2)+(a2^2+b2^2)+4*a1*a2 

2*a1*(a2^2+b2^2)+2*a2*(a1^2+b1^2) (a1^2+b1^2)*(a2^2+b2^2)]; 
cltf=tf(ncl,dcl); 
%subplot(1,2,1); 
t=0:0.001:.1; 
step (cltf,t); 

  
%desired poles -15+30j,-15-30j,-50+80j,-50-80j,wn=33.54 
omegan=92.83 
zeta=7.95*10^(-5);zetaomegan=.00738; 
napprox=Kstar*[1 53.58]; 
dapprox=[1 2*zetaomegan omegan^2]; 
sysapprox=tf(napprox,dapprox); 
clapprox=feedback(sysapprox,[1]); 
%subplot(1,2,2); 
t=0:0.0001:.001; 
step (clapprox,t); 

  

  
%steady state error 
ess_p=1/(1+(Kstar*53.58/3493192.9)); 
OS=100*exp(-zeta*3.1414/sqrt(1-zeta^2)); 
tp=3.1414/omegad; 
Ts=4/zeta/omegan; 

  
Kp=.6*Ku; 
%Kp=0.1 
Pu=1/omegad; 
Ki=2*Kp/Pu; 
Kd=Kp*Pu/8; 

  
%Kd=1;Kp=0.1;Ki=omegan^2; 
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%Kstar=(Kd*s^2+Kp*s+Ki)/s 
numc=[Kd/Kp, 1, Ki/Kp]; 
denc=[1 0]; 
numa=conv(napprox,numc); 
dena=conv(dapprox,denc); 
syspid=tf(numa,dena); 
sys_clpid=feedback(syspid,[1]); 
[numac,denac]=cloop(numa,dena); 
%steady state error 
%ess_pid=1/Kv 
ess_pid=0 
%OS=100*exp(-zeta*3.1414/sqrt(1-zeta^2)) 
subplot(2,2,1); 
rlocus(numa,dena); 
w=.01:100:10000; 
[mag,phase,w]=bode(numa,dena); 
[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w); 
Pm;Gm; 
subplot(2,2,2); 
bode(numa,dena); 
title('Step response with Proportional integral derivative Control'); 
subplot(2,2,3); 
t=0:0.001:0.1; 
step(sys_clpid,t); 
subplot(2,2,4); 
nyquist(syspid); 

 

 

ans = 

 

  -7.7350 +96.0373i 

  -7.7350 -96.0373i 

  -4.0595 +18.9689i 

  -4.0595 -18.9689i 

 

 

b2 = 

 

   32.0700 

 

 

Kp = 

 

    0.1000 

 

 

omegan = 

 

   92.8300 

 

 

ess_pid = 

 

     0 
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Figure: diagram showing step response, root locus, Bode plot and Nyquist 

diagram in a same graph. 
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CONCLUSION: 

In this project, the behavior of a simplified model of the control system associated 

with high-speed rail pantograph has been studied and necessary changes have been 

made using PID controller from modern control system analysis. 

When we first analysis our system we found out that the system is not stable and 

can be improve. 

Our main target was then achieved. We aimed to apply PID controller to the 

pantograph active system to get a better performance in terms of efficiency. So to 

tune our PID controller Ziegler-Nichols tuning rules was used. 

Ziegler-Nichols tuning rules are mostly useful when the plant’s mathematical 

representation cannot be obtained. It gives the engineers a tuning process starting 

point with ease. However, these tuning rules are also applicable for those systems 

with known mathematical models.  

As stated before, the Ziegler-Nichols method gives the starting point for the tuning 

process. Nevertheless, it is critical that an engineer can take it up from there and 

further tune it (based on experience) so the system can meet the performance 

specification wanted.  
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