
i

ISLAMIC UNIVERSITY OF TECHNOLOGY

REMOTE DATA ACQUISITION SYSTEM USING FPGA

By

Husnain Al Bustam (082405)

Nafiz Ur Rahman (082427)

Ferdous Ibna Idrish (082467)

Supervised by

Dr. Md. Fokhrul Islam

Co-Supervised by

Md. Shahzamal

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC

ENGINEERING

AT

ISLAMIC UNIVERSITY OF TECHNOLOGY

DHAKA, BANGLADESH

12th SEPTEMBER, 2012

ii

ISLAMIC UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF

ELECTRICAL AND ELECTRONIC ENGINEERING

The thesis entitled “Remote Data Acquisition System Using FPGA”, by Husnain Al

Bustam, Nafiz Ur Rahman, Ferdous Ibna Idrish has been accepted in partial fulfillment

of the requirement for the degree of Bachelor of Science in Electrical and Electronic

Engineering on 12.09.2012.

Approved by
Dr. Md. Fokhrul Islam

Dr. Md. Fokhrul Islam
Project Supervisor
Department of Electrical & Electronic Engineering (EEE)

Md. Shahzamal
Project Co-Supervisor
Bangladesh Atomic Energy Commission, Bangladesh.

Prof. Dr. Md. Shahid Ullah
Head of the department
Electrical and Electronic Engineering (EEE)

iii

ISLAMIC UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF

ELECTRICAL AND ELECTRONIC ENGINEERING

Date: 12th September, 2012

It is hereby declared that neither this thesis nor any part thereof has been submitted

elsewhere for the award of any degree or diploma.

Author 1

 Husnain Al Bustam

Author 2

 Nafiz Ur Rahman

Author 3

 Ferdous Ibna Idrish

Supervisor

 Dr. Md. Fokhrul Islam

Co Supervisor

 Md. Shahzamal

iv

To Our Parents

v

ABSTRACT

Single cost-efficient VLSI chip nowadays turns out to be a solution to microelectronic

design problems. In these designs embedded system architectures are used which are

comprised of software programmable components accompanied with dedicated hardware

processing modules integrated into the VLSI chip [1]. Also emerging new designs which are

based on heterogeneous embedded system architectures, offer flexible low-cost design in a

short design cycle, integrating multiple software programmable components together with

dedicated hardware components into a single cost-efficient VLSI chip. With the help of new

technology it has now become possible not only to introduce programmability in these

single chip architectures but also maintaining most of the advantages of customized VLSI

solutions [1].Once some applications which were too difficult for computing hardware, now

with impressive advances in Very Large Scale Integration (VLSI) technology are becoming

more feasible[2]. Utilizing the prebuilt logic blocks and programmable routing resources

engineers and designers now configure FPGAs (FPGA stands for Field Programmable Gate

Array) to implement custom hardware. The configuration of FPGA is specified with the help

of hardware description language. FPGA technology is now adopting among the engineers

scientists at all levels of expertise as higher level tools evolve to deliver the fruits of

reprogrammable silicon [2]. The “Remote Data Acquisition System Using FPGA” has been

entirely implemented on the FPGA of the Spartan-3E Starter Kit. DAQs are complex systems

which are the basis for building and monitoring tools that enable the supervision of local

and remote systems. Data is transferred from the data loggers via radio telemetry, cellular,

serial ports, Ethernet, satellite peripherals etc. The mobility and flexibility of the data

loggers and sensors make the applications of this technology limitless. In everywhere we

can see the magical touch of science and engineering in the present world which enables

human being to have the maximum comfort and security of life. In that contrast our

developed data acquisition system is such a device that could be used for biomedical

applications, nuclear research, or data acquisition from such a place where the presence of

human being is risky as well as harmful, for the example in the radioactive areas. The

vi

developed system will communicate through the SMSC LAN83C185 Ethernet PHY with

remote pc via internet. Of course the Ethernet port of the Spartan-3E starter kit has to be

interfaced with the personal computers as well as that pc should be connected with the

remote pc through internet. The configuration of the PCs used in this R and D work- Intel®

Desktop Board DG41WV mother board which has LAN support Gigabit (10/100/1000

Mbits/sec) LAN subsystem using the Realtek* RTL8111D Gigabit Ethernet Controller and

Intel® Core™2 Duo Processor. The data transfer rate of the Ethernet port of Spartan-3E

starter kit is 10/100 Mbits/Sec. So our developed system could transfer data at the rate of

10/100 Mbits/Sec. National instrument DAQ interfaced with the ADC of the Spartan-3E

starter kit to acquire analog signal from the outer world. The ADC process the digital data

to FPGA, therefore those data is processed through the SMSC LAN83C185 Ethernet PHY to

the personal computer of the concerned person who intended to acquire and send that data

through internet in a remote place. The graphical control of the system has been developed

using the LAB VIEW program.

vii

ACKNOWLEDGEMENTS

We would like to thank Dr. Md. Fokhrul Islam, our supervisor, for his many suggestions and

constant support during this research. We are also thankful to Md. Shahzamal, our co

supervisor for his guidance in the theoretical aspects of the research when we were in

chaos and confusion. Mr. Tnaveer Ahmed Bhuiyan, an Alumni of AIUB currently

researching in University of Texas, Dallas, shared with us his knowledge of speech

enhancement and provided many useful references and friendly encouragement. Of course,

we are grateful to our parents for their patience and love. Without them this work would

never have come into existence (literally).

Finally, we wish to thank the following: Mr. Mahbubul Hoq (Director-IE,AERE), Dr. Carlos

Leitão (Researcher, GoLP is a research unit, University of Lisbon, Portugal) and all the other

friends who gave us love and support.

 The Authors

IUT,OIC, Bangladesh

September 2012

viii

TABLE OF CONTENTS

 Page
ACKNOWLEDGEMENT………………………………………………………………………………………………...VII

LIST OF FIGURES……XII

LIST OF TABLES…….XVI

LIST OF SYMBOLS AND ABBREVIATION……………………………………………………………………...XVII

CHAPTERS

1. Introduction

1.1. Background………………………………………………………………………………………………………02

1.2. Motivation………………………………………………………………………………………………………..02

1.3. The Research Goal…………………………………………………………………………………………....03

2. Data Acquisition System (DAQ)

2.1. Introduction…………………………………………………………………………………………………....06

2.2. Types of DAQ…………………………………………………………………………………………………...08

2.2.1. Wireless Data Acquisition Systems…………………………………………………………..09

2.2.2. Serial Communication Data Acquisition Systems………………………………………09

2.2.3. USB Data Acquisition Systems………………………………………………………………....09

2.2.4. Ethernet Data Acquisition Systems…………………………………………………………..10

2.3. Data Acquisition Plug-in Boards………………………………………………………………………..10

2.4. Switch Boxes…………………………………………………………………………………………………....11

2.5. Stand-alone Data Loggers………………………………………………………………………………....11

2.6. Application of DAQs………………………………………………………………………………………….12

2.6.1. Wireless DAQ………………………………………………………………………………………….13

2.6.2. Ethernet DAQ………………………………………………………………………………………....14

2.6.3. USB DAQ…………………………………………………………………………………………………14

2.7. Remote DAQ……………………………………………………………………………………………………..15

2.7.1. Available Remote DAQs…………………………………………………………………………...16

2.7.2. Retriever…………………………………………………………………………………………………16

ix

2.7.3. Wireless Modem Models………………………………………………………………………....16

3. CISC Architecture

3.1. Introduction……………………………………………………………………………………………………..20

3.2. History of CISC Architecture………………………………………………………………………………20

3.3. Attributes of CISC Architecture………………………………………………………………………....22

3.4. Recent Development of CISC Architecture………………………………………………………....24

3.5. Advantages of CISC Architecture……………………………………………………………………….24

3.6. Disadvantages of CISC Architecture…………………………………………………………………...25

3.7. Application of CISC Architecture………………………………………………………………………..26

4. FPGA

4.1. Introduction……………………………………………………………………………………………………..28

4.2. History…….....28

4.3. FPGA Structures……………………………………………………………………………………………….29

4.3.1. Basic Structure………………………………………………………………………………………..29

4.4. Configuring a FPGA…………………………………………………………………………………………...30

4.5. Advantages of FPGA………………………………………………………………………………………….30

4.6. Disadvantages of FPGA……………………………………………………………………………………...31

5. Hardware and Software

5.1. Introduction……………………………………………………………………………………………………..33

5.2. Hardware……33

5.2.1. Spartan-3E-starter kit……………………………………………………………………………..33

5.3. USB TO RS232 SERIAL Adapter CABLE DB9 PIN PL2303…………………………………....42

5.3.1. USB TO RS232 SERIAL Adapter CABLE…………………………………………………….42

5.4. Software

5.4.1. VHDL………………………………………………………………………………………………………43

5.4.2. Lab VIEW………………………………………………………………………………………………..44

5.4.3. Xilinx 13.2 ISE…………………………………………………………………………………………45

6. Remote Data Acquisition System

6.1. Interfacing the Peripherals of Spartan-3E Starter Kit………………………………………....47

6.1.1. DAC………………………………………………………………………………………………………..47

6.1.2. SPI Communication…………………………………………………………………………………48

x

6.1.3. Communication Protocol………………………………………………………………………....48

6.1.4. Character LCD Screen………………………………………………………………………………50

6.1.5. Rotary Push-Button Switch……………………………………………………………………...50

6.2. Working Principle…………………………………………………………………………………………….52

6.3. ADC……….56

6.4. Programmable Pre-Amplifier…………………………………………………………………………….58

6.4.1. Programmable Gain………………………………………………………………………………...58

6.4.2. Interface…………………………………………………………………………………………………59

6.4.3. SPI Control Interface……………………………………………………………………………….60

6.5. Analog to Digital Converter (ADC) …………………………………………………………………….61

6.5.1. Interface………………………………………………………………………………………………....61

6.5.2. SPI Control Interface……………………………………………………………………………….61

6.6. Interfacing of the Ethernet Controller………………………………………………………………..62

6.6.1. Design Strategy……………………………………………………………………………………….62

6.6.2. Open Core Ethernet Controller………………………………………………………………...63

6.6.3. Design…………………………………………………………………………………………………….63

6.6.4. Host………………………………………………………………………………………………………..65

6.7. Remote Data Acquisition System……………………………………………………………………….66

7. Result Analysis and Discussion

7.1. Result Analysis……………………………………………………………………………………………..…..72

7.1.1. DAC Implementation on FPGA……………………………………………………………..…..72

7.1.2. Tables and Figures…………………………………………………………………………………..72

7.1.3. Simulation Results…………………………………………………………………………………..76

7.2. Measure Light Intensity using Photodiode………………………………………………..………..78

7.2.1. Photodiode BPW34 as light sensor…………………………………………………………..78

7.2.2. Build a Light Intensity Logger………………………………………………………………….79

7.3. Measure Distance using the Ultrasonic Sensor……………………………………………………80

7.4. Temperature Simulation and Calibration…………………………………………………………...82

7.5. Optical Heart Rate Monitor………………………………………………………………………………..84

7.6. Discussion

7.6.1. DAC………………………………………………………………………………………………………...86

xi

7.6.2. DAQs……………………………………………………………………………………………..………..86

REFERENCES…….87

APPENDIX-I (XILINX-13.2 ISE TUTORIAL) …………………………………………………………………....94

APPENDIX-II (VHDL TUTORIAL) ………………………………………………………………………………...121

APPENDIX-III (CODES) ……………………………………………………………………………………………….134

xii

LIST OF FIGURES

Figure-2.1. Components of data acquisition system………………………………………………………..07

Figure-3.1. Intel 8086 Architecture, the 1st member of x86 family………………………………….23

Figure-4.1. Basic structure of FPGA……………………………………………………………………………….30

Figure-5.1. Spartan-3E Starter Kit Board-.............…………………………………………………………….36

Figure-5.2. Spartan-3E Starter Kit Board-.……………………………………………………………………..36

Figure-5.3. Standard USB Type A/Type B Cable……………………………………………………………..37

Figure-5.4. Connect the USB Type B Connector to the Starter Kit Board Connector……….....37

Figure-5.5. 10/100 Ethernet PHY with RJ-45 Connector…………………………………………………38

Figure-5.6. Character LCD Interface…………………………………………………………………………….....38

Figure-5.7. Four Slide Switches and Eight LEDs……………………………………………………………...39

Figure-5.8. Push-Button Switches Require Internal Pull-up Resistor in FPGA Input Pin……39

Figure-5.9. RS-232 Serial Ports……………………………………………………………………………………..40

Figure-5.10. Digital-to-Analog Converter and Associated Header…………………………………...40

Figure-5.11. Analog to Digital Converter (Two-Channel Analog Capture Circuit)……………..41

Figure-5.12. Connections to Intel StrataFlash Flash Memory…………………………………………..41

Figure-5.13. FPGA Interface to Micron 512 Mbit DDR SDRAM………………………………………...42

Figure-5.14. USB TO RS232 Serial cable adapter…………………………………………………………...43

Figure-6.1. DAC connection schematics. ………………………………………………………………………..47

Figure-6.2. SPI communication waveform. ……………………………………………………………………48

Figure-6.3. SPI communication protocol………………………………………………………………………..49

Figure-6.4. Character LCD interface……………………………………………………………………………….50

Figure-6.5. Rotary Switch Shaft Encoder Circuitry………………………………………………………….51

Figure-6.6. Output from Rotary Shaft Encoder Circuitry………………………………………………....52

Figure-6.7. Block Diagram of the Developed System……………………………………………………....53

Figure-6.8. Block diagram of the system (Software) ………………………………………………………54

Figure-6.9. State diagram of the DAC……………………………………………………………………………..55

Figure-6.10. State diagram of the dis_value component………………………………………………….56

xiii

Figure-6.11. Two-Channel Analog Capture Circuit………………………………………………………..57

Figure-6.12. Detailed View of Analog Capture Circuit…………………………………………………...58

Figure-6.13. SPI Serial Interface to Amplifier…………………………………………………………………60

Figure-6.14. SPI Timing When Communicating with Amplifier……………………………………….60

Figure-6.15. Analog-to-Digital Conversion Interface……………………………………………………….62

Figure-6.16. Detailed SPI Timing to ADC………………………………………………………………………..62

Figure-6.17. Design Diagram…………………………………………………………………………………………64

Figure-6.18. Remote High Speed Data Acquisition System……………………………………………...67

Figure-6.19. Network Architecture………………………………………………………………………………..68

Figure-6.20. Simulation Using the CISCO Packet Tracer-5.3…………………………………………....70

Figure-7.1. Experimental Setup……………………………………………………………………………………..72

Figure-7.2. For 100mV………………………………………………………………………………………………….74

Figure-7.3. For 10mV……………………………………………………………………………………………………75

Figure-7.4. Simulation…………………………………………………………………………………………………..76

Figure-7.5. Behavioral…………………………………………………………………………………………………..76

Figure-7.6. RTL Schematic…………………………………………………………………………………………....77

Figure-7.7. Design Summary…………………………………………………………………………………………77

Figure-7.8. Photodiode BPW34……………………………………………………………………………………..79

Figure-7.9. Develop a LabVIEW VI that reads the voltage across the resistor and converts

the voltage to lux. ………………………………………………………………………………………………………...79

Figure-7.10. Front Panel View (Light Intensity Logger) …………………………………………….…...80

Figure-7.11. Front View (Ultrasonic Sensor) ………………………………………………………………….81

Figure-7.12. Block Diagram (Ultrasonic Sensor) …………………………………………………………....82

Figure-7.13. Front Panel View (Temperature) ………………………………………………………………83

Figure-7.14. Block Diagram (Temperature) …………………………………………………………………..83

Figure-7.15. Optical heart rate monitor schematic………………………………………………………....84

Figure-7.16. IR emitter and detector encased in Velcro…………………………………………………..85

Figure-A1. ISE Project Navigator (0.61xd) …………………………………………………………………….88

Figure-A2. Project Navigator Window…………………………………………………………………………...89

Figure-A3. Creating New Project…………………………………………………………………………………...90

Figure-A4. Creating New Project (Cont.) ……………………………………………………………………….90

xiv

Figure-A5. Creating New Project (Cont.) ……………………………………………………………………….91

Figure-A6. Creating New Project (Completed) ………………………………………………………………92

Figure-A7. Creating New Source…………………………………………………………………………………....92

Figure-A8.New Source Wizard……………………………………….……………………………………………...93

Figure-A9.New Source Wizard (Continue) …………………………………………………………………….93

Figure-A10. Project Navigator Window for the Project “alarm” ………………………………………94

Figure-A11. Checking Syntax (Successful) ……………………………………………………………………..97

Figure-A12. New Source Wizard (Test Bench) ………………………………………………………………97

Figure-A13. New Source Wizard (Test Bench) ………………………………………………………………98

Figure-A14. Design (Simulation) …………………………………………………………………………………100

Figure-A15. Simulation……………………………………………………………………………………………….101

Figure-A16. Isim Window……………………………………………………………………………………………101

Figure-A17. Expanded User Constraints………………………………………………………………………102

Figure-A18. Unconstrained Clocks……………………………………………………………………………….102

Figure-A19. Profile Generated for Clock “CLK” …………………………………………………………….103

Figure-A20. Profile Generated for Clock “REMOTE” ……………………………………………………..103

Figure-A21. Constrained Clocks…………………………………………………………………………………..104

Figure-A22. Profile Generated After “I/O Planning (Plan Ahead) Post Synthesis”…………..105

Figure-A23. Planning I/O Ports constraints………………………………………. ………………………...105

Figure-A24. ISE iMPACT Window………………………………………………………………………………...106

Figure-A25. ISE Design FlowFigure-A26. Process Window……………………………………………107

Figure-A26. Process Window………………………………………………………………………………………108

Figure-A27. Set RTL/Tech Viewer Startup Mode…………………………………………………………..108

Figure-A28. “Create RTL Schematic”-Wizard………………………………………………………………..109

Figure-A29. “Create RTL Schematic”-Wizard (Continue) ……………………………………………...109

Figure-A30. RTL Schematic…………………………………………………………………………………………110

Figure-A31. Detail View of RTL Schematic……………………………………………………………………110

Figure-A32. Set RTL/Tech Viewer Startup Mode…………………………………………………………..111

Figure-A33. “Create Technology Schematic”-Wizard…………………………………………………….111

Figure-A34. “Create Technology Schematic”-Wizard (Continue) …………………………………..112

Figure-A35. Technology Schematic……………………………………………………………………………...112

xv

Figure-A36. View of Technology Schematic (Double) …………………………………………………..113

Figure-B1. DFF with Asynchronous Reset…………………………………………………………………….115

Figure-B2. When rst= ‘0’, then q<=d…………………………………………………………………………….118

Figure-B3. When rst = ‘1’, then q <= ‘0’…………………………………………………………………………119

Figure-B4. Counter of Example-2…………………………………………………………………………………119

Figure-B5. Simulation Result……………………………………… ………………………………………………122

Figure-B6. 4-input Multiplexer…………………………………………………………………………………....123

Figure-B7. Y <= A WHEN SEL = “00” ……………………………………………………………………………125

Figure-B8. Y <= A WHEN SEL = “01” ……………………………………………………………………………125

Figure-B9. Y <= A WHEN SEL = “10” ……………………………………………………………………………126

Figure-B10. Y <= A WHEN SEL = “11” ………………………………………………………………………....126

xvi

LIST OF TABLES

Table-1. Programmable Gain Settings for Pre-Amplifier………………………………………..………..59

Table-2. AMP Interface Signals………………………………………………………………………………………59

Table-3. ADC INTERFACE SIGNALS…………………………………………………………………………….....61

Table.4. Network Design……………………………………………………………………………………………….69

TABLE -5. FOR 100mV Step……………………………………….………………………………………………….72

TABLE -6. FOR 10mV Step…………………………………………………………………………………………….74

xvii

LIST OF SYMBOLS AND ABBREVIATION

ADC Analog to Digital Converter

ASIC Application Specific Integrated Circuits.

CISC Complex Instruction Set Computer.

CLBs Configurable Logic Blocks

CPI Clock Per Instruction

CPLD Complex Programmable Logic Device

DAC Digital to Analog Converter

DAQ/DAS Data Acquisition System

DDS Direct Digital Synthesis

DDR SDRAM

Double Data Rate Synchronous Dynamic Random Access

Memory

DSP Digital Signal Processing

EEPROM Electrically Erasable Programmable Read-Only Memory

FSM Finite State Machine

FPGA Field Programmable Gate Array

HDL Hardware Description Language

ICON Integrated Controller

IEEE Institute of Electrical and Electronic Engineers

ILA Integrated Logic Analyzer

IP Core Intellectual Property Core

ISE Integrated Software Environment

Lab VIEW Libratory Virtual Instrument Workbench.

LAN Local Area Network

LCD Liquid Crystal Display

LED Light Emitting Diode

LUT Lookup Table

xviii

PLD Programmable Logic Devices

RAM Random Access Memory

ROM Read-Only Memory

RTL Resistor-Transistor logic

SPI Serial Peripheral Interface

SPLDs Simple PLDs

SRAM Static Random Access Memory

UCF User Constraints File

VGA Video Graphics Array

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

VIO Virtual Input and Output

1

CHAPTER 1

INTRODUCTION

2

1.1. Background

Digital system which is also known by other name such as logic design, digital logic,

switching circuits etc. can process only digital signal dealing with only a limited numbers of

discreet values [3]. Digital system is characterized by its manipulation of discreet elements

of information such as electric impulses, the decimal digits, arithmetic operation,

punctuation marks or any other set of meaningful symbols [4]. The subject matter of digital

design is the design of digital electronic circuits such as logic gates, flip-flops, shift registers,

counters etc. The main application areas of digital design are the digital computers, control

systems, data communications and many other applications that require electronic digital

hardware. The HDL (Hardware Description Language) is used to describe the behavior of a

digital system. As part of course work in “Digital Logic Design” we were given idea about

the VHDL (A Hardware Description Language) that raises our interest to work in the field

of digital system design on FPGA. While doing industrial training in Institute of Electronics,

Bangladesh Atomic Energy Commission we came to know about the FPGA and how to

program it. At the end of year, 2011 there was short course on “Digital System Designing on

FPGA” in Bangladesh Atomic Energy Commission where for the first time we were

introduced with the “Spartan-3E Starter Kit”. Our first task was to interface the peripherals

such as ADC, DAC, LCD, Rotary Switch, and Push-Button Switch of the Spartan-3E Starter

Kit. After that we started thinking of a project and according to the advice of our supervisor

and co-supervisor we undertook a project which is almost similar to this project that is,

“Data Acquisition System Using FPGA”. The main difference between this project and that

DAQ is that medium of communication with Personal Computer (PC). This project

concerned about the communication using the SMSC LAN 83C185 Ethernet PHY of Spartan-

3E Starter Kit while that DAQ communicates via RS-232 Serial Ports.

1.2. Motivation

3

The Nuclear Electronics Lab, Institute of Electronics (IE), AERE (Atomic Energy Research

Establishment) is responsible for developing all electronic equipment for nuclear research.

Nuclear research areas are always health threatening in some extents. So in that kind of

environment for effective research if we use a data acquisition system it would be

worthwhile. This is the primary motivation of our. Besides there are several projects are

going on in Energy Institute, AERE which requires data acquisition remotely. There are

facilities of Cancer Therapy and many radioactive tests for detection of diseases in AERE

which most often require data acquisition. Recently IE has established a VLSI lab which is

very first time in Bangladesh opens the new horizon in microelectronic research. So

considering all these stated circumstances we have taken this as our undergraduate

project. But the main challenge of this work is that we have make the system portable as

well as the data communication should be fast. Again Bangladesh is third world country so

we think that if we could make data acquisition system locally that will be beneficial for the

people of country as well as huge amount money could be saved that we usually spend

buying DAQs from outside.

1.3. The Research Goal

The demand of portable, flexible and high speed data communication DAQs are growing

rapidly. In this era of science and engineering data transfer rate or how fast the data

communication is the main concern of researchers and scientists. We have split up this

project in to three parts. In the first part we have interfaced the necessary peripherals; in

the second step we have implemented such a DQA that could exchange data at a rate 1

Mbits/Sec through RS232 serial ports of “Spartan-3E Starter Kit”. But as we have stated

earlier speed is the crucial issue, therefore there is Ethernet port in “Spartan-3E Starter Kit”

over which data could be transferred at a rate 10/100 Mbits/Sec. Which is much faster

than the earlier one. So in third steps we have implemented a DAQ which could transfer

data using Ethernet port. The working principle of both the DAQs are same but the

difference between them is the modes of communications. We have interfaced the

4

peripherals and RS232 serial ports with FPGA embedded in “Spartan-3E Starter Kit” using

the VHDL language for both cases. The control of the system have been implemented using

the LabVIEW program. Our implemented DAQs are the discretised systems in a sense as

both of these have to acquire data from outer world in terms of analogue signal using the

NI-DAQ which is processed to FPGA using the ADC embedded in starter kit. This kind of

system could be on research level but the main concern of engineering design is the

flexibility and sustainability of the products, moreover should be user friendly in nature.

We can easily understand this fact why the Windows OS has the largest number of desktop

users, this because of user friendliness. So our future goal regarding this project to make

“Single Chip Solution” which will be flexible, reliable and user friendly in nature. As we

have mentioned earlier, in AERE a VLSI lab is established recently with modern

equipments. So our main target is to reduce the size of this DAQ into a single cost-effective

VLSI chip.

5

CHAPTER 2

DATA ACQUISITION SYSTEM (DAQ)

6

2.1. Introduction

 Data acquisition system (DAQ) as the name implies is defined as the products or processes

of collecting data or information on an electrical phenomenon such as voltage, current or

physical phenomenon like pressure, temperature, sound into a computer for storage,

processing, analysis, inspection or further data manipulation. With the advancement of

technology, the type of data acquisition system has been simplified and made more

accurate, versatile, and reliable through electronic equipment like PC, sensors, transducers,

filters etc. Data acquisition systems equipments vary with the requirement of the specific

field of its utilization. Basic equipments are

 Transducer

 Amplifier

 Active filter

 Analog multiplexer

 Sample hold

 Programmer sequencer

 A/D converter

 Computer

The input to the system is an electrical or physical parameter such as temperature,

pressure, flow, acceleration, and position, which are analog quantities. If the input is

physical parameter then it is first converted into an electrical signal by means of a

transducer; further processing or manipulation of data is done by electrical circuits.

Electrical signal does not need to be converted again with the transducers. Using an

amplifier the output signal of transducer is magnified. This output signal of transducer is

very small say in microvolt or millivolt level, magnified up to 1v or 10v level using the

amplifier. In addition, the transducer output signal may be comprised of a signal with high

impedance, a differential signal along with common-mode noise, a current signal, a signal

superimposed on a high voltage, or a combination of the signals stated above. Several

7

specialized types of amplifier can be used for the amplification of the low level signals to

the high level signals for desired operation [6,11].

Figure-2.1. Components of data acquisition system[5]

The magnified output is then transmitted to the low-pass active filter which get rid of the

unwanted high frequency component or electrical component which give rise to the noise.

Sometimes the high level output signal from the amplifier undergoes the operation of

squiring, multiplication, log conversion, RMS conversion, division, linearization etc. with

the help of special nonlinear analog function circuit. The processed analog signal is then

followed by a analog multiplexer. What it does is to switch sequentially among a number of

different analog input channel. The connection between each input and output for a

specified time is controlled by the multiplexer switch. When the output is connected to the

input in the meantime the sample hold circuit acquires the signal voltage level and the A/D

8

converter becomes operational, converting the analog values into digital values. The

digitized values next transmitted to the data bus of the computer or used as a input the

digital circuit. Time sharing is occurred with the A/D converter along with the analog

multiplexer and sample hold circuit among a number of input channels. The timing and

control of the complete DAQ is done by a digital circuit called a programmer sequencer,

which in turn is under the control of the computer. The computer itself also used to control

the overall data acquisition system sometimes. This is perhaps the most commonly used

DAQ configuration, there are also other ones. Instead of multiplexing high-level signals,

low-level multiplexing is sometimes used with the amplifier following the multiplexer. In

such cases, just one amplifier is required, but its gain may have to be changed from one

channel to the next another during multiplexing. Another method is to amplify and convert

the signal into digital form at the transducer location and then send the digital information

in serial form to the computer. In that case the parallel form of digital data is acquired by

suitable conversion and then in the computer data bus these data are multiplexed[5,9,13]

2.2. Types of DAQ

Now-a-days there are various types of data acquisition system available. Various novel

technology is emerging, demands data acquisition systems capable of pleasant control,

application of these technologies. Though each data acquisition system is a bit different

from another due to its desired application but the main components of the data

acquisition systems remain same. Some of the data acquisition systems are

 Wireless Data Acquisition Systems

 Serial Communication Data Acquisition Systems

 USB Data Acquisition Systems

 Ethernet Data Acquisition Systems

 Data Acquisition Plug-in Boards

 Switch Boxes

9

 Stand-alone Data Loggers

2.2.1. Wireless Data Acquisition Systems

Wireless data acquisition systems can be used to eliminate the costly and time consuming

installation of cable runs for wiring of sensors and other instruments. These system consist

of one or more wireless transmitters which sends data back to a wireless receiver

connected to a remote computer. Now-a-days for the measurement of ambient

temperature and relative humidity, barometric pressure, line pressure, infrared

temperature, thermocouples, RTDs, pH, pulse output sensors and wireless transmitters are

available. Also transmitters ranging from 4 to 20 mA and voltage output transducers are

available from different brand in the market. Receivers which are to be connected to the

USB or Ethernet port of the PC are also available [7].

2.2.2. Serial Communication Data Acquisition Systems

Serial communication data acquisition systems are a good choice when the measurement

needs to be made at a location which is remote from the computer. There are several

different communication standards, RS232 is the most common but it only supports point

to point communication and relatively short distances. RS485 supports transmission

distances to 1500 meters with a single or 2-pair cable and also allows up to 32 devices to

share the same bus[7].

2.2.3. USB Data Acquisition Systems

10

The Universal Serial Bus (USB) is a new measure for connecting PCs to peripheral devices

such as printers, monitors, modems, pen drives and data acquisition devices. USB offers

several advantages over conventional serial and parallel connections, which include higher

bandwidth (up to 12 MBits/s) and the ability to provide power to the peripheral device.

For data acquisition application USB based DAQs are ideal. Since USB connections supply

power, only one cable is required to establish the link between the data acquisition device

to the PC, which most likely has at least one USB port[7,9].

2.2.4. Ethernet Data Acquisition Systems

Ethernet based data acquisition systems are now-a-days a popular option for many users

due to its specific advantages. Most industrial and commercial premises have Ethernet

network cables installed, which allow a distributed data acquisition system to be integrated

without the cost of additional wiring. One of the special kind of Ethernet devices employs a

built in web server in which they transmit their acquired data for further processing or

manipulation. This in turns provide with the facility that the user can check the system

condition without installing any software just by simply browsing the web server with a

standard browser. Even the data can be checked through the mobile or smart phones as

almost all the smart phone has a built in standard browser supporting HTML5. So it offers

flexibility and feasibility with control. Another advantage of using Ethernet is that the data

can easily be shared among users on the local network and also via the Internet to

authorized users around the world [7,9,11].

2.3. Data Acquisition Plug-in Boards

These kind of data acquisition boards can be plugged directly into the computer data bus.

Advantages of using boards are they offer speed (because they are connected directly to

11

the bus) and lower cost (because the overhead of packaging and power is provided by the

computer). Generally for IBM pc and available computers of modern days boards are

offered. Features provided by the cards may vary due to number and type of inputs

(voltage, thermocouple, digital), outputs, speed and other functions provided. Each board

installed, is addressed at a unique Input/Output map location in the computer. The I/O

map in the computer provides the address locations which are used by the processor to

gain access to the specific device as required by its program[13].

2.4. Switch Boxes

Due to various design verification and product testing applications, switch boxes are

included as a type of data acquisition system. Mainly a switch box is a intermediary

between the testing device and other instrumentation such as oscilloscope, counter, digital

multimeters, power supplies etc. They route the signals between device and

instrumentations. Switch boxes are available that can switch signal levels from a few micro

volts to several hundred volts, and from DC to several gigahertz. In addition to basic

switching, some switchboxes add simple control measures. For example, some

manufacturers have added digital input/output capabilities, analogue output control, and

isolated actuators for controlling high-power devices.

2.5. Stand-alone Data Loggers

Data loggers are initially used to monitor signals over a period of time in order to identify if

there are irregularities that may require attention. Most data loggers also provide with a

way to graph and analyze the data, which is further collected through a PC connection.

Although it is used primarily in the up-front design verification stage of product

development, data loggers also are used in-house for environmental chamber monitoring,

12

component inspection, bench top testing, and process trouble-shooting. Since they are

typically used in single-instrument applications, data loggers also make great portable

field-testing instruments. They are some data loggers which are capable of performing

mathematical operation on the acquired data and to compare the data with the appropriate

limit defined by the user for suitable control operation. For instance, in case of

measurement of temperature before using the acquired data, signal conditioning or

linearization must be applied. The data loggers capable of performing such operation

mentioned above can be a replacement of computer sometimes. To transfer the measured

data in a PC most data loggers have a communication interface like GPIB, USB or LAN. Some

of the applications require the acquired data to be downloaded on the PC in that case the

continuous monitoring is needed which is not feasible. Because in that case the stand-alone

benefit of data loggers will be lost. [8] If the data logger has its own internal data storage

capability, or access to an external storage device such as a disk drive, then one can

download the measurements for analysis at a later time. For general application a data

logger with 20 channel or fewer with a low scan rate is decent. For greater flexibility and

functionality, one should select a data logger that can operate as a standalone instrument,

can be easily upgraded, and can be connected to a PC. A data logger should also have plugin

slots and the ability to measure different types of input signals without external signal

conditioning[9].

2.6. Application of DAQs

Applications of DAQs are very wide spread. Starting from small control system for car,

DAQs are widely used for communication purpose, controlling sophisticated research

system, telemetry, space technology, radar and positioning system, robotics, life science,

many fields of engineering like electrical, mechanical, civil, computer science, geological

etc. Some applications are discussed here.

13

2.6.1. Wireless DAQ

Wireless data acquisition systems are basically used when the user or monitoring system is

distant from the environment form where data is gathered. It’s also used to avoid extra cost

and complexity for wiring. Here the wireless data acquisition system for testing rocket

engines is discussed. This is a prototype wireless data-acquisition system which is

developed for a potential replacement of a wired data-acquisition system to be used in

testing rocket engines. The traditional use of wires to connect sensors, signal-conditioning

circuits, and data acquisition circuitry is time-consuming and prone to error, especially

when there are many sensors used in a test. In this system there is one master node with

several slave nodes. Communication with the master node via pc is done by an Ethernet

connection. Rechargeable batteries supply power to the slave nodes. These batteries are

enclosed in such an enclosure so that the changing weather will not affect them. A time

modulated ultra-wide-band radio transceiver is used in the master unit and also in each of

the slave unit. What it does is by means of transmitting extremely low power of pulses with

narrow width, it spread its RF energy over several Giga-hertz. Out of six sensors connected

to each slave nodes two of them are connected directly to ADC and the other four is

connected to ADC via signal conditioner indirectly. Each sensor has the maximum sampling

rate of 5 kHz for streaming data. To accommodate the data collecting from the sensors in

the five slave node the bandwidth of one channel of the communication system should be

adequate. Comparing traditional sinusoidal wave based radios TM-UWB radios offer much

higher spatial capacity. Also with existing wireless transmission TM-UWB radios works fine

without any interference[15,16]. For this system, approximately 50ft (15m) is the

maximum radio communication range between the master and the slave node. Small dipole

antennas are used in this case. By using larger antenna or greater transmission power the

range can be increased. Batteries for the slave nodes are used in such a way so that they

can serve the desired operation. Operational lifetime can be increased by using extra

batteries. Power consumption is controlled by radio transceiver.

The software performs the following operations:

14

 Controlling the operating schedule of the slave nodes.

 In order to maximize the utilization of the system to manage the sampling rate and

latencies of the readings.

 To ensure synchronization among all operational nodes.[17]

2.6.2. Ethernet DAQ

Ethernet data acquisition systems are used widely now-a-days for industrial, commercial

and may other purposes. Here an Ethernet IO data acquisition system is discussed. The

industrial Ethernet I/O data acquisition systems discussed here is developed by Intelligent

Instrument. They are using open architecture standards for easy development and

deployment into existing and future systems. By using the efficiencies of standard

technology, it offers a lower total cost of ownership for monitoring and control

applications. With the help Ethernet Data Acquisition System EDAS CE, one can take

advantage of the existing network infrastructure, lower cost network components. Also the

development of networking and application is possible. Isolated digital and analog I/O,

100BaseT Ethernet, Windows CE development tools, all in an industrial modular package,

make EDAS CE the ideal solution for a wide range of monitoring and control

applications[9].

2.6.3. USB DAQ

USB Data Acquisition Systems are used both for remote purpose as well as stand-alone

purpose. There are many type of USB Data Acquisition System available. One is NI USB-

6009 [6].Its applications are

 Robot Specific Uses

15

 - Loop refinement of PID

 - Measurement of frame strain

 - Diagnostics of electrical system

 - Simulation of sensors

 Non-Robot Specific Uses

 - Dynamometer

 - Ball velocity measurement

 - Understanding FRC Electronics

2.7. Remote DAQ

Remote data acquisition is defined as the collection of information about a system or a

process which located in a distant place. The data which is collected is used to study

various parameters of a desired system and the implications of it would have on the

dependent processes/systems. The systems that enable supervision of remote processes

for data collection are termed remote data acquisition or remote data collection systems.

These systems are usually designed using PCs and other processor-based input/output

modules conforming to RS-232 and RS-485 standards. The advantages offered by the

remote data acquisition system equipped with data loggers are:

 Installation is easy

 Ownership cost is low

 Reliability and flexibility

 Lowered risk of electrical faults, lightening surges and other hazardous weather

conditions

16

In case of engineering processing the remote data collection plays a crucial role. To

improve the efficiency, performance, reliability of the engineering project manipulation of

data is necessary which is provided by the remote data acquisition system.

2.7.1. Available Remote DAQs

Many remote data acquisition system are available depending on the application demand.

Some of them are based on internet while the others use wireless sensors to acquire data

for further processing or manipulation. Some available data acquisition systems are briefly

discussed here.

2.7.2. Retriever

It is a solar-powered, wireless data collection module which is used for landfill,

remediation, and other sites. The Retriever is not just a simple hardware, but it facilitates a

data delivery and reporting system which delivers data of pump flow and well level. These

data can be clearly charted and displayed, and securely archived. From the sensors

deployed in water flow and level the built in microprocessor take the data reading in an

hourly basis and the acquired data is stored. The daily data acquired can be sent to a

preferred web address. The received data can be expressed in tabular format or any other

format according to the choice of the user. The data is properly backed up so that one can

download the necessary data when need arises. Using a standard web browser one can

access the web site containing the data which can be modified according to the

corresponding date and time. So without being present in the site it is possible to produce a

short summary of operation of the site[9,16,17]

2.7.3. Wireless Modem Models

17

These types of units provide rugged and reliable operation with sophisticated features

which make them versatile and easy to use for a wide variety of applications. Their size is

compact and easy operation make these units perfect for innumerable mobile/remote data

applications. There applications are-

Mobile and Fleet Communications

 Automatic Vehicle Location (AVL)

 Differential GPS Navigation

 Computer Aided Dispatch

 Data Base Access from remote places

 Monitoring and Control of traffic

GPS

 Automatic Vehicle Location (AVL)

 Differential GPS navigation

 Differential and RTK survey corrections

Industrial Data Communications

 Monitoring oil and gas Field

 Management of water and waste water

 Control of irrigation

 Control and monitoring of environment

 Security/Alarm System Management

 Automation of factory.

18

Two type of module are available from Teledesign Systems. These are TS4000 Radio

Modem and TS2000 Mobile Radio Modem. Also products from various brands are available

meeting the demand of different types of consumers. [8]

19

CHAPTER 3

CISC ARCHITECTURE

20

3. 1. Introduction

CISC architecture referred to a computer architecture in which hundreds of operation can

be performed by CPU (Central Processing Unit). CISC stands for complex instruction set

computing. It referred to a computer where a single instruction can execute various low

level operation or capable of multistage operation or addressing modes within single

instructions[18]. This is not similar compared to Reduced Instruction Set Computers

(RISC), which support fewer instructions. The computers that support CISC, are capable of

accomplishing a wide variety of computing tasks, which makes them the priority choice for

the general purpose computer. That’s why the majority of personal computer in the market

is using this architecture. Early in the 1970s and 1980s, the invention of CISC architecture

started a new era where the computer became capable of performing complex operation.

As a result it gave birth of complex or a bit sophisticated computer program writing. Or it

can be said that instead of writing lengthy program this instruction set provided with the

opportunity of writing small program for the same tasks.

3.2. History of CISC Architecture

As with the passage of time high-level languages started to become popular, so the

computer architects gave a try to make the machine's capabilities match constructs used by

programmers. With the help of complex addressing mode reduction of many instructions to

single machine instruction become possible. Memory in the past was relatively slow and

expensive so, compacting the program size was one of the desirable goals. Faster loading

and more available space for other programs are the two advantages offered by the small

program size. For the production of memory chips Intel Corporation was founded by

Robert Noyce, Gordon Moore and Arthur Rock in 1968. Robert Noyce, invented the

integrated silicon circuit. Intel sold the amount of chips that was worth about $3000 in

their first year of operation. Calculators were a bit large electromechanical machines

weighing of 20 kg in late 1960s. For a proposed electronic calculator, a Japanese company

21

named Busicom in September 1969, proposed Intel to manufacture 12 custom chips. Ted

Hoff the assigned engineer for this project looked this plan from a different viewpoint. He

came up with a idea that if he use a 4-bit general purpose CPU on a single chip than the

same thing can be done more simply which will also be cheap as well. As a result the 2300-

transistor 4004 was born as a first single chip CPU (Faggin et al., 1996). Though Intel had

no future plan at the beginning of this project but later on Intel came up with that it would

be worthwhile if they use the 4004 in other projects. So Intel bought all the rights of the

chip from Busicom at a cost of $60000. After some research in 1972 the 8-bit version of the

chip, the 8008 was introduced. At first Intel started to produce the 8008 at low scale as

they are not sure that it will arouse the interest. But this chip was able to arouse a large

interest among users so Intel went for the design of a new chip which has the memory

space of around 16k like the 8008’s. So in 1974, a small general purpose CPU, 8080 is

emerged. Within a very short time this product took the market like PDP-8. Intel made a

good profit by selling these chips in millions. 8086, a more generalized 16-bit CPU was

introduced in 1978. Though the design of 8086 is almost similar to the 8080 but they differ

in their compatibility. The next member of this family followed by 8086 was 8088 which

has the same architecture as 8086. But instead of having 16 bit bus it had only 8-bit bus

which made it not only slower but also cheaper than 8086. This chip became the standard

for personal computer industry when IBM chose 8088 as the CPU for IBM pc. Limits for

addressing memory for both 8086 and 8088 was 1 megabyte. In the subsequent days it

becomes a problem so Intel designed a new chip named 80286. The memory organization

of 80286 is different from the 8088 and 8086 but the basic instructions were same. In the

midrange PS/2 models and in the IBM PC/AT, 80286 had specific application. 80286 was a

great success as people accepted it due to its almost like 8088 but faster than 8088. The

quest for a 32-bit pc on a single chip became fruitful in 1985 when Intel introduced 80386.

This is also more or less compatible with the earlier versions. This backward compatibility

was desirable for the users who are running old software but at the same time the users

who are enthusiastic for future change had to hold back for some time. 80486 was

introduced after four years. The main feature of 80486 was a floating point unit, 8k of

cache memory on the chip and obviously it was faster than the previous version. The

function of cache memory is to avoid the slow accesses in the main memory by holding

22

memory words which are most commonly used inside or close to CPU. 80486 also provided

with the opportunity to build system with several CPUs. By the time Intel lost a trademark

infringement lawsuit that the numbers cannot be trademarked like 80486 so they give a

new name “Pentium” to the next generation. Pentium chips were faster than the 80486 as

Pentium has two internal pipeline compared to one internal pipeline of 80486. As a name

Pentium became more popular among the marketing people and the new chip was

introduced named as Pentium Pro. Though it was almost same as the previous one but it

brought a new change. Pentium Pro was able to execute five instructions at a time and it

had a huge change in the internal organization. An important feature of Pentium pro was

the introduction of the two-level cache memory. For commonly used instructions the

processor had its own 8k memory and for holding commonly used data there was an

additional 8k memory. There was a second cache memory of 256k in the same package.

Pentium II was introduced followed by Pentium pro which was almost similar to the

previous version except it has a multimedia extension which is called MMX. In case of audio

and video processing this instructions speeded up the computations so there was no need

of an additional multimedia coprocessor. As this is a new feature added by Pentium II so it

can be called a new version of Pentium Pro with multimedia instructions [10]. PDP-11,

System/360, VAX, Motorola 68000 family, and Intel x86 architecture based processors; all

the mentioned microprocessors are CISC architecture based. With the passage of time

processors like Pentium III, Pentium IV, Dual Core, Core 2 Duo, Quad Core was introduced

by Intel. Also Many processor based on CISC architecture is available in the

market[18,21,26,27].

3.3. Attributes of CISC Architecture [20,21,24]

Due to the development of CISC architecture there are some attributes which are more or

less common among the CISC based microprocessors. These are discussed below:

23

 Instructions have source and destination following a 2-operand format. Commands

available from the register to register, from memory to register and from register to

memory. Indexing of arrays requires multiple addressing modes for memory

including specialized modes.

 Variable length instructions where the length often varies according to the

addressing mode

 Instructions which require multiple clock cycles to execute.

Other common characteristics among CISC architectures are:

 Complex instruction-decoding logic, driven by the need for a single instruction to

support multiple addressing modes.

 A small number of general purpose registers. This results from the directly

operating instruction on memory. Also for instruction coding, execution and storage

of the code the absence of the required amount of chip is responsible.

 Several special purpose registers. Many CTSC designs set aside special registers for

the stack pointer, interrupt handling, and so on. By making the instruction set more

complex this can simplify the hardware design.

 A 'Condition code" register which is set as a side-effect of most instructions. The

function of this register is to check the last operation and to store or record if there

is any error condition.

Figure3.1. Intel 8086 Architecture, the 1st member of x86 family [24]

24

3.4. Recent Development of CISC Architecture

As advancement of science and technology is ongoing, likewise the new era is starting to

emerge in this field. New ideas and technological approach made it possible. There are

various development ongoing in CISC architecture. These are –

 The terms RISC and CISC have become less meaningful with the continued evolution

of both CISC and RISC designs and implementations.

 CISC chips are now able to execute more than one instruction within a single clock.

Pipelining is possible due to this and accommodation of many transistors on a single

chip is possible.

 Modern x86 processors also decode and split more complex instructions into a

series of smaller internal "micro-operations" which can thereby be executed in a

pipelined (parallel) fashion, thus achieving high performance.

 Attempts have been made to combine features of both RISC and CISC to develop a

new approach

 Intel has teamed up with Hewlett-Packard (HP) to design a new type of ISA. This is

known as IA-64 (Intel Architecture 64).

3.5. Advantages of CISC Architecture

There are many advantages of CISC architecture. Some are mentioned below.

 CISC has varying lengths to reduce wasted space in memory.

 Has developed a process to manage power which adjusts clock speed and voltage.

 Uses less instructions to perform similar instructions than RISC.

 Provides programmers with assembly instructions to do a lot with smaller

programs.

25

 Microprogramming is as easy as assembly language to implement, and much less

expensive than hardwiring a control unit.

 The ease of micro-coding new instructions allowed designers to make CISC

machines upwardly compatible: a new computer could run the same programs as

earlier computers because the new computer would include the instruction of the

earlier computers as a superset.

 As each instruction became more capable, fewer instructions could be used to

implement a given task. So efficient use of slow main memory is possible.

 Because micro-program instruction sets can be written to match the constructs of

high-level languages, the compiler does not have to be as complicated.

3.6. Disadvantages of CISC Architecture

Though CISC architecture offers a lot of advantages, it also hyas some disadvantages. These

are discussed below.

 CISC chips are relatively slow (compared to RISC chips) per instruction.

 CISC chips require many more transistors than comparable RISC designs.

 Harder to pipeline using CISC architecture.

 Expensive to produce.

 Earlier generations of a processor family generally were contained as a subset in

every new version - so instruction set & chip hardware become more complex with

each generation of computers.

 So that as many instructions as possible could be stored in memory with the least

possible wasted space, individual instructions could be of almost any length - this

means for execution different instructions will need different clock time as a result

the performance of the machine will be slower.

26

 Many specialized instructions aren't used frequently enough to justify their

existence -approximately 20% of the available instructions are used in a typical

program.

 CISC instructions typically set the condition codes as a side effect of the instruction.

3.7. Application of CISC Architecture

CISC architecture is used widely in all kinds of CPU which has wide application as PC or

personal computer. Day by day the processors in this PCs’ are getting more faster which

enables the user with more flexibility in his/her daily use. Texas Instruments calculators

like the TI-89, TI-92, and Voyage 200 lines use the 68000 line of processors. CISC based

processors also used widely in trainer boards for learning purposes. Palm Pilot series that

are running on Palm OS 1.x to 4.x are CISC based and also in the control system of the space

shuttle CISC based processors is used. However, they became most well known as the

processors powering desktop computers such as the Apple Macintosh, the Commodore

Amiga, the Sinclair QL, the Atari ST, purposes [27].

27

CHAPTER 4

FPGA

28

4.1. Introduction

FPGA stands for Field-Programmable Gate Arrays. FPGAs are pre-fabricated silicon devices

that can be electrically programmed to become almost any kind of digital circuit or system.

They have many advantages over Application Specific Integrated Circuits (ASIC). ASICs are

designed for specific application using CAD tools and fabricated at a foundry. Developing an

ASIC takes very much time and is expensive. Furthermore, it is not possible to correct

errors after fabrication. In contrast to ASICs, FPGAs are configured after fabrication and

they also can be reconfigured. This is done with a hardware description language (HDL)

which is compiled to a bit stream and downloaded to the FPGA. The disadvantages of

FPGAs are that the same application needs more space (transistors) on chip and the

application runs slower on a FPGA as modern as the ASIC counterpart. Due to the increase

of transistor density FPGA were getting more powerful over the years. On the other hand

the development of ASICs was getting slower and more expensive. Therefore FPGAs are

increasingly applied to high performance embedded system [29].

4.2. History

We’d have a brief look at the history of FPGA and maybe explain why we prefer to

prototype this way before going to full ASIC systems. The development of the first Field

Programmable Gate Array (FPGA) was by a company called Xilinx in 1985; however the

number of gates on the chip was in the low thousands and it wasn’t catching on at the time.

Realizing the limitations of PROMs and PLDs the US Naval Surface Warfare dept. funded a

project to develop a computer with reprogrammable gates, in this case, 600,000 of them.

The patent for this technology was given in 1992, after this point the FPGA took off and

started to appear initially in telecoms and networking equipment but later in automotive

and consumer applications. In 1997, a researcher at the University of Sussex created

algorithms that would adapt the FPGA, creating evolvable hardware. By the turn of the

century, chips were starting to have millions of reprogrammable gates on them and the

29

market share had gone from a small number of millions to billions of dollars. There are of

course some downsides over ASICs, although these are changing. Historically FPGAs have

been slower, less energy efficient and not had as much functionality. However, on the

upside, they are easily reprogrammable to correct bugs and with the new security

procedures being developed to securely load them, and the ability to correct security issues

on the FPGA as an upgrade to a system, in the future we may well see FPGAs replacing

ASICs more and more on a permanent basis [33].

4.3. FPGA Structures

4.3.1. Basic Structure

In the chapter the basic structure of a FPGA will be described. Xilinx is one of the biggest

FPGA manufacturers. A Xilinx FPGA is made up of three basic blocks [38]:

• PLB: The programmable logic blocks are the user specific functions being calculated.

• IOB: The Input / Output block make it possible to connect the FPGA to the other elements

of the application

• Interconnect: Interconnect is essential for writing between PLB and from IOBs to PLBs.

The PLBs are located at the center of the chip and the IOBs on the periphery. The

interconnect is necessary to implement several designs on the FPGA. The distributed

configuration memory controls the behavior of the PLBs and IOBs by storing the program.

Next the implementations of PLBs interconnect and IOBs are described more in detail.

30

Figure 4.1: Basic structure of FPGA [36]

4.4. Configuring a FPGA

FPGAs are not programmed directly. Synthesis tools translate the code into bit stream,

which is downloaded to the configuration memory of the FPGA. Commonly, hardware

description languages (HDL) are use to configure the device. But resent trends also offer

the possibility to high level languages. Furthermore, there are library based solutions

which are optimized for a specific device.

4.5. Advantages of FPGA

 Reduction in size (compact)

 Higher resolution

 Lower dead time

 Multifunctional

 Upgradable

 Possible automation of entire acquisition process

 Remote acquisition

31

4.6. Disadvantages of FPGA

 Signal requires pre-filtering due to ADC limitations

 Complex design procedure (requires knowledge of C/C++, VHDL/Verilog)

 Expensive hardware and software

32

CHAPTER 5

HARDWARE AND SOFTWARE

33

5.1. Introduction

 From the title of the chapter it is clear that we are here going to brief about the hardware

and software that we have used to implement the project “Remote High Speed Data

Acquisition System”. The main hardware that we have used to implement the project is

“Spartan-3E Starter Kit ” and “NI DAQ (National Instruments Data Acquisition System)”.

As we know that without the proper programming the hardware do not work, so to

program the FPGA and interfacing the necessary peripheral of Spartan-3E starter kit `we

have used the “VHDL (Very High Speed Integrated Circuits Hardware Description

Language)” and to implement the control of the system we have used the LabVIEW

software (Laboratory Virtual Instrumentation Engineering Workbench). An IDE or

Integrated Development Environment is a software program that is designed to help

programmers and developers build software. To code VHDL we have used Xilinx-13.2 ISE.

It may seem a strange fact that why here we separately describing the “USB to RS232”. The

reason we have mentioned earlier in the abstract and chapter-1 that we have implement

two “Remote Data Acquisition System”. One communicates using the “10/100 Ethernet

Physical Layer” and another using “RS232 Serial Ports”. So we think it is important make the

reader aware of the model that we have used while implementing the projects. This

chapter will give reader a fair idea about the hardware and software that are needed to

implement such kind of digital system. In hardware section we will give a fair idea about

the “Spartan-3E Starter Kit”, “USB to RS232” and “NI DAQ”. And in the Software section of

this chapter we will brief about the VHDL, LabVIEW and Xilinx-13.2 ISE. Here will just brief

about what these things are, not how they are working or how to use them. In the appendix

section we have given two tutorials on “Xilinx-13.2 ISE” and “VHDL”.

5.2. Hardware

5.2.1. Spartan-3E-starter kit

34

XC3S500E FPGA is the core of the Spartan-3E Starter kit board which is one of the Spartan-

3E families. Its logic is higly optimized. This board provides ideal platform for the

implementation and verification of designs for embedded and FPGA applications. The

Spartan-3E Starter Kit board highlights the unique features of the Spartan-3E FPGA family

and provides a convenient development board for embedded processing applications [35].

The board highlights these features:

 Spartan-3E specific features

 Parallel NOR Flash configuration

 MultiBoot FPGA configuration from Parallel NOR Flash PROM

 SPI serial Flash configuration

 Embedded development

 MicroBlaze™ 32-bit embedded RISC processor

 PicoBlaze™ 8-bit embedded controller

 DDR memory interfaces

The Spartan-3E Starter Kit board includes additional peripherals and memory; user can

design multi-purpose systems with Verilog HDL and VHDL. MicroBlaze or PicoBlaze soft-

core processor can run on Spartan-3E FPGA, so users can make use of ISE and EDK

development kit to design and debug customer system based on MicroBlaze or PicoBlaze

quickly [1].

The key features of the Spartan-3E Starter Kit board are [34,35,36]:

 Xilinx XC3S500E Spartan-3E FPGA

 Up to 232 user-I/O pins

 320-pin FBGA package

 Over 10,000 logic cells

 Xilinx 4 Mbit Platform Flash configuration PROM

 Xilinx 64-macrocell XC2C64A CoolRunner CPLD

 64 MByte (512 Mbit) of DDR SDRAM, x16 data interface, 100+ MHz

35

 16 MByte (128 Mbit) of parallel NOR Flash (Intel StrataFlash)

 FPGA configuration storage

 Micro Blaze code storage/shadowing

 16 Mbits of SPI serial Flash (STMicro)

 FPGA configuration storage

 Micro Blaze code shadowing

 2-line, 16-character LCD screen

 PS/2 mouse or keyboard port

 VGA display port

 10/100 Ethernet PHY (requires Ethernet MAC in FPGA)

 Two 9-pin RS-232 ports (DTE- and DCE-style)

 On-board USB-based FPGA/CPLD download/debug interface

 50 MHz clock oscillator

 SHA-1 1-wire serial EEPROM for bitstream copy protection

 Hirose FX2 expansion connector

 Three Digilent 6-pin expansion connectors

 Four-output, SPI-based Digital-to-Analog Converter (DAC)

 Two-input, SPI-based Analog-to-Digital Converter (ADC) with programmable-gain

pre-amplifier

 ChipScope™ SoftTouch debugging port

 Rotary-encoder with push-button shaft

 Eight discrete LEDs

 Four slide switches

 Four push-button switches

 SMA clock input

 8-pin DIP socket for auxiliary clock oscillator

36

Figure-5.1. Spartan-3E Starter Kit Board-1 [36]

Figure-5.2. Spartan-3E Starter Kit Board-2 [34]

37

Figure-5.3. Standard USB Type A/Type B Cable[35]

Figure-5.4. Connect the USB Type B Connector to the Starter Kit Board Connector[35]

38

Figure-5.5. 10/100 Ethernet PHY with RJ-45 Connector[35]

Figure-5.6. Character LCD Interface [35]

39

Figure-5.7. Four Slide Switches and Eight LEDs [35].

40

Figure-5.8. Push-Button Switches Require Internal Pull-up Resistor in FPGA Input Pin

[35].

Figure-5.9. RS-232 Serial Ports [35].

Figure-5.10. Digital-to-Analog Converter and Associated Header [35].

41

Figure-5.11. Analog to Digital Converter (Two-Channel Analog Capture Circuit) [35]

Figure-5.12. Connections to Intel StrataFlash Flash Memory [35]

42

Figure-5.13. FPGA Interface to Micron 512 Mbit DDR SDRAM [35]

Figure 5.3 represents the Commercial Package of Spartan-3E starter kit. Fig 5.4 is the

completely indicator diagram of Spartan-3E, means it shows the consisting elements on the

board. And from the figure-3 to fig 5.15 are the pictorial representation of the necessary

peripherals those we need to interface using the VHDL for the implementation of our

project “Remote High Speed Data Acquisition System”.

5.3. USB TO RS232 SERIAL Adapter CABLE DB9 PIN PL2303

USB to RS232 serial cable adapter supports over 1Mbps data transfer rate which is

enriched with remote Wake-up and power management [34].

5.3.1. USB TO RS232 SERIAL Adapter CABLE DB9 PIN PL2303 Features [38]

High-Speed USB 2.0 To RS232 Serial Pin Cable Adapter-

43

 USB specification revision 1.1 & 2.0 compliant from this USB Cable Adapter

 High-Speed USB to RS232 Cable support Rs232 serial interface (DB9)

 USB Data Cable Support Windows ME/2000/XP

 Measurement: 81cm/31.8" in length; Weight: 86g

Figure-5.14. USB TO RS232 Serial cable adapter [38]

5.4. Software

In high speed remote data acquisition system VHDL, Lab VIEW, Xilinx-13.2 is used as

software. These are going to be described below.

5.4.1. VHDL

VHDL is a Hardware Description Language (HDL) which describes the behavior of an

electronic circuit or system. VHDL stands for Very High Speed Integrated Circuits (VHSIC)

Hardware Description Language. The development of the VHDL language was funded by

the United States Department of Defense (DoD) in the 1980. VHDL’s first version was

44

VHDL-87, later upgraded to the so-called VHDL-93. This is the first and original HDL to be

standardized by the IEEE (Institute of Electrical and Electronic Engineers), through the

IEEE 1076 standard. An additional standard, the IEEE 1164, was later added to introduce a

multi-valued, logic system. VHDL is able to do both circuit synthesis and simulation. VHDL

is fully simulatable but not all the constructs are synthesizable. The (automatic)

transformation of a less detailed description into a more elaborated one is called synthesis.

The main reason behind choosing the VHDL is that, it is a standard, technology or vendor

independent language, portable and reusable. The two main applications of VHDL are in

the field of Programmable Logic Devices and in the field of ASICs. Programmable Logic

Devices are Field Programmable Gate Array (FPGA) and Complex Programmable Logic

Devices(CPLD). Once the VHDL code has been written, it can be used either to implement

the circuit in a programmable device (Altera, Xilinx, Atmel etc.) or can be submitted to a

foundry for fabrication of an AISC chip [1]. VHDL is not sequential language rather it is

inherently concurrent (parallel). In concurrent coding the instructions are executed in

parallel. Concurrent code is also called the dataflow code. This is why VHDL is referred as a

“code” rather than a program. Usually WHEN, GENERATE, operators and special kind of

assignment, called BLOCK is used for the concurrent coding in VHDL. Purely concurrent

code could not be used to implement the synchronous circuits. We can say that, using

concurrent code the combinational logic circuit could be built. If we want to implement a

sequential circuit then we have to employ the sequential code. But the statement which is

placed inside a PROCESS, FUNCTION OR PROCEDURE is executed sequentially [3,39].

5.4.2. Lab VIEW

In the recent days throughout the industry, academia and research labs LabVIEW becomes

a common choice of standard as data acquisition and instrument control software. This is a

multiplatform instrumentation and analysis softare system which is not only powerful for

the required purpose but also provide with flexibiliy. It can be run on Windows , MAC OS X

and Linux. The main feature of this software is it can be run on embedded FPGA chips and

32-bit microprocessor which is why it is a popular choice for instrumentation or

45

manipulation of a FPGA based design, Data Acquisition System etc. It has a very user

friendly interface which offers feasible writing and execution of programs. Unlike the

tradition programming languages LabVIEW features a graphical programming

environment with all essential tools for data acquisition, analysis of data and result

presentation.It is also able to solve a wide variety of problems in a very short time without

any compulsive writing of conventional code in other engineering application.

5.4.3 Xilinx 13.2 ISE

Xilinx is a simulation software for VHDL, Verilog on embedded FPGA based design. The

features of logic edition are-

 Complete flow for RTL-based design

 Familiar design flows (pre-7 series devices), with full support of the latest Xilinx 7

series FPGAs and Zynq-7000

 Integrated tool set supporting logic/connectivity, embedded, and DSP designs

The features for embedded edition are-

 Use one tool chain for hard and soft microprocessors

 Reduces board complexity and cost

 Leverage intelligent tools and IP

The features for DSP edition are-

 Leverage tools and IP for varied approaches

 Addresses DSP performance bottlenecks

 Enables leading-edge algorithms

46

CHAPTER 6

REMOTE DATA ACQUISITION SYSTEM

USING FPGA

47

6.1. Interfacing the Peripherals of Spartan-3E Starter Kit

With recent improvements in the density of field programmable gate array (FPGA) devices,

systems with an increasingly higher level of integration are possible. Digital signal

processing is an important application area for FPGAs and such systems often require data

converters to provide analog outputs from digital domain representations (D. Sillage,

2009). The DAC could be entirely built on FPGA by using the VHDL (Very High Speed

Integrated Circuit Hardware Description Language). As it is completely single chip system

so it provides a high degree of flexibility and reduces costs. Developed VHDL code has been

implemented on the Spartan-3E starter kit.

6.1.1. DAC

The Spartan-3E Starter Kit board includes an SPI-compatible, four-channel, serial Digital to-

Analog Converter (DAC). The DAC device is a Linear Technology LTC2624 quad DAC with

12-bit unsigned resolution. The four outputs from the DAC appear on the J5 header, which

uses the Digilent 6-pin Peripheral Module format [71].

Figure-6.1. DAC connection schematics [71]

48

6.1.2. SPI Communication

The FPGA uses a Serial Peripheral Interface (SPI) to send digital values to each of the four

DAC channels. The SPI bus is a full-duplex, synchronous, character-oriented channel

employing a simple four-wire interface. The interface signals between the FPGA and the

DAC are the SPI_MOSI, SPI_MISO, and SPI_SCK which are shared with the other devices on

the SPI bus. The DAC_CS signal is the active-Low slave select input to the DAC. The

DAC_CLR signal is the active-Low, asynchronous reset input to the DAC. As a bus master the

FPGA drives the bus clock signal (SPI_SCK) and transmits serial data (SPI_MOSI) to the

selected DAC bus slave [72].

Figure-6.2. SPI communication waveform [72]

6.1.3. Communication Protocol

49

Figure 3 shows the shows the communications protocol required to interface with the

LTC2624 DAC. The DAC supports both a 24-bit and 32-bit protocol. The 32-bit protocol is

shown. Inside the D/A converter, the SPI interface is formed by a 32-bit shift register [73].

Figure-6.3. SPI communication protocol[73]

Each 32-bit command word consists of a command, an address, followed by data value. The

FPGA first sends eight dummy or “don’t care” bits, followed by a 4-bit command. The most

commonly used command with the board is COMMAND [3:0] = “0011”, which immediately

updates the selected DAC output with the specified data value. Following the command, the

FPGA selects one or all the DAC output channels via a 4-bit address field. Following the

address field, the FPGA sends a 12-bit unsigned data value that the DAC converts to an

analog value on the selected output(s). Finally, four additional dummy or don’t care bits

pad the 32-bit command word [74].

50

6.1.4. Character LCD Screen

The Spartan-3E starter kit has 2-line by 16-character LCD. The FPGA controls the LCD by

using the 4-bit data interface. The LCD is capable of displaying a variety of information

using the standard ASCII and custom characters. The interface character LCD interface

signals are the SF_D, SF_D, SF_D, SF_D, LCD_E, LCD_RS and LCD_RW [74].

Figure-6.4. Character LCD interface [74].

6.1.5. Rotary Push-Button Switch

51

The rotary push-button switch is capable of producing three outputs. The two shaft

encoder outputs are ROT_A and ROT_B and the center push-button switch is ROT_CENTER.

This switch integrates two different factions. The switch shaft rotates and outputs values

whenever the shaft turns. The shaft can also be pressed, acting as a push-button switch

[74].

Figure-6.5. Rotary Switch Shaft Encoder Circuitry [73]

52

Rotating the shaft operates two push-button switches, as shown in 4. Depending on which

way the shaft is rotated, one of the switches opens before the other. Likewise, as the

rotation continues, one switch closes before the other. However, when the shaft is

stationary, also called the detent position, both switches are closed. Closing a switch

connects it to ground, generating a logic Low. When the switch is open, a pull-up resistor

within the FPGA pin pulls the signal to logic High [72]

Figure-6.6. Output from Rotary Shaft Encoder Circuitry [73].

6.2. Working Principle

53

This system produces analog voltage at the output of DAC according to the digital value

provided by the FPGA . The digital input of the DAC is controlled with the help of rotary

switch. The rotation of switch in clockwise direction increase the analog output value and

rotation in anticlockwise direction result in the decrement of the analog output value. The

step voltage of increment is controlled with a push-button switch. Default step voltage is

100mv. With pressing this switch we can change the step from 100mv to 10mv. For the

next push it switches to previous state.

Figure-6.7. Block Diagram of the Developed System

We have developed several VHDL components to implement system within FPGA as shown

in Figure-8. Rotary switch component sense the rotary switch and increment and

decrement the DAC’s digital values. For a single rotation the DAC’s digital input value is

increased to 164 for 100mv step or 16 for 10 mv. But in reverse rotation it decreases the

DAC digital input with equal amount (164 for 100mv step or 16 for 10 mv). The DAC digital

input is passed to DAC component.

54

Figure-6.8. Block diagram of the system (Software)

The Figure-9 shows the state diagram for DAC component. The components loop in the

state S0 and wait for set button press. When set button is pressed the program go to the

next state S1. In the state S1 program will make the DAC_CS = ‘0’ to select the DAC and

55

transfer control to the state S2. In this state 1-bit out of 32-bit data will be sent making the

clock SPI_SCK low and transferred to the state S3. In state S3 clock SPI_SCK is made high

and condition bitnr < 32 is checked (bitnr is the number of bit transmitted). If the

condition bitnr< 32 is true program is transferred to the state S2 otherwise it is transferred

to state S4. When the program is in the state S4, switching from this state to other state (S0

or S1) depends upon the set value as depicted in the figure 9.

Figure-6.9. State diagram of the DAC

56

Figure-6.10. State diagram of the dis_value component

The DAC digital input is also sent to dis_value (display value) components. These

components process digital input to generate suitable code for representing voltage on the

LCD screen. The state diagram for this component is shown in figure-10. In the state S0

val_adc register is updated with DAC digital value. Then in the next state S1,

1638(equivalent to 1 volt) is subtracted from the val_adc. If subtracted value is less than

1638, the program is transferred to the next state S2. Here the val_adc is subtracted by

164(equivalent to .1 volt). In this way this component produces equivalent value for digital

input. The generated code is sent to lcd_driver component. The LCD driver component

takes the value from dis_value component. The component sends an index to the main

program and ask bit pattern for the character to be displayed at this index.

6.3. ADC

57

ADC stands for Analog to Digital Converter which is essentially a circuit used to convert the

analog input values into digital output values. In the Spartan-3E kit board there is a Analog

to Digital Converter along with a programmable scaling pre-amplifier, in a two channel

analog capture circuit. In the analog capture circuit there is a programmable preamplifier

called LTC6912-1. The function of this programmable preamplifier is to scale the analog

input signal on header J7 which is embedded on the kit board [76,93].

Figure-6.11. Two-Channel Analog Capture Circuit [76,93].

The output of the preamplifier goes as a input to the ADC called LTC1407A-1. FPGA is

responsible for the program control of the preamplifier and ADC.

58

Figure-6.12. Detailed View of Analog Capture Circuit [76,93].

6.4. Programmable Pre-Amplifier

6.4.1. Programmable Gain

The analog voltage applied on VINA and VINB is converted by analog capture circuit which

constitutes a digital representation consisting 14-bit. Two independent inverting amplifiers

are provided by LTC6912-1 which has programmable gain. Scaling the incoming voltage on

VINA or VINB is the main purpose of using the amplifier as a result the maximization of

conversion range of DAC will become around 1.65+1.25v. A programmable gain amplifier is

associated with each analog channel, as shown in figure. The amplification of analog

voltage input in VINA and VINB is done relative to a reference voltage of 1.65. Using a

voltage divider of 3.3V of the supply voltage the reference voltage 1.65V is generated. The

amplifiers each have a programmable gain range of -1 to -100, as shown in Table 1 [76,93]..

59

Table-1

Programmable Gain Settings for Pre-Amplifier [76,93].

A3 A2 A1 A0 Gain Input Voltage Range

B3 B2 B1 B0 Minimun Maximum

0 0 0 1 -1 0.4 2.9

0 0 1 0 -2 1.025 2.275

0 0 1 1 -5 1.4 1.9

0 1 0 0 -10 1.525 1.775

0 1 0 1 -20 1.5875 1.7125

0 1 1 0 -50 1.625 1.675

0 1 1 1 -100 1.6375 1.6625

6.4.2. Interface

The interface signals between the FPGA and the amplifier have been presented in the table-

2. The SPI_MOSI, SPI_MISO, and SPI_SCK signals are shared with other devices on the SPI

bus. The AMP_CS signal is the active-Low slave select input to the amplifier [76,93].

Table-2

AMP Interface Signals[76,91].

Signal FPGA

Pin

Direction

SPI_MOSI T4 FPGAAD

AMP_CS N7 FPGAAMP

SPI_SCK U16 FPGAAMP

AMP_SHDN P7 FPGAAMP

AMP_DOUT E18 FPGAAMP

60

6.4.3. SPI Control Interface

Figure-6.13. represents the SPI-based communication interface with amplifier. The gain

for each amplifier is sent as an 8-bit command word, consisting of two 4-bit fields [76,93].

Figure-6.13. SPI Serial Interface to Amplifier [76,93].

The most-significant bit, B3, is sent first. The AMP_DOUT output from the amplifier echoes

the previous gain settings. The SPI bus transaction starts when the FPGA asserts AMP_CS

Low. The amplifier captures serial data on SPI_MOSI on the rising edge of the SPI_SCK clock

signal. The amplifier presents serial data on AMP_DOUT on the falling edge of SPI_SCK

[76,93].

Figure-6.14. SPI Timing When Communicating with Amplifier [76,93].

61

6.5. Analog to Digital Converter (ADC)

6.5.1. Interface

Table-3 represents the interface signals between the FPGA and the ADC. The SPI_MOSI,

SPI_MISO, and SPI_SCK signals are shared with other devices on the SPI bus. The DAC_CS

signal is the active-Low slave select input to the DAC. The DAC_CLR signal is the active-Low,

asynchronous reset input to the DAC [76,93].

Table-3

ADC INTERFACE SIGNALS [76,93].

Signals Pin

FPGA

Direction

SPI_SCK U16 FPGA → ADC

AD_CONV P11 FPGA → ADC

SPI_MISO N10 FPGA → ADC

6.5.2. SPI Control Interface

Figure-6.15. represents the SPI bus transaction to the ADC. When the AD_CONV signal goes

High, the ADC simultaneously samples both analog channels. The results of this conversion

are not presented until the next time AD_CONV is asserted, a latency of one sample. The

maxim sample rate is approximately 1.5 MHz. The ADC presents the digital representation

of the sampled analog values as a 14-bit, two’s complement binary value [76,93].

62

Figure-6.15. Analog-to-Digital Conversion Interface [76,93].

Figure-6.16. shows detailed transaction timing. The AD_CONV signal is not a traditional

SPI slave select enable. Be sure to provide enough SPI_SCK clock cycles so that the ADC

leaves the SPI_MISO signal in the high-impedance state. Otherwise, the ADC blocks

communication to the other SPI peripherals. The ADC 3-states its data output for two clock

cycles before and after each 14-bit data transfer [76,93].

Figure-6.16. Detailed SPI Timing to ADC [76,93].

6.6. Interfacing of the Ethernet Controller [91]

6.6.1. Design Strategy

63

The chip associated with the Ethernet port of the “Spartan-3E Starter Kit” does not

implement the Ethernet controller rather than the physical transceiver layer. To transmit

or receive data over this Ethernet port we have interface the Ethernet controller for which

we have used open core Ethernet controller from the Open Cores. The packet

communication through the Ethernet controller is demonstrated by a host module [91].

6.6.2. Open Core Ethernet Controller

The controller presents three interfaces [91]

1. An interface to the PHY

2. An interface to external memory where the packets will be stored

3. A user interface that allows the set-up of the rx/tx buffer descriptors and the read/write

of the various registers

To interface the PHY the tri-state i/o has to be converted into the two distinct wires.

External memory is used by the controller to read or write packets. The addresses are

controller by the user setting up the appropriate pointers in the buffer descriptors. This

interface is known as standard wishbone interface. Here the controller is master while the

memory is slave. The third interface has logically two parts-one is composed of registers

and another is composed buffer descriptors. The Ethernet controller is controlled by the

registers. The packet transmission is controlled by the buffer descriptors where in the

external memory the packets are stored. Buffer descriptors 8-bytes long of which the first

4-bytes contain the status/control of the packet and the last 4-bytes contain the external

memory address of the buffer where the packet is stored. The interface is a standard

Wishbone interface. This interface is a slave, and the host is the master [91]..

6.6.3. Design

64

The design diagram is depicted in the following figure.

Figure-6.17. Design Diagram [91].

65

The top level module, “eth_loopback”, instantiates the host, the memory and the wishbone

arbiter. The DDR SDRAM choosen as external memory for which the Xilinx MIG 2.0

controller is reused. “memory_wb_to_mig” module is used to convert the Wishbone to the

MIG 2.0 proprietary interface. “eth_cop”-a simple arbiter is used to interconnect the two

masters and two slaves. In order to be synthesizable the module needs very slight

modifications. The arbitration provided by “eth_cop” is based on the address values:

 0x0000-0x0050: Registers (slave 1)

 0x0400-0x05ff: Tx buffer descriptors (slave 1)

 0x0600-0x07ff: Rx buffer descriptors (slave 1)

 0x2000-0x32000: DDR SDRAM (slave 2)

6.6.4. Host

“loopback_controller” which is a host module reads incoming packets and send them back

out without any kinds of modification. The algorithm that works behind loopback is-

initialize mode register

forever

initialize one rx buffer descriptor

wait until packet received in corresponding buffer descriptor

initialize tx buffer descriptor w/ same address as rx buffer and same length

endforever

For mode register the defaults parameters cannot be used as mode register needs its tx and

rx bits set in order to enable receive or transmit. Pointer and control bits constitute the

buffer descriptors. The pointer is nothing but the DDR SDRAM address of the packet data.

Some control bits are determined by the user while some are determined by the Ethernet

core. The most important control bit is the enable bit. In a rx buffer descriptor an enable bit

set to 1 indicates to the core that it can write the buffer descriptor and its associated buffer

66

for packet reception. Once the packet is received, the core resets the enable bit, and the

user can read the received packet and its status. The tx buffer descriptors contain a similar

enable bit. The user sets it to tell the core to send a packet. Once sent, the core resets this

bit indicating that the packet was sent [91].

6.7. Remote Data Acquisition System

The block diagram of the “Remote Data Acquisition System” has been shown. Our developed

DAQ will acquire the data from the surroundings or radioactive areas in terms of voltage,

temperature, pressure etc. Then these acquired analog data will be processed to the FPGA

through the data conversion from analog domain to digital domain using the ADC. Ethernet

port of the “Spartan-3E Starter Kit” has been interfaced in such a way thus the FPGA could

process the acquired data to the user’s PC who intended to acquire it. The acquired data

could be transmitted to remote place using internet. Our main aim of doing this project is to

make the use of the “Ethernet Port” of the “Spartan-3E Starter Kit” thus we could use the

internet for transmitting the data to a remote place. For checking the workability of the

networking of Data Acquisition System, we have designed a network as depicted in the

Figure-6.18. which is simulated using the CISCO Packet Tracer 5. The simulation was

carried out in the real time simulation mode in which the clock should run continuously.

The simulation results and along with the network design have been represented here

respectively.

67

Figure-6.18. Remote High Speed Data Acquisition System

68

Figure-6.19. Network Architecture

69

Table.4. Network Design

Subnets Subnet

address

Prefix Mask Hosts Default

Gateway

(First

address)

Broadcast

(last

address)

NET- 1 10.0.1.0 29 248 8 10.0.1.1 10.0.1.7

NET- 2 10.0.1.8 29 248 8 10.0.1.9 10.0.1.15

Point-to-

point

(Router)

10.0.1.16 30 252 4 Address usable for

point-to point

(10.0.1.17

 10.0.1.18)

70

Figure-6.20. Simulation Using the CISCO Packet Tracer-5.3

71

CHAPTER 7

RESULT ANALYSIS AND DISCUSSION

72

7.1. Result Analysis

7.1.1. DAC Implementation on FPGA

The developed VHDL code has been implemented on the Spartan-3E starter kit. The design

is synthesized and implemented on the FPGA by using the Xilinx ISE 13.2 software. The kit

includes embedded USB based programming logic and an USB end point with a Type B

connector [6]. With the help of a USB cable which has connection with the PC and iMPACT

programming software we burned the program directly into the FPGA.

Figure-7.1. Experimental Setup

After burning code we have taken different reading using digital multi meter. The taken

reading is listed below in the table 4 and table 5. We actually compare the value from the

DAC output with the reading displayed on the LCD screen. Following tables show the

reading for voltage step 100 mv and 10 mv.

7.1.2. Tables and Figures

TABLE -5

FOR 100mV Step

73

S/N. LCD Value

(Volt)

Multimeter (Volt)

1 0.092 0.09

2 0.192 0.19

3 0.292 0.29

4 0.392 0.39

5 0.492 0.48

6 0.592 0.59

7 0.692 0.68

8 0.792 0.78

9 0.892 0.88

10 0.992 0.98

11 1.194 1.17

12 1.294 1.27

13 1.394 1.37

14 1.494 1.47

15 1.594 1.55

16 1.694 1.67

17 1.794 1.77

18 1.894 1.86

74

19 1.994 1.97

20 2.096 2.06

21 2.196 2.18

22 2.296 2.27

23 2.396 2.36

24 2.496 2.49

Figure-7.2. For 100mV

TABLE -6

FOR 10mV Step

S/N. LCD Value (Volt) Multimeter

Value

(Volt)

0

0.5

1

1.5

2

2.5

3

0 1 2 3

M
u

lt
im

e
te

r
V

al
u

e

LCD Value

75

1 2.408 2.37

2 2.418 2.37

3 2.428 2.40

4 2.436 2.39

5 2.446 2.40

6 2.456 2.41

7 2.464 2.43

8 2.474 2.43

9 2.484 2.44

10 2.494 2.48

 Figure-7.3. For 10mV

We have implemented this system in the Lab. There are some deviations in the reading of

the multi meter to the LCD display reading. This may happen in the time of conversion from

2.36

2.38

2.4

2.42

2.44

2.46

2.48

2.5

2.52

1 2 3 4 5 6 7 8 9 10 11 12

M
u

lt
im

e
te

r
V

al
u

e

LCD Value

76

digital to analog. But the matter of the fact is that the deviation is not great. So we can say

that our developed system is almost an accurate and ideal for use for various purposes.

7.1.3. Simulation Results

Figure-7.4. Simulation

Figure-7.5. Behavioral

77

Figure-7.6. RTL Schematic

Figure-7.7. Design Summary

78

7.2. Measure Light Intensity using Photodiode

Light intensity is an important management factor for breeder type poultry. The amount of

light received by a plant is an important factor, because plants' growth may suffer if they do

not receive sufficient light. Light intensity decreases dramatically with distance from the

light source. An object located 15 cm from two 40-watt fluorescent lamps receive about

9300 lux, but only 5400 lux if they are 30 cm from the lamps. The human eye is a very poor

"instrument" for measuring light intensity, because the pupil adjusts constantly in response

to the amount of light it receives. To accurately measure the light intensity in a given spot,

it is best to use a light meter. Light intensity may be measured in lux (metric system) or

foot-candles (Imperial system).

1 foot-candle = 10.76 lux

7.2.1. Photodiode BPW34 as light sensor

The Photodiode used is the BPW34. This is a high speed and high sensitive silicon PIN

photodiode in a miniature flat plastic package. A photodiode is designed to be responsive to

optical input. Due to its water clear epoxy the device is sensitive to visible and infrared

radiation. The large active area combined with a flat case gives a high sensitivity at a wide

viewing angle.

79

Figure-7.8. Photodiode BPW34

Figure-7.9. Develop a LabVIEW VI that reads the voltage across the resistor and converts

the voltage to lux.

7.2.2. Build a Light Intensity Logger

80

 Reads the voltage across the resistor and converts the voltage to lux

 Adjustable Update Period

 Statistics of Maximum, Minimum and Mean Value

 Intensity plot over time (with Reset)

 A selectable and adjustable Threshold (Limit) and a warning if light is not in Range

Figure-7.10. Front Panel View (Light Intensity Logger)

7.3. Measure Distance using the Ultrasonic Sensor

81

The MaxSonar-EZ1 uses an ultrasonic sensor to detect objects from 6-inches to 254-inches

with a 1-inch resolution. The analog output is given as 10mV/inch. You can connect the

sensor to the analog IO module as:

Figure-7.11. Front View (Ultrasonic Sensor)

82

Figure-7.12. Block Diagram (Ultrasonic Sensor)

7.4. Temperature Simulation and Calibration

• Generate a Random Number (Temperature) between 20° to 50 °C

• This number is interpreted as Temperature

• Add a timing (Wait function) for a temperature measurement of 5 Hz

• (One temperature every 200 ms)

83

• Display the Temperature curve in a Chart

Figure-7.13. Front Panel View (Temperature)

Figure-7.14. Block Diagram (Temperature)

84

7.5. Optical Heart Rate Monitor

Pulse Oximetry is a non invasive method of measuring a person's oxygenation level which

monitors the percentage of haemoglobin (Hb). A probe comprising LEDs and photo

detector is attached to the patient's finger. As the light from the two LEDs (red - 660 nm

and infrared - 950 nm) pass through the body tissues to a photodetector, it is absorbed by

blood and soft tissue. The light absorption rate at the two wavelengths by the hemoglobin

is different and depends on the degree of oxygenation. The light level changes as the blood

is pumped by the heart. As a consequence, the oximeter also measures the heart rate in

beats per minute (BPM). In this application note, we have created a heart rate monitor by

using one IR LED & phototransistor pair and observing the waveform at the

phototransistor output. This is intended for illustrating a typical light sensor application

and not intended for actual medical use.

Figure-7.15. Optical heart rate monitor schematic

85

Figure-7.16. IR emitter and detector encased in Velcro

86

When the console program is first run, the user to place his/her finger on the sensor. When

a finger is placed on the phototransistor, the voltage read rises above 0.3V. If a good contact

is made, a sinusoidal type signal is observed. As the signal rides on a fluctuating DC signal, a

simple differential signal is created. From maths, we know that when a max or min is

reached, its differential value is zero. After this an autocorrelation function is applied and

the peaks extracted to obtain the heart rate. When the signal is noisy, a wrong BPM will be

calculated. Any count that is obviously wrong is ignored. This is all taken care of by the

HRM class.

7.6. Discussion

7.6.1. DAC

We have implemented this system in the Lab. There are some deviations in the reading of

the multi meter to the LCD display reading. This may happen in the time of conversion from

digital to analog. But the matter of the fact is that the deviation is not great. So we can say

that our developed system is almost an accurate and ideal one which could be used for

various purposes.

7.6.2. DAQs

Using our developed “Data Acquisition System” we have performed four experiments. Those

are- Measure Light Intensity using Photodiode, Measure Distance using the Ultrasonic

Sensor, Temperature Simulation and Calibration, and Optical Heart Rate Monitor. And in

each case we have got the values nearly our expected one.

87

REFERENCES

[1] M. Michael Vai David R. Martinez, Robert A. Bond. High Performance Embedded

Computing Handbook. CRC Press, 2008.

[2] Jonathan Rose Ian Kuon, Russel Tessier. Fpga architecture: Survey and challenges.

Foundations and Trends in Electronic Design Automation, 2007.

[3] Volnei A. Pedroni, Circuit Design with VHDL, 1st Edition, MIT Press, Cambridge, MA,

U.S.A., ISBN-978-81-203-2683-5.

[4] M. Morris Mano, Digital Logic and Computer Design,Prentice Hall College Div (April

1979), ISBN-13: 978-0132145107.

[5] Peter H. Sydenham and Richard Thorn., Handbook of Measuring System Design ©

John Wiley & Sons, Ltd, 2005.

[6] http://www.omega.com/das/ , 5th January, 2012.

[7] http://cp.literature.agilent.com/litweb/pdf/5950-3000.pdf, 5th January, 2012.

[8] http://www.techbriefs.com/component/content/article/14608, 7th January, 2012.

[9] J.B. Dixit, Amit Yadav, Intelligent Instrumentation for Engineers , Laxmi Publications

Pvt Limited, Sep 1, 2011 - 183 pages.

[10] http://www.ni.com/data-acquisition/, 8th January, 2012.

[11] http://www.qedenv.com/products/remote_wireless_data_acquisition_overview, 8th

January, 2012.

[12] http://www.teledesignsystems.com/, 8th January, 2012.

[13] http://www.ti.com/lit/ug/sbou056/sbou056.pdf , 8th January, 2012.

[14] http://www.abs-cbnnews.com/exam-results/05/31/12/marine-engineer-

licensure-exams-results-released , 9th January, 2012.

[15] http://www.bartington.com/das1-data-acquisition-system.html, 10th January, 2012.

[16] http://www.home.agilent.com/en/pc-1000000676%3Aepsg%3Apgr/data-

acquisition-daq?&cc=BD&lc=eng, 11th January, 2012.

[17] http://books.google.com.bd/embedded_Systems_Design.html?id=Nr_esc=y, 17th

January, 2012.

http://www.omega.com/das/
http://www.techbriefs.com/component/content/article/14608
http://www.google.com.bd/search?tbo=p&tbm=bks&q=inauthor:%22J.B.+Dixit%22
http://www.google.com.bd/search?tbo=p&tbm=bks&q=inauthor:%22Amit+Yadav%22
http://www.ni.com/data-acquisition/
http://www.qedenv.com/products/remote_wireless_data_acquisition_overview
http://www.teledesignsystems.com/
http://www.ti.com/lit/ug/sbou056/sbou056.pdf
http://www.abs-cbnnews.com/exam-results/05/31/12/marine-engineer-licensure-exams-results-released
http://www.abs-cbnnews.com/exam-results/05/31/12/marine-engineer-licensure-exams-results-released
http://www.bartington.com/das1-data-acquisition-system.html
http://www.home.agilent.com/en/pc-1000000676%3Aepsg%3Apgr/data-acquisition-daq?&cc=BD&lc=eng
http://www.home.agilent.com/en/pc-1000000676%3Aepsg%3Apgr/data-acquisition-daq?&cc=BD&lc=eng
http://books.google.com.bd/embedded_Systems_Design.html?id=Nr_esc=y

88

[18] Yi Gao, Shilang Tang, Zhangli Ding, "Comparison between CISC and RISC", 2000.

[19] Steve Heath, “Microprocessor Architectures: RISC, CISC and DSP”, Second Edition,

1995.

[20] William Stallings, “Computer Architecture Designing for Performance”, “Seventh

Edition”, 2006.

[21] John L. Hennessy, David A. Patterson, "Computer Architecture A Quantitative

Approach", Third Edition, 2006.

[22] http://en.wikipedia.org/wiki/Complex_instruction_set_computing , 19th January,

2012.

[23] http://en.wikipedia.org/wiki/Intel_Core, 19th January, 2012.

[24] Marvin Hobbs, “RISC/CISC Development and Test Support”. Prentice Hall

(September 1991), ISBN-13: 978-0133884142.

[25] http://en.wikibooks.org/wiki/ /Instruction_Set_Architectures , 25th January.

[26] Jeff Prosise, "RISc vs. CISC: The Real Story", PC Magazine, 1995.

[27] Nouf Assad, Microprocessors, History of Computing.

[28] http://en.wikipedia.org/wiki/Field-programmable_gate_array, 2nd February, 2012.

[29] http://www.altera.com/products/fpga.html, 2nd February, 2012.

[30] http://www.webopedia.com/TERM/F/FPGA.html , 3rd February, 2012.

[31] http://www.latticesemi.com/products/fpga/index.cfm, 4th February, 2012.

[32] http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html, 7th February,

2012.

http://en.wikipedia.org/wiki/Complex_instruction_set_computing
http://en.wikipedia.org/wiki/Intel_Core
http://en.wikibooks.org/wiki/%20/Instruction_Set_Architectures
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://www.altera.com/products/fpga.html
http://www.webopedia.com/TERM/F/FPGA.html
http://www.latticesemi.com/products/fpga/index.cfm
http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html

89

[33] Scott Hauck, André DeHon, Reconfigurable Computing: The Theory and Practice of

FPGA-Based Computation, Morgan Kaufmann, 2008 , ISBN 0123705223,

9780123705228.

[34] http://www.up-tech.com/eng/product/detail.asp?id=35, 15th February,2012.

[35] http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm,15th

February,2012.

[36] http://parts.digikey.com/1/parts/1366679-kit-starter-spartan-3e-hw-spar3e-sk-

uni-g.html, 15th February,2012.

[37] http://www.digilentinc.com/Products/ =2,400,792&Prod=S3EBOARD, 15th

February,2012.

[38] http://www.amazon.com/RS232-SERIAL-Adapter-CABLE-

PL2303/dp/B00404N0IQ?SubscriptionId=AKIAILPV47KBBQYSR3TQ&tag=fataom0

220&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00404N0IQ ,

17th February, 2012.

[39] Peter J. Ashenden, The Designer’s Guide to VHDL, 2nd Edition, Elseviewer, ISBN-1-

55860-674-2.

[40] Ulrich Heinkel, Martin Padeffke, Werner Haas, Thomas Buerner, Herbert Braisz,

Thomas Gentner, Alexander Grassmann, The VHDL Reference, 1st Edition, John

Wiley ans Sons. Ltd, ISBN-0-47189972-0.

[41] Yalamanchili S., VHDL Starter’s Guid, Englewood Cliffs, NJ, Prentice Hall, 1998.

[42] Yalamanchili S., Introductory VHDL from Simulation to Synthesis, Englewood Cliffs,

NJ, Prentice Hall, 2001.

[43] Perry D.L., VHDL, New York, McGraw-Hill, 2nd Edition, 1994.

[44] Pellerin D. and D. Taylor, VHDL Made Easy, Englewood Cliffs, NJ, Prentice Hall, 1997.

http://www.google.com.bd/search?tbo=p&tbm=bks&q=inauthor:%22Scott+Hauck%22&source=gbs_metadata_r&cad=6
http://www.google.com.bd/search?tbo=p&tbm=bks&q=inauthor:%22Andr%C3%A9+DeHon%22&source=gbs_metadata_r&cad=6
http://www.amazon.com/RS232-SERIAL-Adapter-CABLE-PL2303/dp/B00404N0IQ?SubscriptionId=AKIAILPV47KBBQYSR3TQ&tag=fataom0220&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00404N0IQ
http://www.amazon.com/RS232-SERIAL-Adapter-CABLE-PL2303/dp/B00404N0IQ?SubscriptionId=AKIAILPV47KBBQYSR3TQ&tag=fataom0220&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00404N0IQ
http://www.amazon.com/RS232-SERIAL-Adapter-CABLE-PL2303/dp/B00404N0IQ?SubscriptionId=AKIAILPV47KBBQYSR3TQ&tag=fataom0220&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00404N0IQ

90

[45] Navabi Z., VHDL Analysis and Modeling of Digital System, New York, McGraw-Hill,

2nd Edition, 1993.

[46] Naylor D. and S. jones, VHDL : A Logic Synthesis Approach, London : Chapman and

Hall, 1997.

[47] Hamblen J. and M. Furman, Rapid Prototyping of Digital Systems, Boston : Kluwer

Academic Publisher, 2nd Edition, 2001.

[48] Chang K. C., Digital System Design with VHDL and Synthesis-An Integrated

Approach, Los Alamitos,CA, IEEE Computer Society Press, 1999.

[49] Bhasker J., VHDL Primer, Englewood Cliffs, NJ, Prentice Hall, 3rd Edition, 1999.

[50] Armstrong J. R. and F. G. Gray, VHDL Design Representation and Synthesis,

Englewood Cliffs, NJ, Prentice Hall, 2rd Edition, 2000.

[51] Ian Grout, Digital Systems Design with FPGAs and CPLDs, Else viewer, 2008. ISBN-

978-81-312-1865-3.

[52] Electronic Industries Association, Standard Data Transfer Format between Data

Preparation System and Programmable Logic Device Programmer, JEDEC Standard

and JESD3-C, EIA, Washington, DC, 1994.

[53] Peter Lee Stephanie McBader. An fpga implementation of a flexible, parallel image

processing architecture suitable for embedded vision system. IEEE, 2003.

[54] Peter Alfke and Bernie New. Implementing state machines in LCA devices. In The

Programmable Logic Data Book, pages 8–169 – 8–172. Xilinx, Inc., San Jose, CA, 2nd

edition, 1994. XAPP 027.001.

[55] Carol A. Fields. Proper use of hierarchy in HDL-based high density FPGA design. In

Will Moore and Wayne Luk, editors, Field-Programmable Logic and Applications: 5th

International Workshop, FPL ’95, volume 975 of Lecture Notes in Computer Science,

pages 168–177, Berlin, Germany, August 1995. Springer Verlag.

91

[56] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE, New York, NY, 1988.

IEEE Standard 1076-1987.

[57] IEEE. IEEE Standard Multi value Logic System for VHDL Model Interoperability

(std_logic_1164). IEEE, New York, NY, 1993. IEEE Standard 1164-1993.

[58] Manfred Selz. Untersuchungen zur synthesegerechten Verhaltensbeschreibung mit

VHDL. PhD thesis, Universita¨t Erlangen-Nu¨ rnberg, Erlangen, Germany, March

1994.

[59] Synopsys. Design Compiler Family Reference. Synopsys, Inc., Mountain View, CA,

April 1995. (Version 3.3a).

[60] Synopsys. Finite state machine tutorial source code. April 1995. (Version 3.3a).

[61] Synopsys. Finite State Machines–Application Note. Synopsys, Inc., Mountain View, CA,

April 1995.

[62] Synopsys. VHDL Compiler Reference. Synopsys, Inc., Mountain View, CA, April 1995.

(Version 3.3a).

[63] Synopsys. VSS Reference. Synopsys, Inc., Mountain View, CA, April 1995. (Version

3.3a).

[64] Viewlogic Systems. Using Powerview. Viewlogic Systems, Inc., Marlboro, MA, 1994.

[65] Xilinx. The Programmable Logic Data Book. Xilinx, Inc., San Jose, CA, 2nd edition,

1994.

[66] Xilinx. XACT Reference Guide. Xilinx, Inc., San Jose, CA, April 1994.

[67] Xilinx. XACT Xilinx Synopsys Interface FPGA User Guide. Xilinx, Inc., San Jose, CA,

December 1994.

[68] Xilinx. Floorplanner User Guide. Xilinx, Inc., San Jose, CA, February 1995.

(preliminary version).

[69] D. Sillage, “How to implement DSP algorithms using the Xilinx Spartan-3E starter

board”,website:

http://www.industrialcontroldesignline.com/howto/207001725;jsessionid

=YDZGLZ44Z2B3AQSNDLRSKHSCJUNN2JVN?pgno=2, July 2009.

[70] Ray C.C. Cheung and K.P. Pun and Steve C.L. Yuen and K.H. Tsoi and Philip H.W.

Leong An FPGA-based Re-configurable 24-bit 96kHz Sigma-Delta Audio DAC. FPT

2003, Tokyo, Japan.

http://www.industrialcontroldesignline.com/howto/207001725;jsessionid

92

[71] http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm

[72] Xilinx, “Spartan-3E Starter Kit Board User Guide”, Xilinx Ltd, p.67-71, 2012.

[73] Xilinx, “Spartan-3E Starter Kit Board User Guide”, Xilinx Ltd, p.41-51, 2012.

[74] Xilinx, “Spartan-3E Starter Kit Board User Guide”, Xilinx Ltd, p.17-19, 2012.

[75] Xilinx,Forums,http://forums.xilinx.com/xlnx/board/message?board.id=XLNXBRD&

thread.id=463&view=by_date_ascending&page=1,December.2011

[76] Xilinx, “Spartan-3E Starter Kit Board User Guide”, Xilinx Ltd, p.75-81,2006.

[77] K. Chapman, “Picoblaze: amplifier and A/D Converter Control for Spartan-3E Starter

Kit”, Xilinx Ltd. 2006.

[78] Xilinx, Forums,

http://forums.xilinx.com/xlnx/board/message?board.id=XLNXBRD&thre

ad.id=463&view=by_date_ascending&page=1, July 2012.

[79] http://www.elec.york.ac.uk/staff/ajg112.html , 27th May, 2012.

[80] Abhyankar, Y. , Design of a FPGA based data acquisition system for radio astronomy

applications, The 16th International Conference on Microelectronics, 2004. ICM

2004 Proceedings.

[81] Sabat, S.L. Reliable High Speed Data Acquisition System Using FPGA, 2nd

International Conference on Emerging Trends in Engineering and Technology

(ICETET), 2009.

[82] Li Xingguang, A high-speed data acquisition system based on FPGA, International

Conference on Test and Measurement, 2009. ICTM '09.

[83] Zhouligong.etc. The ARM Embedded system Software Development Example(1).

BeiHang Unviesity Press.

[84] Xuzhijun CPLD/FPGA design. Publishing house of electronics industry.

[85] Daode Zhang etc.Hardware Design of Image Recognition System Based ARM and

FPGA.

[86] Howard Johnson,Martin Graham. High-Speed Digital Design.Prentice HALL Press.

http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm
http://www.elec.york.ac.uk/staff/ajg112.html

93

[87] Zhao Zecai, The SOC Design Technology Research Based on FPGA, National Defense

Science and Technology University Press,Changsha,2006.

[88] Wang Junxiong, The Embedded Applied Research System Based on the FPGA and the

NIOS, Southwest Jiaotong University,Xi'an,2006.

[89] Xu Haijun and Ye Weidong, "The Apply of FPGA in the High-performance Data

Acquisition System", Computer Technology and Application, 2005, 25(1), pp. 40-43.

[90] Ma Mingjian and Zhou Changcheng, Data Acquisition and Processing Technology,

Xi'an Jiaotong University Press, Xi'an,2001.

[91] http://www.whoyouvotefor.info/ethernet.html, 7th May, 2012.

 [92] Wu Jihua and Wang Cheng,The Design of The Altera FPGA/CPLD, Posts & Telecom

Press,Beijing,2005.

[93] Istiyanto, J.E. , A VHDL-based ADC on FPGA, International Conference on

Instrumentation, Communications, Information Technology, and Biomedical

Engineering (ICICI-BME), 2009.

http://www.whoyouvotefor.info/ethernet.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Istiyanto,%20J.E..QT.&newsearch=partialPref

94

APPENDIX-A

XILINX-13.2 ISE TUTORUAL

95

XILINX-13.2 ISE TUTORIAL

INTRODUCTION THE XILINX-13.2 ISE

Click on the Icon, , to start the ISE Project Navigator (0.61xd) . After that you will find a

window like figure-1.

Figure-A1. ISE Project Navigator (0.61xd)

96

Figure-A2. Project Navigator Window

Step 1. Creating New Project

FileNew Project Or,

Click on the Icon,

Console Window

Sources

Window

Panels

Process Window

Workplace Window

Click on File and Select New Project

97

Figure-A3. Creating New Project

Figure-A4. Creating New Project (Cont.)

In the figure-4 the most important thing is that you have to select “Evaluation Development Board”-type as

“Spartan-3E Starter Board”, as we have used this board while developing our system. Xilinx-13.2 ISE supports

the following “Evaluation Development Board”.

 Kintex-7 KC705 Evaluation Platform.

 Spartan-3A DSP 1800A Starter Board.

 Spartan-3A DSP 3400A Development Board.

 Spartan-3A Starter Kit.

 Spartan-3AN Starter Kit.

Create Directory

D:\Project\alarm

Name the Project

We have used

Spartan-3E

Starter Kit in our

project.

98

 Spartan-3E 1600E Micro blaze Dev Board.

 Spartan-3E Starter Kit.

 Spartan-6 SP601 Evaluation Platform.

 Spartan-6 Sp605 Evaluation Platform.

 Virtex-4 ML403 Evaluation Platform.

 Virtex-4 ML405 Evaluation Platform.

 Virtex-5 ML505 Evaluation Platform.

 Virtex-5 ML506 Evaluation Platform.

 Virtex-5 ML507 Evaluation Platform.

 Virtex-5 ML510 Evaluation Platform.

 Virtex-6 ML605 Evaluation Platform.

The second important thing is that we have considered here the “VHDL Source Analysis Standard”-

VHDL-93. Xilinx-13.2 ISE also supports VHDL-200X.

Figure-A5. Creating New Project (Cont.)

99

In the last step simply click finish. Then you will get the following window.

Figure-A6. Creating New Project (Completed).

Step-2: Creating New Source

From the design plane, click on the Icon, , which denotes the “New Source”. Choose VHDL Module as

“Source Type”, Type “alarm” in file name and click next.

Figure-A7. Creating New Source.

New Source

100

Figure-A8.New Source Wizard.

Figure-A9. New Source Wizard (Continue).

Select VHDL Module

Name the File

101

Define the port name and direction as shown in the figure-9.

 Figure-A10. Project Navigator Window for the Project “alarm”.

After that copy the following code in the “workplace window”. The main objective of this tutorial is to get

acquainted the readers with Xilinx-13.2 ISE’s use, not to give idea how to write VHDL code. The most

important thing about VHDL language is that it is not a case sensitive language like “C”. So we have used here

the capital letters while programming. This is “alarm.vhd” file.

--

--ENGINEER: HUSNAIN-AL-BUSTAM

-- REVISION 0.01 - FILE CREATED

--

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

-- UNCOMMENT THE FOLLOWING LIBRARY DECLARATION IF USING

-- ARITHMETIC FUNCTIONS WITH SIGNED OR UNSIGNED VALUES

--USE IEEE.NUMERIC_STD.ALL;

-- UNCOMMENT THE FOLLOWING LIBRARY DECLARATION IF INSTANTIATING

102

-- ANY XILINX PRIMITIVES IN THIS CODE.

--LIBRARY UNISIM;

--USE UNISIM.VCOMPONENTS.ALL;

ENTITY ALARM IS

 PORT (CLK : IN STD_LOGIC;

 REMOTE : IN STD_LOGIC;

 RST : IN STD_LOGIC;

 SENSORS : IN STD_LOGIC;

 SIREN : OUT STD_LOGIC);

END ALARM;

ARCHITECTURE BEHAVIOURAL OF ALARM IS

 TYPE ALARM_STATE IS (DISARMED, ARMED, INTRUSION);

 ATTRIBUTE ENUM_ENCODING : STRING;

 ATTRIBUTE ENUM_ENCODING OF ALARM_STATE: TYPE IS "SEQUENTIAL";

 SIGNAL PR_STATE, NX_STATE : ALARM_STATE;

 SIGNAL FLAG: STD_LOGIC;

 CONSTANT RESET: STD_LOGIC :='0';

 BEGIN

----------------------------- FLAG: ---

 PROCESS (REMOTE, RST)

 BEGIN

 IF (RST='1') THEN

 FLAG <= '0';

 ELSIF (REMOTE'EVENT AND REMOTE='0') THEN

 --ELSIF (REMOTE='0') THEN

 FLAG <= NOT FLAG;

 END IF;

 END PROCESS;

----- --------------------------LOWER SECTION: --

 PROCESS (CLK, RST)

 BEGIN

 IF (RST='1') THEN

 PR_STATE <= DISARMED;

 ELSIF (CLK'EVENT AND CLK='1') THEN

 PR_STATE <= NX_STATE;

 END IF;

 END PROCESS;

103

 ----- UPPER SECTION: --

 PROCESS (PR_STATE, FLAG, REMOTE, SENSORS)

 BEGIN

 CASE PR_STATE IS

 WHEN DISARMED =>

 SIREN <= '0';

 IF (REMOTE='1' AND FLAG='0') THEN

 NX_STATE <= ARMED;

 ELSE

 NX_STATE <= DISARMED;

 END IF;

 WHEN ARMED =>

 SIREN <= '0';

 IF (SENSORS='1') THEN

 NX_STATE <= INTRUSION;

 ELSIF (REMOTE='1' AND FLAG='1') THEN

 NX_STATE <= DISARMED;

 ELSE

 NX_STATE <= ARMED;

 END IF;

 WHEN INTRUSION =>

 SIREN <= '1';

 IF (REMOTE='1' AND FLAG='1') THEN

 NX_STATE <= DISARMED;

 ELSE

 NX_STATE <= INTRUSION;

 END IF;

 END CASE;

 END PROCESS;

END BEHAVIOURAL;

--

Expand the “Synthesize-XST”. Click “Check Syntax”. Correct the error. Then check syntax again.

104

Figure-A11. Checking Syntax (Successful).

Step-3. Creating Test Bench File

Click of the Icon, (From the Design Plane-New Source). Choose VHDL Test Bench. File name “alarm_tb”.

And click “Next” to create file.

Figure-A12. New Source Wizard (Test Bench)

“Check Syntax”-completed

successfully means there is

no error in the code.

Name the file as “alarm_tb”

Select

VHDL

Test Bench

105

From the “Design Pane” select the “Simulation” and you will get a hierarchy like figure-13. Click on the

“alarm_tb behavior ” as shown in the figure-13.

Figure-A13. New Source Wizard (Test Bench).

After that copy the following code in the “workplace window”. The following code is for “alarm_tb” file.

--

-- COMPANY: ISLAMIC UNIVERSITY OF TECHNOLOGY, OIC

-- ENGINEER:HUSNAIN-AL-BUSTAM

-- CREATE DATE: 18:08:42 11/18/2011

-- DESIGN NAME: ALARM

-- PROJECT NAME: ALARM

-- TARGET DEVICE: SPARTAN-3E STARTER KIT.

-- VHDL TEST BENCH CREATED BY ISE FOR MODULE: ALARM

--

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

-- UNCOMMENT THE FOLLOWING LIBRARY DECLARATION IF USING

-- ARITHMETIC FUNCTIONS WITH SIGNED OR UNSIGNED VALUES

--USE IEEE.NUMERIC_STD.ALL;

ENTITY ALARM_TB IS

END ALARM_TB;

ARCHITECTURE BEHAVIOR OF ALARM_TB IS

-- COMPONENT DECLARATION FOR THE UNIT UNDER TEST (UUT)

106

 COMPONENT ALARM

 PORT(

 CLK : STD_LOGIC;

 REMOTE : IN STD_LOGIC;

 RST : IN STD_LOGIC;

 SENSORS : IN STD_LOGIC;

 SIREN : OUT STD_LOGIC;

 CLKOUT : OUT STD_LOGIC

);

 END COMPONENT;

 --INPUTS

 SIGNAL CLK : STD_LOGIC := '0';

 SIGNAL REMOTE : STD_LOGIC := '0';

 SIGNAL RST : STD_LOGIC := '0';

 SIGNAL SENSORS : STD_LOGIC := '0';

 SIGNAL SIREN : STD_LOGIC;

 SIGNAL CLKOUT : STD_LOGIC;

BEGIN

 CLK <= NOT CLK AFTER 20 NS;

-- INSTANTIATE THE UNIT UNDER TEST (UUT)

 UUT: ALARM PORT MAP (

 --CLK => CLK,

 CLKIN => CLK,

 REMOTE => REMOTE,

 RST => RST,

 SENSORS => SENSORS,

 SIREN => SIREN,

 CLKOUT => CLKOUT

);

 -- CLOCK PROCESS DEFINITIONS

 -- STIMULUS PROCESS

 STIM_PROC: PROCESS

 BEGIN

 WAIT FOR 600 NS;

 RST <= '1';

 WAIT FOR 50 NS ;

 RST <='0';

107

 WAIT FOR 50 NS;

 REMOTE <='1';

 WAIT FOR 50 NS;

 SENSORS<='1';

 WAIT FOR 100 NS;

 --REMOTE <='0';

 --WAIT FOR 50 NS;

 REMOTE <='1';

 WAIT FOR 50 NS;

 END PROCESS;

END;

--

Figure-A14. Design (Simulation)

108

On the view pane select “Simulation”. In the hiearchy window select the file “alarm_tb”. In the process

window first expand the “ISim Simulator” and run “Behavioural Check Syntax”. Click “Simulation Behavioral

Model” to start “ISim”. Browse the window.

Figure-A15. Simulation.

Figure-A16. Isim Window.

HARDWARE IMPLEMENTATION

109

STEP-1:

On the view pane now select again the “implementation”. Expand “User Constraints”. Double click on the

“Create Timing Constraints”. Then a window will appear before you where you will find “Unconstrained

Clocks”. This project has two “Unconstrained Clocks”- “clk” and “remote”. Just double click on them. Each time

one windows will appear when you double click on a clock. For the simplicity we haven’t changed any

parameter. Click “Ok” to finish. The “Unconstrained Clocks” will be constrained. Save and Exit. The whole

process is depicted in the following figures.

Figure-A17. Expanded User Constraints.

Figure-A18. Unconstrained Clocks

110

Figure-A19. Profile Generated for Clock “CLK”

Figure-A20. Profile Generated for Clock “REMOTE”

111

Figure-A21. Constrained Clocks

STEP-2:

From the process window select (“User Constraints”) select “I/O Planning (Plan Ahead) Post Synthesis”

(Figure-14). There you will find a window like “Figure-19”. In the “I/O Port” window expand the “Scalar

Ports” and assign the values as follows,

 Assign net “clk” to 50 MHz clock.

 Assign “remote” net to the button (V4).

 Assign “rst” net to the button (K17).

 Assign “sensors” net to the slide button (N17).

 Assign “siren” to Led (F9).

Consult “Spartan-3E Starter Kit” for the remaining constraints.

Constrained Clocks

112

Figure-A22. Profile Generated After “I/O Planning (Plan Ahead) Post Synthesis”

Figure-A23. Planning I/O Ports constraints.

STEP-3: UPLOADING THE CODE INTO THE SPARTAN-3E STARTER KIT

From the process window run the “Synthesize-XST”. Then double click to run the “Implement Design”. Then

run the “Generate Programming File”. Expand the “Configure Target Device”. Click on “Manage Configuration

Project (iMPACT)”. A window namely “ISE iMPACT Window” will appear before you, where you have to do a

few steps to burn the generated bit file into the target device (FPGA). Then double click on the “Boundary

113

Scan”. In the “Boundary Scan” window right-click and select “Initialize Chain”. Click “yes”. Select the

“alarm.bit” file. Click “Ok” and “Bypass” twice. Then “Ok”.

Figure-A24. ISE iMPACT Window

Double Click on Boundary Scan

114

Figure-A25. ISE Design Flow

115

RTL SCHEMATIC

To see the “RTL Schematic” and “Technology Schematic”, go to the “Process Plane”. And do the following.

Synthesize-SXT View RTL Schematic.

Synthesize-SXTView Technology Schematic.

Figure-A26. Process Window.

Suppose you wish to see the “RTL-Schematic” first. Just double click on the “View RTL Schematic”. Then a

window will appear before you asking for the “Startup Mode”. Select the “Start with Explorer Wizard”. Click

“Ok”.

Figure-A27. Set RTL/Tech Viewer Startup Mode.

116

Figure-A28. “Create RTL Schematic”-Wizard

Just Select the “alarm” from the “Available Elements”, as shown in the figure-27. And add it to the “Selected

Elements”. The Click on “Create Schematic”. After that you will have a schematic like figure-29.

Figure-A29. “Create RTL Schematic”-Wizard (Continue).

117

Figure-A30. RTL Schematic.

Figure-A31. Detail View of RTL Schematic (Double Click on Figure-29 to get this Schematic)

118

TECHNOLOGY SCHEMATIC

Figure-A32. Set RTL/Tech Viewer Startup Mode.

Figure-A33. “Create Technology Schematic”-Wizard

119

Figure-A34. “Create Technology Schematic”-Wizard (Continue).

Figure-A35. Technology Schematic.

120

Figure-A36. View of Technology Schematic (Double)

121

APPENDIX-B

VHDL TUTORUAL

122

An Introduction to VHDL

VHDL is a Hardware Description Language (HDL) which describes the behavior of an electronic circuit or

system. VHDL stands for Very High Speed Integrated Circuits (VHSIC) Hardware Description Language. In this

section we will present three initial examples of VHDL which will help to illustrate the fundamental aspects

regarding overall code structure.

O EXAMPLE-1 (SEQUENTIAL VHDL CODE)

Figure-1 represents the diagram of a D-type flip-flop (DFF)., triggered at the rising edge of the clock signal

(clk) and with an asynchronous reset input (rst). When rst=’1’, the output must be turned low, regardless of

clk. Otherwise, the output must copy the input.

Figure-B1. DFF with Asynchronous Reset

VHDL CODE.

123

VHDL TEST BENCH CODE

--

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

 ENTITY DFF_TB IS

END DFF_TB;

 ARCHITECTURE BEHAVIOR OF DFF_TB IS

Library Declaration

Entity DFF

Architecture

behavior

124

 COMPONENT DFF

 PORT(

 D : IN STD_LOGIC;

 CLK : IN STD_LOGIC;

 RST : IN STD_LOGIC;

 Q : OUT STD_LOGIC

);

 END COMPONENT;

 --INPUTS

 SIGNAL D : STD_LOGIC := '1';

 SIGNAL CLK : STD_LOGIC := '0';

 SIGNAL RST : STD_LOGIC := '1';

--OUTPUTS

 SIGNAL Q : STD_LOGIC;

-- CLOCK PERIOD DEFINITIONS

 CONSTANT CLK_PERIOD : TIME := 10 NS;

 BEGIN

 -- INSTANTIATE THE UNIT UNDER TEST (UUT)

 UUT: DFF PORT MAP (

 D => D,

 CLK => CLK,

 RST => RST,

 Q => Q

);

-- CLOCK PROCESS DEFINITIONS

 CLK_PROCESS :PROCESS

 BEGIN

125

 CLK <= '0';

 WAIT FOR CLK_PERIOD/2;

 CLK <= '1';

 WAIT FOR CLK_PERIOD/2;

 END PROCESS;

-- STIMULUS PROCESS

 STIM_PROC: PROCESS

 BEGIN

-- HOLD RESET STATE FOR 100 NS.

 WAIT FOR 100 NS;

 WAIT FOR CLK_PERIOD*10;

-- INSERT STIMULUS HERE

 WAIT;

 END PROCESS;

END;

--

SIMULATION RESULTS

Figure-B2. When rst= ‘0’, then q<=d.

rst = „0‟

126

Figure-B3. When rst = ‘1’, then q <= ‘0’.

O EXAMPLE-2 [1] (SEQUENTIAL VHDL CODE)

In this example we will demonstrate the implementation of a progressive 1-digit decimal counter (090).

A top level diagram of the circuit is shown in the figure-2. It contains a single-bit input (clk) and 4-bit output

(digit).

Figure-B4. Counter of Example-2

VHDL CODE.

rst = „0‟

Library Declaration

127

Here in this example a variable namely “temp” is used to create the four flip-flops necessary to store 4-bit

output signal.

VHDL TEST BENCH CODE

--

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY COUNTER_TESTBENCH IS

END COUNTER_TESTBENCH;

ARCHITECTURE BEHAVIOR OF COUNTER_TESTBENCH IS

COMPONENT COUNTER

 PORT(

Entity

counter

Architecture

Behavior

128

 CLK : IN STD_LOGIC;

 DIGIT : OUT INTEGER RANGE 0 TO 9

);

 END COMPONENT;

 --INPUTS

 SIGNAL CLK : STD_LOGIC := '0';

--OUTPUTS

 SIGNAL DIGIT : INTEGER RANGE 0 TO 10;

-- CLOCK PERIOD DEFINITIONS

 CONSTANT CLK_PERIOD : TIME := 10 NS;

 BEGIN

 -- INSTANTIATE THE UNIT UNDER TEST (UUT)

 UUT: COUNTER PORT MAP (

 CLK => CLK,

 DIGIT => DIGIT

);

-- CLOCK PROCESS DEFINITIONS

 CLK_PROCESS : PROCESS

 BEGIN

 CLK <= '0';

 WAIT FOR CLK_PERIOD/2;

 CLK <= '1';

 WAIT FOR CLK_PERIOD/2;

 END PROCESS;

-- STIMULUS PROCESS

 STIM_PROC: PROCESS

129

 BEGIN

 -- HOLD RESET STATE FOR 100 NS.

 WAIT FOR 100 NS;

 WAIT FOR CLK_PERIOD*10;

-- INSERT STIMULUS HERE

 WAIT;

 END PROCESS;

END;

--

SIMULATION RESULT

Figure-B5. Simulation Result

O EXAMPLE-3 [1] (CONCURRENT VHDL CODE)

Figure-6 represents a 4-input, one bit per multiplexer. The output must be equal to the input selected by the

selection bits, s1-s0.

130

Figure-B6. 4-input Multiplexer.

VHDL CODE.

VHDL TEST BENCH CODE

--

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MUX_TB IS

END MUX_TB;

ARCHITECTURE BEHAVIOR OF MUX_TB IS

131

COMPONENT MULTIPLEXER

 PORT(

 A : IN STD_LOGIC;

 B : IN STD_LOGIC;

 C : IN STD_LOGIC;

 D : IN STD_LOGIC;

 SEL : IN STD_LOGIC_VECTOR(1 DOWNTO 0);

 Y : OUT STD_LOGIC

);

 END COMPONENT;

 --INPUTS

 SIGNAL A : STD_LOGIC := '0';

 SIGNAL B : STD_LOGIC := '0';

 SIGNAL C : STD_LOGIC := '0';

 SIGNAL D : STD_LOGIC := '0';

 SIGNAL SEL : STD_LOGIC_VECTOR(1 DOWNTO 0) := (OTHERS => '0');

--OUTPUTS

 SIGNAL Y : STD_LOGIC;

BEGIN

UUT: MULTIPLEXER PORT MAP (

 A => A,

 B => B,

 C => C,

 D => D,

 SEL => SEL,

 Y => Y

);

STIM_PROC: PROCESS

 BEGIN

132

 WAIT FOR 100 NS;

 WAIT;

 END PROCESS;

END;

--

SIMULATION RESULTS

Figure-B7. Y <= A WHEN SEL = “00”

Figure-B8. Y <= A WHEN SEL = “01”

133

Figure-B9. Y <= A WHEN SEL = “10”

Figure-B10. Y <= A WHEN SEL = “11”

134

APPENDIX-C

VHDL CODE

135

C.1. VHDL PROGRAM
C.1.1. Rotary Switch

ENTITYROTARY_SW IS

 PORT (CLK : IN STD_LOGIC;

 ROT_A : IN STD_LOGIC;

 ROT_B : IN STD_LOGIC;

 STEP : IN STD_LOGIC;

 DAC_A : OUT STD_LOGIC_VECTOR (11 DOWNTO 0)

);

ENDROTARY_SW;

ARCHITECTURE BEHAVIORAL OF ROTARY_SW IS

SIGNAL CLKDIV : STD_LOGIC_VECTOR (7 DOWNTO 0):=(OTHERS=>'0');

SIGNAL FLAG : STD_LOGIC_VECTOR (15 DOWNTO 0):=(OTHERS=>'0');

SIGNAL DAC_DATA :STD_LOGIC_VECTOR (11 DOWNTO 0):=(OTHERS=>'0');

BEGIN

PSENSE_A: PROCESS(CLK)

BEGIN

IFRISING_EDGE(CLK)THEN

CLKDIV<=CLKDIV+1;

IFCLKDIV= X"00" THEN

FLAG<=FLAG(14 DOWNTO 0) &ROT_A;

IF FLAG= X"8000" THEN

IFROT_B='1' THEN

IF(STEP='1')THEN -----CODE FOR 100MV STEP

IF (DAC_DATA<3931) THEN

 DAC_DATA<=DAC_DATA+164;

END IF;

ELSE -----CODE FOR 10MV STEP

 IF (DAC_DATA<4079) THEN

 DAC_DATA<=DAC_DATA+16;

 END IF;

END IF;

 ELSE ----VOLTAGE DECREMENT

IF(STEP='1')THEN -----CODE FOR 100MV STEP

 IF (DAC_DATA>164) THEN

 DAC_DATA<=DAC_DATA-164;

 END IF;

136

ELSE -----CODE FOR 10MV STEP

 IF (DAC_DATA>16) THEN

 DAC_DATA<=DAC_DATA-16;

 END IF;

END IF;

END IF;

END IF;

END IF;

DAC_A<=DAC_DATA;

END IF;

END PROCESS;

END BEHAVIORAL;

DAC

ENTITY DAC IS

 PORT (CLK : IN STD_LOGIC;

 SPI_MOSI : OUT STD_LOGIC;

 SPI_MISO : IN STD_LOGIC;

 SPI_SCK : OUT STD_LOGIC;

 DAC_CS : OUT STD_LOGIC;

 DAC_CLR : OUT STD_LOGIC;

 AMP_CS : OUT STD_LOGIC;

 SPI_SS_B : OUT STD_LOGIC;

 FPGA_INIT_B : OUT STD_LOGIC;

 SF_CE0 : OUT STD_LOGIC;

 AD_CONV : OUT STD_LOGIC;

 DAC_A : IN STD_LOGIC_VECTOR (11 DOWNTO 0):=X"FFF"

);

END DAC;

ARCHITECTURE BEHAVIORAL OF DAC IS

TYPE EVENT_TYPE IS (S0, S1, S2, S3, S4);

SIGNAL SDACSTATE : EVENT_TYPE;

SIGNAL SDATA : STD_LOGIC_VECTOR (31 DOWNTO 0);

BEGIN

DAC_CLR<= '1';

SPI_SS_B <= '1';

SF_CE0 <= '1';

137

FPGA_INIT_B <= '1';

AD_CONV <= '0';

AMP_CS <= '1';

 PDAC: PROCESS (CLK, SDACSTATE)

 CONSTANT KDACA : STD_LOGIC_VECTOR(7 DOWNTO 0) := "00110010"; --

UPDATE IMMEDIATELY

 VARIABLEBITNR : INTEGER;

 BEGIN

 IFRISING_EDGE (CLK)

 THEN

 CASESDACSTATE IS

 WHEN S0=>DAC_CS<= '1';

 SPI_SCK <= '0';

 SPI_MOSI<= '0';

 SDACSTATE<= S1;

 WHEN S1 =>DAC_CS<= '0';

 BITNR :=0;

 SDATA <= "00000000" &KDACA&DAC_A& "0000";

 SDACSTATE<= S2;

 WHEN S2 =>DAC_CS <= '0'; -- LOOP: SET DATA

 SPI_SCK<= '0';

 SPI_MOSI <= SDATA(31);

 SDATA <= SDATA (30 DOWNTO 0) & '0';

 SDACSTATE<= S3;

 WHEN S3 =>SPI_SCK <= '1';

 BITNR := BITNR +1;

 IF (BITNR< 32) THEN -- SET CLOCK

 SDACSTATE<= S2;

 ELSE

 SDACSTATE<= S4;

 END IF;

 WHEN S4 =>DAC_CS<= '1'; -- OK

 SPI_SCK <= '0';

SDACSTATE<= S1;

 END CASE;

 END IF;

138

 END PROCESS;

END BEHAVIORAL;

C.1.2. DIS_VALUE

ENTITY DISVALUE IS

 PORT (CLK : IN STD_LOGIC;

DAC_DATA : IN STD_LOGIC_VECTOR (11 DOWNTO 0);

DIS_DATA : OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

END DISVALUE;

ARCHITECTURE BEHAVIORAL OF DISVALUE IS

SIGNALVAL_ADC:STD_LOGIC_VECTOR (11 DOWNTO 0):=X"000";

 TYPE EVENT_TYPE IS (S0, S1, S2, S3, S4,S5);

 SIGNAL SDACSTATE : EVENT_TYPE;

BEGIN

CONV: PROCESS(CLK)

VARIABLE DIG_0:STD_LOGIC_VECTOR (3 DOWNTO 0):="0000";

VARIABLE DIG_1:STD_LOGIC_VECTOR (3 DOWNTO 0):="0000";

VARIABLE DIG_2:STD_LOGIC_VECTOR (3 DOWNTO 0):="0000";

VARIABLE DIG_3:STD_LOGIC_VECTOR (3 DOWNTO 0):="0000";

BEGIN

IFRISING_EDGE(CLK) THEN

CASESDACSTATE IS

WHEN S0 =>

 VAL_ADC<=DAC_DATA;

 SDACSTATE<= S1;

 WHEN S1 =>

IF(VAL_ADC>1638) THEN

 DIG_3:=DIG_3+1;

VAL_ADC<=VAL_ADC-1638;

 ELSE

 SDACSTATE<= S2;

 END IF;

 WHEN S2 =>

IF(VAL_ADC>163)THEN

 DIG_2:=DIG_2+1;

139

VAL_ADC<=VAL_ADC-164;

 ELSE

 SDACSTATE<= S3;

 END IF;

 WHEN S3 =>

IF(VAL_ADC>17)THEN

 DIG_1:=DIG_1+1;

VAL_ADC<=VAL_ADC-17;

 ELSE

 SDACSTATE<= S4;

 END IF;

 WHEN S4 =>

IF(VAL_ADC>3)THEN

 DIG_0:=DIG_0+2;

VAL_ADC<=VAL_ADC-3;

 ELSE

 SDACSTATE<= S5;

 END IF;

WHEN S5=>

DIS_DATA<=DIG_3 & DIG_2 & DIG_1 & DIG_0;

 DIG_0:="0000";

 DIG_1:="0000";

 DIG_2:="0000";

 DIG_3:="0000";

 SDACSTATE<= S0;

 WHEN OTHERS =>SDACSTATE<= S0;

END CASE;

END IF;

END PROCESS;

END BEHAVIORAL;

C.1.3. LCD_DRIVER_CODE

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

140

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY LCD_DRIVER IS

PORT(CLK : IN STD_LOGIC;

 RS : OUT STD_LOGIC;

 RW : OUT STD_LOGIC;

 ENABLE : OUT STD_LOGIC;

 LCD_DATA : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

 INDEX : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

 CHAR : IN STD_LOGIC_VECTOR (7 DOWNTO 0)

);

END LCD_DRIVER;

ARCHITECTURE BEHAVIORAL OF LCD_DRIVER IS

TYPE CHARSTATE_TYPE IS (I0, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14, I15, I16, S0, S1, S2, S3, S4,

S5, S6, S7, S8, S9, S10, S11);

 SIGNAL CHARSTATE : CHARSTATE_TYPE := I0;

CONSTANT T_INSTRWAIT : INTEGER := 100000; -- 2 MS

CONSTANT T_WRPULSE : INTEGER := 12; -- 0,2 US (200 NS)

CONSTANT T_SETUPHOLD : INTEGER := 10;

CONSTANT T_DATWAIT : INTEGER := 2500; -- 50 US

TYPE STATE_TYPE IS (INIT, WAIT_FOR_DATA,WRITE_INITL1,WRITE_ADDRH1,WRITE_ADDRH2,

WRITE_ADDRH3,WRITE_ADDRL1, WRITE_ADDRL2, WRITE_ADDRL3,CHK_BUSYI1,

 CHK_BUSYI2,WRITE_DATAH1,WRITE_DATAH2, WRITE_DATAH3,WRITE_DATAL1, WRITE_DATAL2,

WRITE_DATAL3,CHK_BUSYD1);

SIGNAL STATE : STATE_TYPE := INIT;

SIGNAL SLCDADR : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL SLCDDAT : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL SLCDWR : STD_LOGIC;

SIGNAL SLCDINITWR :STD_LOGIC;

SIGNAL SLCDRDY : STD_LOGIC;

SIGNAL INT_ADDR : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL INT_DATA : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL ENRWRS : STD_LOGIC_VECTOR(2 DOWNTO 0);

141

BEGIN

PTEXTOUT: PROCESS (CLK)

 VARIABLECNT : STD_LOGIC_VECTOR (31 DOWNTO 0);

 VARIABLE I : STD_LOGIC_VECTOR (7 DOWNTO 0); --INTEGER

RANGE 0 TO 40;

 BEGIN

 INDEX<= I;

 IFRISING_EDGE (CLK) THEN

 CASE CHARSTATE IS

 WHEN I0 =>SLCDWR<= '0';

 SLCDINITWR<= '0';

 SLCDADR<= X"01"; -- WAIT

 CNT := (OTHERS => '0');

 CHARSTATE<= I1;

 WHEN I1 =>SLCDWR<= '0';

 CNT := CNT + 1 ;

 IF (CNT> 800000) THEN

 CHARSTATE<= I2;

 END IF;

 WHEN I2 => -- COMMAND 3

 SLCDDAT<= X"03";

 SLCDINITWR<= '1';

 CNT := (OTHERS => '0');

 CHARSTATE<= I3;

 WHEN I3 =>SLCDINITWR <= '0';

 CNT := CNT + 1 ;

 IF (CNT> 250000) THEN

 CHARSTATE<= I4;

 END IF;

 WHEN I4 => -- COMMAND 3

 SLCDDAT<= X"03";

 SLCDINITWR<= '1';

 CNT := (OTHERS => '0');

 CHARSTATE<= I5;

 WHEN I5 =>SLCDINITWR <= '0';

 CNT := CNT + 1 ;

 IF (CNT> 5000) THEN

142

 CHARSTATE <= I6;

 END IF;

 WHEN I6 => -- COMMAND 4

 SLCDDAT<= X"03";

 SLCDINITWR<= '1';

 CNT := (OTHERS => '0');

 CHARSTATE<= I7;

 WHEN I7 =>SLCDINITWR <= '0';

 CNT := CNT + 1 ;

 IF (CNT> 5000) THEN

 CHARSTATE<= I8;

 END IF;

 WHEN I8 => -- COMMAND 2

 SLCDDAT<= X"02";

 SLCDINITWR<= '1';

 CNT := (OTHERS => '0');

 CHARSTATE<= I9;

 WHEN I9 =>SLCDINITWR <= '0';

 CNT := CNT + 1 ;

 IF (CNT> 250000) THEN

 CHARSTATE<= I10;

 END IF;

--

 WHEN I10 =>SLCDADR<= X"01"; -- COMMAND 28

 SLCDDAT<= X"28";

 SLCDWR<= '1';

 CNT := (OTHERS => '0');

 CHARSTATE<= I11;

 WHEN I11=>SLCDWR<= '0';

 CNT := CNT + 1 ;

 IF (CNT> 250000) THEN

 CHARSTATE <= I12;

 END IF;

 WHEN I12 =>SLCDADR<= X"01"; -- COMMAND 06

 SLCDDAT<= X"06";

 SLCDWR<= '1';

143

 CNT := (OTHERS => '0');

 CHARSTATE<= I13;

 WHEN I13=>SLCDWR<= '0';

 CNT := CNT + 1 ;

 IF (CNT> 250000) THEN

 CHARSTATE <= I14;

 END IF;

 WHEN I14 =>SLCDADR <= X"01"; -- COMMAND 0C

 SLCDDAT<= X"0C";

 SLCDWR<= '1';

 CNT := (OTHERS => '0');

 CHARSTATE <= I15;

 WHEN I15=>SLCDWR<= '0';

 CNT := CNT + 1 ;

 IF (CNT> 250000) THEN

 CHARSTATE<= I16;

 END IF;

 WHEN I16=>CHARSTATE<= S0;

 WHEN S0 =>SLCDWR<= '0';

 SLCDADR<= X"01"; -- CLEAR DISPLAY

 SLCDDAT<= X"20"; -- SPACE

 IF (SLCDRDY = '1') THEN

 SLCDWR<= '1';

 CNT := (OTHERS => '0');

 CHARSTATE<= S1;

 END IF;

 WHEN S1 =>SLCDWR<= '0';

 CNT := CNT + 1 ;

 IF (CNT>CONV_STD_LOGIC_VECTOR (250000, 16)) THEN -- 100.000 = 2MS

 CHARSTATE<= S2;

 I := (OTHERS=>'0');

 END IF;

 WHEN S2 => IF (CHAR = "00000000") THEN -- NULL CHARACTER

 IF (I >= X"79") THEN

 CNT := (OTHERS => '0');

 CHARSTATE<= S11;

 ELSE

144

 I := I + 1;

 CHARSTATE<= S2;

 END IF;

 ELSE

 SLCDWR<= '0';

 SLCDADR<= '1' & I(6 DOWNTO 0); -- THE CHARACTER

LOCATION

 SLCDDAT<= CHAR;

 IF (SLCDRDY = '1') THEN

 SLCDWR<= '1';

 CNT := (OTHERS => '0');

 CHARSTATE<= S3;

 END IF;

 END IF;

 WHEN S3 =>SLCDWR<= '0';

 CHARSTATE<= S4;

 WHEN S4 =>SLCDWR<= '0';

 IF (SLCDRDY = '1') THEN

 CHARSTATE<= S2;

 I := I + 1;

 END IF;

 WHEN S11=>CNT := CNT + 1;

 IF (CNT> 10000000) THEN -- WAIT 200 MS : 5 UPDATES /SEC.

 CHARSTATE<= S0; END IF;

 WHEN OTHERS =>CHARSTATE<= S0;

 END CASE;

 END IF;

 END PROCESS;

 ENABLE <= ENRWRS(2);

 RW<= ENRWRS(1);

 RS<= ENRWRS(0);

PLCDINSTR:

 PROCESS (CLK)

 VARIABLE COUNTER : INTEGER RANGE 0 TO 50000000 := 0;

 BEGIN

 IFRISING_EDGE (CLK) THEN

145

 CASE STATE IS

 WHEN INIT =>

 COUNTER := COUNTER + 1;

 IF (COUNTER >= 500000) THEN -- 10 MS

 COUNTER := 0;

 STATE<= WAIT_FOR_DATA;

 END IF;

---- WAIT FOR NEW DATA HERE

 WHEN WAIT_FOR_DATA =>

 COUNTER := 0;

 IF (SLCDWR = '1') THEN

 INT_ADDR<= SLCDADR;

 INT_DATA<= SLCDDAT;

 STATE<= WRITE_ADDRH1; -- CHK_BUSY1;

 ELSIF (SLCDINITWR ='1') THEN

 INT_ADDR<= SLCDADR;

 INT_DATA<= SLCDDAT;

 STATE<= WRITE_INITL1;

 END IF;

 WHEN WRITE_INITL1 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER>= T_WRPULSE) THEN -- 2 US WR TIME

 COUNTER := 0;

 STATE<= WAIT_FOR_DATA;

 END IF;

-- ADDRESS: HIGH NIBBLE

 WHEN WRITE_ADDRH1 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER>= T_WRPULSE) THEN -- 2 US WR TIME

 COUNTER := 0;

 STATE<= WRITE_ADDRH2;

 END IF;

 WHEN WRITE_ADDRH2 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER >= T_SETUPHOLD) THEN

 COUNTER := 0;

 STATE<= WRITE_ADDRL1;

146

 END IF;

-- ADDRESS LOW NIBBLE

 WHEN WRITE_ADDRL1 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER>= T_WRPULSE) THEN

 COUNTER := 0;

 STATE<= WRITE_ADDRL2;

 END IF;

 WHEN WRITE_ADDRL2 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER >= T_SETUPHOLD) THEN

 COUNTER := 0;

 STATE<= CHK_BUSYI1;

 END IF;

 WHEN CHK_BUSYI1 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER >= T_DATWAIT) THEN

 COUNTER := 0;

 IF (INT_ADDR(7) = '1') THEN

 STATE<= WRITE_DATAH2;

 ELSE

 STATE<= CHK_BUSYI2;

 END IF;

 END IF;

 WHEN CHK_BUSYI2 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER >= T_INSTRWAIT) THEN

 COUNTER := 0;

 STATE<= WRITE_DATAH2;

 END IF;

---------- NOW THE DATA --

 WHEN WRITE_DATAH2 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER>= T_WRPULSE) THEN

 COUNTER := 0;

 STATE<= WRITE_DATAH3;

147

 END IF;

 WHEN WRITE_DATAH3 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER >= T_SETUPHOLD) THEN

 COUNTER := 0;

 STATE<= WRITE_DATAL2;

 END IF;

 WHEN WRITE_DATAL2 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER>= T_WRPULSE) THEN

 COUNTER := 0;

 STATE<= WRITE_DATAL3;

 END IF;

 WHEN WRITE_DATAL3 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER >= T_SETUPHOLD) THEN

 COUNTER := 0;

 STATE<= CHK_BUSYD1;

 END IF;

 WHEN CHK_BUSYD1 =>

 COUNTER := COUNTER + 1;

 IF (COUNTER >= T_DATWAIT) THEN -- 50 US

 COUNTER := 0;

 STATE<= WAIT_FOR_DATA; --WRITE_DATAH1;

 END IF;

 WHEN OTHERS => STATE <= INIT;

 END CASE;

 END IF;

END PROCESS;

 SLCDRDY<= '1' WHEN (STATE = WAIT_FOR_DATA) ELSE '0';

 WITH STATE SELECT

 LCD_DATA<="ZZZZ" WHEN INIT,

 INT_DATA(3 DOWNTO 0) WHEN WRITE_INITL1,

 INT_ADDR(7 DOWNTO 4) WHEN WRITE_ADDRH1,

 INT_ADDR(7 DOWNTO 4) WHEN WRITE_ADDRH2,

 INT_ADDR(3 DOWNTO 0) WHEN WRITE_ADDRL1,

 INT_ADDR(3 DOWNTO 0) WHEN WRITE_ADDRL2,

148

 INT_DATA(7 DOWNTO 4) WHEN WRITE_DATAH1,

 INT_DATA(7 DOWNTO 4) WHEN WRITE_DATAH2,

 INT_DATA(7 DOWNTO 4) WHEN WRITE_DATAH3,

 INT_DATA(3 DOWNTO 0) WHEN WRITE_DATAL1,

 INT_DATA(3 DOWNTO 0) WHEN WRITE_DATAL2,

 INT_DATA(3 DOWNTO 0) WHEN WRITE_DATAL3,

 "ZZZZ" WHENWAIT_FOR_DATA,

 "ZZZZ" WHEN OTHERS;

-- ENABLE RW RS

 WITH STATE SELECT

 ENRWRS<= "000" WHEN INIT,

 "000" WHEN WAIT_FOR_DATA,

 "100" WHEN WRITE_INITL1,

 "100" WHEN WRITE_ADDRH1,

 "000" WHEN WRITE_ADDRH2,

 "100" WHEN WRITE_ADDRL1,

 "000" WHEN WRITE_ADDRL2,

 "001" WHEN WRITE_DATAH1, -- LCDDATA:

 "101" WHEN WRITE_DATAH2, -- OUTPUT LCD DATA: ENABLE = 1;

 "001" WHEN WRITE_DATAH3,

 "001" WHEN WRITE_DATAL1, -- LCDDATA:

 "101" WHEN WRITE_DATAL2, -- OUTPUT LCD DATA: ENABLE = 1;

 "001" WHEN WRITE_DATAL3,

 "000" WHEN OTHERS; END BEHAVIORAL;

C.2. VHDL Code

C.2.1. ADC Implementation

--

-- Definition of a dual port ROM for KCPSM2 or KCPSM3 program defined by adc_ctrl.psm

-- and assmbled using KCPSM2 or KCPSM3 assembler.

--

-- Standard IEEE libraries

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

149

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

--

-- The Unisim Library is used to define Xilinx primitives. It is also used during

-- simulation. The source can be viewed at %XILINX%\vhdl\src\unisims\unisim_VCOMP.vhd

--

library unisim;

use unisim.vcomponents.all;

--

--

entity adc_ctrl is

 Port (address : in std_logic_vector(9 downto 0);

 instruction : out std_logic_vector(17 downto 0);

 proc_reset : out std_logic;

 clk : in std_logic);

 end adc_ctrl;

--

architecture low_level_definition of adc_ctrl is

--

-- Declare signals internal to this module

--

signal jaddr : std_logic_vector(10 downto 0);

signal jparity : std_logic_vector(0 downto 0);

signal jdata : std_logic_vector(7 downto 0);

signal doa : std_logic_vector(7 downto 0);

signal dopa : std_logic_vector(0 downto 0);

signal tdo1 : std_logic;

signal tdo2 : std_logic;

signal update : std_logic;

signal shift : std_logic;

signal reset : std_logic;

signal tdi : std_logic;

signal sel1 : std_logic;

signal drck1 : std_logic;

signal drck1_buf : std_logic;

signal sel2 : std_logic;

signal drck2 : std_logic;

150

signal capture : std_logic;

signal tap5 : std_logic;

signal tap11 : std_logic;

signal tap17 : std_logic;

--

-- Attributes to define ROM contents during implementation synthesis.

-- The information is repeated in the generic map for functional simulation

--

attribute INIT_00 : string;

attribute INIT_01 : string;

attribute INIT_02 : string;

attribute INIT_03 : string;

attribute INIT_04 : string;

attribute INIT_05 : string;

attribute INIT_06 : string;

attribute INIT_07 : string;

attribute INIT_08 : string;

attribute INIT_09 : string;

attribute INIT_0A : string;

attribute INIT_0B : string;

attribute INIT_0C : string;

attribute INIT_0D : string;

attribute INIT_0E : string;

attribute INIT_0F : string;

attribute INIT_10 : string;

attribute INIT_11 : string;

attribute INIT_12 : string;

attribute INIT_13 : string;

attribute INIT_14 : string;

attribute INIT_15 : string;

attribute INIT_16 : string;

attribute INIT_17 : string;

attribute INIT_18 : string;

attribute INIT_19 : string;

attribute INIT_1A : string;

attribute INIT_1B : string;

attribute INIT_1C : string;

151

attribute INIT_1D : string;

attribute INIT_1E : string;

attribute INIT_1F : string;

attribute INIT_20 : string;

attribute INIT_21 : string;

attribute INIT_22 : string;

attribute INIT_23 : string;

attribute INIT_24 : string;

attribute INIT_25 : string;

attribute INIT_26 : string;

attribute INIT_27 : string;

attribute INIT_28 : string;

attribute INIT_29 : string;

attribute INIT_2A : string;

attribute INIT_2B : string;

attribute INIT_2C : string;

attribute INIT_2D : string;

attribute INIT_2E : string;

attribute INIT_2F : string;

attribute INIT_30 : string;

attribute INIT_31 : string;

attribute INIT_32 : string;

attribute INIT_33 : string;

attribute INIT_34 : string;

attribute INIT_35 : string;

attribute INIT_36 : string;

attribute INIT_37 : string;

attribute INIT_38 : string;

attribute INIT_39 : string;

attribute INIT_3A : string;

attribute INIT_3B : string;

attribute INIT_3C : string;

attribute INIT_3D : string;

attribute INIT_3E : string;

attribute INIT_3F : string;

attribute INITP_00 : string;

attribute INITP_01 : string;

152

attribute INITP_02 : string;

attribute INITP_03 : string;

attribute INITP_04 : string;

attribute INITP_05 : string;

attribute INITP_06 : string;

attribute INITP_07 : string;

--

-- Attributes to define ROM contents during implementation synthesis.

--

attribute INIT_00 of ram_1024_x_18 : label is

"E0060000020C01B301B301B301B301B3016102110523014E0211051001FB011F";

attribute INIT_01 of ram_1024_x_18 : label is

"E0068001600650164FFF548D2E0454862E014E00C0010FFF4092E005E0040001";

attribute INIT_02 of ram_1024_x_18 : label is

"0520A700A600050600E4012700116301620001996000019960010211052CC080";

attribute INIT_03 of ram_1024_x_18 : label is

"640463016200007401D1052DA7008601E7FFE6FF403B052B54362780017F0211";

attribute INIT_04 of ram_1024_x_18 : label is

"505A440501FC0018505A440301F80030505A440201EC0077505A440101D800EF";

attribute INIT_05 of ram_1024_x_18 : label is

"A7068672A700A600050600E401FF009C505A440101FF0038505A440601FE000C";

attribute INIT_06 of ram_1024_x_18 : label is

"547242FF5472431F407201D1053E546C4200546C43E063016200017802110517";

attribute INIT_07 of ram_1024_x_18 : label is

"01D18530650801D18530650901D1052E01D18530650A01024014007401D1053C";

attribute INIT_08 of ram_1024_x_18 : label is

"C0016004C000409200075492400880016004C000A00001D1052001D185306507";

attribute INIT_09 of ram_1024_x_18 : label is

"01D1053D01D10547021105100122D20002060206020602066205E00400015492";

attribute INIT_0A of ram_1024_x_18 : label is

"01D1053254B5400240DF01D1052001D1052001D1053154AC4001600401D1052D";

attribute INIT_0B of ram_1024_x_18 : label is

"54C7400440DF01D1052001D1052001D1053554BE400340DF01D1052001D10520";

attribute INIT_0C of ram_1024_x_18 : label is

"40DF01D1052001D1053001D1053254D0400540DF01D1052001D1053001D10531";

attribute INIT_0D of ram_1024_x_18 : label is

"01AE01D1053001D1053001D1053140DF01D1052001D1053001D1053554D94006";

153

attribute INIT_0E of ram_1024_x_18 : label is

"0008010E0A0F198008FF50EC238008000400050006000700401454DF20054000";

attribute INIT_0F of ram_1024_x_18 : label is

"F680F530D4205D01200154EECA010900080003000206B790B680B53094205CF5";

attribute INIT_10 of ram_1024_x_18 : label is

"03A002000700060015701460A0005504C0018801F480010A08070005A000F790";

attribute INIT_11 of ram_1024_x_18 : label is

"00AEA0005511C1010208030E07000606B5309420411906075916F530D420010D";

attribute INIT_12 of ram_1024_x_18 : label is

"5526C101C008E001020023404301C008E001C2040108C008E008011FA000C008";

attribute INIT_13 of ram_1024_x_18 : label is

"060023804301C008E001C008E0010122C008E010C008E010011FA000C008E008";

attribute INIT_14 of ram_1024_x_18 : label is

"01D10550A0000608070A0608070A0808090A0808090A5539C101090008000700";

attribute INIT_15 of ram_1024_x_18 : label is

"01D1056501D1057A01D1056101D1056C01D1054201D1056F01D1056301D10569";

attribute INIT_16 of ram_1024_x_18 : label is

"057401D1056E01D1056F01D1054301D1052001D1054301D1054401D10541A000";

attribute INIT_17 of ram_1024_x_18 : label is

"0541A00001D1053D01D1054101D10556A00001D1056C01D1056F01D1057201D1";

attribute INIT_18 of ram_1024_x_18 : label is

"101012000194000E000E000E000E1100A00001D1053D01D1054401D1052F01D1";

attribute INIT_19 of ram_1024_x_18 : label is

"A00001D1156001D1152016100188A000803A80075997C00AA00011000194A00F";

attribute INIT_1A of ram_1024_x_18 : label is

"01A90314A00055AAC20101A40219A00055A5C10101A00128A00055A1C001000B";

attribute INIT_1B of ram_1024_x_18 : label is

"C440A4F8A000C440E40101A0C440E401A00055B4C40101AE0414A00055AFC301";

attribute INIT_1C of ram_1024_x_18 : label is

"C44004F001A401BE0406040604060407145001A001BEC408A4F01450A00001B8";

attribute INIT_1D of ram_1024_x_18 : label is

"04F001A401B8C4400406040604070407145001A001B8C440C40CA4F01450A000";

attribute INIT_1E of ram_1024_x_18 : label is

"E401400201A0C440E40101A0C440E401450201A0C440E401C440040EA000C440";

attribute INIT_1F of ram_1024_x_18 : label is

"01BE01AE01BE043001AEA00001A4C4400404D500000E000E000E000EA5F0C440";

154

attribute INIT_20 of ram_1024_x_18 : label is

"01A901A901C2050101C2050C01C2050601C2052801A401BE042001A401BE01A9";

attribute INIT_21 of ram_1024_x_18 : label is

"E703E602E901E8000133A00001C2C5C0A50FA00001C2C580A50F52172510A000";

attribute INIT_22 of ram_1024_x_18 : label is

"0080010F00";

attribute INIT_23 of ram_1024_x_18 : label is

"00";

attribute INIT_24 of ram_1024_x_18 : label is

"00";

attribute INIT_25 of ram_1024_x_18 : label is

"00";

attribute INIT_26 of ram_1024_x_18 : label is

"00";

attribute INIT_27 of ram_1024_x_18 : label is

"00";

attribute INIT_28 of ram_1024_x_18 : label is

"00";

attribute INIT_29 of ram_1024_x_18 : label is

"00";

attribute INIT_2A of ram_1024_x_18 : label is

"00";

attribute INIT_2B of ram_1024_x_18 : label is

"00";

attribute INIT_2C of ram_1024_x_18 : label is

"00";

attribute INIT_2D of ram_1024_x_18 : label is

"00";

attribute INIT_2E of ram_1024_x_18 : label is

"00";

attribute INIT_2F of ram_1024_x_18 : label is

"00";

attribute INIT_30 of ram_1024_x_18 : label is

"00";

attribute INIT_31 of ram_1024_x_18 : label is

"00";

155

attribute INIT_32 of ram_1024_x_18 : label is

"00";

attribute INIT_33 of ram_1024_x_18 : label is

"00";

attribute INIT_34 of ram_1024_x_18 : label is

"00";

attribute INIT_35 of ram_1024_x_18 : label is

"00";

attribute INIT_36 of ram_1024_x_18 : label is

"00";

attribute INIT_37 of ram_1024_x_18 : label is

"00";

attribute INIT_38 of ram_1024_x_18 : label is

"00";

attribute INIT_39 of ram_1024_x_18 : label is

"00";

attribute INIT_3A of ram_1024_x_18 : label is

"00";

attribute INIT_3B of ram_1024_x_18 : label is

"00";

attribute INIT_3C of ram_1024_x_18 : label is

"00";

attribute INIT_3D of ram_1024_x_18 : label is

"00";

attribute INIT_3E of ram_1024_x_18 : label is

"00";

attribute INIT_3F of ram_1024_x_18 : label is

"421B00";

attribute INITP_00 of ram_1024_x_18 : label is

"D34CD3FCDDF3743C55B0D0D0D0D0D0D003C50CDF16C0333293774CE88FFFF3CF";

attribute INITP_01 of ram_1024_x_18 : label is

"5776A957A03400F4F333CCCDF3337CCCDF3337CCCDF3334CCCCCAA234F353B34";

attribute INITP_02 of ram_1024_x_18 : label is

"2CCCB33333333332CCCCCCCCCAAAAB6A922088E8D892223A2DAA5ED4000B5B09";

attribute INITP_03 of ram_1024_x_18 : label is

"FCEE0AA20E38388A3EAA3E028FAA3C0B8A38B72DCB72DCB4B30E5D8C0EA8B333";

156

attribute INITP_04 of ram_1024_x_18 : label is

"000CAAEC2C36FCCCCF3F";

attribute INITP_05 of ram_1024_x_18 : label is

"00";

attribute INITP_06 of ram_1024_x_18 : label is

"00";

attribute INITP_07 of ram_1024_x_18 : label is

"C000";

--

begin

--

 --Instantiate the Xilinx primitive for a block RAM

 ram_1024_x_18: RAMB16_S9_S18

 --synthesis translate_off

 --INIT values repeated to define contents for functional simulation

 generic map (INIT_00 =>

X"E0060000020C01B301B301B301B301B3016102110523014E0211051001FB011F",

 INIT_01 => X"E0068001600650164FFF548D2E0454862E014E00C0010FFF4092E005E0040001",

 INIT_02 => X"0520A700A600050600E4012700116301620001996000019960010211052CC080",

 INIT_03 => X"640463016200007401D1052DA7008601E7FFE6FF403B052B54362780017F0211",

 INIT_04 => X"505A440501FC0018505A440301F80030505A440201EC0077505A440101D800EF",

 INIT_05 => X"A7068672A700A600050600E401FF009C505A440101FF0038505A440601FE000C",

 INIT_06 => X"547242FF5472431F407201D1053E546C4200546C43E063016200017802110517",

 INIT_07 => X"01D18530650801D18530650901D1052E01D18530650A01024014007401D1053C",

 INIT_08 => X"C0016004C000409200075492400880016004C000A00001D1052001D185306507",

 INIT_09 => X"01D1053D01D10547021105100122D20002060206020602066205E00400015492",

 INIT_0A => X"01D1053254B5400240DF01D1052001D1052001D1053154AC4001600401D1052D",

 INIT_0B => X"54C7400440DF01D1052001D1052001D1053554BE400340DF01D1052001D10520",

 INIT_0C => X"40DF01D1052001D1053001D1053254D0400540DF01D1052001D1053001D10531",

 INIT_0D => X"01AE01D1053001D1053001D1053140DF01D1052001D1053001D1053554D94006",

 INIT_0E => X"0008010E0A0F198008FF50EC238008000400050006000700401454DF20054000",

 INIT_0F => X"F680F530D4205D01200154EECA010900080003000206B790B680B53094205CF5",

 INIT_10 => X"03A002000700060015701460A0005504C0018801F480010A08070005A000F790",

 INIT_11 => X"00AEA0005511C1010208030E07000606B5309420411906075916F530D420010D",

 INIT_12 => X"5526C101C008E001020023404301C008E001C2040108C008E008011FA000C008",

 INIT_13 => X"060023804301C008E001C008E0010122C008E010C008E010011FA000C008E008",

 INIT_14 => X"01D10550A0000608070A0608070A0808090A0808090A5539C101090008000700",

157

 INIT_15 => X"01D1056501D1057A01D1056101D1056C01D1054201D1056F01D1056301D10569",

 INIT_16 => X"057401D1056E01D1056F01D1054301D1052001D1054301D1054401D10541A000",

 INIT_17 => X"0541A00001D1053D01D1054101D10556A00001D1056C01D1056F01D1057201D1",

 INIT_18 => X"101012000194000E000E000E000E1100A00001D1053D01D1054401D1052F01D1",

 INIT_19 => X"A00001D1156001D1152016100188A000803A80075997C00AA00011000194A00F",

 INIT_1A => X"01A90314A00055AAC20101A40219A00055A5C10101A00128A00055A1C001000B",

 INIT_1B => X"C440A4F8A000C440E40101A0C440E401A00055B4C40101AE0414A00055AFC301",

 INIT_1C => X"C44004F001A401BE0406040604060407145001A001BEC408A4F01450A00001B8",

 INIT_1D => X"04F001A401B8C4400406040604070407145001A001B8C440C40CA4F01450A000",

 INIT_1E => X"E401400201A0C440E40101A0C440E401450201A0C440E401C440040EA000C440",

 INIT_1F => X"01BE01AE01BE043001AEA00001A4C4400404D500000E000E000E000EA5F0C440",

 INIT_20 => X"01A901A901C2050101C2050C01C2050601C2052801A401BE042001A401BE01A9",

 INIT_21 => X"E703E602E901E8000133A00001C2C5C0A50FA00001C2C580A50F52172510A000",

 INIT_22 => X"0080010F00",

 INIT_23 => X"00",

 INIT_24 => X"00",

 INIT_25 => X"00",

 INIT_26 => X"00",

 INIT_27 => X"00",

 INIT_28 => X"00",

 INIT_29 => X"00",

 INIT_2A => X"00",

 INIT_2B => X"00",

 INIT_2C => X"00",

 INIT_2D => X"00",

 INIT_2E => X"00",

 INIT_2F => X"00",

 INIT_30 => X"00",

 INIT_31 => X"00",

 INIT_32 => X"00",

 INIT_33 => X"00",

 INIT_34 => X"00",

 INIT_35 => X"00",

 INIT_36 => X"00",

 INIT_37 => X"00",

 INIT_38 => X"00",

 INIT_39 => X"00",

158

 INIT_3A => X"00",

 INIT_3B => X"00",

 INIT_3C => X"00",

 INIT_3D => X"00",

 INIT_3E => X"00",

 INIT_3F => X"421B00",

 INITP_00 =>

X"D34CD3FCDDF3743C55B0D0D0D0D0D0D003C50CDF16C0333293774CE88FFFF3CF",

 INITP_01 => X"5776A957A03400F4F333CCCDF3337CCCDF3337CCCDF3334CCCCCAA234F353B34",

 INITP_02 =>

X"2CCCB33333333332CCCCCCCCCAAAAB6A922088E8D892223A2DAA5ED4000B5B09",

 INITP_03 =>

X"FCEE0AA20E38388A3EAA3E028FAA3C0B8A38B72DCB72DCB4B30E5D8C0EA8B333",

 INITP_04 => X"000CAAEC2C36FCCCCF3F",

 INITP_05 => X"00",

 INITP_06 => X"00",

 INITP_07 => X"C000")

 --synthesis translate_on

 port map(DIB => "0000000000000000",

 DIPB => "00",

 ENB => '1',

 WEB => '0',

 SSRB => '0',

 CLKB => clk,

 ADDRB => address,

 DOB => instruction(15 downto 0),

 DOPB => instruction(17 downto 16),

 DIA => jdata,

 DIPA => jparity,

 ENA => sel1,

 WEA => '1',

 SSRA => '0',

 CLKA => update,

 ADDRA=> jaddr,

 DOA => doa(7 downto 0),

 DOPA => dopa);

-- v2_bscan: BSCAN_VIRTEX2

159

-- port map(TDO1 => tdo1,

-- TDO2 => tdo2,

-- UPDATE => update,

-- SHIFT => shift,

-- RESET => reset,

-- TDI => tdi,

-- SEL1 => sel1,

-- DRCK1 => drck1,

-- SEL2 => sel2,

-- DRCK2 => drck2,

-- CAPTURE => capture);

 --buffer signal used as a clock

 upload_clock: BUFG

 port map(I => drck1,

 O => drck1_buf);

 -- Assign the reset to be active whenever the uploading subsystem is active

 proc_reset <= sel1;

 srlC1: SRLC16E

 --synthesis translate_off

 generic map (INIT => X"0000")

 --synthesis translate_on

 port map(D => tdi,

 CE => '1',

 CLK => drck1_buf,

 A0 => '1',

 A1 => '0',

 A2 => '1',

 A3 => '1',

 Q => jaddr(10),

 Q15 => jaddr(8));

 flop1: FD

 port map (D => jaddr(10),

 Q => jaddr(9),

 C => drck1_buf);

 srlC2: SRLC16E

 --synthesis translate_off

 generic map (INIT => X"0000")

160

 --synthesis translate_on

 port map(D => jaddr(8),

 CE => '1',

 CLK => drck1_buf,

 A0 => '1',

 A1 => '0',

 A2 => '1',

 A3 => '1',

 Q => jaddr(7),

 Q15 => tap5);

 flop2: FD

 port map (D => jaddr(7),

 Q => jaddr(6),

 C => drck1_buf);

 srlC3: SRLC16E

 --synthesis translate_off

 generic map (INIT => X"0000")

 --synthesis translate_on

 port map(D => tap5,

 CE => '1',

 CLK => drck1_buf,

 A0 => '1',

 A1 => '0',

 A2 => '1',

 A3 => '1',

 Q => jaddr(5),

 Q15 => jaddr(3));

 flop3: FD

 port map (D => jaddr(5),

 Q => jaddr(4),

 C => drck1_buf);

 srlC4: SRLC16E

 --synthesis translate_off

 generic map (INIT => X"0000")

 --synthesis translate_on

 port map(D => jaddr(3),

 CE => '1',

161

 CLK => drck1_buf,

 A0 => '1',

 A1 => '0',

 A2 => '1',

 A3 => '1',

 Q => jaddr(2),

 Q15 => tap11);

 flop4: FD

 port map (D => jaddr(2),

 Q => jaddr(1),

 C => drck1_buf);

 srlC5: SRLC16E

 --synthesis translate_off

 generic map (INIT => X"0000")

 --synthesis translate_on

 port map(D => tap11,

 CE => '1',

 CLK => drck1_buf,

 A0 => '1',

 A1 => '0',

 A2 => '1',

 A3 => '1',

 Q => jaddr(0),

 Q15 => jdata(7));

 flop5: FD

 port map (D => jaddr(0),

 Q => jparity(0),

 C => drck1_buf);

 srlC6: SRLC16E

 --synthesis translate_off

 generic map (INIT => X"0000")

 --synthesis translate_on

 port map(D => jdata(7),

 CE => '1',

 CLK => drck1_buf,

 A0 => '1',

 A1 => '0',

162

 A2 => '1',

 A3 => '1',

 Q => jdata(6),

 Q15 => tap17);

 flop6: FD

 port map (D => jdata(6),

 Q => jdata(5),

 C => drck1_buf);

 srlC7: SRLC16E

 --synthesis translate_off

 generic map (INIT => X"0000")

 --synthesis translate_on

 port map(D => tap17,

 CE => '1',

 CLK => drck1_buf,

 A0 => '1',

 A1 => '0',

 A2 => '1',

 A3 => '1',

 Q => jdata(4),

 Q15 => jdata(2));

 flop7: FD

 port map (D => jdata(4),

 Q => jdata(3),

 C => drck1_buf);

 srlC8: SRLC16E

 --synthesis translate_off

 generic map (INIT => X"0000")

 --synthesis translate_on

 port map(D => jdata(2),

 CE => '1',

 CLK => drck1_buf,

 A0 => '1',

 A1 => '0',

 A2 => '1',

 A3 => '1',

 Q => jdata(1),

163

 Q15 => tdo1);

 flop8: FD

 port map (D => jdata(1),

 Q => jdata(0),

 C => drck1_buf);

end low_level_definition;

--

--

--

-- END OF FILE adc_ctrl.vhd

--

--

C.3. ETH_LOOPBACK

MODULE ETH_LOOPBACK

 (

 INPUT SYS_CLK,

 INPUT RESET_IN_N,

 // PHY SIGNALS:

 INPUT E_COL,

 INPUT E_CRS,

 OUTPUT E_MDC,

 INOUT E_MDIO,

 INPUT E_RX_CLK,

 INPUT E_RX_DV,

 INPUT [4:0] E_RXD,

 INPUT E_TX_CLK,

 OUTPUT E_TX_EN,

 OUTPUT [4:0] E_TXD,

 // DDR SDRAM SIGNALS:

 INOUT [15:0] CNTRL0_DDR_DQ,

 OUTPUT [12:0] CNTRL0_DDR_A,

 OUTPUT [1:0] CNTRL0_DDR_BA,

 OUTPUT CNTRL0_DDR_CKE,

 OUTPUT CNTRL0_DDR_CS_N,

 OUTPUT CNTRL0_DDR_RAS_N,

 OUTPUT CNTRL0_DDR_CAS_N,

164

 OUTPUT CNTRL0_DDR_WE_N,

 OUTPUT [1:0] CNTRL0_DDR_DM,

 INOUT CNTRL0_RST_DQS_DIV,

 INOUT [1:0] CNTRL0_DDR_DQS,

 OUTPUT [0:0] CNTRL0_DDR_CK,

 OUTPUT [0:0] CNTRL0_DDR_CK_N,

 // LED SIGNALS

 OUTPUT [7:0] LED

);

 // WISHBONE MASTER 1: ETHERNET DMA

 WIRE [31:0] M1_WB_ADR_I;

 WIRE [31:0] M1_WB_DAT_I;

 WIRE [3:0] M1_WB_SEL_I;

 WIRE M1_WB_CYC_I;

 WIRE M1_WB_STB_I;

 WIRE M1_WB_WE_I;

 WIRE [31:0] M1_WB_DAT_O;

 WIRE M1_WB_ACK_O;

 WIRE M1_WB_ERR_O;

 // WISHBONE MASTER 2: HOST (LOOPBACK CONTROLLER)

 WIRE [31:0] M2_WB_ADR_I;

 WIRE [31:0] M2_WB_DAT_I;

 WIRE [3:0] M2_WB_SEL_I;

 WIRE M2_WB_CYC_I;

 WIRE M2_WB_STB_I;

 WIRE M2_WB_WE_I;

 WIRE [31:0] M2_WB_DAT_O;

 WIRE M2_WB_ACK_O;

 WIRE M2_WB_ERR_O;

 // WISHBONE SLAVE 1: ETHERNET REGISTERS AND BUFFER DESCRIPTORS

 WIRE [31:0] S1_WB_DAT_I;

 WIRE S1_WB_ACK_I;

 WIRE S1_WB_ERR_I;

 WIRE [31:0] S1_WB_ADR_O;

165

 WIRE [31:0] S1_WB_DAT_O;

 WIRE [3:0] S1_WB_SEL_O;

 WIRE S1_WB_WE_O;

 WIRE S1_WB_CYC_O;

 WIRE S1_WB_STB_O;

 // WISHBONE SLAVE 2: MEMORY

 WIRE [31:0] S2_WB_DAT_I;

 WIRE S2_WB_ACK_I;

 WIRE S2_WB_ERR_I;

 WIRE [31:0] S2_WB_ADR_O;

 WIRE [31:0] S2_WB_DAT_O;

 WIRE [3:0] S2_WB_SEL_O;

 WIRE S2_WB_WE_O;

 WIRE S2_WB_CYC_O;

 WIRE S2_WB_STB_O;

 WIRE ETHER_MDO;

 WIRE ETHER_MDIO_E;

 // FOR THE USER INTERFACE TO THE DDR

 WIRE [2:0] COMMAND;

 WIRE [((`DATA_MASK_WIDTH*2)-1):0] DATA_MASK;

 WIRE [((`DATA_WIDTH*2)-1):0] OUTPUT_DATA;

 WIRE [((`DATA_WIDTH*2)-1):0] DDR_INPUT_DATA;

 WIRE [((`ROW_ADDRESS +

 `COL_AP_WIDTH +

 `BANK_ADDRESS)-1):0] INPUT_ADDRESS;

 WIRE CMD_ACK;

 WIRE AUTO_REF_REQ;

 WIRE AR_DONE;

 WIRE BURST_DONE;

 WIRE DATA_VALID_OUT;

 WIRE INIT_DONE;

 // FOR THE INFRASTRUCTURE:

166

 WIRE WAIT_200US;

 WIRE SYS_RST;

 WIRE SYS_RST90;

 WIRE SYS_RST180;

 WIRE [4:0] DELAY_SEL_VAL;

 WIRE CLK0;

 WIRE CLK90;

 // TRI-STATE:

 ASSIGN E_MDIO = ETHER_MDIO_E ? ETHER_MDO : 1'BZ;

 //ASSIGN LED = 8'B0;

 // INSTANTIATE THE ETHERNET MODULE

 ETH_TOP ETHERNET

 (

 // WISHBONE COMMON

 .WB_CLK_I(CLK0),

 .WB_RST_I(SYS_RST),

 // WISHBONE SLAVE

 .WB_DAT_I(S1_WB_DAT_O),

 .WB_DAT_O(S1_WB_DAT_I),

 .WB_ADR_I(S1_WB_ADR_O[11:2]),

 .WB_SEL_I(S1_WB_SEL_O),

 .WB_WE_I(S1_WB_WE_O),

 .WB_CYC_I(S1_WB_CYC_O),

 .WB_STB_I(S1_WB_STB_O),

 .WB_ACK_O(S1_WB_ACK_I),

 .WB_ERR_O(S1_WB_ERR_I),

 // WISHBONE MASTER

 .M_WB_ADR_O(M1_WB_ADR_I),

 .M_WB_SEL_O(M1_WB_SEL_I),

 .M_WB_WE_O(M1_WB_WE_I),

 .M_WB_DAT_O(M1_WB_DAT_I),

167

 .M_WB_DAT_I(M1_WB_DAT_O),

 .M_WB_CYC_O(M1_WB_CYC_I),

 .M_WB_STB_O(M1_WB_STB_I),

 .M_WB_ACK_I(M1_WB_ACK_O),

 .M_WB_ERR_I(M1_WB_ERR_O),

 //TX

 .MTX_CLK_PAD_I(E_TX_CLK),

 .MTXD_PAD_O(E_TXD[3:0]),

 .MTXEN_PAD_O(E_TX_EN),

 .MTXERR_PAD_O(E_TXD[4]),

 //RX

 .MRX_CLK_PAD_I(E_RX_CLK),

 .MRXD_PAD_I(E_RXD[3:0]),

 .MRXDV_PAD_I(E_RX_DV),

 .MRXERR_PAD_I(E_RXD[4]),

 .MCOLL_PAD_I(E_COL),

 .MCRS_PAD_I(E_CRS),

 // MIIM

 .MDC_PAD_O(E_MDC),

 .MD_PAD_I(E_MDIO),

 .MD_PAD_O(ETHER_MDO),

 .MD_PADOE_O(ETHER_MDIO_E),

 .INT_O(ETHER_INT)

// ,.LED(LED[3:0])

);

 // INSTANTIATE THE MEMORY

 // (ACTUALLY A WISHBONE INTERFACE TO MIG INTERFACE CONVERTER):

 MEMORY_WB_TO_MIG MEM

 (

 // WB INTERFACE:

 .WB_CLK_I(CLK0),

168

 .WB_RST_I(SYS_RST),

 .WB_ADR_I(S2_WB_ADR_O),

 .WB_SEL_I(S2_WB_SEL_O),

 .WB_WE_I(S2_WB_WE_O),

 .WB_CYC_I(S2_WB_CYC_O),

 .WB_STB_I(S2_WB_STB_O),

 .WB_ACK_O(S2_WB_ACK_I),

 .WB_ERR_O(S2_WB_ERR_I),

 .WB_DAT_O(S2_WB_DAT_I),

 .WB_DAT_I(S2_WB_DAT_O),

 // MIG INTERFACE:

 // (NOTE THAT IT ALSO PROVIDES THE SYSTEM CLOCK)

 .MIG_CLK90(CLK90),

 .MIG_INIT_DONE(INIT_DONE),

 .MIG_OUTPUT_DATA(OUTPUT_DATA),

 .MIG_INPUT_DATA(DDR_INPUT_DATA),

 .MIG_INPUT_ADDRESS(INPUT_ADDRESS),

 .MIG_COMMAND(COMMAND),

 .MIG_CMD_ACK(CMD_ACK),

 .MIG_DATA_VALID(DATA_VALID_OUT),

 .MIG_BURST_DONE(BURST_DONE),

 .MIG_AR_DONE(AR_DONE),

 .MIG_AUTO_REF_REQ(AUTO_REF_REQ),

 .MIG_WAIT_200US(WAIT_200US),

 .MIG_DATA_MASK(DATA_MASK)

);

 // INSTANTIATE THE MIG MEMORY CONTROLLER:

 VLOG_BL2CL25_TOP_0 TOP0

 (

 .AUTO_REF_REQ (AUTO_REF_REQ),

 .WAIT_200US (WAIT_200US),

 .RST_DQS_DIV_IN (CNTRL0_RST_DQS_DIV),

 .RST_DQS_DIV_OUT (CNTRL0_RST_DQS_DIV),

 .USER_INPUT_DATA (DDR_INPUT_DATA),

 .USER_OUTPUT_DATA (OUTPUT_DATA),

169

 .USER_DATA_VALID (DATA_VALID_OUT),

 .USER_INPUT_ADDRESS (INPUT_ADDRESS[((`ROW_ADDRESS + `COL_AP_WIDTH

 + `BANK_ADDRESS)-1):0]),

 .USER_COMMAND_REGISTER (COMMAND),

 .USER_CMD_ACK (CMD_ACK),

 .BURST_DONE (BURST_DONE),

 .INIT_VAL (INIT_DONE),

 .AR_DONE (AR_DONE),

 .DDR_DQS (CNTRL0_DDR_DQS),

 .DDR_DQ (CNTRL0_DDR_DQ),

 .DDR_CKE (CNTRL0_DDR_CKE),

 .DDR_CS_N (CNTRL0_DDR_CS_N),

 .DDR_RAS_N (CNTRL0_DDR_RAS_N),

 .DDR_CAS_N (CNTRL0_DDR_CAS_N),

 .DDR_WE_N (CNTRL0_DDR_WE_N),

 .DDR_BA (CNTRL0_DDR_BA),

 .DDR_A (CNTRL0_DDR_A),

 .DDR_DM (CNTRL0_DDR_DM),

 .USER_DATA_MASK (DATA_MASK),

 .DDR_CK (CNTRL0_DDR_CK),

 .DDR_CK_N (CNTRL0_DDR_CK_N),

 .CLK_INT (CLK0),

 .CLK90_INT (CLK90),

 .DELAY_SEL_VAL (DELAY_SEL_VAL),

 .SYS_RST_VAL (SYS_RST),

 .SYS_RST90_VAL (SYS_RST90),

 .SYS_RST180_VAL (SYS_RST180)

);

 // INSTANTIATE THE DCM AND THE DELAY

 VLOG_BL2CL25_INFRASTRUCTURE_TOP INFRASTRUCTURE_TOP0

 (

 .SYS_CLK (SYS_CLK),

 .RESET_IN_N (RESET_IN_N),

 .WAIT_200US_ROUT (WAIT_200US),

 .DELAY_SEL_VAL1_VAL (DELAY_SEL_VAL),

170

 .SYS_RST_VAL (SYS_RST),

 .SYS_RST90_VAL (SYS_RST90),

 .CLK_INT_VAL (CLK0),

 .CLK90_INT_VAL (CLK90),

 .SYS_RST180_VAL (SYS_RST180)

);

 // INSTANTIATE THE LOOPBACK CONTROLLER

 LOOPBACK_CONTROL LBC

 (

 .WB_CLK_I(CLK0),

 .WB_RST_I(SYS_RST),

 .M_WB_ADR_O(M2_WB_ADR_I),

 .M_WB_SEL_O(M2_WB_SEL_I),

 .M_WB_WE_O(M2_WB_WE_I),

 .M_WB_DAT_I(M2_WB_DAT_O),

 .M_WB_DAT_O(M2_WB_DAT_I),

 .M_WB_CYC_O(M2_WB_CYC_I),

 .M_WB_STB_O(M2_WB_STB_I),

 .M_WB_ACK_I(M2_WB_ACK_O),

 .M_WB_ERR_I(M2_WB_ERR_O)

 ,.LED(LED[7:0])

);

 // INSTANTIATE THE ETHCOP THAT INTERCONNECTS THE 4 WB INTERFACES

 ETH_COP ECOP

 (

 // WISHBONE COMMON

 .WB_CLK_I(CLK0),

 .WB_RST_I(SYS_RST),

 // WISHBONE MASTER 1

 .M1_WB_ADR_I(M1_WB_ADR_I),

 .M1_WB_SEL_I(M1_WB_SEL_I),

 .M1_WB_WE_I(M1_WB_WE_I),

 .M1_WB_DAT_O(M1_WB_DAT_O),

 .M1_WB_DAT_I(M1_WB_DAT_I),

171

 .M1_WB_CYC_I(M1_WB_CYC_I),

 .M1_WB_STB_I(M1_WB_STB_I),

 .M1_WB_ACK_O(M1_WB_ACK_O),

 .M1_WB_ERR_O(M1_WB_ERR_O),

 // WISHBONE MASTER 2

 .M2_WB_ADR_I(M2_WB_ADR_I),

 .M2_WB_SEL_I(M2_WB_SEL_I),

 .M2_WB_WE_I(M2_WB_WE_I),

 .M2_WB_DAT_O(M2_WB_DAT_O),

 .M2_WB_DAT_I(M2_WB_DAT_I),

 .M2_WB_CYC_I(M2_WB_CYC_I),

 .M2_WB_STB_I(M2_WB_STB_I),

 .M2_WB_ACK_O(M2_WB_ACK_O),

 .M2_WB_ERR_O(M2_WB_ERR_O),

 // WISHBONE SLAVE 1

 .S1_WB_ADR_O(S1_WB_ADR_O),

 .S1_WB_SEL_O(S1_WB_SEL_O),

 .S1_WB_WE_O(S1_WB_WE_O),

 .S1_WB_CYC_O(S1_WB_CYC_O),

 .S1_WB_STB_O(S1_WB_STB_O),

 .S1_WB_ACK_I(S1_WB_ACK_I),

 .S1_WB_ERR_I(S1_WB_ERR_I),

 .S1_WB_DAT_I(S1_WB_DAT_I),

 .S1_WB_DAT_O(S1_WB_DAT_O),

 // WISHBONE SLAVE 2

 .S2_WB_ADR_O(S2_WB_ADR_O),

 .S2_WB_SEL_O(S2_WB_SEL_O),

 .S2_WB_WE_O(S2_WB_WE_O),

 .S2_WB_CYC_O(S2_WB_CYC_O),

 .S2_WB_STB_O(S2_WB_STB_O),

 .S2_WB_ACK_I(S2_WB_ACK_I),

 .S2_WB_ERR_I(S2_WB_ERR_I),

 .S2_WB_DAT_I(S2_WB_DAT_I),

 .S2_WB_DAT_O(S2_WB_DAT_O)

172

);

ENDMODULE // ETH_LOOPBACK

C.4. memory_wb_to_mig

module memory_wb_to_mig

 (

 // wishbone interface:

 input wb_clk_i,

 input wb_rst_i,

 input [31:0] wb_adr_i,

 input [31:0] wb_dat_i,

 input [3:0] wb_sel_i,

 input wb_we_i,

 input wb_cyc_i,

 input wb_stb_i,

 output reg wb_ack_o,

 output reg wb_err_o,

 output reg [31:0] wb_dat_o,

 // MIG 2.0 interface:

 input mig_clk90,

 input mig_init_done,

 input [31:0] mig_output_data,

 output [31:0] mig_input_data,

 output [25:0] mig_input_address,

 output reg [2:0] mig_command,

 input mig_cmd_ack,

 input mig_data_valid,

 output reg mig_burst_done,

 input mig_ar_done,

 input mig_auto_ref_req,

 input mig_wait_200us,

 output [3:0] mig_data_mask

);

173

 reg [2:0] current_init_state;

 reg [2:0] next_init_state;

 reg [2:0] current_state;

 reg [2:0] next_state;

 reg [23:0] cntr;

 // user commands:

 localparam

 NOP_CMD = 3'b000,

 PRECHARGE_CMD = 3'b001,

 INIT_CMD = 3'b010,

 WRITE_CMD = 3'b100,

 READ_CMD = 3'b110;

 localparam

 INIT_INIT = 3'b000,

 WAIT_200us = 3'b001,

 SEND_INIT = 3'b010,

 WAIT_INIT = 3'b011,

 INIT_DONE = 3'b100;

 parameter

 IDLE_ST = 3'b000,

 READ_START_ST = 3'b001,

 WRITE_START_ST = 3'b010,

 WAIT_ACK_ST = 3'b011,

 COMMAND_ACKED_ST = 3'b100,

 BURST_DONE_ST = 3'b101,

 WAIT_ACK_N_ST = 3'b110,

 ACK_N_ST = 3'b111;

 localparam WAIT_BURST_DONE_VALUE = 24'b11;

 reg wb_ack_o_sync;

174

 assign mig_input_address = {wb_adr_i[20:9],wb_adr_i[8], 1'b0, wb_adr_i[7:0], wb_adr_i[22:21]};

 assign mig_data_mask = ~wb_sel_i; // see ethernet module

 assign mig_input_data = wb_dat_i;

 initial begin

 wb_ack_o <= 0;

 wb_ack_o_sync <= 0;

 wb_err_o <= 0;

 cntr <= 0;

 mig_command <= NOP_CMD;

 current_init_state <= 0;

 next_init_state <= 0;

 current_state <= 0;

 next_state <= 0;

 end

 // process the command

 always @ (negedge mig_clk90) begin

 if (current_init_state == SEND_INIT) begin

 mig_command <= INIT_CMD;

 end else if (current_state == READ_START_ST) begin

 mig_command <= READ_CMD;

 end else if (current_state == WRITE_START_ST) begin

 mig_command <= WRITE_CMD;

 end else if (current_init_state == WAIT_INIT ||

 current_state == BURST_DONE_ST) begin

 mig_command <= NOP_CMD;

 end

 end

 // general counter

 always @ (negedge mig_clk90) begin

 if (current_state == WAIT_ACK_ST) begin

 cntr <= WAIT_BURST_DONE_VALUE;

175

 end else begin

 cntr <= cntr - 1;

 end

 end

 // set burst_done output to memory

 always @ (negedge mig_clk90) begin

 // should be set 3 clocks after a READ or WRITE command has been issued:

 if (current_state == BURST_DONE_ST)

 mig_burst_done <= 1'b1;

 else

 mig_burst_done <= 1'b0;

 end

 // memory output data to the wishbone interface:

 always @ (negedge mig_clk90) begin

 if (mig_data_valid) begin

 case (wb_adr_i[1:0])

 2'b00: // word access

 wb_dat_o <= mig_output_data;

 2'b10: // half access

 wb_dat_o <= {16'b0,mig_output_data[15:0]};

 2'b01: // byte access

 wb_dat_o <= {8'b0,mig_output_data[23:16],16'b0};

 2'b11:

 wb_dat_o <= {14'b0,mig_output_data[7:0]};

 endcase

 end

 end

 // state processing

176

 always@ (negedge mig_clk90) begin

 if (wb_rst_i) begin

 current_init_state <= INIT_INIT;

 end else begin

 current_init_state <= next_init_state;

 end

 end

 always@ (negedge mig_clk90) begin

 if (wb_rst_i) begin

 current_state <= IDLE_ST;

 end else begin

 current_state <= next_state;

 end

 end

 // synchronizing to the wishbone clock

 always @ (negedge mig_clk90) begin

 if (((current_state == WAIT_ACK_N_ST) && !mig_cmd_ack) || current_state == ACK_N_ST) begin

 wb_ack_o_sync <= 1'b1;

 end else begin

 wb_ack_o_sync <= 1'b0;

 end

 end

 // this is the ack output to the wb interface clocked by the wishbone

 // clock

 always @ (posedge wb_clk_i) begin

 if (wb_ack_o_sync) begin

 wb_ack_o <= 1'b1;

 end else begin

 wb_ack_o <= 1'b0;

 end

 end

177

 // memory initialization:

 always @ (*) begin

 if (wb_rst_i) begin

 next_init_state = INIT_INIT;

 end else begin

 case (current_init_state)

 INIT_INIT:

 if (!mig_wait_200us)

 next_init_state = SEND_INIT;

 else

 next_init_state = INIT_INIT;

 SEND_INIT:

 next_init_state = WAIT_INIT;

 WAIT_INIT:

 if (mig_init_done)

 next_init_state = INIT_DONE;

 else

 next_init_state = WAIT_INIT;

 INIT_DONE:

 next_init_state = INIT_DONE;

 default

 next_init_state = INIT_DONE;

 endcase // case (current_init_state)

 end // else: !if(wb_rst_i)

 end // always @ (*)

 // state machine after memory initialization

 always @ (*) begin

 if (wb_rst_i) begin

 next_state = IDLE_ST;

 end else if (mig_init_done) begin

178

 case (current_state)

 IDLE_ST:

 if (wb_cyc_i & wb_stb_i) begin

 if (!wb_we_i) begin

 next_state = READ_START_ST;

 end else begin

 next_state = WRITE_START_ST;

 end

 end else begin

 next_state = IDLE_ST;

 end

 READ_START_ST:

 next_state = WAIT_ACK_ST;

 WRITE_START_ST:

 next_state = WAIT_ACK_ST;

 WAIT_ACK_ST:

 if (mig_cmd_ack)

 next_state = COMMAND_ACKED_ST;

 else

 next_state = WAIT_ACK_ST;

 COMMAND_ACKED_ST:

 if (!cntr) begin

 next_state = BURST_DONE_ST;

 end else begin

 next_state = COMMAND_ACKED_ST;

 end

 BURST_DONE_ST:

 next_state = WAIT_ACK_N_ST;

 WAIT_ACK_N_ST:

 if (!mig_cmd_ack) begin

 next_state = ACK_N_ST;

179

 end else

 next_state = WAIT_ACK_N_ST;

 ACK_N_ST:

 next_state = IDLE_ST;

 default:

 next_state = IDLE_ST;

 endcase // case (current_state)

 end else begin// if (mig_init_done)

 next_state = IDLE_ST;

 end // else: !if(init_done)

 end

endmodule

C.5. module eth_cop

`include "../rtl/eth_defines.v"

`include "../rtl/timescale.v"

module eth_cop

 (

 // WISHBONE common

 wb_clk_i, wb_rst_i,

 // WISHBONE MASTER 1

 m1_wb_adr_i, m1_wb_sel_i, m1_wb_we_i, m1_wb_dat_o,

 m1_wb_dat_i, m1_wb_cyc_i, m1_wb_stb_i, m1_wb_ack_o,

 m1_wb_err_o,

 // WISHBONE MASTER 2

 m2_wb_adr_i, m2_wb_sel_i, m2_wb_we_i, m2_wb_dat_o,

 m2_wb_dat_i, m2_wb_cyc_i, m2_wb_stb_i, m2_wb_ack_o,

 m2_wb_err_o,

180

 // WISHBONE slave 1

 s1_wb_adr_o, s1_wb_sel_o, s1_wb_we_o, s1_wb_cyc_o,

 s1_wb_stb_o, s1_wb_ack_i, s1_wb_err_i, s1_wb_dat_i,

 s1_wb_dat_o,

 // WISHBONE slave 2

 s2_wb_adr_o, s2_wb_sel_o, s2_wb_we_o, s2_wb_cyc_o,

 s2_wb_stb_o, s2_wb_ack_i, s2_wb_err_i, s2_wb_dat_i,

 s2_wb_dat_o

);

 parameter Tp=1;

 // WISHBONE common

 input wb_clk_i, wb_rst_i;

 // WISHBONE MASTER 1

 input [31:0] m1_wb_adr_i, m1_wb_dat_i;

 input [3:0] m1_wb_sel_i;

 input m1_wb_cyc_i, m1_wb_stb_i, m1_wb_we_i;

 output [31:0] m1_wb_dat_o;

 output m1_wb_ack_o, m1_wb_err_o;

 // WISHBONE MASTER 2

 input [31:0] m2_wb_adr_i, m2_wb_dat_i;

 input [3:0] m2_wb_sel_i;

 input m2_wb_cyc_i, m2_wb_stb_i, m2_wb_we_i;

 output [31:0] m2_wb_dat_o;

 output m2_wb_ack_o, m2_wb_err_o;

 // WISHBONE slave 1

 input [31:0] s1_wb_dat_i;

 input s1_wb_ack_i, s1_wb_err_i;

 output [31:0] s1_wb_adr_o, s1_wb_dat_o;

 output [3:0] s1_wb_sel_o;

 output s1_wb_we_o, s1_wb_cyc_o, s1_wb_stb_o;

181

 // WISHBONE slave 2

 input [31:0] s2_wb_dat_i;

 input s2_wb_ack_i, s2_wb_err_i;

 output [31:0] s2_wb_adr_o, s2_wb_dat_o;

 output [3:0] s2_wb_sel_o;

 output s2_wb_we_o, s2_wb_cyc_o, s2_wb_stb_o;

 reg m1_in_progress;

 reg m2_in_progress;

 reg [31:0] s1_wb_adr_o;

 reg [3:0] s1_wb_sel_o;

 reg s1_wb_we_o;

 reg [31:0] s1_wb_dat_o;

 reg s1_wb_cyc_o;

 reg s1_wb_stb_o;

 reg [31:0] s2_wb_adr_o;

 reg [3:0] s2_wb_sel_o;

 reg s2_wb_we_o;

 reg [31:0] s2_wb_dat_o;

 reg s2_wb_cyc_o;

 reg s2_wb_stb_o;

 reg m1_wb_ack_o;

 reg [31:0] m1_wb_dat_o;

 reg m2_wb_ack_o;

 reg [31:0] m2_wb_dat_o;

 reg m1_wb_err_o;

 reg m2_wb_err_o;

 /*

 wire M1_ADDRESSED_S1 = ((m1_wb_adr_i >= `ETH_BASE) & (m1_wb_adr_i < (`ETH_BASE +

`ETH_WIDTH)));

 wire M1_ADDRESSED_S2 = ((m1_wb_adr_i >= `ETH_MEMORY_BASE) & (m1_wb_adr_i <

(`ETH_MEMORY_BASE + `ETH_MEMORY_WIDTH)));

 wire M2_ADDRESSED_S1 = ((m2_wb_adr_i >= `ETH_BASE) & (m2_wb_adr_i < (`ETH_BASE +

`ETH_WIDTH)));

182

 wire M2_ADDRESSED_S2 = ((m2_wb_adr_i >= `ETH_MEMORY_BASE) & (m2_wb_adr_i <

(`ETH_MEMORY_BASE + `ETH_MEMORY_WIDTH)));

 */

 wire M1_ADDRESSED_S1 = ((m1_wb_adr_i >= 32'h0) & (m1_wb_adr_i < 32'h800));

 wire M1_ADDRESSED_S2 = ((m1_wb_adr_i >= 32'h2000) & (m1_wb_adr_i < 32'h32000));

 wire M2_ADDRESSED_S1 = ((m2_wb_adr_i >= 32'h0) & (m2_wb_adr_i < 32'h800));

 wire M2_ADDRESSED_S2 = ((m2_wb_adr_i >= 32'h2000) & (m2_wb_adr_i < 32'h32000));

 wire m_wb_access_finished;

 wire m1_req = m1_wb_cyc_i & m1_wb_stb_i & (M1_ADDRESSED_S1 | M1_ADDRESSED_S2);

 wire m2_req = m2_wb_cyc_i & m2_wb_stb_i & (M2_ADDRESSED_S1 | M2_ADDRESSED_S2);

 initial begin

 m1_in_progress <= 0;

 m2_in_progress <= 0;

 s1_wb_adr_o <= 0;

 s1_wb_sel_o <= 0;

 s1_wb_we_o <= 0;

 s1_wb_dat_o <= 0;

 s1_wb_cyc_o <= 0;

 s1_wb_stb_o <= 0;

 s2_wb_adr_o <= 0;

 s2_wb_sel_o <= 0;

 s2_wb_we_o <= 0;

 s2_wb_dat_o <= 0;

 s2_wb_cyc_o <= 0;

 s2_wb_stb_o <= 0;

 end

 always @ (posedge wb_clk_i or posedge wb_rst_i)

 begin

 if(wb_rst_i)

 begin

 m1_in_progress <=#Tp 0;

 m2_in_progress <=#Tp 0;

183

 s1_wb_adr_o <=#Tp 0;

 s1_wb_sel_o <=#Tp 0;

 s1_wb_we_o <=#Tp 0;

 s1_wb_dat_o <=#Tp 0;

 s1_wb_cyc_o <=#Tp 0;

 s1_wb_stb_o <=#Tp 0;

 s2_wb_adr_o <=#Tp 0;

 s2_wb_sel_o <=#Tp 0;

 s2_wb_we_o <=#Tp 0;

 s2_wb_dat_o <=#Tp 0;

 s2_wb_cyc_o <=#Tp 0;

 s2_wb_stb_o <=#Tp 0;

 end

 else

 begin

 case({m1_in_progress, m2_in_progress, m1_req, m2_req, m_wb_access_finished}) // synopsys_full_case

synopsys_paralel_case

 5'b00_10_0, 5'b00_11_0 :

 begin

 m1_in_progress <=#Tp 1'b1; // idle: m1 or (m1 & m2) want access: m1 -> m

 if(M1_ADDRESSED_S1)

 begin

 s1_wb_adr_o <=#Tp m1_wb_adr_i;

 s1_wb_sel_o <=#Tp m1_wb_sel_i;

 s1_wb_we_o <=#Tp m1_wb_we_i;

 s1_wb_dat_o <=#Tp m1_wb_dat_i;

 s1_wb_cyc_o <=#Tp 1'b1;

 s1_wb_stb_o <=#Tp 1'b1;

 end

 else if(M1_ADDRESSED_S2)

 begin

 s2_wb_adr_o <=#Tp m1_wb_adr_i;

 s2_wb_sel_o <=#Tp m1_wb_sel_i;

 s2_wb_we_o <=#Tp m1_wb_we_i;

 s2_wb_dat_o <=#Tp m1_wb_dat_i;

 s2_wb_cyc_o <=#Tp 1'b1;

 s2_wb_stb_o <=#Tp 1'b1;

184

 end

 //else

 //$display("(%t)(%m)WISHBONE ERROR: Unspecified address space accessed", $time);

 end

 5'b00_01_0 :

 begin

 m2_in_progress <=#Tp 1'b1; // idle: m2 wants access: m2 -> m

 if(M2_ADDRESSED_S1)

 begin

 s1_wb_adr_o <=#Tp m2_wb_adr_i;

 s1_wb_sel_o <=#Tp m2_wb_sel_i;

 s1_wb_we_o <=#Tp m2_wb_we_i;

 s1_wb_dat_o <=#Tp m2_wb_dat_i;

 s1_wb_cyc_o <=#Tp 1'b1;

 s1_wb_stb_o <=#Tp 1'b1;

 end

 else if(M2_ADDRESSED_S2)

 begin

 s2_wb_adr_o <=#Tp m2_wb_adr_i;

 s2_wb_sel_o <=#Tp m2_wb_sel_i;

 s2_wb_we_o <=#Tp m2_wb_we_i;

 s2_wb_dat_o <=#Tp m2_wb_dat_i;

 s2_wb_cyc_o <=#Tp 1'b1;

 s2_wb_stb_o <=#Tp 1'b1;

 end

 //else

 //$display("(%t)(%m)WISHBONE ERROR: Unspecified address space accessed", $time);

 end

 5'b10_10_1, 5'b10_11_1 :

 begin

 m1_in_progress <=#Tp 1'b0; // m1 in progress. Cycle is finished. Send ack or err to m1.

 if(M1_ADDRESSED_S1)

 begin

 s1_wb_cyc_o <=#Tp 1'b0;

 s1_wb_stb_o <=#Tp 1'b0;

 end

 else if(M1_ADDRESSED_S2)

185

 begin

 s2_wb_cyc_o <=#Tp 1'b0;

 s2_wb_stb_o <=#Tp 1'b0;

 end

 end

 5'b01_01_1, 5'b01_11_1 :

 begin

 m2_in_progress <=#Tp 1'b0; // m2 in progress. Cycle is finished. Send ack or err to m2.

 if(M2_ADDRESSED_S1)

 begin

 s1_wb_cyc_o <=#Tp 1'b0;

 s1_wb_stb_o <=#Tp 1'b0;

 end

 else if(M2_ADDRESSED_S2)

 begin

 s2_wb_cyc_o <=#Tp 1'b0;

 s2_wb_stb_o <=#Tp 1'b0;

 end

 end

 endcase

 end

 end

 // Generating Ack for master 1

 always @ (*)

 begin

 if(m1_in_progress)

 begin

 if(M1_ADDRESSED_S1) begin

 m1_wb_ack_o <= s1_wb_ack_i;

 m1_wb_dat_o <= s1_wb_dat_i;

 end

 else if(M1_ADDRESSED_S2) begin

 m1_wb_ack_o <= s2_wb_ack_i;

 m1_wb_dat_o <= s2_wb_dat_i;

 end

 end

186

 else

 m1_wb_ack_o <= 0;

 end

 // Generating Ack for master 2

 always @ (*)

 begin

 if(m2_in_progress)

 begin

 if(M2_ADDRESSED_S1) begin

 m2_wb_ack_o <= s1_wb_ack_i;

 m2_wb_dat_o <= s1_wb_dat_i;

 end

 else if(M2_ADDRESSED_S2) begin

 m2_wb_ack_o <= s2_wb_ack_i;

 m2_wb_dat_o <= s2_wb_dat_i;

 end

 end

 else

 m2_wb_ack_o <= 0;

 end

 // Generating Err for master 1

 // sensitivity list change lll

 //always @ (m1_in_progress or m1_wb_adr_i or s1_wb_err_i or s2_wb_err_i or M2_ADDRESSED_S1 or

M2_ADDRESSED_S2 or

 always @ (*)

 begin

 if(m1_in_progress) begin

 if(M1_ADDRESSED_S1)

 m1_wb_err_o <= s1_wb_err_i;

 else if(M1_ADDRESSED_S2)

 m1_wb_err_o <= s2_wb_err_i;

 end

 else if(m1_wb_cyc_i & m1_wb_stb_i & ~M1_ADDRESSED_S1 & ~M1_ADDRESSED_S2)

187

 m1_wb_err_o <= 1'b1;

 else

 m1_wb_err_o <= 1'b0;

 end

 // Generating Err for master 2

 always @ (*)

 begin

 if(m2_in_progress) begin

 if(M2_ADDRESSED_S1)

 m2_wb_err_o <= s1_wb_err_i;

 else if(M2_ADDRESSED_S2)

 m2_wb_err_o <= s2_wb_err_i;

 end

 else if(m2_wb_cyc_i & m2_wb_stb_i & ~M2_ADDRESSED_S1 & ~M2_ADDRESSED_S2)

 m2_wb_err_o <= 1'b1;

 else

 m2_wb_err_o <= 1'b0;

 end

 assign m_wb_access_finished = m1_wb_ack_o | m1_wb_err_o | m2_wb_ack_o | m2_wb_err_o;

 // Activity monitor

 /* lll

 integer cnt;

 always @ (posedge wb_clk_i or posedge wb_rst_i)

 begin

 if(wb_rst_i)

 cnt <=#Tp 0;

 else

 if(s1_wb_ack_i | s1_wb_err_i | s2_wb_ack_i | s2_wb_err_i)

 cnt <=#Tp 0;

 else

 if(s1_wb_cyc_o | s2_wb_cyc_o)

188

 cnt <=#Tp cnt+1;

end

 always @ (posedge wb_clk_i)

 begin

 if(cnt==1000) begin

 $display("(%0t)(%m) ERROR: WB activity ??? ", $time);

 if(s1_wb_cyc_o) begin

 $display("s1_wb_dat_o = 0x%0x", s1_wb_dat_o);

 $display("s1_wb_adr_o = 0x%0x", s1_wb_adr_o);

 $display("s1_wb_sel_o = 0x%0x", s1_wb_sel_o);

 $display("s1_wb_we_o = 0x%0x", s1_wb_we_o);

 end

 else if(s2_wb_cyc_o) begin

 $display("s2_wb_dat_o = 0x%0x", s2_wb_dat_o);

 $display("s2_wb_adr_o = 0x%0x", s2_wb_adr_o);

 $display("s2_wb_sel_o = 0x%0x", s2_wb_sel_o);

 $display("s2_wb_we_o = 0x%0x", s2_wb_we_o);

 end

 $stop;

 end

end

 always @ (posedge wb_clk_i)

 begin

 if(s1_wb_err_i & s1_wb_cyc_o) begin

 $display("(%0t) ERROR: WB cycle finished with error acknowledge ", $time);

 $display("s1_wb_dat_o = 0x%0x", s1_wb_dat_o);

 $display("s1_wb_adr_o = 0x%0x", s1_wb_adr_o);

 $display("s1_wb_sel_o = 0x%0x", s1_wb_sel_o);

 $display("s1_wb_we_o = 0x%0x", s1_wb_we_o);

 $stop;

 end

 if(s2_wb_err_i & s2_wb_cyc_o) begin

 $display("(%0t) ERROR: WB cycle finished with error acknowledge ", $time);

189

 $display("s2_wb_dat_o = 0x%0x", s2_wb_dat_o);

 $display("s2_wb_adr_o = 0x%0x", s2_wb_adr_o);

 $display("s2_wb_sel_o = 0x%0x", s2_wb_sel_o);

 $display("s2_wb_we_o = 0x%0x", s2_wb_we_o);

 $stop;

 end

end

 */

endmodule

C.6. eth_defines.v

`define ETH_MODER_ADR 8'h0 // 0x0

`define ETH_INT_SOURCE_ADR 8'h1 // 0x4

`define ETH_INT_MASK_ADR 8'h2 // 0x8

`define ETH_IPGT_ADR 8'h3 // 0xC

`define ETH_IPGR1_ADR 8'h4 // 0x10

`define ETH_IPGR2_ADR 8'h5 // 0x14

`define ETH_PACKETLEN_ADR 8'h6 // 0x18

`define ETH_COLLCONF_ADR 8'h7 // 0x1C

`define ETH_TX_BD_NUM_ADR 8'h8 // 0x20

`define ETH_CTRLMODER_ADR 8'h9 // 0x24

`define ETH_MIIMODER_ADR 8'hA // 0x28

`define ETH_MIICOMMAND_ADR 8'hB // 0x2C

`define ETH_MIIADDRESS_ADR 8'hC // 0x30

`define ETH_MIITX_DATA_ADR 8'hD // 0x34

`define ETH_MIIRX_DATA_ADR 8'hE // 0x38

`define ETH_MIISTATUS_ADR 8'hF // 0x3C

`define ETH_MAC_ADDR0_ADR 8'h10 // 0x40

`define ETH_MAC_ADDR1_ADR 8'h11 // 0x44

`define ETH_HASH0_ADR 8'h12 // 0x48

`define ETH_HASH1_ADR 8'h13 // 0x4C

`define ETH_TX_CTRL_ADR 8'h14 // 0x50

`define ETH_RX_CTRL_ADR 8'h15 // 0x54

190

`define ETH_MODER_DEF_0 8'h00

`define ETH_MODER_DEF_1 8'hA0

`define ETH_MODER_DEF_2 1'h0

`define ETH_INT_MASK_DEF_0 7'h0

`define ETH_IPGT_DEF_0 7'h12

`define ETH_IPGR1_DEF_0 7'h0C

`define ETH_IPGR2_DEF_0 7'h12

`define ETH_PACKETLEN_DEF_0 8'h00

`define ETH_PACKETLEN_DEF_1 8'h06

`define ETH_PACKETLEN_DEF_2 8'h40

`define ETH_PACKETLEN_DEF_3 8'h00

`define ETH_COLLCONF_DEF_0 6'h3f

`define ETH_COLLCONF_DEF_2 4'hF

`define ETH_TX_BD_NUM_DEF_0 8'h40

`define ETH_CTRLMODER_DEF_0 3'h0

`define ETH_MIIMODER_DEF_0 8'h64

`define ETH_MIIMODER_DEF_1 1'h0

`define ETH_MIIADDRESS_DEF_0 5'h00

`define ETH_MIIADDRESS_DEF_1 5'h00

`define ETH_MIITX_DATA_DEF_0 8'h00

`define ETH_MIITX_DATA_DEF_1 8'h00

`define ETH_MIIRX_DATA_DEF 16'h0000 // not written from WB

`define ETH_MAC_ADDR0_DEF_0 8'h00

`define ETH_MAC_ADDR0_DEF_1 8'h00

`define ETH_MAC_ADDR0_DEF_2 8'h00

`define ETH_MAC_ADDR0_DEF_3 8'h00

`define ETH_MAC_ADDR1_DEF_0 8'h00

`define ETH_MAC_ADDR1_DEF_1 8'h00

`define ETH_HASH0_DEF_0 8'h00

`define ETH_HASH0_DEF_1 8'h00

`define ETH_HASH0_DEF_2 8'h00

`define ETH_HASH0_DEF_3 8'h00

`define ETH_HASH1_DEF_0 8'h00

`define ETH_HASH1_DEF_1 8'h00

`define ETH_HASH1_DEF_2 8'h00

191

`define ETH_HASH1_DEF_3 8'h00

`define ETH_TX_CTRL_DEF_0 8'h00

`define ETH_TX_CTRL_DEF_1 8'h00

`define ETH_TX_CTRL_DEF_2 1'h0

`define ETH_RX_CTRL_DEF_0 8'h00

`define ETH_RX_CTRL_DEF_1 8'h00

`define ETH_MODER_WIDTH_0 8

`define ETH_MODER_WIDTH_1 8

`define ETH_MODER_WIDTH_2 1

`define ETH_INT_SOURCE_WIDTH_0 7

`define ETH_INT_MASK_WIDTH_0 7

`define ETH_IPGT_WIDTH_0 7

`define ETH_IPGR1_WIDTH_0 7

`define ETH_IPGR2_WIDTH_0 7

`define ETH_PACKETLEN_WIDTH_0 8

`define ETH_PACKETLEN_WIDTH_1 8

`define ETH_PACKETLEN_WIDTH_2 8

`define ETH_PACKETLEN_WIDTH_3 8

`define ETH_COLLCONF_WIDTH_0 6

`define ETH_COLLCONF_WIDTH_2 4

`define ETH_TX_BD_NUM_WIDTH_0 8

`define ETH_CTRLMODER_WIDTH_0 3

`define ETH_MIIMODER_WIDTH_0 8

`define ETH_MIIMODER_WIDTH_1 1

`define ETH_MIICOMMAND_WIDTH_0 3

`define ETH_MIIADDRESS_WIDTH_0 5

`define ETH_MIIADDRESS_WIDTH_1 5

`define ETH_MIITX_DATA_WIDTH_0 8

`define ETH_MIITX_DATA_WIDTH_1 8

`define ETH_MIIRX_DATA_WIDTH 16 // not written from WB

`define ETH_MIISTATUS_WIDTH 3 // not written from WB

`define ETH_MAC_ADDR0_WIDTH_0 8

`define ETH_MAC_ADDR0_WIDTH_1 8

`define ETH_MAC_ADDR0_WIDTH_2 8

`define ETH_MAC_ADDR0_WIDTH_3 8

192

`define ETH_MAC_ADDR1_WIDTH_0 8

`define ETH_MAC_ADDR1_WIDTH_1 8

`define ETH_HASH0_WIDTH_0 8

`define ETH_HASH0_WIDTH_1 8

`define ETH_HASH0_WIDTH_2 8

`define ETH_HASH0_WIDTH_3 8

`define ETH_HASH1_WIDTH_0 8

`define ETH_HASH1_WIDTH_1 8

`define ETH_HASH1_WIDTH_2 8

`define ETH_HASH1_WIDTH_3 8

`define ETH_TX_CTRL_WIDTH_0 8

`define ETH_TX_CTRL_WIDTH_1 8

`define ETH_TX_CTRL_WIDTH_2 1

`define ETH_RX_CTRL_WIDTH_0 8

`define ETH_RX_CTRL_WIDTH_1 8

// Outputs are registered (uncomment when needed)

`define ETH_REGISTERED_OUTPUTS

// Settings for TX FIFO

`define ETH_TX_FIFO_CNT_WIDTH 5

`define ETH_TX_FIFO_DEPTH 16

`define ETH_TX_FIFO_DATA_WIDTH 32

// Settings for RX FIFO

`define ETH_RX_FIFO_CNT_WIDTH 5

`define ETH_RX_FIFO_DEPTH 16

`define ETH_RX_FIFO_DATA_WIDTH 32

// Burst length

`define ETH_BURST_LENGTH 4 // Change also ETH_BURST_CNT_WIDTH

`define ETH_BURST_CNT_WIDTH 3 // The counter must be width enough to count to

ETH_BURST_LENGTH

// WISHBONE interface is Revision B3 compliant (uncomment when needed)

//`define ETH_WISHBONE_B3

193

// Following defines are needed when eth_cop.v is used. Otherwise they may be deleted.

`define ETH_BASE 32'hd0000000

`define ETH_WIDTH 32'h800

`define ETH_MEMORY_BASE 32'h2000 // renamed for conflict

`define ETH_MEMORY_WIDTH 32'h30000// renamed for conflict

/*

`define MEMORY_BASE 32'h2000

`define MEMORY_WIDTH 32'h10000

*/

/* Apparently the ISE is not able to do the double translation:

`define M1_ADDRESSED_S1 ((m1_wb_adr_i >= `ETH_BASE) & (m1_wb_adr_i < (`ETH_BASE + `ETH_WIDTH

)))

`define M1_ADDRESSED_S2 ((m1_wb_adr_i >= `MEMORY_BASE) & (m1_wb_adr_i < (`MEMORY_BASE +

`MEMORY_WIDTH)))

`define M2_ADDRESSED_S1 ((m2_wb_adr_i >= `ETH_BASE) & (m2_wb_adr_i < (`ETH_BASE + `ETH_WIDTH

)))

`define M2_ADDRESSED_S2 ((m2_wb_adr_i >= `MEMORY_BASE) & (m2_wb_adr_i < (`MEMORY_BASE +

`MEMORY_WIDTH)))

*/

// Previous defines are only needed for eth_cop.v

194

	Part-1
	Part-2

