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Nomenclature

To = bed shear stress(Pa)

Tc = critical shear stress(Pa)

R=«c = Shear Reynolds number

T+c = Non-dimensional shear stress

u=c = shear velocity at the critical condition (mv/s)
Y = unit weight of water(N/m")

Y's = unit weight of sediment

particle(N/m’®) v = kinematic viscosity

of water (Ns/m?)

dso = mean diameter of sand particle(mm)

On = critical shield parameter

g = acceleration of

gravity(m?/s) p= density of

water(kg/m?)

ps= density of sand(kg/m’)

d+, = dimensionless grain size

@n= dimensionless bed load transport parameter
Bn = the bed load coeftficient

Cs, = suspended sediment mass

concentration t = time(sec)



Abstract

Abstract

Scour is a natural event caused by the erosive action of flowing water on the bed
and banks of streams, which also takes place on region in the vicinity of the
bridge piers and abutments. In this analysis I have tried to investigate whether
Flow-3d can accurately predict the scouring geometry, the depth and deposition
of sand around bridge piers or not. In this study mainly the scouring in case of
non-cohesive bed sediment was simulated using the software where both the
qualitative and quantitative analysis have been presented. And the software uses
Reynold’s Average Navier Stokes (RANS) equation closed with k-€ model with
second order accurate turbulence method. The study gives a conclusion which
suggest that among the different five shapes (circular, square, diamond,
hexagonal, airfoil), for circular shape the scour depth is satisfactory than other
diamond and hexagonal shape but in case of airfoil scouring is so high that it
didn’t catch our thought anyway. Besides these, it also shows that scouring is
higher in the upstream of the piers than the downstream. Another major finding
of my work is that there are some limitations in the Flow-3d software to predict the
scouring depth. The two major countermeasure techniques employed for
preventing or minimizing local scour around bridge piers are: (i) bed armoring
countermeasures and (i) Flow-altering methods. I have introduced a collar

around circular shaped piers to see whether scouring depth is decreased or not.

Keywords: local scour, horseshoe vortex system (THSV), scour depth, bed

topography, CFD, non-cohesive sand, deposition height, critical shields number.

10



Chapter 1 Introduction

Chapter 1 Introduction

Scouring is a very general and common phenomena which occurs in the rivers or
other steams and causing the breakdown and failures of many bridges of the
world. The study on scouring is developing day by day and it can’t be fully
removed rather the measure of erosion and bridge failure can be reduced with the
help of adapting some measures. Local scour occurs due to the heavy pressure
flow on the upstream of the riverside which creates horse shoe vortex around the
sets of piers and by the influence of the pillars and high shear stress the
underneath sands are moving from the region and creates an area where the
supportive non cohesive soil is not present causing the bridge to fail. And
extensive work around the world is going on to reduce the failures of bridges.
Flood or the increased water flow which at the same time increases the pressure
on the structure causes the downward movement of the sand layer around bridge
levels and some areas around the pillars of the bridges. Formation of scour pit for

flooded condition is playing a vital role in the erosion process.

Figure 1: Scouring effect around a bridge pier[16]
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Figure 2: Bridge failure due to scouring effect

In the field of scouring many researchers have studied the various aspects of local scour like
temporal and equilibrium scour (Melville and Chiew 1999|31], Kothiary et al 1992a|32],
Johnson and Bilal 1992|33|, Laursen 1963|34]), clear water and live bed scour (Vittal et al
1994|35|, Jain 1981|36), Kothiary et al 1992b|37], Laursen 1962|38]), scour in uniform and
non-uniform bed materials (Melville and Chiew 1999(31], Molinas and Abdeldayem 199839,
Raudkivi and Ettema 1977[40]), scale effects in pier scour (Kabir et al 2000{41], Laursen
1963|34 ], Laursen 1962|38]) and so on. Again many empirical equations (Kandasamy and
Melville 1998|42 ], Melville and Sutherland 198843, Poona (Chang 1988|44, Garde and Raju
1985]45]) and mathematical models (Ram 1999]|30], Johnson and Bilal 1996[46|,.Dey et al
1995|47]) are available for predicting pier scour depth, which are usually intended to estimate
the ultimate scour depth. More recently attempts were made to reduce scour with the piers of
different shape, geometry and orientation (Sheppard and Jones 1998|48|, Kumar et al
1999|49 |,Parola 199650 ], Lim and Chiew1999|51 ).

Thus the main objectives of our study is to investigate the scouring effect for different
shapes of the pillar structures like circular, square, diamond, hexagonal and airfoil and to
do a comparative analysis between these structures to find a conclusion of which one is

better in implementing as pillar structure.

In summary it mainly discussed the scour evolution under the flooded bridge piers for
different structures and this study has been done based on computational fluid dynamics
using FLOW -3D which can predict the scouring more precisely.
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Chapter 2 Literanuire Review

Chapter 2 Literature Review

2.1 Basic theory related to scouring:

The alluvium or sediment refers to the loose and no cohesive element which usually move due to
the action of water with varying velocity and resulting deposition or transportation of it. And the
Initiation of the motion of the sediment depends upon the bed shear stress which can be defined

as

To=YRSp [22].eecvreiriennn (1)

These two numbers are Shear Reynolds number and non-dimensional shear stress|22|

which can be expressed in equation like

U, d
R,. = _ (Shear Reynolds number) ......... )
Tc 2 £
T, = ——— (Non-dimensional shear stress)...(3)
€ (Ys-1d

Where, d = diameter of the bed particle
Ys = p_g = unit weight of the sediment particle
Y = pg =umt weight of water

T, = cntical shear stress
Te X & v
Uye = ‘? = shear velocity at the critical condition

V = kinematic viscosity of water
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Figure 3: Shueld diagram/cure[22]
From the Shields curve it is very clear that up to R, . = 2 the flow is pretty much smooth in nature
and particle diameter doesn’t have any effect on the critical shields stress. For  2<R..< 400
there has a transition stage and both the velocity and particle diameter has effect on critical
shields stress and after that range it became nearly constant. As the size of the sediment is non
uniform in nature so it is convenient to take median size (dsg).
2.2Scour and its classification:
It is a general phenomenon occurs due to the flow of water where sediment is being
moved. Scour generally influences by the effects of abutments and piers when water
passes across these structures and a net change in the bed elevation is observed. When the
bed elevation decreases due to the erosion of bed then it is called as degradation where

the increase of bed elevation due to the deposition of sediment is called as aggradation.

Scouring can be divided into three main types which are:
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Figwre 4: Clazzificanen of scour
1. Degradation Scour: The long-term process which causes the lowering of the sediment
bed for the flow of water and which is may not be evident after passing of the flood

event.

i..  Contraction Scour: Which occurs due to the contraction of the flow passage area of the
water naturally or due to other obstructions and result increasing velocity in the water

flow. It is commonly termed as general scour.

iii.  Local Scour: This type of scour happening due to the abutments and piers which create
vortex around the hydrodynamic structure and take the sediment away from the structure

making it very weak and unsafe.

Local scour are two types:
a) Clear-water Scour: It refers to the condition where there is no sediment movement

thus no sediment is being transported to the scour prone zone due to this type of scour.

b) Live-bed Scour: Here sediment is transported with water in the flowing direction and

which led the decrease in the height of the scour.

2.3Scouring mechanism:
The maximum failures of bridges occur for the scouring which removes the sediment from the

base of piers. And research are being carried out across the world to make the pier design sate
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and economical. When water is flowing toward the pier there creates a stagnation point at the
intersection between the pier and the direction of the flow where velocity comes to complete rest.
The velocity distribution of the approaching flow varies from zero at the bed surface up to the
maximum at the surface of water that creates a pressure gradient from the bottom to the top. This
change in pressure creates vortex at the bottom of the pillar that sweeps sediment from the region
and the vortex looks like a horseshoe. For that reason, this type of vortex is called horseshoe

vortex. Horseshoe vortex mechanism can be illustrated with figure 5 and 6.

Figura & Moo choe md « e trnvm oo 8 0 Vet 10 dlwmen 1)

2.4Factors affecting bridge scour:

Local scour and General scour are very much affected by some important factors and
these factors has been discussed by (Melville and Coleman, 2000)|24|

Flow parameters: Which include the approach flow velocity, the angle of contact
between the tlowing tluid and the structural geometry. Fluid property: The property of
any fluid has been characterized by its density (p) and viscosity (v). And these parameters
are sensitive to the temperature change. Geometrical factors: Shape and structure of the
pier has an imperative impact on the scouring issue. Time: Reaching into equilibrium
condition there need some time and enough time should be provided for equilibrium
condition to be exist. particle size,distribution for non-cohesive sediments, spatial

distribution of sediment size are important factors. As you can see, we have taken
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4m downstream for pillar location. There has a number of way of turbulence
modelling and in this analysis we have used Renormalized Group(RNG) turbulence
modelling which is the simplest and the most effective method of establishing

scaling of specific models and calculating the corresponding critical exponents.
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3. NUMERICAL METHODOLOGY

3.1 Governing equations:

In this work FLOW-3D has been used for simulation purpose. Where it has been fully coupled
with fluid flow, allows multiple non-cohesive species and considers entrainment, deposition, bed
load transport and suspended load transport. Volume and area fraction that describe the packed
sediment are calculated throughout the whole domain at each and every time step that is being
incorporated by the user.

The equations that have been used are given below:

3.1.1 Bed shear stress:
1 Y
Uu=1u, [; In (1*'_-‘\'5)] I_25[ .............. (4)

Where, u, = the shear velocity, u, = \E , 7= bed shear stress and p=bulk density of the fluid-

sediment mixture,

Y= distance from the wall,

v = kinematic viscosity of the bulk flow,

K= 0.4 is the Von Karman Constant and k, is related to the grain size and can be defined as
T 5 (FEO——— (&)

dso = Median grain diameter of the bed material,

C, = user defined coefficient, usually recommended value is 2.5.

3.1.2 Critical shields parameter:

0, = ———— i 6
" gdn(pn—py) ©)
Opry == s 7
orm gdn(pn—py) ( }
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0.3

Ocrn = T + 0.055(1 — e70%24-n)...(8)
d., =d, g(i';;”] ........................... 9)

3.1.3 Entrainment and deposition:

1.5
Wiiren = Np@ypdon (6, = 8crn) Vadu(S, = 1)....

v

5
umm_,ﬁ"j[(10.362 +10.49 d3,)2 — 10.36] ...

3.1.4 Bed load transport:

G, =—E (12)
l[a(sn-1)ad]2
R e I D oTrE (13)
C __ hetvolume of nspecies
b.ﬂ. — ‘net Uof_ume of QEI Spgcfes ----------------------------
p L R L T (15)
e 0.5
h, = 0.3d,d%7 (;:n— 1) .................. (16)
f Sl (17)

hnCpnfb

3.1.5 Suspended load transport:

9Csn _

= 0 (Gositles) =TVIDC,:) sssimanvniin
CS,I"I

Csn = ; ............................... ( ].9)

p= EN =1Csm Psm T (1 - Cs,tot)pf ----------- (20)

Bonor B Mg B s Vi s smn oo (21)

3.2 Turbulence modelling:

There has a number of way of turbulence modelling and in this analysis we have used
Renormalized Group (RNG) turbulence modelling which is the simplest and the most effective
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method of establishing scaling of specific models and calculating the corresponding critical
exponents. The Renormalized Group (RNG) k-¢ model (Yakhot & Orszag 1986, Yakhot &
Smith 1992) is a more robust version of the two-equation k-¢ model, and 1s suggested for most
industrial problems.

The Yakhot-Orszag renormalization group has been developed to solve non-linear turbulence
equations and that has been done by evaluation of Reynolds stresses of second order in the
€ expansion of the Yakhot-Orszag theory. And because of its converging nature for different
turbulent models it has been used for the analysis of scouring process in this paper.

3.3 Numerical modelling of bed:

In this analysis we have numerically studied on the turbulent flow over the open channel bed
with a vertical pillar mounted on the bed and which has been located 4m downstream of the inlet
region of water flow. This study has been dealt with a total number of five geometric structures
of pillars which are a circular pier, square shaped pier, diamond shaped pier, hexagonal shaped
pier(new case study) and an airfoil shaped pier(new case study). These piers are shown in figure
7,8.9,10 and 11.

In the case of circular pier, the diameter has been taken as 16.51 cm. For square shaped pier,
each edge length is 16.51cm and for diamond shaped pier, width is 23.35 cm. The related
dimension of circular, square and diamond piers are taken from the experiment of Ali
Khosronejad&Seokkoo (2012)|26]. Considering the hydraulic diameter of previous three shapes,
we determined the edge length of 10 cm for hexagonal shape. The distance between two edge is
50 c¢m (around 3 times of diameter) & diameter is 17 cm for the airfoil one. The total length of
the bed is 10m long and has a rectangular cross-section which is 1.21m wide and 45cm deep.

And the flume has a 20 cm layer of uniformly graded non-cohesive sand with a mean particle
diameter of d5, = 0.85mm|26|.
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Fig12: Location of mesh plane at x=3m & x=5m Fig13: Boundary condition

Fig14: Meshing of geometry Fig15: Grid refinement around bridge piers

3.4 Grid test:

Grid independency has been carried out in case of circular pier. Where the rectangular structured
mesh are ranging over the sediment bed and the pillar. A number of cells has been defined to
discretize the governing equations. The resolution of the grid has changed from the coarser one
to the finer one to get acquainted with the effect of structured grid over the numerical result.
FLOW-3D is dealing with the structured rectangular mesh and for that reason it is implemented

on our overall structure.
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Fig16: Grid independency test



The above graph illustrates that A (coarsest) with total 200k number of cells
cannot predict the scour depth accurately where the results of scour depth for B
(with 250k) and C (with 300k) are very close to each other which confirms that
grid independency is achieved. So the finest grid C has been taken as a prime one
to run the rest of the simulations for other structures. For all these cases time

accurate simulations were carried out until it reaches in equilibrium condition.



4. RESULT ANALYSIS

4.1 Comparison of numerical and experimental bed topography at equilibrium:

In the below, numerical topographies of the three geometrical structures e.g.
circular, square and diamond shaped piers have been validated with the
experimental data available in Ali Khosronejad & Seokkoo (2012) [26]. All
negative contour values represent scouring and positive values represent
deposition. All numerical values are in cm unit.

4.1.1 The circular shaped pier:

The maximum scour depth that has been observed for the experimental one is 6.7cm |26] and for
the numerical one it is 6.5cm. And both of these results are observed in two different locations
where the numerical values for both of the scour depth can be compared with some sacrifice in

accuracy.

Figure I17:Comparizon of experimental (bortom) and mumerical (top) bed
topograply at equilibrium fin em) for cireular shaped pier

4.1.2 The square shaped pier:
The maximum experimental scour depth has been recorded as 7.6cm |26] and the numerical
scour depth 1s 6.6cm. The difterence between the numerical and the experimental results are not

satisfactory enough. Because in the real case, scouring around square shaped pier has also been



influenced by the edges of the pier and that accelerate the scouring mechanism and scouring
depth increases but the effect of the edges cannot be predicted by the Flow3d software. And for

that the scouring depth for those two cases varies a lot.

Fig 18 Square shaped pier Fig 19: Diamond shaped
pier

4.1.3 The diamond shaped pier:

Maximum scour depth in the experimental case is 8.3cm [26] and the numerical one is the
8.5cm. So these two values can be compared very easily and here we get a better result.

From the above analysis we can concluded that for both the bed topography and numerical
values the predictive capabilities of the CFD software depends on the structure of the pier. And
in case of the blunt nose the bed topography is not much satisfactory. But for the diamond shape

it has a better predictive ability.
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4.1.4 The hexagonal shaped pier:

Here we see that maximum scour develops at the side of the pillar and gradually decreases when
we go far from the pillar center (figure 18). And deposition starts to build up in the downstream
of the pier.The maximum scour depth for the numerical one is recorded as 8.0cm and deposition
of sand is recorded as 3.9cm. Maximum scouring occurs as a small pocket at both sides.

4.1.5 The airfoil shaped pier:

Airfoil shape is one of our interest of study because of its streamlining structure. In this structure,
the maximum scour develops at both side of the pillar and forming a confined, comparatively
bigger, pocket like structure (figure 19).

The maximum scour depth that has been recorded for the airtoil structure is 7.9 c¢cm and the
deposition at the downstream of the pillar is 3.8cm. The scouring gradually decreases from the
side of the pillar. And from the maximum scour depth value there has no development of

scouring in case of airfoil structure. (can write about no scouring in the nose side)
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Figure 23:scouring depth at equilibrium condition in 3D geomeny (d) hexagonal
pier and (e) airfoil pier

4.2 Validation of scour depth when the time is varied:

From the mechanism of scouring effect, we know that scouring effect increases with respect to
the time. At the starting of a water flow across the pier, the velocity remains quite gentle and
which has less ettect on the scouring process.

4.2.1 The circular shaped pier:

In the graph that has been presented below we observe that for the circular shaped pier
for the approximately first 300 seconds the shape of the curve of scouring is similar in

shape though it has difference in the numerical value.
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4.2.2 The square shaped pier:

Time dependent analysis of the square shaped pier reflects that the irregularities of scouring
depth and corresponding curve is more than the circular shaped pier that we have seen before.
And here for the first few seconds thought he shape is somewhat similar but not that much. Here
also this has been happened because of the scouring mechanism which tells us that when the flow
started scouring is only be driven by the velocity where for the later part horse shoe vortex
system is also seen.

4.2.3 The diamond shaped pier:

Diamond shaped pier is one of the topic of interests because of its nature of geometry
which has edge shape pier nose when flow is in the upstream. And due to the presence of
the edge, the formation of horse shoe vortex ceases. The edge at the upstream decreases
the energy of the horse shoe vortex and that subsequently gives us a better result for the

diamond shaped pier.
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4.2.4 The hexagonal shaped pier:

This is a new case that has been studied by our research. And in light of the graph that has been
presented down below we can explain the time dependent nature of scouring effect of the
hexagonal shaped pier. According to the graph for the first 200 seconds the rate of scouring is
very fast but for the rest of the simulation the rate gradually decreases with time.

4.2.5 The airfoil shaped pier:

It is another structure that has been newly introduced by our study to see whether it can give a
good result or not. We see from the above graph of the airfoil shaped pier that it reached in
equilibrium condition very rapidly and at the first phase of the process the rate of scouring is very
fast and then suddenly it dropped drastically.

4.3 Velocity distribution along the flume bed:

Comparison between piers with collar and piers without collar to find desirable scouring

depth
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fig 29: Without collar scouring depth and velocity profile

Velocity distribution along the bed flume indicates the theory behind the scouring.
Here we see that velocity is not constant along the flume bed rather it is different and
follows a pattern. According to the contour plot shown below (figz 29) we
acknowledge that velocity is highest at the inlet and that is steadily decreasing and
came to a complete stop at the pillar and fluid flow interface. And that point is known
as stagnation point and here velocity is very less but at the same time pressure
increases. From the contour plot another thing is that velocity is also changing along
¢ direction or vertical plane, which is in the order of decreasing. So there creates a pressure
difference along the vertical direction and that pressure
gradient influence the scouring process and removes sediment particle from that
region. Scouring is higher in the upstream of the flow at the pillar nose. But if we
observe the downstream of the pillar then we see that velocity is lowest at the back of
the pillar which subsequently creates a region of unsteady flow and eddy formation
of water that is irregular. This region in the downstream of the pillar is called wake
region and here wake vortex also form. That creates a scouring region behind the pillar. As
the wvelocity is very negligible at that region so formation of scour depth is
also very small. And beyond the wake region flow again starts to accelerate. Though
no scouring i1s not observed further because there is no abutments or pillar on their
flow which could create an obstacle and form local scour.
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fig 30: Reduction of scouring after adding collar and velocity profile
When a collar is attached to the pier, the scouring starts from the back of the pier due to the
effect of wake vortex and horseshoe vortex. The scour hole very gradually develops toward
upstream and undermines the collar. After the collar is undermined. the scouring accelerates
again. Scour depth of single pier during the experiment is greater than the pier protected with
collar, since the collar causes down flow loses its strength on excavating the bed. For single pier,
since the down-flow at upstream of the pier is impinging the bed, the scouring process starts
rapidly. For pier protected with collar, direct action of down-flow is blocked therefore the
scouring starts with delay. After the scouring starts the horseshoe vortex commences to dominate
the scouring process. As the scour hole develops, the horseshoe vortex grows in both size and
strength. The rate of scouring in this stage is considerably less than that of the initial stage. A
collar prevents the direct impact of down flow and decreases the local scour depth by reducing

the strength of the down flow and the horseshoe vortex, hence scouring is postponed.
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5. SUMMARY AND CONCLUSIONS

We have found our desirable scouring depth by addressing collar around the circular shaped
piers. In piers protected with collar, at the beginning of the test, wake vortices sweep up the
sediments in downstream of the pier in contrast to the unprotected pier in which scouring
starts in upstream of the pier due to the effect of the down flow. Two grooves gradually
develop at the downstream rim of the collar, and extend towards upstream and eventually
reach at upstream edge of the collar. At this moment, the flow is intensified through the
grooves, reducing the side slope of the grooves and with sediment removal from the grooves
the scour hole extends to upstream of the pier and below the collar.

Now if we look at our second purpose of study is to know which structure is more
suitable to select as the pillar structure. From the above comparison between five
geometrical structures it is very clear that the lowest maximum scour depth has been
observed in case of circular shape pier. And the result of maximum scour depth for the
rest of the geometry is not satisfactory that can help us to reduce the scouring around
bridge piers. So the current circular shape pier which has been used worldwide for so
many years is the best one according to our study.
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Fig 31:Comparison of maximum scour depth among five
plers structures

Fig 32.Comparison of maximum deposition among five piers
structures
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Shape of Maximum Scour | Maximum Scour Shape of Maximum Maximum
Bridge Piers | Depth(Numerical) | Depth Bridge Piers | Deposition Deposition
(Experimental) (Numerical) | (Experimental)

Circular 6.5cm 6.7em Circular 2.6em 4.lem
Square 6.6cm 7.6cm Square 2.9cm 5.5cm
Diamond 8.5em 8.3cm Diamond 4.8cm 5.5cm

Tabie d Numerscal and eperrmental marmem Scour depeirrms for rrsler Table & Numerscal and experimentel marsmess Pre ——
quare and damand prer convadier, spure ond dsmand pogr :

Shape of Bridge Pier Scour Depth Deposition of Sand

Hexagonal 8.0cm 3.9cm
Acerofoil 7.9cm 3.8cm

Tabie 7 Numerscal mavsmum icour depthicm) gnd maymeum depocsnon
herghricm for heraponal anad sorfosl peev

Circular 2.98%
Square 13.15%
Diamond 2.40%

Table 5 Comparizon berneen expermmenin and wumerical rezult for mayrmuse
zeour depth
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We can show another comparison among the rest four shapes by considering the circular pier as the best

one.
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Fig 33: Comparison among square, diamond, hexagonal and airfoil piers
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