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1. Abstract:

Beam and plates in existence of crack is vulnerable to failure reckoning on the different mode of vibration. The
natural frequency of the beams and plates and the superposition of periodic force acting on beams and plates
form resonance which is the main cause of failure. It is crucial to find out natural frequency to remain aware
about resonance that occurs due to periodic load. In this research work, we have used "Solidworks" software to
design beams and plates without and with different types of cracks like slit crack, triangular crack, angular crack,
semi-circular crack etc. Afterwards, we have used "ANSYS" simulation software to find the natural frequency
and mode shapes of cracked and Non-cracked beams and plates for first six modes through modal analysis and
made a through investigation of the vibrational behavior of different modes and mode shapes and made
different comparison which can be used as one of the criteria for identification of cracks on beams and plates.
The analysis has been extended to evaluate the effect of mesh refinement and crack opening size. For cracked
beam, analysis is performed for various crack location and crack depth. In our work, we have observed that due
to existence of crack, natural frequency changes. The amount of change varies depending on crack location,
depth and crack opening size. Furthermore, we used harmonic analysis to find the deflection curves which can
be used as one of the other criteria for crack identification.

2. Introduction:

In engineering applications, beams are one of the most widely used structural components. Beams may be
circular or non-circular, and their supports are used to classify them into various forms. Since cracks are a major
cause of component failure/damage, it is critical to examine any cracks that occur in the structure early on
protecting it from potentially catastrophic failures. Cracks can form as a result of a variety of factors, including
poor manufacturing, stress corrosion, hydrogen damage, and failures of different kinds of fatigue. The majority
of system failures are currently caused by material fatigue. The load which is repeated in any kinds of mechanical
element, fatigue failure is a possibility. Cracks appear on the component's surface in this mode of fatigue failure.
If a crack develops in the component during service or usage, it may lead to failure of the component if it grows
to a critical size. The shape and geometry of cracks has a major impact on the cracked rotor's properties which
are dynamic basically.[1]

Cracks in structural elements such as beams and columns are caused by a number of factors. It's possible that
they're fatigue cracks that form in operation due to the fatigue strength's limitations. Mechanical flaws, such as
those found in jet engine turbine blades, may also be to blame. The cracks in thoses engines are created by
small stones which are actually sucked from the runway surface. Another type of crack is one that occurs inside
the material. Due to manufacturing processes, they are made. Vibrations inflict cyclic stresses on structures and
system parts, which results the fatigue of the material and its's failure. Individual elements and the beam
strength effects actually under loading condition have been extensively studied using experimental methods.
Although this approach generates real-life responses, it basically consumes time and also those materials can
be very expensive. These components have also been studied using finite element analysis. However, due to
advances in understanding and capabilities of computer software and different kinds of hardware, the use of
finite element analysis has increased in recent years. It is now the tool of choice for analyzing certain structural
components.[2]



The occurrence of cracks in a structural member, such as a beam, results in local stiffness variations, the extent
of which is primarily determined by the position and depth of the cracks. These variations, in turn, have a major
impact on the overall structure's vibrational activity. It is critical to know if structural members are free of cracks
and, if any are present, to determine their extent in order to ensure the secure operation of structures. Direct
techniques such as ultrasound and X-rays are often used for identification.However, since these approaches
necessitate costly and minutely thorough inspections, they have proven ineffective and unsuitable in some cases
[3]. To overcome these drawbacks, researchers have concentrated in recent decades on more effective crack
detection procedures based on vibration [4]. A critical feature of these approaches is crack modeling.

The majority of published studies [5-9] believe that a structural member's crack is still open during vibration.
When dynamic loadings are dominant, however, this assumption may not be true. During vibration, the crack
breathes (opens and closes) on a regular basis, creating changes in structural stiffness. The structure exhibits
non-linear dynamic behavior as a result of these variations [10]. The existence of higher harmonic components
is the most distinguishing feature of this action. A beam with a breathing crack, in particular, exhibits natural
frequencies that are similar to those of a non-cracked beam and a faulty beam with an open crack.As a result,
vibration-based approaches can use breathing crack models to provide reliable conclusions about the state of
damage in these situations. Several researchers [11-13] have created breathing crack models that only consider
the fully open and fully closed states of the crack. Experiments have shown, however, that the transition
between these two crack states does not take place instantly [14]. Reference [15] used time-varying attachment
matrices to describe the interaction forces between two segments of a beam separated by a crack. To simulate
the opening and closing of a crack, these matrices were extended in Fourier series.However, the implementation
of this study necessitates a significant amount of machine time. A basic periodic function was used to model the
time-varying stiffness of a beam in references [16, 17]. This model, however, is restricted to the fundamental
mode, necessitating the solution of the beam's equation of motion.

It is likely that buildings will be affected. As a result, early identification of these vulnerabilities tends to be
important for both protection and economics. Mechanical omic reasons, such as mechanical vibration,
environmental attack, and long-term operation, etc., mechanical omic reasons, as their identification will greatly
prolong the structure's life, while also increasing its reliability. Several studies have been presented in recent
years to identify damage from changes in different kinds of properties which are both static and dynamic
basically. Andreaus and Casini [18] proposed a static deflection-based multiple damaged detection system.The
method's basic principle is that the crack induces a local singularity in the displacement response, which can be
identified using wavelet analysis. The static damage identification methods, on the other hand, have the
disadvantage of providing less detail than dynamic damage identification methods. Harm can be detected using
vibration-based detection methods by changes in the linear response (modal parameters) or the presence of
nonlinear effects [19-21].

For a variety of mode forms, modal analysis yields various frequencies of the vibration. Modal analysis is critical
for a cracked structure since cracks cause discontinuities in the structure. Discontinuities in a structure result in



unique physical features when a structure fails. Local flexibility is introduced by a crack in a structural member,
which affects the vibration response.

Basically, the structural members which is most commony uses and widely renowned is the cantilever beam. In
addition, this structural function can be used in the design of stadiums, bridges, homes, high-rise towers, and a
variety of other structures. As a result, a single crack in a cantilever beam may lead to the collapse of a massive
structure. It is difficult to conduct modal analysis of a cantilever beam using an empirical method when there
are discontinuities. The Finite Element Analysis method is the most powerful method to solve those types of
problems to date, and in this research, “Abaqus” is used to perform all of the computations.Because the
structural discontinuity and it's significant role, naval architects, offshore and ocean mechanics, hydro
dynamologists, and mathematicians have performed extensive research. H. S. Rane, R.B. Barjibhe, and A.V. Patil
[22] proposed a method for detecting the position and size of a crack in a cantilever beam based on natural
frequency measurements. Numerical calculations were carried out by solving the equation of Euler for both
crack & uncracked beams for obtaining the first three natural frequencies of different modes of vibration for
the beam at different positions in the crack. The ANSYS 12 software package was used to perform finite element
analysis on a total of ten models, with the opening size of the crack basically not being specified. M Quila, S. C.
Mondal, and S. Sarkar [23] investigated the mode form frequency analysing those numerically at a relevant rate
by using ANSYS. It had been presented the model where the analysis of free vibration in any kind of beam with
an open edge crack. Normal frequency variations due to cracks at different locations and with differing crack
depths were investigated. A parametric analysis was also carried out. However, there was not enough
knowledge about mesh element type, scale, and refinement to duplicate their work.M. J. Prathamesh and M.
A. Chakrabarti [24] investigated “Free Vibration Analysis of Cracked Beams” under different types of boundary
conditions. The results of previous studies' experiments were compared to finite element analysis results.
ABAQUS software was used to carry out the analysis. However, data on the effects of opening size of the crack
and the refinement of mesh actually is missing from the analysis. ”A New Approach for Vibration Analysis of a
Cracked Beam” was investigated by M. Behzad, A. Meghdari, and A. Ebrahimi [25].The Hamilton theory was
used to establish different types of motion equation and perspective boundary conditions to bend vibration of
a beam with an open edge crack in that article. In that study, a uniform Euler-Bernoulli beam was used. Using
the model in conjunction which is basically newly developedwith the Galerkin projection process, the natural
frequencies of the beam were measured. The findings revealed that increasing crack depth reduces the natural
frequencies of a cracked beam.

Several researchers [26-28] have looked at the problem of a beam which has a condition of breathing in the
relative crack by using models that reflect the crack in its fully open or either fully closed state. However,
experimental evidence has shown that the transition case and its fluency between these two crack states is
smoother. [No. 29] Abraham and Brandon [30] used time-varying link matrices to bind two segments of a beam
separated by a crack. To model the alternation of crack opening and closing, these matrices were extended into
several Fourier sequences. However, the computational effort required for this method is not insignificant.To
model the time-varying stiffness of a beam, Cheng et al.[31] and Douka and Hadjileontiadis[32] used a simple
periodic function. This model, however, is limited to the fundamental mode, requiring the solution of the beam's



equation of motion. Kisa and Brandon [33] created a finite element model of a cracked beam with varying
degrees of closure. They measured the natural frequencies of the cracked beam using modal superposition to
model the transition field.Their model contains crack nonlinearities to help predict the natural frequencies of a
cracked beam, but they didn't look at frequency changes caused by changes in oscillation amplitude. Instead, it
was thought that the vibration would change linearly with amplitude.

Owing to a lack of basic understanding of certain aspects of the breathing system, creating a practical model of
a breathing crack is difficult. This includes not only identifying variables that influence breathing crack activity,
but also issues with assessing the fractured material's structural dynamic response. It's also not clear how partial
closure interacts with the problem's main variables. Obviously, in the real world, a model that takes into account
the breathing mechanism as well as the interaction between external loading and dynamic crack behavior is
required.The field singular activity, the contact area, and the distribution of contact tractions on the closed
region of the crack are all unknowns when crack contact occurs. Without crack closure, the above class of
unknowns does not occur in the situation. This type of complicated crack surface deformation is a nonlinear
problem that is too difficult to solve using traditional analytical methods. When partial crack closure occurs, a
suitable numerical implementation is needed.

Finite element procedure : A 2D beam with a nonpropagating edge crack is considered in the following debate.
The crack surfaces are considered to be smooth, and the crack thickness to be insignificant. The material
properties of the beam are thought to be linear elastic, with slight displacements and strains. A collection of
conventional finite elements is used to discretize the area around the crack. The breathing crack behavior is
modeled as a complete frictional contact problem between crack surfaces, which is a nonlinear problem by
definition. Coulomb's law of friction is believed to apply to all potential slipping, and penetration between
touching areas is not permitted.Dynamic loading is applied to the structure. An incremental iterative method is
used to solve this nonlinear problem. Fourier or wavelet transforms are used to evaluate the derived response.

A thesis on progress in the analysis of laminated composite beam vibration was prepared by Raciti and Kapania
(1989). The investigation is focused on plate theory and shear deformation theory in first order. It has proved
unsuccessful in forecasting thick laminate responses to the hypothesis that displacements are linear functions
of the thickness direction coordinate[34]. The laminated finite element beam model was developed by Yuan
and Miller (1990). The model has enough liberty to cause the cross sections of each lamina to deform into a
form that can be coordinated in thickness to cubic terms.Shear deformation is permitted for any lamina up to
guadratic terms, but not for interfacial slip or delamination [35]. Maiti & Sinha (1994) used theory of higher
order shear deformation to analyze composite beams. Nine iso-parametric nodes are used in the analysis.
Natural frequencies of composite beams are contrasted with various stacking sequences, different ratios (I/h)
and different boundary conditions. They noticed the normal frequency decline as the ply angle rises and the
ratio (I/h) decreases[36].Teboub and Hajela (1995) adopted the symbolic calculating technique for studying the
free vibration of generally layered composite beams in the first-order sharp deformation principle. All of which
have been taken into consideration in the model were the fish effects, coupling extended, twisting, and torsional



deformations and rotary inertia[37]. The complex rigidity matrix method has been employed by Banerjee (1999)
to investigate the free vibration of Timoshenko beams with axial lamination.

This is achieved by constructing an exact dynamic rigidity matrix of a composite beam that takes axial force,
shear deformation and inertia into account. The effects of axial strength, shear deformation and rotating inertia
are shown on natural frequencies. The theory implemented include composite wings and helicopter blades[38].
Bassiouni (1999) proposed a finite element model for analysis of the natural frequencies and mode forms of
laminated composite beams. In a standard cross section, the model FE allowed all laminas to rotate in a different
degree to have equivalent lateral displacement.[39] Taken into consideration transverse shear deformations.
The effects on natural frequencies and modeforms of a beam with transverse non-propagating open cracks,
fiber volume fraction and orientation, were investigated by Kisa (2003). The results of the study led to the
conclusion that the suggested method was appropriate for the analysis of vibration of cracked cantilever
composite beams and that a reduction in natural frequencies and mode change would identify the present and
presence of crack in the structure.[40].

The crack in a broken structural member does not always stay open during vibration. The combination of static
detection due to some loading portion on the cracked beam (residual loads, body weight of a structure, etc.)
and vibration effect can cause the crack to open at all times, open and close periodically, or fully close depending
on various loads at a given time. If the static detection due to any loading part on the beam (dead loads, own
weight, etc.) is greater than the vibration amplitudes, the crack will remain open all of the time or will open and
close on a regular basis, and the problem will be linear.If the static detection is low, the crack will open and close
over time, depending on the amplitude of the vibration. The method is non-linear in this case. It's difficult to
explain the experimental findings because there isn't a formal theory for the breathing crack. Long ago, it was
understood that the breathing crack has an impact on the vibration response of cracked structural
members.According to Kirmsher [41], if a crack in a concrete beam is "lled with soil or crystallized material, or
is narrow enough to cause interference, the effect on the natural frequency is the same as that of a crack of
lesser depth." This discovery sparked a more thorough inquiry into the effects of crack opening and closing.

Different forms of loading have various effects on concrete structural elements. The process of identifying and
calculating these responses is extremely time-consuming and expensive.However, there are many methods
available to solve this problem nowadays, the most commonly used of which is the finite element method.

The finite element method is a numerical analysis method for evaluating the concrete response and pre-stressed
concrete members by dividing the structural element into different kinds of smaller parts and simulating
different kinds of static loading conditions. Because of tremendous advancements in engineering and computer
knowledge, this methodology is becoming more widely used. Since each variable has a different stress strain
behavior, this approach responds well to non linear analysis.The program ANSYS effectively tackles this behavior
by providing different types of elements for modeling materials and applying loads to determine the response.



The aim of this research was to compare an experimentally tested RC beam to one that was modelled using
ANSYS using a discrete method as suggested by Dahmani et al (2010). The Ayman and Banerjee (2007) model
beam was used as the reference beam for our research, and shear cracks were compared to it using ANSYS.

Breathing cracks can describe the vibratory broken system more objectively than open cracks. Chondros et
al.[41] assumed a beam with a transverse breathing crack to be a partially linear, twofold structure: totally open
and closed. A continuous cracked beam vibration theory anticipated the transverse vibration changes in a simply
assisted beam with a breath break. A transverse crack split a lifting beam into two segments, using time-varying
correlation matrices to connect all segments; then, the breathing crack was analyzed using linear and nonlinear
modelling methods. The dynamic reaction of a transverse airbreak in a one-degree system and the vibrative
action of a crunched beam were investigated by Benjamin et al.[44]. Wu [45] developed an iterative
computational model to examine the forced vibration features of a transverse breathing-cracking cantilever
beam, and could further use the model to measure the cracked beam's fatigue existence in the crack spot. In
conclusion, numerous models of breathing cracks have been suggested for the study of natural vibrations in
transverse broken beams.

Faults are renowned for being the leading cause of structural collapse. The costs of loss of structural components
are substantial, and human lives and collateral damage can be catastrophic. In order to mitigate or even avoid
structural collapse, cracks are better detected when still small. For this reason, ultrasound screening, X-ray,
acoustic emission, and other non-destructive measurement techniques are also used. As the inspector may have
access to the object under examination for the identification of holes, in some situations the bulk of such
methods are uncomfortable.[46] Because vibration parameters such as natural frequencies are easy to quantify
and collect, vibration-based inspection can avoid this discomfort (VBI). In addition, VBI solutions do not require
sweeping up of urban environments, unlike other techniques. In areas with inaccessible surfaces, VBI can be
used to detect defects in cracks far removed from the sensors. Also low-cost and fast are VBI techniques. [47]

There have been a host of crack models and vibrational techniques. Rizos etal. [48] used an analytical method,
by modeling the crack as a local versatility, to relate measured vibration modes with their location and scale. In
order to detect a break and a depth in a beam by modeling the crack in rotational spring, Nandwana and
Maiti[49], Chaudhari and Maiti[50] have employed a semi-analytical method. Since FEMs are now well-known
as a standard protocol for resolving problems of cracks, more investigators are using these approaches to detect
structure crashes[51].Chinchalkar[52] used finite variable depth elements of two nodes and two degrees of
freedom per node to model a beam of varying depth, and then the direction and size of cracks were observed.
Ostachowicz and Krawczuk [53] and Lele and Maiti [54] have used triangular finite elements as well as eight
nodal isoparametric elements respectively for more accurate measurements in crack detection. Because of the
intrinsic defects of standard finite elements, an incredibly fine mesh in the breaking area and a substantial
number of calculation work in references are impotent for explaining the singled behavior of breakings[55].



Spaces of the wavelet were used to resolve traditional FEM challenges in an approximate way, followed by the
Wavelet Finite Element (WFEM) methods[56—64]. WFEM provides many advantages for modal investigation of
crack issues relative to conventional FEMs. One of its most attractive characteristics is the ability of WFEM to
represent reasonably general functions with a few wavelet coefficients correctly and to characterize the flatness
of such functions from the numerical action of these coefficients[57].In addition, as Jaffard and Laurencot [58]
have shown, WFEM can avoid number instability caused by traditional FEM in crack analysis as the numeric
conditions of WFEM remain separate. In addition, WFEM produces sparse stiffness matrices, which can greatly
minimize computing time, while orthogonal wavelet functions are used as interpolation functions with compact
supports.

This paper also includes a simple technology to identify crack location and scale, which uses WFEM entirely to
analyze the singularity problems such as a cracked beam. The crack detection protocol based on the WFEM is
referenced. The first three natural frequencies of the strap with various crack locations and sizes are specifically
identified by WFEM. FRFs are presented with 3-dimensional images and surface-assignment technology to
approximate the FRF[65] feature in accordance with the location and size of the crack and scale. When natural
frequencies of crack beams are determined as a details, the three frequency contour lines of a beam are
obtained for a given crack position and duration. The direction and scale of the crack was shown by finding the
intersection points for the three contour lines.

2.1. Significance of our research work:

In most of the literature reviews, they have found the results through experimentation. While this is a method
that produces real life response, it is extremely time consuming and the use of materials can be quite costly.
The use of finite element analysis to study these components has also been used. There are only few of them.
In those papers, they have worked with only one type of crack but we have shown results for different types of
cracks like-slit, angular, triangular and semi-circular and made a comparison between them which helped us to
find better results. They have worked with either beams or plates but we have analyzed both of them.



2.2. Objective of this research work:

e To find the Natural Frequencies of Cracked and un-cracked Plates and Beams using Modal
Analysis

e Analyzing the vibrational behaviour of Different types of cracks like- slit crack, triangular crack,
semi-circular crack comparing their natural frequencies keeping the volume constant

e Analyzing the vibrational behavior by changing the size of the crack i.e. increasing the length
of slit crack

e Analyzing vibrational behavior considering different boundary conditions like- one end fixed,
both end fixed and both end hinged

e To find the Deflection behavior of cracked and un-cracked Beams using Harmonic Analysis

e Comparing the deflection curve for beams without and with cracks



3. Material and other Properties:

Elastic, slender beams and plates with length L, width W, and height H is considered for frequency analysis. The
model has been designed in Solidworks 2018 and Ansys workbench 2019 R2 is used for vibration analysis.
Material of the beams and plates are considered as aluminum alloy and its properties taken are Young's elastic
modulus as 71 GPa, Poisson's ratio as 0.33 and density as 2770 kg/m3.

Aluminum alloy:

An aluminum alloy is a chemical composition where other elements are added to pure aluminum in order to
enhance its properties, primarily to increase its strength. These other elements include iron, silicon, copper,
magnesium, manganese and zinc at levels that combined may make up as much as 15 percent of the alloy by
weight. Alloying requires the thorough mixing of aluminum with these other elements while the aluminum is in
molten liquid form.

Young's elastic modulus:

Young's modulus is a measure of the ability of a material to withstand changes in length when under lengthwise
tension or compression. Sometimes referred to as the modulus of elasticity, Young's modulus is equal to the
longitudinal stress divided by the strain. Here, Young's elastic modulus is taken as 71 GPa.

Poisson's ratio:

Poisson's ratio is defined as the ratio of the change in the width per unit width of a material, to the change in its
length per unit length, as a result of strain. Here, Poisson's ratio is taken as 0.33.

Density:

Density is a measure of mass per volume. The average density of an object equals its total mass divided by its
total volume. An object made from a comparatively dense material (such as iron) will have less volume than an
object of equal mass made from some less dense substance (such as water). Here, Density is taken as 2770
Kg/m3.

**These material and material properties are kept constant in all of the cases of beams and plates which are
shown in modelling**



4. Modelling:

4.1. Thin plate with slit crack:

Fig 01: Thin plate with slit crack [66]

In fig 01, one end of the plate is kept fixed. Modal analysis is used to find the Eigen natural frequencies. Initially,
the beam is taken without any defect(crack). A minimum of the first six mode shapes and natural frequencies
are obtained and shown in Table. Block Lanczos method which is generally used in the case of symmetric
structures is used to find the fundamental frequencies. Then, a slit crack of length 10mm, breadth 2mm and
thickness 1.43mm is placed at 30mm. The location of crack is varied between 30 mm to 150 mm with an
increment of 30 mm. Similarly, fundamental frequencies and mode shapes for the step by step crack locations
are obtained.

Table. 01: Natural Frequencies found for different location of slit crack for thin plate

Naturalfrequencies  atyralfraquencieswith  Naturalfrequencies with  Natural requencies with  Natural frequencieswith  Natural frequencies with crack

without any crack crackat 30 mm crack at 60 mm erackat 90 mm crackat 120 mm at 150mm
50.322 18,066 49.31 50.038 50.359 50.487
206.68 196.82 197.60 201.22 205,14 207.95
3130 309.82 3047 301.52 308.51 313.94 Crack dimentions:
676.83 653.95 668.23 651.54 641.41 678.49 L= 10mm
87131 862.84 6217 850.92 843.82 879.07 b= 2mm
1280.8 1255.9 1243.2 1263.8 1235.2 1286.2 t=143mm
13123 12942 1287.1 1276.2 1289.7 13025

1699 1667.6 16516 1602.8 1599.1 1705.8 Beam Length = 200mm

17893 17455 1769 1790, 17374 17693
21841 1862.1 2046 20613 111 2063.8
23084 137 2064.3 16 22994 2315.2
2495.2 24834 1133 4571 23023 2419.8




4.2. Thin plate with Slit crack in the middle:

Fig 02: Thin plate with Slit crack in the middle [66]

In Fig 02, one end of the plate is kept fixed. Modal analysis is used to find the Eigen natural frequencies. Initially,
the beam is taken without any defect(crack). A minimum of the first six mode shapes and natural frequencies
are obtained and shown in Table. Block Lanczos method which is generally used in the case of symmetric
structures is used to find the fundamental frequencies. Then, a slit crack in the middle of the beam with length
10mm, breadth 2mm and thickness 1.43mm is placed at 30mm. The location of crack is varied between 30 mm
to 150 mm with an increment of 30 mm. Similarly, fundamental frequencies and mode shapes for the step by
step crack locations are obtained.

Table. 02: Natural Frequencies found for different location of slit crack in the middle for thin plate

Naturalfrequences ol roquanciswith  Natural frequencieswith  Natural rguencies ith  Nturlfrequenciswith Natural requencie with rack

without any crack

crack at 30 mm erack at 60 mm erack at 90 mm erack at 120 mm at 150mm
5032 48,066 031 50.038 50339 50487
206,68 196,82 197,66 M0 0514 20795
3B 08 07 5 0851 MY (rack dimentions;
676,83 63395 608,23 63154 614 678.49 L=10mm
87131 862.84 YAl 83092 843.82 8.7 b= 2rm
12808 1259 12432 12638 1235 1286.2 t=1.43mm
13123 12942 12811 171h.2 1280.7 13025
16% 1667.6 16316 1602.8 1598.1 1705.8 Beam Length = 200mm
17803 11455 1769 17905 11374 1769.3
21841 1862.1 2046 20613 PiviN} 2063.8
23084 pikEN) 10643 JIEI] 2904 A1
PN, 14834 U133 14571 JRIIIR 24198




4.3. Thin plate with angular crack:

Fig 03: Thin plate with angular crack at 30mm with angle 60° [66]

In Fig 03, one end of the plate is kept fixed. Modal analysis is used to find the Eigen natural frequencies. Initially,
the beam is taken without any defect(crack). A minimum of the first six mode shapes and natural frequencies
are obtained and shown in Table. Block Lanczos method which is generally used in the case of symmetric
structures is used to find the fundamental frequencies. Then, an angular crack with length 10mm, breadth 2mm
and thickness 1.43mm is placed at 30mm with angle 60° with horizontal. Similarly, fundamental frequencies and
mode shapes are obtained.

Table. 03: Natural Frequencies found for angular crack at 30mm with angle 60° for thin plate

Matural frequestion with crack at 30 mm

with angle 60

48.790
199.13
Crack dimentions: 310.61
L= 10mm 059.22

b= 2mm 856.86

= 1.43mm 1259.8
1290.9
Beam Length = 200mm 1668.2
1751.1
2005.4
21421
2479.8




4.4, Thin plate with triangular crack:

Fig 04: Thin plate with triangular crack

In fig 04, one end of the plate is kept fixed. Modal analysis is used to find the Eigen natural frequencies. Initially,
the beam is taken without any defect(crack). A minimum of the first six mode shapes and natural frequencies
are obtained and shown in Table. Block Lanczos method which is generally used in the case of symmetric
structures is used to find the fundamental frequencies. Then, a triangular crack with length 10mm, breadth 2mm
and thickness 1.43mm is placed at 30mm. The location of crack is varied between 30 mm to 150 mm with an
increment of 30 mm. Similarly, fundamental frequencies and mode shapes for the step by step crack locations
are obtained.

Table. 04: Natural Frequencies found for different location of triangular crack for thin plate

T TR Natural frequencies with triangular — Natural frequencies with triangular Natural frequencies with triangular — Natural frequences with triangular  Natural frequencies with triangular
crack crack at 30mm crack at 60mm crack at 90mm crackat 120mm crack at 150mm

50322 49.483 499 50.2 50.33 50.434
206.68 0359 204.35 205.72 207.04 207.9 Crack dimensions:
31301 a4 310.21 309.49 31131 31353 Base = 3mm
076.83 670.4 075.15 670.39 669.29 03151 height = 10mm
87131 810.74 869.71 869.57 §68.48 871.66 thickness=1.43mm
12808 111 12802 12806 1283 12814
y=
13123 13017 12982 13014 13003 13236 S*base*height thickne
5%
1699 1683 1697.6 1680.4 1677.7 1693.8
17893 17168 17828 1786.1 17703 18059 Beam length=200mm
1841 159 1542 21554 2160.3 219%.6
23084 21674 2446 1915 13088 83135
292 24934 AUp1.1 24964 157 5106




4.5. Thin plate with semi-circular crack:

Fig 05: Thin plate with semi-circular crack

In fig 05, One end of the plate is kept fixed. Modal analysis is used to find the Eigen natural frequencies. Initially,
the beam is taken without any defect(crack). A minimum of the first six mode shapes and natural frequencies
are obtained and shown in Table. Block Lanczos method which is generally used in the case of symmetric
structures is used to find the fundamental frequencies. Then, a semi-circular crack with radius 2.5mm and height
1.43mm is placed at 30mm. The location of crack is varied between 30 mm to 150 mm with an increment of 30
mm. Similarly, fundamental frequencies and mode shapes for the step by step crack locations are obtained.

Table. 05: Natural Frequencies found for different location of semi-circular crack for thin plate

AR TEI A Natural frequencies with semi-cicular— Natural frequencies with semi-+—— Natural frequencies with semi- — Natural frequencies with semi-circular - Natural frequencies with sem-
orack crack at 30mm circular crack at 60mm circular crack at S0mm crack at 120mm circular crack at 150mm

03 20,156 30.208 30.246 0279 20314

206.68 20641 206.53 206.78 07.05 071 Crack dimensions:
3.0 31231 24 EivAl) 324 31289 Radius = 2.5 mm
b76.83 676.69 671,66 676.43 b6.13 678.9 h=143mm
87731 §1.07 87,63 §75.66 §15.36 §76.61

12808 12811 12819 12821 1284 128 v={pi* )2
13123 13128 13112 13121 13111 13167

16%9 1697.3 17018 16%8.6 16974 1699 Beam length=200mm
17843 1790.5 17889 17881 17864 17%.4

21841 21842 218 21814 JALEA 2188.5

23084 1913 13005 13051 3012 13084

4. 50 4944 15006 14y 25045




4.6. Changeable length of slit crack:

Fig 06: Thin plate with slit crack where the crack length varies [66]

In fig 06, one end of the plate is kept fixed. Modal analysis is used to find the Eigen natural frequencies. Initially,
the beam is taken without any defect(crack). A minimum of the first six mode shapes and natural frequencies
are obtained and shown in Table. Block Lanczos method which is generally used in the case of symmetric
structures is used to find the fundamental frequencies. Then, a slit crack of length 10mm, breadth 2mm and
thickness 1.43mm is placed at fixed end whose length 10mm and we continually increased the size of the crack
by 10mm.

Table. 06: Natural Frequencies found for different size of slit crack for thin plate

Natural frequencies with crack

Natural frequencies without Natural frequencies with crack  Natural frequencies with crack  Natural frequencies with crack  Natural frequencies with crack
any crack of 20mmat clampe of 40mm at clamped of 50mm at clamped of 60mm at clamped of 70mm at clamped

50.247 48.494 43.402 39.62 34.948 28.72
206.58 196.22 170.38 15152 129.55 103.78
31259 302.06 281 268.52 255.22 239.41
676.32 638.68 5271.13 464.16 417.08 2581 Crack dimentions:
876.14 846.89 178.87 147.44 556.78 382.83 L=10mm
12793 1205.9 981.75 876 720.75 688.5 b=2mm
13111 1286.2 1209.7 934 909.71 893.03 t=1.43mm
1697.5 1649.3 12828 1279.9 12714 1212
1786.9 1694 14213 1380.2 13323 1285.9 Beam Length = 200mm
21817 1865.8 1662.2 1624.6 1565 1504.1
2304.5 2020.8 1849.3 18189 17915 1762.5

2493.3 2395.7 2265.3 22259 2061.3 1930.4



4.7. Thin plate with slit crack of volume 28.6 mm?:

Fig 07: Thin plate with slit crack of volume 28.6 mm3 where the crack length varies

In fig 07, one end of the plate is kept fixed. Modal analysis is used to find the Eigen natural frequencies.
Initially, the beam is taken without any defect(crack). A minimum of the first six mode shapes and natural
frequencies are obtained and shown in Table. Block Lanczos method which is generally used in the case of
symmetric structures is used to find the fundamental frequencies. Then, a slit crack of length 10mm, breadth
2mm and thickness 1.43mm is placed at 30mm. The location of crack is varied between 30 mm to 150 mm
with an increment of 30 mm. Similarly, fundamental frequencies and mode shapes for the step by step crack
locations are obtained.

Table. 07: Natural Frequencies found for different location of slit crack of volume 28.6 mm?for thin plate

L Natural frequencies with slit - Natural frequencies with slit ~ Natural frequencies with o o
Natural frequencies without Natural frequencies with slit ~ Natural frequencies with slit

crack of vol 28.6 mm3 at crack of vol 28.6 mm3at slit crack of vol 28.6 mm3

any crack crack of vol 28.6 mm3 at crack of vol 28.6 mm3 at
30mm 60mm at 90mm
120mm 150mm
44.293 42,122 43.2 43.908 44,25 44,38
192.24 182.19 182.7 185.73 189.34 192.22
215.72 272.42 268.68 263.89 269.27 275.19
625.09 509.68 614.19 602.42 586.89 611.06 Crack dimentions:
173.87 759.4 747.55 751.86 736.21 764.56 L= 10mm
1197.8 1152.4 11353 1135.5 1144.8 1129.3 b=2mm
1265.8 1259.9 1266.2 1255.4 1257.4 1266.8 t=143mm
1531.6 1487.9 1460.3 1464.8 14333 1484 v=L*b*t
1692.4 1651.6 1691.9 1668 1635.6 1628.2
1973.1 1661.1 1820.8 1866.7 1886.8 1820.6 Beam length = 210mm
2067.6 1912.1 1830 1979.3 2054.4 2072.6

2356.1 2313 2276.1 2200.4 2181.9 2233.4



4.8. Thin plate with semi-circular crack of volume 28.6 mm?3:

Fig 08: Thin plate with semi-circular crack of volume 28.6 mm?3 where the crack length varies

In fig 08, one end of the plate is kept fixed. Modal analysis is used to find the Eigen natural frequencies. Initially,
the beam is taken without any defect(crack). A minimum of the first six mode shapes and natural frequencies
are obtained and shown in Table. Block Lanczos method which is generally used in the case of symmetric
structures is used to find the fundamental frequencies. Then, a semi crack of radius 3.57 mm and height 1.43mm
is placed at 30mm. The location of crack is varied between 30 mm to 150 mm with an increment of 30 mm.
Similarly, fundamental frequencies and mode shapes for the step by step crack locations are obtained.

Table. 08: Natural Frequencies found for different location of semi-circular crack of volume 28.6 mm?3for thin plate

Natural frequencies without Natural frequencies with semi- Natural frequencies with semi- Natural frequencies with - Natural frequencies with semi- - Natural frequencies with semi-

any crack circular crack of vl 286 circular crack of vl 28.6mm3  semi-circular crack of vol - circular crack of vol 28.6mm3  circular crack of vol 28,6 mm3

mm3 at 30mm at 60mm 28.6 mm3 at 90mm at 120mm at 150mm
44293 44139 44 44284 44.3% 44383
19214 19183 192.01 19242 192.87 1932
050 275,61 27553 .23 27535 27596 Radius = 3.57mm
625.09 625.28 627.08 625.31 623.88 627.61 h=143mm
71387 7138 713105 773.06 71263 1376
1197.8 1200 11973 1197.8 11974 1200 v=(pi* r2*h)/2
1265.8 12676 1268.8 12689 1n 12754
15316 1529.6 1532 15327 15281 1531.2
16924 1697.9 17011 16949 16913 17027 Beam Length = 210mm
19713.1 19765 19713 19719 19743 19738
2067.6 2046.2 20589 2066.7 0709 0732

18561 23633 23563 13643 14571 13631



4.9. Thin plate with triangular crack of volume 28.6 mm?3:

Fig 09: Thin plate with triangular crack of volume 28.6 mm?3 where the crack length varies

In fig 09, one end of the plate is kept fixed. Modal analysis is used to find the Eigen natural frequencies. Initially,
the beam is taken without any defect(crack). A minimum of the first six mode shapes and natural frequencies
are obtained and shown in Table. Block Lanczos method which is generally used in the case of symmetric
structures is used to find the fundamental frequencies. Then, a triangular crack of base 2mm, height 20 mm and
thickness 1.43mm is placed at 30mm. The location of crack is varied between 30 mm to 150 mm with an
increment of 30 mm. Similarly, fundamental frequencies and mode shapes for the step by step crack locations
are obtained.

Table. 09: Natural Frequencies found for different location of triangular crack of volume 28.6 mm?3for thin plate

Natural frequencies without  Natural frequencies with ~ Natural frequencies with ~ Natural frequencieswith  Natural frequencies with Natural frequencies with
any crack triangular crack of vol 28.6  triangular crack of vol 28.6  triangular crack of vol 28.6  triangular crack ofvol 28.6  triangular crack of vol 28.6
mm3 at 30mm mm3 at 60mm mm3 at 90mm mm3 at 120mm mm3 at 150mm
44.293 42.279 43.289 43,949 4426 44.383
192.4 182.97 18352 186.4 189.78 192.43
275.72 27278 269.07 264.84 269.9 27532
625.09 602.26 615.45 604.24 590.55 613.73 Base =2mm
173.87 760.42 748.7 153.93 739.33 766.15 height = 20mm
1197.8 1157.8 1140.9 11425 11485 1141.1 thickness=1.43mm
1265.8 1260.3 1266.8 1256.5 1260.8 1269
15316 1489.9 1470.3 1471.9 14447 1493.3 v=.5*hase*height* thickness
16924 1656.7 1693.7 1670.7 1639 1641.1
1973.1 1672.6 1836.3 1875.3 1895.8 1835
2067.6 1916.7 1840.2 1984.6 2055.5 20723 Beam Length = 210mm

23%.1 2320.8 2788 228 2017 2246.5



4.10. Thin plate with triangular crack of diff. volume:

Fig 10: Thin plate with triangular crack of diff. volume where the crack length varies

In fig 10, one end of the plate is kept fixed. Modal analysis is used to find the Eigen natural frequencies. Initially,
the beam is taken without any defect(crack). A minimum of the first six mode shapes and natural frequencies
are obtained and shown in Table. Block Lanczos method which is generally used in the case of symmetric
structures is used to find the fundamental frequencies. Then, a triangular crack of base 5mm, height 10 mm and
thickness 1.43mm is placed at 30mm. The location of crack is varied between 30 mm to 150 mm with an
increment of 30 mm. Similarly, fundamental frequencies and mode shapes for the step by step crack locations
are obtained.

Table. 10: Natural Frequencies found for different location of slit crack of diff. volume mm?3for thin plate

triangular crack with ~ triangular crack with  triangular crack with diff.  triangular crack with diff.  triangular crack with diff.

diff. vol at 30mm diff. vol at 60mm vol at 90mm vol at 120mm vol at 150mm

4372 44,034 44,222 44,336 44418

190.03 190.32 191.28 192.38 193.23

275.17 274.17 272.98 274.34 275.95

021.22 624.79 621.04 017.82 625.93

771.3 768.46 769.76 765.79 773 Crack dimensions:

1192.6 1187.4 1187.6 1187.4 1194.1 b=5mm

1265.6 1268.5 1266.6 1271.6 1274.9 h=10mm

1520.7 1524.8 1522 1513.8 1528 t=1.43mm

1689.2 1700.6 1689.8 1679.5 1697.4

1947.4 1950.9 1953 1955.2 1959.8 Beam length = 210mm
1961 2010 2050.8 2068.1 2074.3

2359.8 2336.4 2341.3 2334.9 2347.2



FOR DIFF. VOLUME OF SLIT AND TRIANGULAR CRACK FOR 1ST MODE

45
e 44.293 44393 44:393 4503 41;‘.-&233%8
44 44.25 44.38
43.5
43
42.5
42
41.5
41
40.5
30mm 60mm 90mm 120mm 150mm
Frequencies without any crack Frequencies with slit crack Frequencies with triangular crack
Figure:11

In the following graph, natural frequencies of plate without any crack is compared with plates that have slit
crack and triangular crack for 15t mode. The volume of the slit and triangular crack are are different. We can see
when the crack is near the fixed end, frequencies are lower and it increases as it moves away from the fixed and
reaches the frequency of un-cracked plate at 140mm and afterwards, crosses a little more.

FOR CONSTANT VOLUME OF SLIT AND TRIANGULAR CRACK FOR 15T

45
MODE
44.5
44.293 44.293 44.293 : 203 TR
44
43.5
>
a3
w
=)
o]
42.5
[N
42
41.5
41
40.5
30mm 60mm 90mm 120mm 125.77mm 150mm
o DISTANGE OF CRACK o
Frequencies with triangular crack Frequencies without any crack Frequencies with slit crack
Figure: 12

In the following graph, natural frequencies of plate without any crack is compared with plates that have slit
crack and triangular crack for 15t mode. The volume of the slit and triangular crack are kept constant. We can
see when the crack is near the fixed end, frequencies are lower and it increases as it moves away from the fixed
and reaches the frequency of un-cracked plate at 125.77 mm and afterwards, crosses a little more.



FOR SLIT AND TRIANGULAR CRACK OF CONS. VOLUME FOR 3RP MODE
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Figure: 13

In the following graph, natural frequencies of plate without any crack is compared with plates that have slit
crack and triangular crack for 3" mode. The volume of the slit and triangular crack are kept constant. We can
see frequencies of slit and triangular crack are almost same and never crosses the frequency of un-cracked plate.
The frequency of cracked plates reaches almost equal to the frequency of nu-cracked pate when the crack is at
150mm.

FOR SLIT AND TRIANGULAR CRACK OF DIFF. VOLUME FOR 3RP MODE
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Frequencies without any crack Frequencies with slit crack Frequencies with triangular crack

Figure: 14
In the following graph, natural frequencies of plati without any crack is compared with plates that have slit
crack and triangular crack for 3™ mode. The volume of the slit and triangular crack are different. We can see
frequencies of slit and triangular crack are almost same and never crosses the frequency of un-cracked plate.
The frequency of cracked plates reaches almost equal to the frequency of nu-cracked pate when the crack is at
150mm.



280 FOR SLIT AND TRIANGULAR CRACK OF CONS. VOLUME FOR 5™ MODE
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Figure: 15

In the following graph, natural frequencies of plate without any crack is compared with plates that have slit
crack and triangular crack for 5" mode. The volume of the slit and triangular crack are kept constant. We can
see the frequencies of slit and triangular crack are almost similar but are quite away from the frequency of un-
cracked plate. It never crosses the frequency of un-cracked plate.

FOR SLIT AND TRIANGULAR CRACK OF DIFF. VOLUME FOR 5™ MODE
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Figure: 16

In the following graph, natural frequencies of plate without any crack is compared with plates that have slit
crack and triangular crack for 5" mode. The volume of the slit and triangular crack are different. We can
frequency of slit and triangular crack are quite different when their volumes are different and never reaches the
frequency of un-cracked plate.



4.11. Both end fixed beam of 500mm with triangular crack:

i

Fig 17: Both end fixed beam with triangular crack where the crack length varies

In fig 17, a beam of length 500mm, breadth 20mm and height 30mm is considered. Both end of the beam is kept
fixed. Modal analysis is used to find the Eigen natural frequencies. Initially, the beam is taken without any
defect(crack). A minimum of the first six mode shapes and natural frequencies are obtained and shown in Table.
Block Lanczos method which is generally used in the case of symmetric structures is used to find the
fundamental frequencies. Then, a triangular crack of base 5mm, height 10 mm and thickness 25 mm is placed
at 50mm. The location of crack is varied between 50 mm to 445 mm with an increment of 50 mm. Similarly,
fundamental frequencies and mode shapes for the step by step crack locations are obtained.

Table. 11: Natural Frequencies found for different location of triangular crack for Both end fixed beam

two end fixed fio end feed tio end feed ~ twoendfived  twoend fred o

o , o o twoendfiedwith , two end fived with
twoend fied without  withrack &t 0  two end fised with with crackat 150 two end fxed with with crack at 250 Witherackat it crack at 395
, trackat 295 mm mackatdimm

ayoack o mmfomright cackati00mm wm cackatX0mm 5mm m Crack dimentions;
30l 17§ 59 04 AR 18064 19338 309,04 154 B9 b=Smm
il 877 5056 ips 500,58 §05.84 500,55 S8 520,56 5088 feL0mm
§05.013 §58. 8.3 TR Ly o476 fL4 179,04 IR B8M  t=Domm
1406.3 13% 13866 13586 13819 140 13§18 13597 13867 1391
1078, 10764 15325 16338 1626 15012 16263 16338 15318 16764
1125 ) 15553 1586 15008 15838 1501 2586 15555 BUG  BeamLength=300mm



4.12. Both end fixed beam of 500mm with slit crack:

Fig 18: Both end fixed beam with slit crack where the crack length varies

In figl8, Both end of the beam is kept fixed. Modal analysis is used to find the Eigen natural frequencies. Initially,
the beam is taken without any defect(crack). A minimum of the first six mode shapes and natural frequencies
are obtained and shown in Table. Block Lanczos method which is generally used in the case of symmetric
structures is used to find the fundamental frequencies. Then, a slit crack of length 2.5mm, breadth 25mm and
thickness 10mm is placed at 50mm. The location of crack is varied between 50 mm to 447.5 mm with an
increment of 50 mm. Similarly, fundamental frequencies and mode shapes for the step by step crack locations
are obtained.

Table. 12: Natural Frequencies found for different location of slit crack for Both end fixed beam

twoend foedwit - twoend feedwih - twoendfedwith  twoendfiedwith  twoendfuedwith  two endfedwith twoend fiedwith twoend uedwih o end fxedwith
tuoendfied  straigntorackat S0 stragptorackat 100 strgntcrackat 90 staghtorackat 200 crackat 0mm crackat 2973mm - cackat W05 mm - creckat 9. 5mm orackat 4475 mm
it

wihotanycrack  mmfomrigt  mmbomngt  omfomegtt omfomegtt Fomig bt fomrgt fromrignt fomrgt— Crack Dimentins
31631 155 15 L B N By M4 1 MY =5
il 5 S0 S0 K 0 ma S0 05 0% =L
5.3 M. I 16312 fL4 80409 814 1315 80! B3 belimm
14063 135 1 13405 133 i 1378 13503 131 1365,
{6787 16757 {3078 1IN IR 1n 1621 i 1306 10758 Beam Length= S0
iR LR hld ik Lk 14 Mgl i Bl Mo



Comparison of 1t mode for triangular cracked beam, slit cracked beam and beam
with no crack

two end fixed with straight Frequencies with Frequencies without Frequencies with

crack from right straight crack any crack triangular crack
50mm 293.86 316.31 297.8
100mm 315.58 316.31 315.93
150mm 308.45 316.31 309.61
200mm 288.95 316.31 293.34
250mm 280.76 316.31 286.64
297.5mm 288.93 316.31 293.38
347.5mm 308.44 316.31 309.64
397.5mm 315.59 316.31 315.93
447.5mm 293.91 316.31 297.91

comparison of 1st mode for triangular and slit crack beam with uncracked

320 beam

310

300

290

280

270

260
50mm 100mm 150mm 200mm 250mm 297.5mm 347.5mm 397.5mm 447.5mm
= Frequencies with straight crack = Frequencies without any crack Frequencies with triangular crack

Figure: 19

In the following graph, we can see natural frequencies of slit and triangular crack are almost similar. Since both
end of the beam is fixed, symmetric behavior can be seen. Frequency first increases and reaches the frequency
of un-cracked beam at 100mm and decreases and becomes minimum at the middle and afterwards, increases
and shows a symmetric behavior.



4.13. Both end fixed beam of 400mm with slit crack:

Fig 20: Both end fixed beam with slit crack where the crack location varies

In fig 20, beam of length 400mm, breadth 20mm and height 25mm is considered. Both end of the beam is kept
fixed. Modal analysis is used to find the Eigen natural frequencies. Initially, the beam is taken without any
defect(crack). A minimum of the first six mode shapes and natural frequencies are obtained and shown in Table.
Block Lanczos method which is generally used in the case of symmetric structures is used to find the
fundamental frequencies. Then, a slit crack of length 10mm, height 2.5 mm and thickness 25 mm is placed at
50mm. The location of crack is varied between 50 mm to 347.5 mm with an increment of 50 mm. Similarly,
fundamental frequencies and mode shapes for the step by step crack locations are obtained.

Table. 13: Natural Frequencies found for different location of slit crack for Both end fixed beam

Too end fved beamof Twoend fed beamof  Two end fived beamof - Twoend fved beam of -~ Two endfixed beam of - Too end fived beam of T end fed beam of - Two end fived beam of
Y00 withoutant 400mm withcrackat  400mm withcrackat  400mmwithorackat  00mm wihorackat  400mm withcrack et 400mm withcrackat 400 vithcrack

(atk Somfomrgdt nmfomrgt — Soombomsgnt — omfomrgt W0 5mmfomrgt 2973nmbomright 347 5mmfrom gt
]

Bl 603 L% 0% My BL035 w5 i SiCrackDimentions
LG 153 %3 T My JBLT8 %3 13 L=L0mm
1738 I 1610 1604 114 1630 16107 118 [=15mm
13 JIIEA A 116 iy 1L i 1181 t=Lomm
bl L 31083 83 K oK Ml 1568

w7 3 05 1 383 g ik B9 Beamlengh=400mm



4.14. Both end fixed beam of 400mm with angular crack:

Fig 21: Both end fixed beam with angular crack where the crack location varies

In fig 21, beam of length 400mm, breadth 20mm and height 25mm is considered. Both end of the beam is kept
fixed. Modal analysis is used to find the Eigen natural frequencies. Initially, the beam is taken without any
defect(crack). A minimum of the first six mode shapes and natural frequencies are obtained and shown in Table.
Block Lanczos method which is generally used in the case of symmetric structures is used to find the
fundamental frequencies. Then, an angular crack of length 10mm, height 2.5 mm and thickness 25 mm is placed
at 50mm. The location of crack is varied between 50 mm to 347.5 mm with an increment of 50 mm. Similarly,
fundamental frequencies and mode shapes for the step by step crack locations are obtained.

Table. 14: Natural Frequencies found for different location of slit crack for Both end fixed beam

Two end fived beam of  Two end fixed beam of Two end fved beam of

Twoend fixed beamof - Two end fived beamof  Two end fived beam of o o o Twoend fived beam of
, o o 40mm with sltcrack  400mm with slit crack 400mm with sl crack o
, 400mmm with crack at 400mm with it crack at 400mem vith sl crack at , , 00 with slitcrack at
Two end fixed beam of , , , at 200mmm from ight &t 247.5mm fromright  at 297.5mm from right ,
, S0rnm fromrightand  100mm from gt and — 150mm from rghtand , , ~ 347.5mm from ght and
400mm without ant o o o andangedwith  andangledSwith  andangle 45 with o
angle 4o withvertical  angledSwithvertical  ange 49 with vertical , , , angle 42 with vertical
track Verical Vertcal vertical
64, i3 63841 60132 58851 60137 638,39 6943
797.4 T88.48 794,99 78176 776,19 T 796,55 77949
1781 17303 15787 16508 18 15973 1526.7 e
13 21167 2067 20887 2185 0l 2087 1125
Aol 3160 12 U5 07 081 WLl 10
UBT 1ne1 %3 Wed 35044 85,2 13875 138



4.15. Both end fixed beam of 400mm with triangular crack:

Fig 22: Both end fixed beam with triangular crack where the crack location varies

In fig 22, a beam of length 400mm, breadth 20mm and height 25mm is considered. Both end of the beam is kept
fixed. Modal analysis is used to find the Eigen natural frequencies. Initially, the beam is taken without any
defect(crack). A minimum of the first six mode shapes and natural frequencies are obtained and shown in Table.
Block Lanczos method which is generally used in the case of symmetric structures is used to find the
fundamental frequencies. Then, an triangular crack of base 6mm, height 10 mm and thickness 25 mm is placed
at 50mm. The location of crack is varied between 50 mm to 347.5 mm with an increment of 50 mm. Similarly,
fundamental frequencies and mode shapes for the step by step crack locations are obtained.

Table. 15: Natural Frequencies found for different location of triangular crack for Both end fixed beam

Two end fied beamof  Twoend fived beam of - Two end fixed beam of  Two end fived beam of Two end fived beam of Two end fixed beam of  Two end fived beam of
T end fied bgam of - 400mm withtriangular  400mm with triangulr — 400mm withtriangular  400mm with triangular 400rmm with triangular 400mm with trigngular 400rm withtriangular
U0mm withoutant  crackatSOmmfrom  crackat 100mmfrom  crackat 1SOmmfrom  crack at 200mm from  crack at 24dmm from  crack at 294mm from  crack at dmm from

track right rght right rght light rght light

b4 626,05 B3.09 613,02 6015 015,20 B30T 686 Triangular crack dmention:
JLIAL TRt 104t 780,58 18046 18,73 1%.76 8 b=bmm

17381 3R] 10274 16493 UL 16505 16273 738 h=1mm

113 18 20833 0 181 0912 84T 107 £=25mm

6. 3586 J1471 1 30529 3883 1149 RIAIES

W7 3t b3 3 i3 %3 Y471 iR



4.16. Both end fixed beam with semi-circular crack:

j?;

Fig 23: Both end fixed beam with semi-circular crack where the crack location varies

In fig 23, beam of length 400mm, breadth 20mm and height 25mm is considered. Both end of the beam is kept
fixed. Modal analysis is used to find the Eigen natural frequencies. Initially, the beam is taken without any
defect(crack). A minimum of the first six mode shapes and natural frequencies are obtained and shown in Table.
Block Lanczos method which is generally used in the case of symmetric structures is used to find the
fundamental frequencies. Then, a semi-circular crack of radius 4.5mm and thickness 25 mm is placed at 50mm.
The location of crack is varied between 50 mm to 347.5 mm with an increment of 50 mm. Similarly, fundamental
frequencies and mode shapes for the step by step crack locations are obtained.

Table. 16: Natural Frequencies found for different location of semi-circular crack for Both end fixed beam

Two end fived beamof * Two end fived beamof - Two end ived beam of  Two end ived beam of  Two end fived beam o Two end fived beam of - Two end fixed beam of
Twoendfiedbeamof ~ 400mm withsem-~— 400mm withsem-~ 400mm withsem-+~ 400mm withsemi- ~ 400mm withsemi- ~ 400mm withsemi- ~ 400mm withsem-

A00mm withoutant - ciculr rack st SOmm - cieularcrackat 100mm- circulr crack st 50mm - circlarcrackat 00mm  crcolrorackat cieularcackat el crack at 3mm

ik from it from gt from ight from ight Ml fromright 290 from it from ight

iy 63840 ) 0313 0. 0313 ) 63886 semi-cicular crack dmention
1974 TS 9 1.7 145 1.7 LR W% r=dimm

781 11396 12 7145 [nl 17145 108l 17304 t=2mm

n3 1S 104 104 K, 104 104 1175

Bel Hl 78 3063 4 3063 s 1l

w7 L) U781 3034 1128 034 uis1 w51



4.17. Both end fixed beam with slit crack:

Fig 24: Both end fixed beam with slit crack where the crack location varies

In fig 24, a beam of length 400mm, breadth 20mm and height 25mm is considered. Both end of the beam is kept
fixed. Modal analysis is used to find the Eigen natural frequencies. Initially, the beam is taken without any
defect(crack). A minimum of the first six mode shapes and natural frequencies are obtained and shown in Table.
Block Lanczos method which is generally used in the case of symmetric structures is used to find the
fundamental frequencies. Then, a slit crack of length 10mm, height 2.5 mm and thickness 25 mm is placed at
50mm in the middle of the beam. The location of crack is varied between 50 mm to 347.5 mm with an increment
of 50 mm. Similarly, fundamental frequencies and mode shapes for the step by step crack locations are obtained.

Table. 17: Natural Frequencies found for different location of slit crack for Both end fixed beam

Twoend fired beamof ~ Twoeend fixed beamof ~ Two end fived beam of  Two end fived beam of ~ Two end fixed beam of  Two end fixed beam of
400mm with it crack in- 400mm with st crack in -~ 400mm with slit crack  400mm with sit crack in - 400mm with sitcrack - 400mm with slit crack
middle at 100mm from ~ middle at 150mmfrom i midcle at 200mm  middle at 247 5mm from  in middle at 297.5mm  in middle at 347 5mm

Two end fived beam  Two end fixed beam of
of 400mm without ~ 400mm with sit crack in
anterack — middle at S0mm from right

light right from ight right from ight from right
644.) 643.19 6457 645.32 645,57 645.32 64457 6437
19714 0.2 1973 790,32 78589 790,32 1973 790.18
1A 173% 17405 17388 17361 17388 17405 173%
113 15T 2099, 21014 153 21014 20991 15T
Red BT B 3092 3183 3092 RhILY, 3138

53T 62T W88 34048 0L 34048 W8T 62T



4.18. Both end fixed beam with angular crack in the middle:

Fig 25: Both end fixed beam with angular crack in the middle where the crack location varies

In fig 25, beam of length 400mm, breadth 20mm and height 25mm is considered. Both end of the beam is kept
fixed. Modal analysis is used to find the Eigen natural frequencies. Initially, the beam is taken without any
defect(crack). A minimum of the first six mode shapes and natural frequencies are obtained and shown in Table.
Block Lanczos method which is generally used in the case of symmetric structures is used to find the
fundamental frequencies. Then, an angular crack of length 10mm, height 2.5 mm and thickness 25 mm is placed
at 50mm. The location of crack is varied between 50 mm to 347.5 mm with an increment of 50 mm in the middle
of the beam. Similarly, fundamental frequencies and mode shapes for the step by step crack locations are
obtained.

Table. 18: Natural Frequencies found for different location of angular crack in the middle for Both end fixed beam

Twoendfiedbeamof ~ Twoend fived beamof  Twoend fixed beamof - Two end fived beamof ~ Two end fived beam of  Two end fixed beam of

Two end fixed beam zgg;l::z::;z?;f 400mm with sit crack at 400mm with st crack st 400mm with shtcrack  400mm with slitcrackat - 400mm with slit crack  400mm with st crack
of 400mm without Shmfon it g 100mm fromrightand ~ 150mm fromrightand &t 200mm from right  247.5mm from right and &t 297.5mm from right &t 347.5mm from right
ant crack o angedSwithverticalin angledSwithverticalin andangledSwith  angledSwithverticalin  andangledSwith  and angle 43 with
45 with verticalin middle , , L . o e

middle middle vertical in middle middle verticalinmiddle ~ verticalin middle
b4d.] 642,91 6443 643,20 643,53 045,27 644,39 042,88
197.14 701,58 79.9 78022 184 19097 19741 787.65
1738.1 17343 1740.2 17378 17347 17388 17394 17326
1213 JIVY! 0041 1034 HAT 20%6.9 2002 JAVEN
33161 [l 4 3107 176 33035 119 33045

3937 3439.8 3466.9 3931 3013 34888 34604 3364



4.19. Both end fixed beam with triangular crack in the middle:

Fig 26: Both end fixed beam with triangular crack in the middle where the crack location varies

In fig 26, beam of length 400mm, breadth 20mm and height 25mm is considered. Both end of the beam is kept
fixed. Modal analysis is used to find the Eigen natural frequencies. Initially, the beam is taken without any
defect(crack). A minimum of the first six mode shapes and natural frequencies are obtained and shown in Table.
Block Lanczos method which is generally used in the case of symmetric structures is used to find the
fundamental frequencies. Then, an triangular crack of base 6mm, height 10 mm and thickness 25 mm is placed
at 50mm. The location of crack is varied between 50 mm to 347.5 mm with an increment of 50 mm in the middle
of the beam. Similarly, fundamental frequencies and mode shapes for the step by step crack locations are
obtained.

Table. 19: Natural Frequencies found for different location of triangular crack in the middle for Both end fixed beam

Twoend fixed beam of  Twoend fived beamof  Twoend fixed beam of - Two end fived beamof  Two end fived beam of  Two end fixed beam of

Twoend fived beam  Two end fived beam of o o o o o o

, o 400rnm with triangular  400mm with triangular  400mm with triangular  400mm with triangular ~ 400mm with triangular 400mm with triangular
of 400mm without ~ 400mm with friangular ,
crackat 100mmfrom  crackat 150mm from  crackat 200mm from  crack at 244mm from right - crack at 2%4mm from  crack at 344mm from

antoack orack &t SOmm from right

right in middle rightin middle right in middle inmiddle right inmiddle right in middle
644.2 643.1 64474 645,68 646,03 643,52 644,76 643.4
19114 19087 19141 190.76 186.8 1905 1914 19097
17381 17363 17415 17392 1736 17387 17416 17364
JAVIR 21265 20998 1035 U545 21028 21004 11265
3161 33152 3198 33091 301 33083 33199 3155

937 3460.2 H1s4 34%.2 3503 34956 785 34612



4.20. Both end fixed beam with semi-circular crack:

Fig 27: Both end fixed beam with semi-circular crack where the crack location varies

In fig 27, beam of length 400mm, breadth 20mm and height 25mm is considered. Both end of the beam is kept
fixed. Modal analysis is used to find the Eigen natural frequencies. Initially, the beam is taken without any
defect(crack). A minimum of the first six mode shapes and natural frequencies are obtained and shown in Table.
Block Lanczos method which is generally used in the case of symmetric structures is used to find the
fundamental frequencies. Then, a semi-circular crack of radius 4.5mm and thickness 25 mm is placed at 50mm.
The location of crack is varied between 50 mm to 347.5 mm with an increment of 50 mm in the middle of the
beam. Similarly, fundamental frequencies and mode shapes for the step by step crack locations are obtained.

Table. 20: Natural Frequencies found for different location of semi-circular in the middle crack for Both end fixed beam

Two end fived beam of Two end fixed beam of
, Twoend fived beamof ~ Twoend fixed beam of  Two end fived beam of . Twoend fived beam of . Twoend fived beam of
Two end fixed beam L o L A00mm with semi- L 400mm with semi- o
o A00mm withsemi-cicular — 400mm withsemi-  400mm with semi-circular 400mm with semi-crcular 400mm with semi-
of 400mm without . - circularcrackat o ciculrerackat
crack at S0mm from right  circular crack &t 100mm - crack at 150mm from right C . crack at 240mm from right . circular crack at 341mm
ant crack o o o 200mm from right in o 291mm from right in o
inmiddle from right in middle in middle , in middle , from right in middle
middle middle
bid.2 6438 644,96 b6.64 047,36 06,64 644,96 64381
197.14 795,35 198.21 LI 19642 TN 19.2 1937
17381 IEIAN 17451 171418 17363 17418 1745.1 IEAN
"3 JAVLR nu4 VAN 1368 JAVEN] JAVLY) JAVER]
33164 38 354 33 ERIL A 33 BB 33194

34937 3466.3 g4 34913 35026 3913 524 3466.8



5. Discritized Model of Beams:

Fig 28: Discritized model of beam with different types of cracks

The FE model of the beam without any crack consists of 1600 elements and 8799 nodes. The beams model with
crack are also discretized in a similar way of the beam discretized without crack. The model of the simply
supported beam with slit crack has 7211 elements and 13188 nodes. The model of the beam with angular crack
has 1565 elements and 8644 nodes. The model of the simply supported beam with triangular crack has 7170
elements and 13149 nodes. The model of the beam with semi-circular crack has 1511 elements and 8631 nodes.
The model of the simply supported beam with slit crack in the middle of the width of the beam has 1533
elements and 8701 nodes. The model of the beam with angular crack in the middle has 1541 elements and 8690
nodes. The model of the simply supported beam with triangular crack in the middle of the width of the beam
has 1529 elements and 8656 nodes. The model of the beam with semi-circular crack in the middle of the width
of the beam has 1543 elements and 8613 nodes. The discretized beam models are shown in Fig 21.



Fig 29: Mode 1 of beam with angular crack for diff. location of cracks

Fig 30: Mode 1 of beam with triangular crack for diff. location of cracks



Fig 31: Mode 1 of beam with semi-circular crack for diff. location of cracks

Fig 32: Mode 1 of beam with slit crack in the middle for diff. location of cracks



Fig 33: Mode 1 of beam with angular crack in the middle for diff. location of cracks

Fig 34: Mode 1 of beam with triangular crack in the middle for diff. location of cracks



6. Different Types of Comparisons:
Comparison of 15t mode frequency between beams without any crack and with
diff. types of cracks

Crack locatiom Frequency of lowest Frequency of lowest Frequency of lowest Frequency of lowest  Frequency of lowest

mode for beam without mode for beam withslit  mode for beam with mode for beam with  mode for beam with

crack crack angular crack triangular crack semi-circular crack
50 644.2 620.9 629.3 626.05 638.86
100 644.2 642.99 638.41 643.09 644.52
150 644.2 610.54 601.32 615.02 637.23
200 644.2 591.39 588.51 600.15 633.17
247.5 644.2 610.35 601.37 615.26 637.23
297.5 644.2 642.93 638.39 643.07 644.52
347.5 644.2 621 629.43 625.86 638.86

1st Mode

650

640 // N — _ \\
= IS

610

600
590
580
570

560
1 2 3 4 5 6 7

e Frequency of lowest mode for beam without crack

= Frequency of lowest mode for beam with slit crack
Frequency of lowest mode for beam with angular crack
Frequency of lowest mode for beam with triangular crack

e Frequency of lowest mode for beam with semi-circular crack

Figure: 35
In the following graph, a comparison is made between the frequency of 1 mode of beam with slit crack, angular
crack, triangular crack and semi-circular crack with frequency of 15t mode without any crack. In all of the cases,
similar behavior can be seen. Frequency of cracked beams first increases and reaches the frequency of un-
cracked beams and starts to decrease and becomes minimum at the middle and after that it shows a similar
behavior. Symmetric behavior can be seen as both ends are fixed.



Comparison of 1t mode frequency between beams without any crack and with
diff. types of cracks in the middle

Frequency of lowest

Frequency of lowest Frequency of lowest mode R
. Frequency of lowest . : Frequency of lowest . . mode for beam with
Crack locatiom R mode for beam with slit ) for beam with triangular . K
mode for beam without L. mode for beam with L. semi-circular crack in
crack in middle . i crack in middle .
crack angular crack in middle middle
50 044.2 643.19 642.91 ©643.2 643.8
100 644.2 644.57 644.39 644.74 644.96
150 644.2 645.32 645.26 ©645.68 646.64
200 644.2 645.57 645.53 646.03 647.36
247.5 644.2 645.32 645.27 645.52 646.64
297.5 644.2 644.57 644.39 644.76 644.96
347.5 644.2 643.17 642.88 643.24 643.81
1st mode
648
647
646
645
644
643
642
641
640
1 2 3 4 5 6 7

= Frequency of lowest mode for beam without crack

= Frequency of lowest mode for beam with slit crack in middle
Frequency of lowest mode for beam with angular crack in middle
Frequency of lowest mode for beam with triangular crack in middle

e Frequency of lowest mode for beam with semi-circular crack in middle
Figure: 36

In the following graph, a comparison is made between the frequency of 1 mode of beam with slit crack, angular
crack, triangular crack and semi-circular crack in the middle of the width of the beam with frequency of 15t mode
without any crack. In all of the cases, similar behavior can be seen. Frequency of cracked beams first increases
and crosses the frequency of un-cracked beams and becomes minimum at the middle and then, it starts to
decrease and after that it shows a similar behavior. Symmetric behavior can be seen as both ends are fixed.



7. Different Boundary Conditions:

Three different boundary conditions are considered:

7.1. One end fixed Beam i.e. Cantiliver Beam:
Table. 21: Natural frequencies of 1% six modes for Cantiliver beam without crack and with crack

Beam Without any ~ Beam with crack at ~ Beam with crack at Beam with crack at Beam with crack  Beam with crack Beam with crack at Beam with crack Beam with crack Beam with crack at  Beam with crack Beam with crack

crack 390mm 380mm 370mm at 360mm at 350mm 340mm at 330mm at 320mm 310mm at 300mm at 290mm
1024 103.17 103.11 103.07 103.01 102.95 102.9 102.83 102.75 102.66 102.55 102.41
12781 128.76 128.7 128.63 128.56 128.51 128.45 128.39 128.33 128.26 128.19 128.11
634.31 638.8 637.7 636.67 635.26 633.31 630.64 626.81 621.81 616.01 608.96 601.74
786.62 792.16 790.85 789.64 788.39 787.22 785.84 784.23 782.39 780.29 777.91 775.43
17435 17514 1751.2 1744.4 17315 1709.5 1679.4 1642.9 1605.8 1576.6 1553.3 1543.2
1744.4 1756.2 1754.2 1753.6 1753.1 17523 1751.2 1749.8 1748.5 1746.7 1744.9 1742.8

Beam Without any ~ Beam with crack at  Beam with crack at Beam with crack at Beam with crack  Beam with crack  Beam with crack at Beam with crack Beam with crack Beam with crack at  Beam with crack Beam with crack

crack 280mm 270mm 260mm at 250mm at 240mm 230mm at 220mm at 210mm 200mm at 190mm at 180mm
1024 102.25 102.05 101.83 101.57 101.23 100.92 100.54 100.07 99.554 99.046 98.445
12781 128.02 127.93 127.82 127.71 127.57 127.44 127.28 127.12 12691 126,71 126.47
634.31 594.08 586.54 579.71 574.22 568.1 565.8 563.87 562.61 562.78 565.79 569.45
786.62 772.87 770.23 767.61 765.49 763.2 762.22 761.3 760.86 760.82 761.93 763.19
1743.5 1542.2 1551 1569.2 1595.6 16239 1658.9 1691.8 1719.1 1720.1 17176 1714.7
1744.4 17409 17383 1736.3 1733.8 17309 1728.3 1726 17229 17379 1743.7 1735.5

Beam Without any ~ Beam with crack at  Beam with crack at Beam with crack at Beam with crack  Beam with crack  Beam with crack at Beam with crack Beam with crack Beam with crack at  Beam with crack Beam with crack

crack 170mm 160mm 150mm at 140mm at 130mm 120mm at 110mm at 100mm 90mm at 80mm at 70mm
1024 97.852 97.114 96.451 95.687 94.769 94,102 93.204 92.189 91.361 90.404 89.401
12781 126.25 125.99 125.71 125.38 125.05 124.73 124.38 124 123.62 123.16 1227

634.31 575.23 581.27 589.46 597.92 606.36 615.47 623.21 629.37 633.42 634.7 632.94
786.62 765.51 768.06 77 773.91 777.06 780.17 782.79 784.85 786.08 786.29 785.43
1743.5 17126 1689 1660.9 1634.6 16123 1602.8 1600.9 1609.5 1632.5 1663.5 1690.5
17444 1716.1 1709.4 1707 1704.6 1702.2 1700.5 1698.2 1695.7 1694.2 1692.6 1698.1

Beam Without any ~ Beam with crack at  Beam with crack at Beam with crack at Beam with crack  Beam with crack  Beam with crack at Beam with crack

crack 60mm 50mm A40mm at 30mm at 20mm 10mm at Omm
1024 88.413 87.508 86.325 85.53 84.227 83.252 83.751
12781 122.25 121.88 121.36 120.87 120.33 120.04 121.05
634.31 628.15 620.59 610.27 598.36 583.86 568.73 557.55
786.62 783.29 779.95 775.32 769.42 762.29 755.17 754.23
1743.5 1689 1688 1686.9 1686.4 1681.7 1634.8 1590.1

17444 1728 17438 1740.5 1718.8 1685.3 1686.7 1693.3



7.2. Both end Fixed Beam:

Table. 22: Natural frequencies of 1% six modes for Both end beam without crack and with crack

. Two end fixed beam Two end fixed beam  Twoend fixed  Two end fixed beam . Two end fixed beam Two end fixed beam  Twoend fixed  Two end fixed beam
X Two end fixed beam of R ) 3 Two end fixed beam of R R )
Two end fixed 4D0mm with crack at of 400mm with of 400mm with | beam of 400mm of 400mm with 4D0mm with crack at of 400mm with of 400mm with  beam of 400mm  of 400mm with
beam of 400mm Omm from right crack at 10mm from crack at 20mmfrom  with crackat | crack at 40mm from Somm from right crack at 60mm from crack at 70mm from  with crackat  crack at 90mm from
without ant crack right right 30mm from right right right right 80mm from right right
6442 575.33 57468 589.73 603.15 615.2 626.05 63438 640.43 64391 64471
7497.14 768.79 762.77 7689.02 776.25 78273 788.01 792.06 79491 796.61 797.17
17381 15958 16196 1666.5 17037 17287 17387 17316 170949 1680.7 16506
21273 2064.9 2060.9 2083.7 2103.8 2117.2 2122.8 21214 21148 2105.1 2094.2
33161 3101 3168.6 32559 33076 33089 32586 31838 31228 3099.3 3108.6
34937 3404 3383.8 3382.4 3385.4 33915 3400.1 3408.4 3417.8 3427.8 3437
) Two end fixed beam Two end fixed beam  Twoend fixed  Two end fixed beam ) Two end fixed beam Twoend fixed beam  Twoendfixed  Two end fixed beam
) Two end fixed beam of R ) ) Two end fixed beam of ] ] .
Two end fixed 400mm with crack at of 400mm with of 400mm with | beam of 400mm of 400mm with 400mm with crack at of 400mm with of 400mm with ~ beamof 400mm  of 400mm with
beam of 400mm 100mm from rizht crack at 110mm crack at 120mm with crack at crack at 140mm 150mm from right crack at 160mm crack at 170mm with crack at crack at 190mm
without ant crack from right from right 130mm from right from right from right from right 180mm from right from right
6442 643.09 638.38 53412 62745 62171 515.02 610.07 605.73 §02.27 500.1
797.14 796.81 795.62 79381 79154 789.26 786.68 784.86 7831 78176 780.84
17381 1627.4 1612.8 1608.6 15147 1630.3 15499 16759 17009 17215 17348
21273 20853 2079.3 20769 20781 20839 2091 21012 21103 21179 21224
33161 31471 3200.1 32559 3289.6 33139 3288.1 32312 31613 3098.7 3058
34937 34468 34576 3467.2 34778 34874 34553 3502.6 3508.1 3512 35136
. Two end fixed beam Two end fixed beam  Twoend fixed  Two end fixed beam ) Two end fixed beam Two end fixed beam  Twoend fixed  Two end fixed beam
§ Two end fixed beam of R ) ) Two end fixed beam of R R 3
Two end fixed 400mm with crack at of 400mm with of 400mm with | beam of 400mm of 400mm with 400mm with crack at of 400mm with of 400mm with ~ beamof 400mm  of 400mm with
beam of 400mm 200mm from right crack at 210mm crack at 220mm with crack at crack at 240mm 250mm from right crack at 260mm crack at 270mm with crack at crack at 290mm
without ant crack from right from right 230mm from right from right from right from right 280mm from right from right
644.2 500.15 601.2 504.14 607.76 613.2 61911 625.25 631.85 537.49 541.834
7497.14 780.86 78119 78247 78407 78611 78821 790.59 79298 794155 796.46
17381 17371 1728 17099 16856 16609 16378 1619 16112 16106 1619.7
21273 21231 2120 21136 21048 2095.6 2086.3 2079.7 2077 20779 20827
33161 30529 3078.6 31341 32021 32686 3308.2 3309.7 3276.6 32237 3166.6
34937 35143 35126 3510.2 35049 3498.4 34305 34815 34719 34615 34505
. Two end fixed beam Two end fixed beam  Twoend fixed  Two end fixed beam . Two end fixed beam Two end fixed beam  Twoend fixed  Two end fixed beam
. Two end fixed beam of ] . i Two end fixed beam of ] ] .
Two end fixed 4D0mm with crack at of 400mm with of 400mm with | beam of 400mm of 400mm with 400mm with crack at of 400mm with of 400mm with  beamof 400mm  of 400mm with
beam of 400mm 300mm from right crack at 310mm crack at 320mm with crack at crack at 340mm 350mm from right crack at 360mm crack at 370mm with crack at crack at 390mm
without ant crack from right from right 330mm from right from right from right from right 380mm from right from right
6442 64434 64455 64212 63711 62968 619.78 608.46 59476 580.39 569.61
797.14 797.18 796.92 785.72 793.29 789.74 784.96 779.01 T1187 764.82 764.09
17381 16408 1668.6 1698.8 17244 17377 17347 17155 1682 1638.7 15959
21273 20808 2100.6 21112 21193 21229 21202 21102 2092.3 2069.4 2057.2
33161 31222 3099.6 31001 3156.3 32284 32942 33148 32811 3206 31159

34937 34407 3431 34208 34115 34032 3385 33886 33817 3380.6 33821



7.3. Both end Hinged Beam:

Table. 23: Natural frequencies of 1% six modes for Both end hinged without crack and with crack

) Remote displacement at Remote displacement at  Remote displacement Remote displacement Remote displacement at
Remote displacement at

Remote displacement Remote displacement Remote displacementat ~ Remote displacement at
two ends of beamof ~ two ends of beamof attwo ends of beam of at two ends of beam  two ends of beam of

attwo ends of beam attwo ends of beam  two ends of beam of two ends of beam of
two ends of beam of

400mm without ant crack 400mm withcrackat ~ 400mm with crackat ~ 400mm with crackat  of 400mm withcrack ~ 400mm with crackat ~ of 400mm with crack of 400mm with crack  400mm with crack at 400mm with crack at
Omm 10mm 20mm at 30mm 40mm at 50mm at 60mm 70mm 80mm
2.85E-03 0 1.32€-03 1.34E-04 0.00E+00 0 0 0 0 0
5.44E-03 0 1.55€-03 6.69E-04 1.12€-03 1.03€-03 1.37€-03 1.05€-03 0 2.93€-04
797.14 768.79 762.77 769.02 776.25 782.73 788.01 792.06 794.91 796.61
11336 1067.1 1051.2 1056.8 1065 1075.9 1089.3 1102.5 1115.1 1125.5
21273 2064.9 2060.9 2083.7 2103.8 2117.2 2122.8 21214 2114.8 2105.1
22743 2165.2 2158.7 2187 22184 22475 2268.2 22723 22553 2218.7

) Remote displacement at Remote displacement at  Remote displacement Remote displacement Remote displacement at = Remote displacement Remote displacement Remote displacementat ~ Remote displacement at
Remote displacement at
two ends of beam of two ends of beamof ~ two ends of beamof attwo ends of beam of at two ends of beam  two ends of beamof = attwo endsof beam attwo endsof beam two ends of beam of two ends of beam of
w
) 400mm withcrackat ~ 400mm withcrackat ~ 400mm with crackat  of 400mm withcrack  400mm with crackat ~ of 400mm with crack of 400mm with crack  400mm with crack at 400mm with crack at
400mm without ant crack

90mm 100mm 110mm at 120mm 130mm at 140mm at 150mm 160mm 170mm
2.85E-03 0 5.49E-04 0 0 1.11E-03 0 0 0 0
5.44E-03 1.95€-03 2.41E-03 7.39€-04 1.68E-03 2.61E-03 1.15€-03 1.69€-03 9.78E-04 1.37€-03
797.14 797.17 796.81 795.62 793.81 791.54 789.26 786.68 784.86 783.1
11336 1131.9 1133.2 1128.6 11185 1104.2 1088 1070.4 1056.4 1044.2
21273 2094.2 2085.3 2079.3 2072.7 2075.2 2083.9 2091 2101.2 21103
22743 21703 21243 2089.7 2077 2078.2 2095.8 2125.7 2167.6 2209.6

) Remote displacement at Remote displacement at  Remote displacement  Remote displacement Remote displacement at = Remote displacement Remote displacement Remote displacementat ~ Remote displacement at
Remote displacement at

¢ ¢ two ends of beamof ~ two ends of beamof attwo ends of beam of attwo ends of beam  two ends of beamof = attwo endsof beam attwo endsof beam two ends of beam of two ends of beam of
two end§ of beamo 400mm withcrackat ~ 400mm with crackat =~ 400mm with crackat of 400mm with crack  400mm with crackat  of 400mm with crack of 400mm with crack  400mm with crack at 400mm with crack at
A00mmm without ant crack 180mm 190mm 200mm at 210mm 220mm at 230mm at 240mm 250mm 260mm
2.85E-03 0 0 0 3.18E-04 0 0 0 0 0
5.44E-03 0 8.54E-04 1.72€-03 1.03E-03 1.60E-03 2.05E-03 1.27€-03 0 6.02E-04
797.14 781.76 780.84 780.86 781.19 782.47 784.07 786.11 788.21 790.59
1133.6 1034.7 1028.7 1028.7 1031.8 1039.8 1050.2 1065 1081.2 1097.4
21273 2117.9 21224 21231 2120 2113.6 2104.8 2095.6 2086.3 2079.6
22743 2245 2268.1 2272.2 2256.3 2224.9 2183.9 2143 2107 2080

Remote displacement at Remote displacement at Remote displacement at  Remote displacement Remote displacement Remote displacementat = Remote displacement Remote displacement Remote displacementat ~Remote displacement at

dsof b ¢ two ends of beamof ~ two ends of beamof attwo ends of beam of attwo ends of beam  two ends of beamof = attwo endsof beam attwo endsof beam two ends of beam of two ends of beam of
two en S of beamo 400mm with crackat ~ 400mm with crackat =~ 400mm with crackat of 400mm with crack  400mm withcrackat  of 400mm with crack of 400mm with crack  400mm with crack at 400mm with crack at
A00mmm without ant crack 270mm 280mm 290mm 2t 300mm 310mm 2t 320mm 2t 330mm 340mm 350mm
2.85E-03 0 9.02E-04 0 0 0 0 8.37E-04 0 0
5.44E-03 1.49-03 2.39E-03 0 1.27€-03 0.00E+00 8.33E-04 2.20E-03 9.72E-04 1.84E-03
797.14 792.98 794.95 796.46 797.18 796.92 795.72 793.29 789.74 784.96
1133.6 1113.3 1125.2 1132 1133.1 1128.6 1119.6 1107.7 1094.7 1081.1
21273 2073.5 2077.9 2082.7 2090.9 2100.6 2111.2 2119.3 21229 2120.2
22743 2077 2081.7 2107.6 21515 2200.2 2242.8 2268.2 22721 2257.3

Remote displacement at Remote displacement at Remote displacement Remote displacement
two ends of beamof  two ends of beamof at two ends of beam of at two ends of beam
400mm with crackat ~ 400mm with crackat ~ 400mm with crackat of 400mm with crack

Remote displacement at
two ends of beam of
400mm without ant crack

360mm 370mm 380mm at 390mm
2.85E-03 0 4.59E-04 0 0
5.44E-03 2.06E-03 1.29€-03 1.53E-03 1.67€-03
797.14 779.01 771.87 764.82 764.09
1133.6 1069.7 1059 1052.4 1054.6
2127.3 2110.2 2092.3 2069.4 2057.2

2274.3 2231 2198.7 2168.5 2152.7



8. Bending mode shapes for different boundary conditions:
First 3 mode shapes of bending for Cantiliver Beam:
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Fig 37: Bending mode shape 1 of Cantiliver Beam
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Fig 38: Bending mode shape 2 of Cantiliver Beam

ANSYS

2019 R2

0.00 100.00 200.00 (mm)
L SESESaaa— S—
50.00 150.00

Fig 39: Bending mode shape 3 of Cantiliver Beam



First 3 mode shapes of bending for Both end fixed Beam:
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Fig 40: Bending mode shape 1 of both end fixed Beam
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Fig 41: Bending mode shape 2 of both end fixed Beam

0.00 100.00 200.00 (mm)
L SSS— S—

50.00 150.00

Fig 42: Bending mode shape 3 of both end fixed Beam



First 3 mode shapes of bending for Simply Supported Beam:
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Fig 43: Bending mode shape 1 of simply supported Beam
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Fig 44: Bending mode shape 2 of simply supported Beam
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Fig 45: Bending mode shape 3 of simply supported Beam



9. Results and Discussion for Different Boundary Conditions:

Comparison of Natural Frequency between beams without and with Cracks for 15T Mode of

Bending
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Frequency of 1st Bending mode for beam without crack

Frequency of 1st Bending mode for beam with V-notch crack Figure: 46

At 1°t we took the crack at 10mm from the fixed end and found natural frequencies in the same way as was
found in case of un-cracked beam. Then, the location of crack is varied between 0 mm to 390 mm with an
increment of 10 mm and found six mode shapes and natural frequencies. Among the six, 3 were bending modes
and we have considered those three in every case. Finally we made a curve comparing the natural frequencies
of cracked and un-cracked beam in all the three boundary conditions. In figure: 46, comparison of natural
frequency for cracked and un-cracked condition for cantilever beam is shown. Here, frequency is minimum near
the fixed end and increases continuously as the crack moves away the fixed end and at 300mm it becomes same

as for un-cracked beam and after that increases a bit nearest the free end.

670
coo Both end Fixed Beam
AT | TN =T [ | T™
G 630 J/ NG ~ N
Z / N e N\
= N ~ N\
S 610 / SN ~
g \\———// \
&< 590 /
. /
570 7 N
550
OO OO0 0000000000000 O0DO0DO0DO0DO0DO0OO00D00D0000D0D00O0O0OO0OO0OOoO
AN N TN ON0ONDO A AN MSTET N ONODNDO AN NN ONDDOAANMNMSLWL ONOOO
™I A A A AN AN AN AN AN AN AN NN ANOMO OO ND N MmN N oM
CRACK LOCATION FROM RIGHT
Figure: 47

Frequency of lowest mode for beam without crack

Frequency of lowest mode for beam with V-notch crack

In figure 47, in case of both end fixed beam, frequency is also minimum near the fixed end and increases
continuously as the crack moves away the fixed end and at 100mm it becomes same as for un-cracked beam

and then reduces and increases in the same way but never crosses the frequency of un-cracked beam.



Simply Supported Beam
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Figure: 48

Frequency of 1st Bending mode for beam with V- notch crack

In figure: 48, in case of simply supported beam, behavior is almost same as like the two end fixed condition but
near the two ends curve is a bit different.

Comparison of Frequency between beams without and with Cracks for 2nd Mode of Bending
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Figure: 49

Frequency of 2nd bending mode for beam without crack Frequency of 2nd bending mode for beam with crack

In the similar way, we have drawn the curve for 2"¢ mode of bending for all the boundary conditions.

In figure: 49, in case of Cantiliver beam, Frequency increases as it moves away from the fixed end and reaches
the frequency of un-cracked beam and starts to decline and becomes minimum at 210mm, afterwards, it
continued to increase. frequency of cracked beam crosses the un-cracked beam frequency at 360mm.
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Frequency of 2nd bending mode for beam without crack Frequency of 2nd bending mode for beam with crack
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Frequency of 2nd bending mode for beam without crack Frequency of 2nd bending mode for beam with crack

In figure: 50 & 51, in case of both end fixed beam and simply supported beam, it increases in the similar way
and reaches the un-cracked beam natural frequency but never goes beyond it and shows a symmetric behavior.
In figure: 14, The frequency of un-cracked beam crosses the frequency of cracked beam at 40mm, 200 mm and
360mm and it remains minimum at 110mm, 280 mm and 390mm. In case of simply supported beam, almost
similar behavior can be seen.



Comparison of Frequency between beams without and with Cracks for 3rd Mode of Bending:
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Frequency of 3rd bending mode for beam without crack Frequency of 3rd bending mode for beam with crack

Here, comparison of Frequency between beams without and with Cracks for 3rd Mode of Bending

In figure: 52, in case of Cantiliver beam, Natural frequency remains minimum near the fixed end. As the crack
moves away from the fixed end, frequency increases and decreases and it goes in a similar fashion and finally,
natural frequency of cracked beam crosses the un-cracked beam at 370mm
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Frequency of 3rd bending mode for beam with crack Frequency of 3rd bending mode for beam without crack



Simply Supported Beam
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Frequency of 3rd bending mode for beam without crack Frequency of 3rd bending mode for beam with crack

In figure: 53 & 54, in case of 3" mode for both end fixed beam and simply supported beam, more Symmetric
behavior can be seen but never goes beyond the frequency of un-cracked beam. In Graph: 17, we can see,
frequency of cracked beam reaches the frequency of un-cracked beam at 40 mm, 140 mm, 260 mm and 360mm
and remains minimum at 80 mm, 210 mm, 300 mm and at 390 mm. In graph: 20, we can see, frequency of
cracked beam reaches the frequency of un-cracked beam at 50 mm, 150 mm, 250 mm and 350mm and remains
minimum at 90 mm, 200 mm, and 300 mm.

Comparison of 1%, 2" and 3" mode for 3 different boundary conditions of beams with cracks

COMPARISON OF 1ST BENDING MODE FOR 3 DIFFERENT BOUNDARY CONTION
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™ Frequency of 1st Bending mode for both end fixed beam ™ Frequency of 1st Bending mode for one end fixed beam

™ Frequency of 1st Bending mode for simply supported beam Figure: 55

In the following figure, a comparison is made between the natural frequencies of 1t mode for caltilever beam,
both end fixed beam and simply supported beam. We can see, natural frequencies for cantiliver beam are much
smaller than the natural frequencies for both end fixed beam and simply supported beam. Natural frequencies
of simply supported beam are the highest among the three boundary conditions. Besides, symmetric behaviour
can be seen in case of both end fixed beam and simply supported beam.



Comparison of 2nd bending mode for 3 different boundary conditions
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H Frequency of 2nd bending mode for simply supportedbeam Figure: 56

In the following figure, a comparison is made between the natural frequencies of 2" mode for caltilever beam,
both end fixed beam and simply supported beam. We can see, natural frequencies for cantiliver beam are much
smaller than the natural frequencies for both end fixed beam and simply supported beam. Natural frequencies
of simply supported beam are the highest among the three boundary conditions. Besides, symmetric behaviour
can be seen in case of both end fixed beam and simply supported beam. Here, the difference between the
frequency of cantilever beam and simply supported beam decreases than in case of 15t mode.

comparison of 3rd bending mode for 3 different boundary condition
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In the following figure, a comparison is made between the natural frequencies of 3™ mode for caltilever beam,
both end fixed beam and simply supported beam. We can see, natural frequencies for cantiliver beam are much
smaller than the natural frequencies for both end fixed beam and simply supported beam. Natural frequencies
of simply supported beam are the highest among the three boundary conditions. Besides, symmetric behaviour
can be seen in case of both end fixed beam and simply supported beam. Here, the difference between the
frequency of cantilever beam and simply supported beam decreases much more than in case of 2" mode.



10. Harmonic Analysis:

Harmonic analysis is used to predict the steady state dynamic response of a structure subjected to sinusoidally
varying loads. The structure is excited harmonically at the fixed degrees of freedom. The excitation is defined
by a direction vector of displacement, velocity or acceleration. Ansys Mechanical APDL and Mechanical
Workbench can perform harmonic analysis on a structure, determining the steady-state sinusoidal response to
sinusoidal varying loads all acting at a specified frequency. Some load types can be applied with a phase offset.

Specifications sometimes call for products to be subject to harmonic acceleration loading applied to the base
of the product. If absolute accelerations are to be measured at points on the product, a harmonic finite
element analysis would be best run with non-zero acceleration inputs at a base. Ansys supports only non-zero
displacement loading at nodes in harmonic models. The desired non-zero harmonic acceleration loading can
be converted to displacement as a function of frequency, and the desired load applied in Ansys via a Table
Array that is a function of frequency (referred to as TIME in the table array).

APDL coding can apply the desired loading on faces indicated via Named Selections in an Ansys Workbench
analysis.

Frequency response plots at the base where the loads are applied can be used to confirm that the desired
displacement and acceleration loads were input. Frequency response plots at other points in the model can
show the absolute (relative to the global origin, not relative to the base) displacement and acceleration results
elsewhere in the model.

The usual displacement, stress and strain plots can be generated. we should note that chosen frequencies and
phase angles must be manually entered in many of the results plot object details.

In our analysis, we have used harmonic analysis to find the deflection curve in case of cracked and un-cracked
beams. Three different boundary condition are considered here. These are- one end fixed beam i.e. cantilever
beam, both end fixed beam and both end hinged beam. In all the three boundary conditions, we have found
out the deflection curve in case of no crack, crack at 10mm, crack at 200mm and crack at 390mm. In all of the
cases, we have used a force of 5000 N for excitation.



10.1. Deflection Curve:

Deflection Curve for beams without crack and with crack for Cantiliver beam:
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We have determined deflection curve applying a force 5000N using harmonic analysis in Ansys workbench. The

frequency range is taken as 500Hz to 3500Hz. The deflection curve for beam without crack and with crack are
quite different.

Here, in case of cantilever beam, we can see the differences in deflection curve due to presence of crack.

When there is no crack (figure: 58) maximum deflection is at 1750 Hz but in case of crack at 20mm (figure: 59),
maximum deflection is at 700 Hz. In case of cracks at 200mm and 390mm (figure: 60-61), the deflection curves
are also quite different. And we can also see amplitude increases immensely due to presence of crack.

Deflection Curve for beams without crack and with crack for Both end fixed beam:
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Then, We have determined deflection curve applying a force 5000N using harmonic analysis in Ansys

workbench. The frequency range is taken as 500Hz to 3500Hz. The deflection curve for beam without crack and
with crack are quite different.

Here, in case of both end fixed beam, we can see the differences in delection curve due to presence of crack.

When there is no crack (figure: 62) maximum deflection is at 3400 Hz but in case of crack at 20mm (figure: 63),
maximum deflection is at 1750 Hz. In case of cracks at 200mm and 390mm (figure:64-65), the deflection curves
are also quite different. The maximum deflection in case of figure 64, maximum deflection is at 3300Hz and in

case of figure 65, maximum deflection is at 700 Hz. We can also see amplitude increases immensely due to
presence of crack.

Deflection Curve for beams without crack and with crack for Both end fixed beam:
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Then, We have determined deflection curve applying a force 5000N using harmonic analysis in Ansys

workbench. The frequency range is taken as 500Hz to 3500Hz. The deflection curve for beam without crack and
with crack are quite different.

Here, in case of simply supported beam, we can see the differences in delection curve due to presence of crack.

When there is no crack (figure: 66) maximum deflection is at 3400 Hz but in case of crack at 20mm (figure: 67),
maximum deflection is at 3200 Hz. In case of cracks at 200mm and 390mm (figure: 68-69), the deflection curves
are also quite different. The maximum deflection in case of figure: 68, maximum deflection is at 1750 Hz and in

case of figure: 69, maximum deflection is at 700 Hz. We can also see amplitude increases immensely due to
presence of crack.



Discussion:

At First, we have started our work with plates which have slit cracks and found their natural frequency and
compared our result with a renowned research journal for validation purpose and our result matched with
their results. So, then we studied different types of cracks like angular, triangular, semi-circular. Afterwards,
we modelled our plates with those cracks and found their natural frequency and the results were quite
satisfactory for identification of cracks. We changed the location of these cracks and size of the cracks as well
on the plates and found different results and made comparisons to analyze the results.

Then we started working with beams. First, we modelled the beam with v-shaped crack and compared the result
with another published research work for validation purpose and the results matched. So, we modelled the
beam with other cracks and found natural frequencies and mode shapes which helped us to make different
comparison between non-cracked and cracked beams. And the results were sufficiently good. Subsequently, we
started to work with different boundary conditions of beam like one end fixed beam, both end fixed beam, both
end hinged beam etc. Besides, we have made different comparison to evaluate the results.

Later, we used harmonic analysis to find out the deflection curves for different boundary conditions and
compared the deflection curves of un-cracked beams with cracked beams which also provided us with results
that can be used for identification of cracks on beams.

Presence of crack in a single cantilever beam may cause the failure of a vast structure. A crack makes the
structure more vulnerable to external effects, accelerates the ageing process and can immediately reduce the
mechanical resistance of the structure. Cracks reduce the ability of a structure to absorb stress and may lead to
collapse. So, It is of enormous importance to identify cracks in a plate or in a beam. And, we believe our research
work can contribute well for the identification of beams.

Besides, experimental based testing has been widely used as a means to analyze cracks on beams and plates.
While this is a method that produces real life response, it is extremely time consuming and the use of materials
can be quite costly. The use of finite element analysis to study these components has also been used. In recent
years, however, the use of finite element analysis has increased due to progressing knowledge and capabilities
of computer software and hardware. Researchers are presently focusing on various methods for analysis and
diagnosis of crack detection in a beam structure like artificial neural network, genetic algorithm and continuous
wavelet analysis etc. So, we aim to research with those methods in the near future.



11. Validation:

For validation of the plates with cracks we have used a research paper:

N. Tao, Y. Ma, H. Jiang, M. Dai, and F. Yang, “Investigation on Non-Linear Vibration Response of
Cantilevered Thin Plates with Crack Using Electronic Speckle Pattern Interferometry,” Proceedings,
vol. 2, no. 8, p. 539, 2018.

Data from paper Our data
Natural frequency when the Natural frequency when the Length of plate - 210 mm
crack is at fixed end crack is at fixed end Breadth of plate - 80 mm
42.698 42.33 Thickness of plate - 1.43 mm
182.52 182.01 Length of crack - 20 mm
266.32 265.94 F&readth of crack—1 mm
Thickness of crack — 1.43 mm
589.87 589.45
748.34 747.211
1113.4 1113.03

For validation of the beams with cracks we have used another research paper:

P. Yamuna and K. Sambasivarao, “Vibration analysis of beam with varying crack location,” Int. J. Eng.
Res. Gen. Sci., vol. 2, no. 6, pp. 1008-17, 2014.

Data from paper Our data
Natural frequency when the Natural frequency when the
crack is at 50mm from the fixed crack is at 50 mm from the Length of beam - 500 mm
end fixed end Breadth of beam - 25 mm

Thickness of beam - 15 mm

Length of crack - 10 mm
230.74 230.72 Breadth of crack — 5 mm
Thickness of crack — 15 mm

316.79 316.79
867.35 867.99
893.09 893.593

1682.3 1683.23




12. Conclusion:

The following conclusions can be drawn from the present study-

Due to existence of crack, natural frequency changes. The amount of change varies depending on crack
location, depth and crack opening size.

For a certain crack location, the natural frequencies of a cracked beam are inversely proportional to
the crack depth

For a certain crack depth, change in natural frequency is less as the crack position moves away from
fixed end

Frequency is minimum near the fixed ends

It is possible to identify the cracks since natural frequency changes

Effect of crack opening size on frequency becomes significant as crack opening size decreases.
Modelling of cracked structure requires fine meshing otherwise accuracy decrease.

Accuracy increases due to reduction of element size with increase of analysis time

Deflection curve changes due to presence of crack. So, this curve also can be used for crack
identification

All mode of vibrations do not have same type of effect due to presence of cracks



13. References:
[1] Crack identification in Beams by Vibration based analysis techniques — A Review Tajammul Riaz Sial, Yan Jin, Zhang
Juan.

[2]Vibration Analysis of Beam With Varying Crack Location P.Yamuna , K.Sambasivarao.

[3] Silva, J. M. M., & Gomes, A. J. M. A. (1990). Experimental dynamic analysis of cracked free-free beams. Experimental
Mechanics, 30, 20-25.

[4] Doebling, S. W., Farrar, C. R., Prime, M. B., & Shevitz, D. W. (1998). A summary review of vibration based damage
identification methods. The Shock and Vibration Digest, 30, 91-105.

[5] Christides, S., & Barr, A. D. S. (1984). One-dimensional theory of cracked Bernoulli_Euler beams. International Journal
of Mechanical Sciences, 26, 639-648.

[6] Dimarogonas, A. D. (1976). Vibration Engineering, West Publishers, St Paul, Minesota.

[7] Chondros, T. G., & Dimarogonas, A. D. (1980). Identification of cracks in welded joints of complex structures. Journal
of Sound and Vibration, 69, 531-538.

[8] Krawczuk, M., Zak, A., & Ostachowicz, W. (2000). Elastic beam finite element with a transverse elasto-plastic crack.
Finite Elements in Analysis and Design, 34, 61-73.

[9] Bouboulas, A. S., & Anifantis, N. K. (2008). Formulation of cracked beam element for analysis of fractured skeletal
structures. Engineering Structures, 30, 894-901.

[10] Gudmundson, P. (1983). The dynamic behavior of slender structures with cross-sectional cracks. Journal of the
Mechanics and Physics of Solids, 31, 329-345.

[11] Cacciola, P., & Muscolino, G. (2002). Dynamic response of a rectangular beam with a known non-propagating crack
of certain or uncertain depth. Computers and Structures, 80, 2387-2396.

[12] Benfratello, S., Cacciola, P., Impollonia, N., Masnata, A., & Muscolino, G. (2007). Numerical and experimental
verification of a technique for locating a fatigue crack on beams vibrating under Gaussian excitation. Engineering
Fracture Mechanics, 74, 2992-3001.

[13] Sholeh, K., Vafai, A., & Kaveh, A. (2007). Online detection of the breathing crack using an adaptive tracking
technique. Acta Mechanica, 188, 139-154.

[14] Clark, R., Dover, W. D., & Bond, L. J. (1987). The effect of crack closure on the reliability of NDT predictions of crack
size. NDT International, 20, 269-275.

[15] Abraham, O. N. L., & Brandon, J. A. (1995). The modelling of the opening and closure of a crack. Journal of Vibration
and Acoustics, 117, 370-377.

[16] Douka, E., & Hadjileontiadis, L. J. (2005). Time-frequency analysis of the free vibration response of a beam with a
breathing crack. NDT&E International, 38, 3-10.

[17] Loutridis, S., Douka, E., & Hadjileontiadis, L. J. (2005). Forced vibration behaviour and crack detection of cracked
beams using instantaneous frequency. NDT&E International, 38, 411-419.

[18] Andreaus, U.; Casini, P. Identification of Multiple Open and Fatigue Cracks in Beam-like Structures Using Wavelets



on Deflection Signals. Contin. Mech. Thermodyn. 2016, 28, 361-378.

[19] Al-Shudeifat, M.A.; Butcher, E.A. On the Dynamics of a Beam with Switching Crack and Damaged Boundaries. J. Vib.
Control 2013, 19, 30—46.

[20] Cole, D.P.; Habtour, E.M.; Sano, T.; Fudger, S.J.; Grendahl, S.M.; Dasgupta, A. Local Mechanical Behavior of Steel
Exposed to Nonlinear Harmonic Oscillation. Exp. Mech. 2017, 57, 1027-1035.

[21] Neves, A.C.; Simdes, F.M.F.; Pinto da Costa, A. Vibrations of Cracked Beams: Discrete Mass and Stiffness Models.
Comput. Struct. 2016, 168, 68-77.

[22] H. S. Rane, R.B. Barjibhe and A.V. Patil , Free Vibration Analysis of Cracked Structure, Bhusawal, India. IJERT, 3 (2)
(2014).

[23] M. Quila, S. C. Mondal and S. Sarkar, Free Vibration Analysis of an Un-cracked & Cracked Fixed Beam , Jadavpur
University, India, Journal of Mechanical and Civil Engineering, 11 (2014) 76-83.

[24] M. J. Prathamesh and M. A. Chakrabarti, Free Vibration Analysis of Cracked Beam, VIJTI, Mumbai, Journal of
Engineering Research and Applications, 3 (6) (2013) 1172-1176.

[25] M. Behzad, A. Meghdari, and A. Ebrahimi, A New Approach For Vibration Analysis Of A Cracked Beam, Mechanical
Engineering Department, Sharif University of Technology, Tehran, IRAN, 2005.

[26] Shen MHH and Chu YC. Vibrations of beams with a fatigue crack. Comp Struct 1992; 45(1): 79-93.

[27] Cacciola P and Muscolino G. Dynamic response of a rectan_gular beam with a known non-propagating crack of
certain or uncertain depth. Comp Struct 2002; 80(27-30): 2387-2396.

[28] Sholeh K, Vafai A and Kaveh A. Online detection of the breathing crack using an adaptive tracking technique. Acta
Mech 2007; 188(3-4): 139-154

[29] Clark R, Dover WD and Bond LJ. The effect of crack closure on the reliability of NDT predictions of crack size. NDT Int
1987; 20(5): 269-275.

[30] Abraham ONL and Brandon JA. The modelling of the opening and closure of a crack. J Vib Acoust 1995; 117(3A):
370-377.

[31] Cheng SM, Wu XJ, Wallace W and Swamidas ASJ. Vibrational response of a beam with a breathing crack. J Sound
Vib 1999; 225(1): 201-208.

[32] Douka E and Hadjileontiadis LJ. Time—frequency analy_sis of the free vibration response of a beam with a
breath_ing crack. NDT&E Int 2005; 38(1): 3—10

[33] Kisa M and Brandon J. The effects of closure of cracks on the dynamics of a cracked cantilever beam. J Sound Vib
2000; 238(1): 1-18

[34] Kapania RK, Raciti S. Recent advances in analysis of laminated beams and plates: Part I. Shear effects and buckling;
Part Il. Vibrations and wave propagation. AIAA Journal, 27 (1989): 923-46.

[35] Yuan, F.G. and R.E. Miller. A higher order finite element for laminated composite beams. Computers & Structures,
14 (1990): 125-150.

[36] Dipak Kr. Maiti& P. K. Sinha. Bending and free vibration analysis of shear deformable laminated composite beams



by finite element method. Composite Structures, 29 (1994): 421- 431

[37] Teboub Y, Hajela P. Free vibration of generally layered composite beams using symbolic computations. Composite
Structures, 33 (1995): 123-34.

[38] Banerjee, J.R. Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix
method. Computers & Structures, 69 (1998): 197-208

[39] Bassiouni AS, Gad-Elrab RM, Elmahdy TH. Dynamic analysis for laminated composite beams. Composite Structures,
44 (1999): 81-7.

[40] Kisa “Free vibration analysis of a cantilever composite beam with multiple cracks”. Composites Science and
Technology 64, 1391-1402. 2003.

[41] P. G. KIRMSHER 1944 Proceedings of the American Society of Testing and Materials 44, 897-904. The effect of
discontinuities on the natural frequency of beams.

[42] T. G. Chondros, A. D. Dimarogonas, and J. Yao, “Vibration of a beam with a breathing crack,” Journal of Sound and
Vibration, vol. 239, no. 1, pp. 57-67, 2001.

[43] O. N. L. Abraham and J. A. Brandon, “The modelling of the opening and closure of a crack,” Journal of Vibration &
Acoustics, vol. 117, no. 3, pp. 370-377, 1995.

[44] S. M. Cheng, A. S. J. Swamidas, X. J. Wu, and W. Wallace, “Vibrational response of a beam with a breathing crack,”
Journal of Sound & Vibration, vol. 225, no. 1, pp. 201-208, 1999.

[45] N. Wu, “Study of forced vibration response of a beam with a breathing crack using iteration method,” Journal of
Mechanical Science and Technology, vol. 29, no. 7, pp. 2827-2835, 2015.

[46] J.M. Silva, A.).L. Gomes, Experimental dynamic analysis of cracked free—free beams, Experimental Mechanics 30 (1)
(1990) 20-25.

[47] X.F. Yang, Vibration Based Crack Analysis and Detection in Beams Using Energy Method, PhD Thesis, Faculty of
Engineering and Applied Science Memorial University of Newfoundland, 2001.

[48] P.F.Rizos, N. Aspragathos, A.D. Dimarogonas, Identification of crack location and magnitude in a cantilever beam
from the vibration modes, Journal of Sound and Vibration 138 (3) (1990) 381—-388.

[49] B.P. Nandwana, S.K. Maiti, Detection of the location and size of a crack in stepped cantilever beams based on
measurements of natural frequencies, Journal of Sound and Vibration 203 (3) (1997) 435-446.

[50] T.D. Chaudhari, S.K. Maiti, A study of vibration of geometrically segmented beams with and without crack,
International Journal of Solids and Structures 37 (2000) 761-779.

[51] D.K.L. Tsang, S.0. Oyadiji, A.Y.T. Leung, Dynamic analysis of a penny-shaped crack by the fractal-like finite element
method, Proceedings of the Fifth International Conference on Vibration, Nanjing, China, September 2002, pp. 59-65.

[52] S. Chinchalkar, Determination of crack location in beams using natural frequencies, Journal of Sound and Vibration
247 (3) (2001) 417-429.

[53] W.M. Ostachowicz, M. Krawczuk, Vibration analysis of a cracked beam, Computers and Structures 77 (2) (1990)
327-342.



[54] S.P. Lele, S.K. Maiti, Modeling of transverse vibration of short beams for crack detection and measurement of crack
extension, Journal of Sound and Vibration 257 (3) (2002) 559-583.

[55] C.G. Go, Y.S. Lin, Infinitely small element for dynamic problems of cracked beam, Engineering Fracture Mechanics
48 (4) (1994) 475-482.

[56] W. Dahmen, Wavelet methods for PDES, some recent develops, Journal of Computational Applied Mathematics
128 (2001) 133-185.
[57] Albert Cohen, Numerical Analysis of Wavelet Methods, North-Holland Press, Amsterdam, 2003.

[58] S. Jaffard, P. Laurengot, Orthonormal wavelets, analysis of operators, and applications to numerical analysis, in: C.K.
Chui (Ed.), Wavelets—A Tutorial in Theory and Applications, Academic Press, New York, 1992, pp. 543—-601.

[59] J. Ko, A.J. Kurdila, M.S. Pilant, A class of finite element methods based on orthonormal, compactly supported
wavelets, Computational Mechanics 16 (1995) 235-244.

[60] G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Communications on Pure
and Applied Mathematics 44 (1991) 141-183.

[61] C. Canuto, A. Tabacco, K. Urban, The wavelet element method: part I. Construction and analysis, Applied and
Computational Harmonic Analysis 6 (1999) 1-52.

[62] C. Canuto, A. Tabacco, K. Urban, The wavelet element method: part Il. Realization and additional features in 2D and
3D, Applied and Computational Harmonic Analysis 8 (2000) 123-165.

[63] J.X. Ma, J.J. Xue, S.J. Yang, Z.J. He, A study of the construction and application of a Daubechies wavelet-based beam
element, Finite Elements in Analysis and Design 39 (10) (2003) 965-975.

[64] X.F. Chen, S.J. Yang, J.X. Ma, Z.J. He, The construction of wavelet finite element and its application, Finite Elements
in Analysis and Design 40 (5-6) (2004) 541-554.

[65] MLI. Friswell, J.E.T. Penny, The practical limits of damage detection and location using vibration data, Proceedings of
the 11th VPl and SU Symposium on Structural Dynamics and Control, Blacksburg, 1997, pp. 31-40.

[66] S. R. Shuvo, “Detection of Cracks in a Cantilever Metal Plate Using Vibrational Techniques,” September, 2020.



