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Abstract 

 
 
 

The key performance parameters of an MIM(metal-insulator-metal) 

surface plasmonic waveguide having periodic corrugations has been 

investigated. The transmittance, taking into account a wide range of 

optical wavelength was demonstrated by rigorous numerical calculations 

against the variation of different structural aspects. The results indicate 

that a very satisfactory filtering characteristic can be achieved by this 

variation of the parameters The output of this investigation has the 

potential to develop ultra-compact photonic filters for higher 

integration. 
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Chapter 1 

 

Introduction 

 

In metals, light can couple to electrons to form a wave that is bound to the surface 

of the metal. This wave is called the surface plasmon. The surface plasmon mode is 

generally characterized by intense fields that decay exponentially away from the 

interface between the metal and the surrounding environment. Surface plasmons 

display very important properties, including strongly enhanced local fields; 

tremendous sensitivity to changes in the local environment; and the ability to 

localize energy to tiny volumes not restricted by the wavelength of the exciting light. 

 

Plasmonics have become one of the most attractive research interest in present times. 

Its ability to overcome the diffraction limit has made it such attractive[1-3].This ability 

has provided three major advantages, namely faster speed of operation, smaller 

devices, less power consumption. Other probable applications of surface plasmon 

polariton(SPP) includes  sub-wavelength imaging[4, 5], Bragg’s reflector[6], bio-

sensing[7], meta materials[8] and also can be implemented in solar cells[9, 10]. 

Photons travelling on optical fibres or thin film will be used in those optical processors 

making the system lighter and more compact[11].  

 

Due to their unique properties, plasmons have found a broad range of applications 

in various areas of science. In chemistry and biology for example, the sensitivity of 

surface plasmons is used to form the basis for powerful chemical and biochemical 

detectors that can monitor molecular binding events. In optics, the large field 

strengths of surface plasmons can dramatically enhance a variety of phenomena 

such as Raman scattering and light transmission through sub-wavelength apertures. 

In addition, the size of certain SPP configurations can be smaller than the operation 
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wavelength, thus offering a path to decrease the size of optical components beyond 

the diffraction limit.  

 

MIM [12] structures provide higher confinement on the other hand IMI[13, 14] 

structures facilitate longer propagation length. Relentless research is going on to 

investigate the tradeoff between confinement and propagation loss.  For small 

corrugations losses are found to be very low while a high loss is expected with the 

gradual enlargement of corrugations[13][14][15]. Photonic crystal fiber, nonlinear 

photonic crystal and photonic  bandgap microcavities[16-19] have been designed so 

far. Plasmonic waveguide designing has become a prominent domain where the 

researchers are working at length. Jia et al [20]  have proposed a nanoplasmonic 

high pass wavelength filter based on an MIM waveguide. Asanka et al.[21] have 

designed an improved transmission model for MDM waveguide with stub structure. 

Binfeng et al. [22]have reported an analysis of a nanoscale plasmonic filter on a 

rectangular MIM waveguide. 

 

 

 

1.1: Brief Introduction of Surface Plasmon Polariton 

Surface Plasmon Polaritons (SPPs) are electromagnetic surface waves confined to 

the interface of two materials with dielectric functions of opposite signs, i.e. metal / 

dielectric. They occur as a result of a resonant interaction between an illuminating 

electromagnetic wave and a collective surface electron density oscillation of the free 

electrons of the conductor. 
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[Fig. 1.1] Illustration of SP E fields coupled to electron density oscillations, at a  

            metal / dielectric half space. 

 

 

1.2: Literature Review 

 

Since the late 1950’s, research on the topic of surface plasmons has grown steadily, 

receiving a number of important growth boosts along the way. In particular, landmark 

articles by Ritchie [1], Kretschmann [2] and Otto [3] in the late 1950’s and 1960’s 

sparked an interest in other researchers to join the field - not only from a fundamental 

physics research point of view, but also with the realisation of the potential that SPPs 

offer to other fields; for example as the foundations for molecular biosensors. Another 

major expansion to the field arrived in the mid 1990’s, when the availability of new 

nanoscale fabrication technologies created previously un-accessible opportunities to 

control SPP properties. This enabled researchers to tailor design surface topographies 

on the nanoscale which revealed new aspects of their underlying science, and in-doing 

so, inspired and encouraged new groups to join the ever-growing field of plasmonics. 
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[Fig. 1.2] Number of papers containing “surface plasmon” in the title from 1960 to 

2008 [4]. 

 

 

 

 

 

 

 

 

 

 

 

These points are emphasised in [Fig. 2], which displays the number of published 

articles containing the phrase “surface plasmon” in the title in a given year [4]. 
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Although this is not an exact count of the number of papers dealing with research in 

the field, it is a good indication of its growth from 1960, when Stern and Ferrell first 

dubbed the term “Surface Plasmon” (from “surface plasma oscillation”) . Although it 

was the middle of the 20th century that marked the beginning of direct research on 

SPs, properties of SPPs have been taken advantage of long before the onset of 

scientific plasmon research. (Note: SPs differs slightly in definition from SPPs (a term 

introduced in 1974 ), where ‘polariton’ indicates a coupled oscillation of bound 

electrons and light at a metallic interface] 

 

The parameters of several metals have been reported to our knowledge. Jin et al.[23] 

determined the modified Debye model parameters for gold which are applicable in 

the wavelength range of 550-950 nm. Krug et al. [24] reported the gold parameters 

that are applicable in the wavelength range of 700-1000 nm. W.H.P. Pernice et al.[25] 

extracted the parameters for Nickel using Lorentz-Drude model. A.D. Rakic et al.[26] 

reported the parameters for Nickel, Palladium, Titanium and 8 other metals using 

Lorentz-Drude and Brendel-Bormann Model. M.A. Ordal et al.[27]  extracted the 

parameters for fourteen metals in the infrared and far-infrared range. 

 

 

Bends, splitters and recombinations are inevitable parts of the optoelectronic devices. 

Several works on the analysis of SPP propagation in these shapes have been reported 

to our knowledge. G. Veronis et al. [28]  showed that bends and splitters can be 

designed over a wide frequency range without much loss by keeping centre layer 

thickness small compared to wavelength. H. Gao et al.[29]  investigated the 

propagation and combination of SPP in Y-shaped channels. B. Wang et al.[30] analyzed 

two structures which consist of splitting and recombination. In the past years, several 

plasmonic couplers have been proposed by different researchers. G. Veronis et. 

Al.[31] proposed a coupler with multi-section tapers. P. Ginzburg et al.[32] reported a 

λ/4 coupler to couple optical modes from a 0.5m to 50nm wide plasmonic waveguide. 

D. Pile et al.[33]  presented an adiabatic and a non-adiabatic tapered plasmonic 

coupler. R. Washleh et al.[34] reported an analysis on nanoplasmonic air-slot coupler 

and its fabrication steps. 
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1.3: Thesis Objective 

 
In our thesis we mainly focused in designing a plasmonic waveguide which 

has the characteristics of a high pass filter. In order to achieve that we had go 

through a number of learning steps. So basically the objectives are 

 To develop a simulation model based on the FDTD method that is capable of 

simulating the device. 

 To obtain the output transmittance of the designed structure so as to 

compare the results with a high pass filter and thus validate the authenticity 

of the waveguide. 

 Finally summarize the conclusions from the results obtained and discuss the 

future potentials of the accomplished work. 

 

1.4: Thesis Organization 

 

Our approach has been organized in the following way:- 

 

 In chapter 2 we described the basic theory of SPP propagation along 

with the introduction to fundamental knowledge and necessary 

mathematical formulations. 

 Material modelling is an indispensable part in our thesis work. So in 

chapter 3 we described the widely used models for material 

modelling. 

 In our entire simulations we used FDTD method. In chapter 4 an 

introduction to FDTD fundamentals for 1D and 2D are given. Along 

with the various aspects of FDTD, chapter 4 also introduces the 

absorbing boundary conditions. 

 In chapter 5 modified Debey model, Lorentz model is discussed and 

also a developed simulation model is established. 
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 In chapter 6 the waveguide structure design and the variation of the 

corrugation parameters is discussed. 

 In chapter 7 the performance of the waveguides and the transmission 

spectra are analysed. 
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Chapter 2 

 

Propagation of SPP 

 

2.1: Introduction 

 

Surface Plasmon Polaritons (SPPs), are infrared or visible-frequencyelectro-magnetic 

waves, which travel along a metal-dielectric or metal-air interface. The term "surface 

plasmon polariton" explains that the wave involves both charge motion in the metal 

("surface plasmon") and electromagnetic waves in the air or dielectric ("polariton"). 

 

 

Electromagnetic wave propagation is obtained from the solution of Maxwell’s 

equations in each medium, and the asso-ciated boundary conditions. Maxwell’s 

equations of macroscopic electromagnetism can be written as follows: 

 

From Gauss’s Law for the electric field      

 

                                           ∇. D = ρext                                                                                    (2.1) 

From Gauss’s Law for the magnetic field 

                                           ∇. B = 0                                                                                      (2.2) 

From Faraday’s Law 

                                           ∇ × E = −
∂B

∂t
                                                                              (2.3) 

From Ampere’s Law 

                                           ∇ × H = Jext +
∂D

∂t
                                                                      (2.4) 

Here, 

 

E is the electric field vector in volt per meter 
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D is the electric flux density vector in coulombs per square meter 

 

H is the magnetic field vector in amperes per meter 

 

B is the magnetic flux density vector in webbers per square meter 

 

ext is the charge density 

 

Jext is the current density 

 

The four macroscopic fields can be also linked further via the polarization P and 

magnetization M by 

 

                                     D = ε0E + P                                                                                    (2.5) 

                                    H =
1

μ0
B −M                                                                                   (2.6) 

Now this equations can be simplified for linear, isotropic, nonmagnetic media as 

 

                                    D = ε0εrE                                                                                         (2.7) 

                                     B = μ0μrH                                                                                       (2.8) 

where, 

 

ε0 is electric permittivity of vacuum in Farad per meter 

 

μ0is the magnetic permeability of vacuum in Henry per meter 

 

εris the relative permittivity 

 

μris the relative permeability 
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2.2: Electromagnetic Wave Equations 

 

The EM wave equation which describes the field amplitude in time and space can be 

derived from Maxwell’s equations. The wave equation can be derived by taking curl 

of Faraday’s law 

 

 

                              ∇ × ∇ × E = −
∂B

∂t
                                                                                    (2.09) 

or, 

                                  ∇ × ∇ × E = ∇ × (−μ
∂H

∂t
)                                                                     (2.10) 

with the identities ∇×∇×E = ∇(∇.E)−∇2E and ∇×H =ε
∂E

∂t
 we can simplify 

the above equation as 

                            ∇(∇.E)−∇2E=−με
∂2y

∂t2
                                                                              (2.11) 

From Gauss’s law we can conclude that the divergence of E in a constant permittivity 

over space is zero. i,e ∇.E = 0 

Therefore, the final wave equation for electric field will be 

 

                                ∇2E −  με
∂2E

∂t2
= 0                                                                                (2.12)       

Similarly the wave equation for magnetic field can be derived as 

 

                                ∇2H−  με
∂2H

∂t2
= 0                                                                               (2.13)  

So, the general form of wave equation can be written as 

 

                                ∇2U −
1

υp
2  (

∂2H

∂t2
) = 0                                                                             (2.14)  

If the variation of the dielectric profile " is negligible over distance, then we can write 

 

                               ∇2E − 
ε

C2
∂2E

∂t2
= 0                                                                                  (2.15)   
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Where C =
1

√μ0 ε0
 velocity of light 

The solution of wave equation is a harmonic function in time and space. Now if we 

assume this as a harmonic time dependence of the electric field, 

 

                                E(r, t) = E(r)e−jωt                                                                               (2.16)   

 

 

Therefore we get the Helmholtz equation  

       

                                      ∇2E + K0
2εE = 0                                                                           (2.17)   

where the vector of propagation K0 =
ω

C
 , in free space 

 

For simplicity let us assume the propagation of wave is along the x-direction of the 

Cartesian co-ordinate system and no spatial variation in y-direction. So we can write 

 

                        E(x, y, z) = E(z)ejβz                                                                                  (2.18)   

 

Where β = Kx which is call the propagation constant 

Now inserting the value of E the wave equation will be 

                          
∂2E(z)

∂z2
+ (K0

2ε − β2)E = 0                                                                           (2.19)  

Similarly we can derive the equation for the magnetic field H. The field E and H can be 

decomposed in cartesian co-ordinate system as 

 

                      E = Ex. a⃗ x + Ey. a⃗ y + Ez. a⃗ z                                                                        (2.20) 

                       H = Hx. a⃗ x + Hy. a⃗ y + Hz. a⃗ z                                                                        (2.21) 

For Harmonic time dependence 
∂

∂t
= −jω and by solving the Ampere’s law and 

Faraday’s law, we get 

 

                    
∂Ez

∂y
−
∂Ey

∂z
= jωμ0 Hx                                                                                      (2.22) 
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  ∂Ex

∂z
−

∂Ez

∂x
= jωμ0 Hy                                                                                   (2.23) 

 

                       
∂Ey

∂x
−
∂Ex

∂y
= jωμ0 Hz                                                                                   (2.24) 

 

                      
 ∂Hz

∂y
−

∂Hy

∂z
= jωε0 εEx                                                                                   (2.25) 

 

                       
∂Hx

∂z
−
∂Hz

∂x
= jωε0 εEy                                                                                  (2.26) 

 

                      
∂Hy

∂x
−
∂Hx

∂y
= jωε0 εEz                                                                                   (2.27) 

 

As the propagation is in x-direction in the form of ejβx which follows  
∂

∂x
= −jβ. 

The homogeneity in y- direction make 
∂

∂y
= 0. So the equation will be simplified as 

                    −
∂Ey

∂z
= jωμ0 Hx                                                                                              (2.28) 

 

                        
∂Ex

∂z
− jβEz = jωμ0 Hy                                                                                 (2.29) 

 

                       jβEy = jωμ0 Hz                                                                                             (2.30) 

 

                       
 ∂Hy

∂z
= jωε0 εEx                                                                                             (2.31) 

 

                       
∂Hx

∂z
− jβHz = jωε0 εEy                                                                                 (2.32) 

 

                       jβHy = jωε0 εEz                                                                                            (2.33) 

 

The solution of the above equation can be characterized by two sets of solution with 

the polarized characteristics which are, Transverse Magnetic (TM) modes and 

Transverse Electric (TE) modes. The equations belong to TM modes are 
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                           Ex = −j
1

ωε0 ε

∂Hy

∂z
                                                                                      (2.34) 

 

                           Ez = −β
1

ωε0 ε
Hy                                                                                      (2.35) 

 

Therefore, the wave equation for TM Polarized wave will be 

 

                          
∂2Hy

∂z2
+ (K0

2ε − β2)Hy = 0                                                                           (2.36)  

Similarly the TE polarized equations will be 

 

                          Hx = j
1

ωμ0 

∂Ey

∂z
                                                                                            (2.37) 

 

                        Hz = β
1

ωμ0 
Ey                                                                                              (2.37) 

And the corresponding TE wave equation will be 

 

                  
∂2Ey

∂z2
+ (K0

2ε − β2)Ey = 0                                                                               (2.38)  

 

 

2.3: Single Interface SPP 

 

The simplest configuration of SPP propagation is at single interface, that is in between 

dielectric, having the positive dielectric constant ε2 and metal, having the negative 

dielectric constant ε1. For metal the bulk plasmon frquency will be ωp and the 

amplitude decays perpendicular to the z− direction. 

For the TM solutions in both spaces: metal and dielectric will be for z > 0 

                        Hz(z) = A2e
jβxe−k2z                                                                                  (2.40)  
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F                                               Fig 2.1: SPP at the Single interface. 

 

            Ex(z) = jA2
1

ωε0 ε2
k2e

jβxe−k2z                                                                             (2.41)  

    

            Ez(z) = −A1
β

ωε0 ε2
ejβxe−k2z                                                                                 (2.42)  

 

And for z < 0 

 

            Hy(z) = A1e
jβxek1z                                                                                                (2.43)  

 

         Ex(z) = −jA1
1

ωε0 ε1
k1e

jβxek1z                                                                               (2.44)  

 

          Ex(z) = −A1
β

ωε0 ε1
ejβxe−k1z                                                                                   (2.45)  

The continuity of  Hy and εiEz  at the metal dielectric interface gives A1 = A2 and 

          
k2

  k1
= −

ε2

ε1
                                                                                                                      (2.46)  

The surface wave exists at the metal dielectric interface with opposite sign of their 

real dielectric permittivity. So, we can write 

 

         k1
2ε = β2 − k0

2ε1                                                                                                         (2.47)  
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         k2
2ε = β2 − k0

2ε2                                                                                                         (2.48)  

The dispersion relation of SPPs propagation can be found as 

 

       β = k0√
ε1ε2

ε1+ε2
                                                                                                               (2.49) 

The TE surface modes can be expressed as 

 

       Ey(z) = A2e
jβxe−k2z                                                                                                  (2.50) 

 

      Hx(z) = −jA2
β

ωμ0 
k2e

jβxe−k2z                                                                                   (2.51) 

 

     Hz(z) = −A2
β

ωμ0 
k2e

jβxe−k2z                                                                                     (2.52) 

for z > 0, and 

 

     Ey(z) = A1e
jβxe−k1z                                                                                                     (2.53) 

 

    Hx(z) = jA1
β

ωε0 ε1
k1e

jβxek1z                                                                                        (2.54) 

 

   Hz(z) = A1
β

ωε0 ε1
k2e

jβxek1z                                                                                          (2.55) 

for z < 0. The continuity of Ey and Hx requires 

 

   A1 (k1 + k2) = 0                                                                                                                  (2.56) 

 

The surface requires that the real part of k1 and k2 should be greater than zero for 

confinement. This will be satisfied if A1 = A2 = 0. Therefore no surface modes for the 

TE polarization. SPP only exist for TM mode polarization. 

 

 

2.4: Double Interface SPP 
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Two mostly used double interface configurations of SPP waveguides are: Metal-

Dielectric-Metal(MDM) and Dielectric-Metal-Dielectric (DMD). In these cases SPPs are 

formed on both interfaces. When the distance is shorter than decay distance, it forms 

coupled mode of SPP. This coupled mode of propagation can also be sub-divided into 

even and odd modes, as shown in the figure 

 

 

                                            Fig 2.2: SPP at the double interface. 
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Chapter 3 

 

Material Modelling 

 

3.1: Introduction 

 
At low frequencies or for long wavelengths metals act as perfect conductors. Since it 

has zero field, they do not show any dispersive behavior. But at higher frequen-cies 

such as optical range metals behave as dispersive materials which means that there 

exists field inside metal. And for the frequencies higher than optical range metals act 

as dielectrics. Properties of SPPs depend highly on the material re-sponse to light. In 

this chapter we will be studying about the material supporting SPP, descriptions and 

derivations of different models for describing the behavior of metal in the presence of 

light. 

Now in presence of an external oscillating electromagnetic field, three vectors can 

determine the behavior of any material. Such as: D (electrical flux density), E (electric 

field intensity) and P (polarization density). In frequency domain the corresponding 

equation will be 

 

                   D(ω) = ε(ω)E(ω)                                                                                            (3.1) 

                 P(ω) = ε0χ(ω)E(ω)                                                                                          (3.2) 

                   D(ω) = ε0E(ω) + P(ω)                                                                                       (3.3) 

 

Combining this two equations we get 

 

                  D(ω) = ε0E(ω)(1 + χ(ω))                                                                                     (3.4) 

 

Where χ is the electric susceptibility which measures how easily it is polarized in 

response to an applied electric field, and it is a dimensionless quantity. 
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Finally the relation between the the permittivity and susceptibility is 

 

                 ε(ω) = ε0(1 + χ(ω))                                                                                     (3.5) 

 

 

So the relative permittivity will be 

 

                 εr(ω) = 1 + χ(ω)                                                                                           (3.6) 

 

For linear isotropic materials such as glass this above values become simple. But for a 

dispersive material, the frequency dependent permittivity and susceptibility should 

be modeled perfectly for getting the perfect response of the material for certain 

electromagnetic excitation. Some widely used material models are Drude model, 

Lorentz model, Debye model and Lorentz-Drude model. 

 

 

3.2: Different Material Models 

 

3.2.1: Drude Model 

 

The Drude model of electrical conductionwas proposed in 1900, by Paul Drude to 

explain the transport properties of electrons in materials (especially metals). The 

model, which is an application of kinetic theory. The Drude model considers the 

metal to be formed of a mass of positively charged ions from which a number of 

"free electrons" were detached. These may be thought to have become delocalized 

when the valence levels of the atom came in contact with the potential of the other 

atoms. The electrons in a metal are subjected to two forces, such as 

1. Driving force Fd  

2. Damping force Fg  

 

The driving force and the damping force can be expressed as 

https://en.wikipedia.org/wiki/Kinetic_theory_of_gases
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                               Fd = qE = −eE                                                                                   (3.6) 

                               Fg = −Гυ                                                                                              (3.7) 

As the two forces are opposite to each other, the resultant force will be 

                               F = Fd − Fg                                                                                          (3.8) 

 

From Newton’s first law of motion we can write 

 

                           mr′′ = −eE + Гr′                                                                                  (3.9) 

 

where, 

m is the mass of an electron 

 

Γ is the damping constant in Newton second per meter 

r is the displacement in meter. 

v is the velocity of the electron . 

q is the electrons charge. 

The prime indicates differentiation order with respect to time 

 

For time harmonic electric field and time harmonic displacement the equation will be 

  

                  E(t) = E0e
−jωt ⇔ E(ω)                                                                                    (3.10) 

                   r(t) = R0e
−jωt ⇔ R(ω)                                                                                    (3.11) 

 

From equaion 3.10 the frequency domain form will be 

                     mR′′(ω) − ГmR′(ω) + eE(ω) = 0                                                          (3.12) 

 

The derivatives of frequency domain will give                                                                    

  

                  −mω2R′′(ω) + jωГmR′(ω) + eE(ω) = 0                                               (3.13) 
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Simplifying the above equation, the displacement R will give 

 

                  R(ω) =
−e

m(jГω−ω2)
E(ω)                                                                               (3.14) 

 

The polarization for n number of electrons will be 

 

                 P(ω) = −neR(ω)                                                                                          (3.15) 

Or, 

                  P(ω) =
e2n

m(jГω−ω2)
E(ω)                                                                               (3.16) 

An expression for the susceptibility can also be obtained from the above equation 

and that will be 

 

                   
P(ω)

ε0E(ω)
=

e2n

ε0m(jГω−ω
2)
= χ(ω)                                                                      (3.17) 

 

 

Now substituting this value in equation 3.6 we get 

 

                   εr(ω) = 1 +
e2n

ε0m(jГω−ω
2)

                                                                            (3.18) 

 

if we consider ωp as the plasma frequency that will provide 

                   ωp
2 =

e2n

ε0m
                                                                                                       (3.19) 

 

So, the frequency dependent flux density will be 

 

                  D(ω) = ε0(1 +
ωp
2

(jГω−ω2)
)E(ω)                                                                  (3.20) 

 

For low frequency, the term Гω ≪ 1        therefore, the dispersive relation can be 

reduced to 
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                D(ω) = ε0(1 −
ωp
2

(ω2)
)E(ω)                                                                               (3.21) 

 

 

3.2.2: Lorentz Model 

 
The Lorentz model gives a simpler picture of the atom. The model is a very useful tool 

to visualize atom-field interaction. In this model, Lorentz modeled an atom as a mass 

(nucleus) connected to another smaller mass (electron). However, electrons in the 

Lorentz model do not move freely inside the metal instead, they are bound to atoms. 

So, there is a restoring force acting between them which can be denoted by Fr 

                                   

                                                   Fig 3.1: Lorentz model 

        

The restoring force can be written as 

                   Fr = −kr                                                                                                                   (3.22) 

 

where k is the spring constant in Newtons per meter. 

Similarly from the law of motion we can say that 

 

                  mr′′ + Гmr′(ω) + mkr + eE = 0                                                              (3.23) 
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In frequency domain the above equation will be 

 

                    R(ω)(mω0
2 + jωГm−mω2 − eE(ω) = 0                                          (3.24) 

Considering the natural frequency ω0 = √
k

m
   we get 

                    R(ω) =
−e

m(ω0
2+jωГ−ω2)

E(ω)                                                                    (3.25) 

Therefore the susceptibility can be found as 

 

                
P(ω)

ε0E(ω)
=

e2n

ε0m(ω0
2+jωГ−ω2)

= χ(ω)                                                              (3.26) 

 

So from the equation 3.4 the expression for D can be expressed in frequency domain 

as 

 

                  D(ω) = ε0(1 +
ωp
2

ω0
2+jωГ−ω2

)E(ω)                                                           (3.27)           

 

3.2.3: Lorentz Drude Model 

 
In the Lorentz-Drude (LD) model, which is the most general form when an EM field is 

applied to a metal, the electrons of two types oscillate inside the metal, and they 

contribute to the permittivity. The free electrons contribute a permittivity of the 

Drude model, and the bound electrons contribute a permittivity of the Lorentz model. 

The permittivity in the LD model is given by 

 

                    ε = εfree + εbound                                                                                 (3.29) 

 

 

Where 

 

                    εfree = 1 +
ωp

(jГω−ω2)
                                                                              (3.30) 
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                    εbound =
ωp

ω0+jωГ−ω
2                                                                             (3.31) 

 

 

Therefore combining both the model together the electric field density D in fre-quency 

domain will be 

 

                  D(ω) = ε0(1 +
ωp

jГω−ω2
+

ωp
2

ω0
2+jωГ−ω2

)E(ω)                                       (3.32) 

 

The above relation is known as the Lorentz-Drude model. 

 

 

3.2.4: Debye Model 

 
The Debye model was first developed by Peter Debye in the year 1912. According to 

the Debye model,materials are made of electric dipoles, so that, when an electric field 

is applied, these dipoles follow the behavior of the applied field with some relaxation 

time. If the electric field is oscillating at a slow frequency, then the polarization will be 

strong. On the other hand, a fast oscillating field means low polarization. From 

another point of view, materials with long relaxation times have low polarization or 

no polarization at all, and materials with short relaxation times have strong 

polarization. Metals are known to have very short relaxation times. Thus, polarization 

in metals is strong. If a DC electric field is applied to a dielectric, the polarization takes 

some time to follow the electric field. At steady state, it will be 

 

                     P(t) = P∞ (1 − e
−t τ⁄ )                                                                       (3.33) 

 

where P (t) is the instantaneous polarization 

P∞ is the polarization in the steady state  is the time constant. 

The derivative of the above equation will be 
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dP(t)

dt
=

1

τ
P∞ e

−t τ⁄                                                                                      (3.34) 

 

Now combining both the equations we get 

 

                    P(t) = P∞ − τ
dP(t)

dt
                                                                               (3.35) 

 

As P∞ = ε0 (ε− 1) E (t) so the equation will be reduced to 

 

                    P(t) = ε0 (ε −  1) E (t)  − τ
dP(t)

dt
                                                       (3.36) 

or, 

                    ε0 (ε −  1)E (t) = P(t) + τ
dP(t)

dt
                                                         (3.37) 

In frequency domain the equation will be 

 

                    ε0 (ε −  1)E (ω) = P(ε) + jωτP(ω)                                                 (3.38) 

Or, 

                    P(ω) =
ε0 (ε− 1)

1+jωτ
E(ω)                                                                           (3.39) 

 

The susceptibility can be expressed as 

                   
 (ε− 1)

1+jωτ
=

P(ω)

ε0E(ω)
= χ(ω)                                                                          (3.40) 

 

The relative permittivity will be 

                   ε0(ω) =
 (ε− 1)

1+jωτ
+ 1 = 1 + χ(ω)                                                          (3.41) 

 

For the permittivity function to fit in the range from 0 frequency to infinity frequency, 

the boundary conditions are εr(0) = εs (0) and   εr(∞ ) = ε∞ (0) 

So, 

                   ε(ω) = ε∞ +
 (εs− ε∞)

1+jωτ
                                                                            (3.42) 

To take into account the material losses that SPPs encounter, another term is added 

with the permittivity of metal. So the above equation can be expanded to 
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                   ε(ω) = ε∞ +
 (εs− ε∞)

1+jωτ
− j

σ

ωε0
                                                                (3.43) 

 

In real and imaginary term the Debay model is 

                 εr(ω) = ε′(ω) − jε′′(ω)                                                                        (3.44) 

Where- 

                 ε′(ω) = ε∞ +
 (εs− ε∞)ωτ

1+jω2r2
                                                                        (3.45) 

 

                    ε′′(ω) = ε∞ +
 (εs− ε∞)ωτ

1+jω2r2
+

σ

ωε0
                                                           (3.46) 

 

 

3.3: Material Dispersion 

 
Dispersion can be defined as the variation of the propagating waves wavelength with 

frequency. It is also sometimes defined as the variation of propagating waves wave 

number k =
2π

λ
with angular frequency ω = 2πf. So the one dimensional wave equation 

will be 

 

                        
 ∂2u

∂t2
= υ2

∂2u

∂x2
                                                                                      (3.47) 

 

Where, 

            υ2 =
1

εμ
      

The solution of the above wave equation can be written in phasor form as 

 

                   u(x, t) = ej(ωt−kx)                                                                               (3.48) 

 

Now putting this value in the wave equation we get 

 

                       (jω)2ej(ωt−kx) = υ2(−jk)2ej(ωt−kx)                                             (3.49) 



 26 

 

Finally from this equation we get 

 

                        k = ±
ω

υ
                                                                                              (3.50) 

The + sign is for -x directed wave propagation and - sign is for +x directed wave 

propagation. The magnetic flux density and electric flux density for dispersive medium 

are- 

                      D(ω) = ε(ω)E                                                                                    (3.51) 

                      B(ω) = μ(ω)H                                                                                   (3.52) 

Here both ε(ω) and  μ(ω)  are frequency dependent functions. 
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Chapter 4 

 

Finite Difference Time Domain Method 

4.1: Yee Algorithm 

 
The Yee algorithm is defined as the algorithm used in FDTD simulations. To calculate 

electromagnetic field propagation we want to solve Maxwell’s equation that link 

electric and magnetic field components and its time and space evolution. The basic 

idea being FDTD technique is a successive update of electric and magnetic field 

components that are specially placed in the computational volume. The benefit of 

this scheme is that we can easily draw a electric field loop around a concrete 

component of the magnetic field and vice versa. This simplifies the implementation 

of rotations in the Maxwell equations significantly. 

Every computation step has two parts: 

1 Magnetic field components are updated from electric field components from the 

previous step. 

2 Electric field components are updated from magnetic field components. 

 

For update of any component we need only surrounding field values which makes 

the method suitable for parallelization. 

FDTD is a time domain method, so we are always calculating a evolution of 

electromagnetic field in time. 

The method begins with two of Maxwell’s equations: 

 

                             D
∂H⃗⃗ 

∂t
= −

1

μ
∇ × E⃗⃗                                                                              (4.1) 

 

                             D
∂E⃗⃗ 

∂t
=

1

ε
∇ × H⃗⃗                                                                                  (4.2) 

 

The electric and magnetic fields are three dimensional vectors. Each equation can be 
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converted into three coupled scalar first order differential equations. The derivatives 

are both in space and time. The curl operations of equations 4.1 and equation 4.2 

yields the following six equations in Cartesian coordinates 

 

                           
∂Ez

∂y
−
∂Ey

∂z
= μ

∂Hx

∂t
                                                                                 (4.3) 

 

                           
∂Ex

∂z
−
∂Ez

∂x
= μ

∂Hz

∂t
                                                                                 (4.4) 

 

                           
∂Ey

∂x
−
∂Ex

∂y
= μ

∂Hz

∂t
                                                                                 (4.5) 

 

                          
∂Hz

∂y
−
∂Hy

∂z
= ε

∂Ex

∂t
                                                                                  (4.6) 

 

                          
∂Hx

∂z
−
∂Hz

∂x
= ε

∂Ey

∂t
                                                                                  (4.7) 

 

                          
∂Hy

∂x
−

∂Hx

∂y
= ε

∂Ez

∂t
                                                                                  (4.8) 

 

 

Then the scalar differential equations are converted into difference equations. To do 

that, both space and time discretization is required. For space discretization, Yee 

visualized the field components arranged within a unit cell (voxel). The electric field 

components are stored on the corresponding cell edges, while the magnetic field 

components are stored on the corresponding face centers. The fields are located in a 

way where each E component is surrounded by four 

 

H components and vice versa, which leads to a spatially coupled system of field 

circulations corresponding to the law of Faraday and Ampere. The figure 4.1 shows 

the Yee’s spatial grid. 

 

Considering a two dimensional TM (Transverse Magnetic) polarized field case, 
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 ∂Ex

∂t
=

1

ε

∂Hz

∂y
                                                                                         (4.09) 

 

                         
∂Ey

∂t
=

1

ε

∂Hz

∂x
                                                                                            (4.10) 

 

                           
 ∂Hz

∂t
=

1

μ
(
∂Ex

∂y
−
∂Ey

∂x
)                                                                           (4.11) 

 

Central difference approximation is applied in each of the equations 4.9, 4.10 and 4.11 

which finally conclude in a spatial scalar difference equations in 4.12, 4.13 and 4.14. 

 

 

 

                            

 

 

                                                     Fig 4.1: Yee’s spatial grid. 

                 
∂Ex

∂t
=

1

ε

Hz(i,j)−Hz(i,j−1)

∆y
                                                                                 (4.12) 

 



 30 

                    
∂Ey

∂t
=

1

ε

Hz(i,j)−Hz(i−1,j)

∆x
                                                                         (4.13) 

 

              
∂Hz

∂t
=

1

μ
(
Ex(i,j+1)−Ex(i,j)

∆y
−
Ey(i+1,j)−Ey(i−1,j)

∆x
)                                         (4.14) 

 

In order to consider the time derivatives, the time axis is to be considered as shown 

in 

the figure. The Electric and Magnetic field are mapped half a step apart along the time 

axis. Again applying the central difference approximation the equations 4.12, 4.13 and 

4.14 become: 

 

Ex
n+1(i+

1

2
,j)−Ex

n(i+
1

2
,j)

∆t
=

1

ε

Hz
n+

1
2(i+

1

2
,j)−Hz

n+
1
2(i+

1

2
,j−

1

2
)

∆y
                                                  

 

Ey
n+1(i,j+

1

2
)−Ey

n(i,j+
1

2
)

∆t
= −

1

ε

Hz
n+

1
2(i+

1

2
,j+

1

2
)−Hz

n+
1
2(i−

1

2
,j+

1

2
)

∆y
                  

 

Hz
n+

1
2(i+

1

2
,j+

1

2
)−Hz

n−
1
2(i+

1

2
,j+

1

2
)

∆t
= −

1

μ
(
Ex
n+1(i+

1

2
,j+1)−Ex

n(i+
1

2
,j)

∆y
−
Ey
n(i+1,j+

1

2
)−Ey

n(i,j+
1

2
)

∆x
)                 

 

Each field component depends on the field of previous time step itself and the 

surrounding component in Yee’s algorithm. 
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                        Fig 4.2: The temporal scheme of FDTD method. 

 

Numerical stability of the Yee algorithm is required to be ensured. In an unstable 

algorithm the computed magnitude of electric and magnetic field components 

will gradually increase without limit with the progression of simulation. To 

guarantee numerical stability, the EM field’s propagation should not be faster 

than the allowed limit which is imposed by the phase velocity within the 

material. This is done by limiting time step ∆t using the Courant-Friedrichs-Lewy 

criterion for the general Yee FDTD grid as follows: 
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                   ∆t ≤

{
 
 

 
 

1

υ
p√

1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2

}
 
 

 
 

                                                                          (4.15) 

where ∆x, ∆y and ∆z indicate the spatial Cartesian grid increments. 

 

4.2: Absorbing Boundary Condition 

An absorbing boundary condition simulates infinite extent along a direction. This is 

accomplished by padding the side of the computational domain with artificial 

materials that absorbs incident electromagnetic fields. These artificial materials are 

convolution perfectly match layer(CPML), which currently offer the best absorption 

in the finite-time-difference-method. 

 

4.3: Implementation of Material Dispersion in FDTD 

 
If the permittivity and permeability of a material are functions of frequency then the 

material has the property of dispersion. So in order to accommodate dispersion 

property we need to have dispersive FDTD techniques. The FDTD based algorithms 

for the analysis of material dispersion can be divided into three types: 

 

1) The auxiliary differential equation (ADE) 

2) The Z-transform methods, and  

3) Methods base on discrete convolution of the dispersion relation or the recursive 

convolution (RC) method [35].  

 

4.3.1: The Auxiliary Differential Equation 

Taflove introduced the auxiliary differential equation to the FDTD modeling in order 

to integrate the dispersion relation into the model. The dispersion relation is 

converted from frequency domain to time domain through Fourier transform in the 

basic step of the procedure. The Fourier transform results in a relationship between 

the new E field value and the previous E and D values, which can be added to the 

algorithm to update the E fields. The new algorithm with ADE becomes 
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∂

∂t
Hz = −

1

μ
(
∂Ex

∂y
−
∂Ey

∂x
)                                                                     (4.16) 

 

                        
∂

∂t
Dx =

∂Hz

∂y
                                                                                          (4.17) 

 

In order to get the function relating D to E in a dispersive medium, we start with 

 

                   D(ω) = ε0
σ

jω
E(ω)                                                                                 (4.18) 

 

Multiplying by   jω 

 

                  jωD(ω) = ε0σE(ω)                                                                               (4.19) 

Applying the Fourier transform in equation 4.19 

 

 

                   
d

dt
D(t) = ε0σE(t)                                                                                  (4.20) 

 

Discretizing equation 4.20 equation using forward difference method 

 

                 
Dn−Dn−1

∆t
= ε0σE(t)                                                                                  (4.21) 

 

Finally solving for E, we find the update equation 

 

                 En =
Dn−Dn−1

ε0σ∆t
                                                                                           (4.22) 
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4.3.2: Z-Transform Methods 

 
The Z-transform is a faster method compared to ADE method. Sullivan used the Z-

transform method for the first time in order to introduce the dispersion relation into 

the FDTD algorithm. 

 

The Z-transform of the equation 

                D(ω) = ε(ω)E(ω)                                                                                     (4.23) 

  is - 

                D(z) = ε(z)∆tE(z)                                                                                     (4.24) 

                                                                                                        

where ε(z) is the z-transform of ε(ω) and is the sampling period. As already done in 

ODE, let us consider the material dispersion as  
σ

jω
 , the relation between D and E is 

given by 

 

                D(ω) =
σε0

1−z−1
∆tE(z)                                                                                 (4.25) 

 

Multiplying by (1 − z−1), we find 

 

                 D(z)(1 − z−1) = σε0E(z)                                                                       (4.26) 

or 

                  D(z) − z−1D(z) = σε0E(z)                                                                   (4.27) 

 

Performing inverse z-transform   

 

                    𝐷𝑛 − 𝐷𝑛−1 = 𝜎𝜀0∆𝑡𝐸
𝑛                                                                         (4.28) 

 

Finally, for solving E from equation 4.28, we find 
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                    𝐸n =
𝐷𝑛−𝐷𝑛−1

𝜎𝜀0∆𝑡
                                                                                            (4.29) 

 

Which is same as the final update equation derived by ADE method. 

 

4.3.3: Piece-wise Linear Recursive Convolution Method 

 
Luebbers et al. formulated the first frequency dispersive FDTD algorithm using the 

recursive convolution (RC) scheme. Later it became piecewise linear recursive 

convolution(PLRC) method [36]. Initially developed for Debye media [35], the ap-

proach was later extended for the study of wave propagation in a Drude material [37], 

N-th order dispersive media [38], an anisotropic magneto-active plasma [39], ferrite 

material [40] and the bi-isotropic/chiral media [41] [42] [43]. 

 

The RC approach, typically being faster and having required fewer computer mem-ory 

resources than other approaches, is usually less accurate. But in case of mul-tiple pole 

mediums, it is easier to follow the RC approach. 

 

In the initial derivation of PLRC method for a linear dispersive medium, the re-lation 

between electric flux density and electric field intensity is expressed as: 

 

 

                        𝐷(𝑡) = 𝜀∞ 𝜀0𝐸(𝑡) + 𝜀0 ∫ 𝐸(𝑡 − 𝜏)𝜒(𝜏)𝑑𝜏
𝑡

0
                                       (4.30) 

 

which can be discretized as: 

 

                          𝐷𝑛 = 𝜀∞ 𝜀0𝐸
𝑛 + 𝜀0 ∫ 𝐸(𝑛∆𝑡 − 𝜏)𝜒(𝜏)𝑑𝜏

𝑛∆𝑡

0
                                   (4.31) 

 

The PRC method is further preceded from this basing discrete equation. 
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4.3.4: General Algorithm 

 
The derivation of equations for multi-pole dispersion relation is more difficult 

compared to the single pole-pair dispersion relation. For example, for six-pole Lorentz-

Drude dispersion the required derivation process is lengthy. Additionally, the memory 

required for computation is also vast. There are various methods proposed by 

researchers regarding this topic such as Taflove’s matrix inversion method, Multi-term 

dispersion by Okoniewski, etc. However Alsunaidi and Al-Jabr proposed a general 

algorithm technique which solves various problems regard-ing previous methods. The 

major advantage of this technique is that it requires only one algorithm for anyt 

dispersion relation. The dispersive relation has the general form as 

 

                 𝐷(𝜔) = 𝜀(𝜔)𝐸(𝜔)                                                                                             (4.32) 

 

which can be expressed in terms of summation of poles 

 

               𝐷(𝜔) = 𝜀∞ 𝜀0𝐸(𝜔) + ∑ 𝑃𝑖(𝜔)
𝑁
𝑖                                                                                     (4.33) 

 

where N is the number of poles. Applying Fourier transform, this equation becomes 

 

              𝐷𝑛+1 = 𝜀∞ 𝜀0𝐸
𝑛+1 + ∑ 𝑃𝑖

𝑛+1𝑁
𝑖                                                                                      (4.34) 

or 

 

               𝐸𝑛+1 =
𝐷𝑛+1−∑ 𝑃𝑖

𝑛+1𝑁
𝑖

𝜀∞ 𝜀0
                                                                                          (4.35) 

 

This term Pi can be any form of dispersion relation such as the Debye, the Drude or 

just the conductivity term. This the final solved equation for E. 
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Chapter 5 

 

Extraction of Optical Material Parameters 

 

The Modified Debye Model (MDM) parameters for silver metal is presented. A 

nonlinear optimization algorithm has been developed in order to extract the 

parameters for the metals. The extracted parameters have been used to determine 

the complex relative permittivity of the metals in optical and near-IR region of 

electromagnetic spectrum. The obtained results have been compared with the 

experimental values and an excellent agreement has been found. 

 

5.1: Material Models 

 

5.1.1: Modified Debye Model 

 

5.1.1.1: Metals 

 
The complex relative permittivity function of the modified Debye model is de-scribed 

by the following equation 

 

                     𝜀𝑟(𝜔) = 𝜀∞ +
 (𝜀𝑠− 𝜀∞)

1+𝑗𝜔𝜏
− 𝑗

𝜎

𝜔𝜀0
                                                                (5.1) 

 

where, 𝜀∞ is the infinite frequency relative permittivity, 𝜀𝑠 is the zero frequency 

relative permittivity, 𝜔 is the angular frequency, 𝜎 is the conductivity and 𝜏 is the 

relaxation time. 

If the model is represented in terms of its real and imaginary parts, then, 

 

                     𝜀𝑟(𝜔) = 𝜀
′(𝜔) − 𝑗𝜀′′(𝜔)                                                                        (5.2) 

 

where, the real part of the complex relative permittivity is,  
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𝜀′(𝜔) = 𝜀∞ +
 (𝜀𝑠 − 𝜀∞)

1 + (𝜔𝜏)2
 

 

and the imaginary part of the complex relative permittivity is, 

 

                                        𝜀′′(𝜔) =
 (𝜀𝑠− 𝜀∞)

1+(𝜔𝜏)2
+

𝜎

𝜔𝜀0
 

 

From equation 5.1, we can see that the modified Debye model can be described by 

four parameters which are 𝜀𝑠, 𝜀∞,𝜎and 𝜏. However, a relationship can be derived 

among these parameters by comparing equation 5.1 with the Drude model equation 

as, 

 

                                     𝜎 =
𝜀0(𝜀𝑠− 𝜀∞)

𝜏
                                                                               (5.3) 

 

Now we actually have three parameters that need to be extracted and the other can 

be obtained from equation 5.3. 

 

5.1.1.2: Di-electric Materials 

 
The frequency dependent permittivity function of Modified Debye Model is given by 

 

  

                                          𝜀𝑟(𝜔) = 𝜀∞ +
 (𝜀𝑠− 𝜀∞)

1+𝑗𝜔𝜏
                                                           (5.4) 

 

where, 𝜀∞ is the infinite frequency relative permittivity, 𝜀𝑠 is the zero frequency 

relative permittivity, 𝜔 is the angular frequency and 𝜏 is the relaxation time. 

 

From equation 5.4 we can see that modified Debye model for dielectric material can 

be described by three parameters which are 𝜀∞, 𝜀𝑠 and 𝜏.These three parameters 

need to be optimized in order to model dielectric materials using MDM. 
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5.1.2: Lorentz Model 

 

The frequency dependent complex permittivity function for single pole-pair Lorentz 

model is given by 

 

                                    εr(ω) = ε∞ +
ω0
2 (εs− ε∞)

ω0
2+j2δω−ω2

                                                          (5.5) 

 

where, ε∞ is the infinite frequency relative permittivity, εs is the zero frequency 

relative permittivity, ω0 is the frequency of the pole pair and δ is the damping 

frequency. 

 

From equation 5.5, it can be observed that single pole-pair Lorentz model can be 

described by four parameters which are ε∞, εs, ω0 and δ. These four parameters are 

independent and need to be extracted. 

 

5.1.3: Development of Simulation Model 

 

The simulation model we have developed is based on the FDTD method. We have 

utilized the general auxiliary differential equation (ADE) based FDTD approach in order 

to incorporate the frequency dependent dispersion property of the constituent 

materials. This algorithm is useful for the simulation of materials with different 

dispersive properties. The perfectly matched layer has been integrated at all the 

boundaries in order to prevent back reflections. 

 

Considering the material dispersion, the frequency-dependent electric flux density 

can be given by- 

 

                                   D(ω) =  ϵoϵ∞E(ω) + P(ω).                                                   (5.6)          

  The general Lorentz model for polarization (𝜔) is given by- 
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                      P(ω) =  
a

b+jcω−dω2
E(ω) ,                                                                       (5.7) 

By inverse Fourier transform, it can be written in time domain as- 

               bP(t) + cP′(t) + dP′′(t) = aE(t).                                                          (5.8) 

   

Now, turning to FDTD scheme, above equation can be presented as- 

 

              Pn+1 = C1P
n + C2P

n−1 + C3E
n.                                                                   (5.9) 

 

     Where, C1 =
4d−2b∆t2

2d+c∆t
 , C2 =

−2d−c∆t

2d+c∆t
, and C3 =

2a∆t2

2d+c∆t
 .  

 

 The values of C1, C2, C3 depends on the material under consideration. Finally, 

equation of field intensity has the form- 

                     En+1 =
Dn+1−∑ Pi

n+1N
i=1

ϵoϵ∞
                                                                               (5.10) 

  Where N is the number of poles and Dn+1 is the next value of electric flux density 

after one iteration in FDTD algorithm. 
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Chapter 6 

 

Design of Plasmonic Waveguide Structure 

 

6.1: Introduction 

 
The propagation of Surface Plasmon Polariton can be implemented for the simulation 

of plasmonic waveguide. Plasmonic waveguide designs strive to maximize both the 

confinement and propagation length of surface plasmons within a plasmonic circuit. 

The construction of a practical and usable surface plasmon circuit is heavily dependent 

on a compromise between propagation and confinement. Maximizing both 

confinement and propagation length helps mitigate the drawbacks of choosing 

propagation length over confinement and vice versa. Multiple types of waveguides 

have been created in pursuit of a plasmonic circuit with strong confinement and 

sufficient propagation length, like insulator-metal-insulator (IMI), metal-insulator-

metal (MIM) etc. The key performance parameters of an MIM(metal-insulator-metal) 

surface plasmonic waveguide having periodic corrugations has been investigated. The 

transmittance, taking into account a wide range of optical wavelength was 

demonstrated by rigorous numerical calculations against the variation of different 

structural aspects. The results indicate that a very satisfactory filtering characteristic 

can be achieved by this variation of the parameters The output of this investigation 

has the potential to develop ultra-compact photonic filters for higher integration 

 

 

 

6.2: Waveguide Structures 

 

6.2.1: Variation of Corrugation Height 

 
We consider a thin corrugated air strip sandwiched between two layers of 

metal(silver) and the schematic diagrams of the MIM waveguide structures are 
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presented below with figures. The air strip is of 50 nm by which best propagation 

efficiency is attained. The corrugation width is 25 nm and a duty cycle of 50% is 

maintained throughout the structure.     

 

 In this figure we have varied the corrugation height(h). The height is increased from 

0 nm to 55 nm. The step size is taken 5 nm.  

                                                                                                                      

 

Fig 6.1:  3D view  of the studied structure where the corrugation height(h) is 

increased from 0 nm to 55 nm with a step size of 5 nm. 

 

 

Fig 6.2:  2D view of the studied structure where the corrugation height(h) is 

increased from 0 nm to 55 nm with a step size of 5 nm. 

 

 

6.2.2: Variation of Corrugation Depth 

 

In this  structure we have varied the corrugation depth(w). The variation starts from 0 

nm and ends at 20 nm. Herein, the step size is also 5 nm. It is evident from the picture 
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that the silver layer is extended inside the air gap to constitute the depth of 

corrugation. 

 

 

 

Fig 6.3: 3D view of the studied structure where  the silver layer is extended inside 

the air gap and the depth(w) of the corrugation is varied from 0 nm to 20 nm with a 

step size of 5 nm. 

 

 

Fig 6.4: 2D view of the studied structure where  the silver layer is extended inside 

the air gap and the depth(w) of the corrugation is varied from 0 nm to 20 nm with a 

step size of 5 nm. 

 

 

6.2.3: Variation of Both Corrugation Height and Depth 

 
n this figure the depth(w) is fixed at 15 nm and the corrugation height(h) is varied. It 

starts from 0 nm and ends at 55 nm with a step size of 5 nm. 
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Fig6.5: 3D view of the studied structure where the corrugation depth(w) is fixed at 

15 nm and the corrugation height(h) is varied from 0 nm to 55 nm with a step size of 

5 nm. 

 

 

Fig 6.6: 2D view of the studied structure where the corrugation depth(w) is fixed at 

15 nm and the corrugation height(h) is varied from 0 nm to 55 nm with a step size of 

5 nm. 

 

6.3: Simulation of Plasmonic Profile Propagation Through the 

Waveguides 

 

For the simulation of the plasmon profile propagation, firstly plasmon profile is 

generated by the incidence of a photon pulse on the interface. Below are the Ex , Ey , 

Hz fields for the generated plasmon profile  
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                         Fig.6.7: Hz fields for the generated plasmon propagation profile 
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Chapter 7 

 

Performance Analysis of the Waveguides 

7.1: Performance Analysis 

 

7.1.1: Overview 

 
MIM structures provide higher confinement on the other hand IMI structures 

facilitate longer propagation length. Relentless research is going on to investigate 

the tradeoff between confinement and propagation loss. For small corrugations 

losses are found to be very low while a high loss is expected with the gradual 

enlargement of corrugations .Herein, we emphasize on the output transmittance of 

an MIM waveguide with periodic grooves operating at an optical wavelength of 

400nm to 2600nm. With a view to integrating the frequency dependent dispersive 

properties of materials in the FDTD algorithm, the essential parameters were 

attained.  

 

 

7.1.2: Calculation of Energy at Output Port 

 
For the purpose of calculating the energy, firstly the power  for different time steps 

are calculated. To calculate the power at different time steps, Pyonting vector was 

used. Pyonting vector is defined as the cross product of Electric and Magnetic field 

intensities at a certain instant or here, time step. Mathematically- 

 

                                                  𝐒 = �⃗�  x �⃗⃗�                                                                             (7.1) 

Where, 

        𝐒  = instantaneous power, 

        �⃗�  = Electric field intensities 

        �⃗⃗�  = Magnetic field intensities 
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                               Fig 7.1: E and H fields for calculating instantaneous power. 

 

The power over the range of calculated time steps is found out by multiplying with the 

time step, we can find out the total energy passed through a particular port for a given 

no. of time steps. Mathematically, energy passed through will be given by- 

 

                                       𝐄𝐧𝐞𝐫𝐠𝐲 = |𝐒|⃗⃗  ⃗ ∗ ∆𝐭                                                                 (7.2) 

 

Where, ∆𝐭 is the time step. 

 

 

 

7.2: Performance of the Waveguides 

 

7.2.1: Performance of the Waveguide with Variation of Corrugation 

Height 

 

7.2.1.1: Transmission Spectra 
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Fig.7.2.  Output transmittance(or transmission spectra) with the variation of 

corrugation height(h) from 0nm to 55nm with an increment of 5nm. 

 

7.2.1.2: Analysis of Spectra 

 
Figure 7.1 represents the transmittance at different optical wavelengths for different 

corrugation height(h). It is seen from the graph that the cut off frequency shifts to the 

right with the gradual increment of the corrugation height(h). The transmittance of 

the propagated wave, for wavelengths less than the cut off wavelength, is almost zero. 

 

7.2.2:  Performance of the Waveguide with Variation of Corrugation 

Depth 

 

7.2.2.1: Transmission Spectra 
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Fig.7.3.  Output transmittance with the variation of corrugation depth(w) from 0nm 

to 20nm with an increment of 5nm. 

 

 

7.2.2.2: Analysis of Spectra 

 
Figure 5 shows the transmittance at different optical wavelengths as a function of 

corrugation depth(w). Meticulous FDTD simulations have established that the cut of 

wavelength moves towards right with the increase in corrugation depth(w). 

 

 

7.2.3: Performance of the Waveguide with Variation of Both 

Corrugation Height and Depth 

 

7.2.3.1: Transmission Spectra 
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Fig.7.4.  Output transmittance with the variation of corrugation height(h) from 0nm 

to 55nm with an increment of 5nm keeping the corrugation depth(w) fixed at 15nm. 

 

7.2.3.2: Analysis of Spectra 

 

Figure 6 displays the transmittance at different optical wavelengths for different 

corrugation heights(h) keeping the corrugation depth(w) fixed at 15nm. As can be 

observed from the graph, the cut of wavelength increases linearly with the increase 

in corrugation height(h). This structure offers a large range of cut off wavelengths 

with the compromise of a greater transmission loss. Note that all the structures 

behave like a high pass wavelength filter each possessing a unique range of cut off 

wavelengths. 
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Chapter 8 

 

 

Conclusion 

 

 

8.1: Conclusion 

 

 

Our work can be summarized into the following points: 

 

 Corrugated waveguide structures based on MIM surface plasmonic propagation has 

been investigated thoroughly.  

 Transmission spectra for a wide range of wavelengths as a function of structure 

parameters such as corrugation height and depth has been simulated.  

 The characteristics of a high pass filter is observed in all the grating structures.  

 The investigation demonstrates that an adaptable cut off wavelength can be 

achieved by adjusting the structure parameters.  

 This paper illustrates the idea of a plasmonic filter with grating structure for the 

manipulation of light  at nanometric scale for integrated photonic devices. 
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