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ABSTRACT

In this thesis, we present our work regarding text summarization. Text summarization is the technique for
generating concise and precise summaries of voluminous texts while focusing on the sections that convey
useful information without losing the overall meaning. In this age of information, there are vast quantities of
textual data available. Example sources include online documents, articles, news, and user reviews of various
products and services. We can present the underlying information present in these texts concisely through
summaries. However, generating summaries for such a large source of text documents by hand is trouble-
some. We can utilize neural machine summarization systems to generate summaries automatically. These
systems leverage the power of deep learning models. Recently, with the invention of Transformer architecture,
modern summarization systems have achieved revolutionary performance gains. Efficient transformer-based
summarization systems exist for English and other popular languages, but not Bangla. In this research, we
present an efficient transformer-based text summarization system for the Bangla language. We use subword
encoding to eliminate the problem of rare and unknown words. We have created a large dataset, consisting
of 600 thousand news articles, to train our model. We trained a 6 million parameter model that is capable
of producing accurate summaries. We evaluated out summaries by observing it’s generative performance.
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1 Introduction

1.1 Text Summarization

Text summarization is the technique for generating concise and precise summaries of voluminous texts while
focusing on the sections that convey useful information without losing the overall meaning. In this age of
information, there are vast quantities of textual data available. Examples include online documents, articles,
news, and reviews. We can present the underlying information present in these large pieces of texts concisely
through summaries.

1.1.1 Neural Machine Summarization

Automatic text summarization aims to transform lengthy documents into shortened versions, which could
be difficult and costly to undertake if done manually. We can use machine learning models to automate this
task. This process can be decomposed into two parts:

1. Natural Language Understanding (NLU): This part of the task is about understanding the input
document. From this understanding, the model will identify key-points for later use.

2. Natural Language Generation (NLG): This part deals with generating the actual summary. The
model will generate the summaries using the key points from the NLU part.

1.1.2 Text Summarization Approaches

The two dominant summarization approaches are as follows:

1. Extractive approach: We first pull a subset of words representing the key-points. Then we combine
these words to make a summary.

2. Abstractive approach: In this approach, we try to understand the input document and then generate
the summary from scratch based on that information.

We can see both approaches illustrated in figure 1.

1.1.3 Necessity of Automated Summarization

We currently enjoy quick access to enormous amounts of digital information. Most of the data circulating
in the digital space are non-structured textual data. However, most of this information may not convey the
intended meaning. For example, imagine that you are looking for specific information from an online news
article. To get the information you want, you may have to dig through the entire news content. You might
waste lots of time weeding out the unnecessary data before getting the information you want. Therefore,
using automatic text summarizers, capable of extracting useful information, is becoming vital. Implementing
summarization can enhance the readability of documents, reduce the time spent searching for information,
and allow for more information to be fitted in a particular area.
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Figure 1: Automatic text summarization approaches

1.2 Problem Statement

The main goal of this thesis research is to employ modern deep learning techniques to perform automated text
summarization. In short, we wish to design an automated summarization system that will take voluminous
text as input and produce a summary.

1.2.1 Problem Fomulation

Text summarization is a popular natural language processing task. The deep learning models used to perform
this task are typically composed of two modules which are as follows:

1. Encoder module: This module is responsible for reading, understanding, and retaining context
information from the input text. It carries out the natural language understanding portion of text
summarization task.

2. Decoder module: The responsibility of this module is to generate the summary sequence, which is
the natural language generation portion of summarization task.

These models are called sequence-to-sequence models, or seq2seq in short. Just as the name implies, these
models can take variable length input and produce variable length output sequences.

1.2.2 Research Objectives

The objectives of our research are

1. Use deep learning to develop an abstractive text summarization system for the Bangla language.

2. Generate summaries that are grammatically accurate and factually corrent.

3. Explore algorithms to handle rare and unknown words while keeping a small vocabulary size.

4. Develop a system which is computationally feasible to build.

2



1.2.3 Contributions

This thesis provides several insights regarding Bangla text summarization. We highlight our main contribu-
tions here:

1. Utilize transformer architecture: After studying many related works in this field, we have found
none are using Transformers. Most of the existing papers propose systems that leverage the Recurrent
Neural Network architectures. However, transformers are currently at the center of modern NLP
research. In this research, we explore how we can use transformers for Bangla text summarization.

2. Handle rare and unknown words: From our background studies, we found that most related works
either use word or character level tokenization. We propose the use of subword tokenization to overcome
the obstacles faced by these methods.

3. Accumulate large text corpus: Training deep learning models requires large amounts of data. For
text summarization, our input data and output are respectively long and short sequences of text. We
have opted to use news article and their corresponding titles as our dataset. We created a large dataset
consisting of 600 thousand examples by scraping online news articles.

4. Utilize the power of beam search: Our deep learning model outputs word probabilities at each
time step. A sentence can have multiple time steps. Thus, a summary can be one of the many possible
sentences in our search space. To efficiently search this huge space we employ the use of beam search
decoding. We discuss the effectiveness of beam search and compare it to the widely used greedy search
approach.

2 Literature Review

2.1 Bengali abstractive text summarization using sequence to sequence RNNs

The authors proposed a summarization system that utilizes a bi-directional LSTM sequence-to-sequence
model. To better handle context, they implemented the attention mechanism in their encoder and decoder
modules. Their training text corpus is composed of online Bangla news articles and social media posts from
Facebook. Text preprocessing, word embedding, unknown words are some of the challenges faced in this
paper. [1]

2.1.1 Core Components

The pipeline introduced in this paper can be generalized into a system composed of 5 modules. The modules
are as follows:

1. Tokenization module

2. Embedding module

3



3. Encoder module

4. Decoder module

5. Postprocessing module

This system is illustrated in figure 2.

Figure 2: Text Summarization Pipeline

2.2 Tokenization

According to AnalyticsVidya, "Tokenization is a way of separating a piece of text into smaller units called
tokens." Tokens are the fundamental building blocks of natural language. They can be either a character, a
sequence of characters or subwords, or entire words. The most common way of forming tokens is using space
and punctuations as the delimiter.

2.2.1 Word level tokenization

This is the most commonly used among the three. In Bangla, we have many variations of a single word to
denote different meanings. Word level tokenization will consider each of these as separate words, and they
will be stored separately. As a result, our tokenizer will have a humongous vocabulary, which will be memory
intensive. If we use a modest vocabulary size, we will run into the problem of unknown words. These are
words that aren’t recognized by the tokenizer as they are out-of-vocabulary words. The tokenizer replaces
these words with <UNK> tokens. <UNK> tokens act like blanks. They negatively impact our deep learning
model by making it harder for the model to understand the text.

4



2.2.2 Character level tokenization

This appraoch solves the problem of unknown words. The tokenizer breaks all the words in the text down
to their constituent characters. In this case, unique characters make up the vocabulary, making it compact.
However, the tokenized sequence becomes disastrously lengthy. Deep learning models lose their ability to
retain context with increasing lengths. For text summarization, our input text will be long text sequences.
Character level encoding will make these even longer.

2.2.3 Subword level tokenization

This is currently the preferred tokenization approach. We know that words are composed of meaningful
subwords. Word prefix, base, and suffix parts are all subwords. For example, geology, geological, geography,
and geologist have the same ’geo’ subword base. We can alter its meaning of the base word by appending
different suffix subwords. Subword encoding allows us to use a compact vocabulary, as it consists of unique
subwords, without having to deal with the unknown words issue. The tradeoff is the generation of longer
tokenized sequences.

2.2.4 Neural Machine Translation of Rare Words with Subword Units

We train language models on fixed-length vocabulary, which suffers from out-of-vocabulary words. Language
processing is an attempt to solve this problem. It is the responsibility of the tokenizer to resolve this
issue. Modern tokenizers use word segmentation to overcome this obstacle. Byte-Pair Encoding is an
unsupervised subword segmentation algorithm. The intuition is that various word classes are translatable
and understandable via smaller units than words. [2] The general procedure for generating subwords is
detailed in algorithm 1.
Algorithm 1: Byte Pair Encoding

1 Start with an enormous text corpus.
2 Identify all unique symbols or characters present in the text corpus.
3 Perform symbol filtering to exclude unnecessary symbols.
4 Break each word into constituent symbols.
5 while required vocabulary size not reached do
6 Iteratively merge frequently occurring symbol pairs to be one symbol.
7 end

2.3 Embedding

According to Wikipedia, "A word embedding is a learned representation for text where words having the same
meaning have a similar representation."

5



2.3.1 Distributional Hypothesis

A text corpus is not merely a bag of words evident in its distributional nature. Distribution takes many
forms.

• Dispersion: Words in a corpus tend to concentrate in particular contexts and be more diffused in
others.

• Collocation: They tend to co-occur with other specific words.

• Colligation: Words frequently appear in specific grammatical contexts.

For the above reasons, corpus linguistics is mainly a distributional science. Distributional Hypothesis,
an obvious inspiration for corpus linguistics, states that lexemes with a similar distribution have similar
meanings.

2.3.2 Word Vectors

Word embeddings are the computational implementation of the Distributional Hypothesis theory. A vector
of numbers represents each word in the vocabulary. Homogenous words will appear close in the vector space.
Cosine similarity is a popular measure of similarity used in word embeddings.

Figure 3 displays a handful of words in a three dimensional vector space. Let us assume each of the three
axes to align with the meaning of sky, engine, and wings. We can see that the words helicoptor, drone, and
rocket appear together in the vector space. All three words have the notion of sky and engine. The same can
be said for the words goose, eagle, and bee. They are related to the notion of sky and wings. It is noticable
that all six words are related to the notion of sky and appear towards that axis. But the words in green
don’t carry the notion of engine and appear on its negative axis. Similarly, the blue words don’t carry the
notion of wings and appear on its negative side.

2.4 Attention Is All You Need

Before 2017, the dominant sequence-to-sequence models used complex recurrent and convolutional neural
networks. The best of these models connected the encoder and decoder modules using an attention mecha-
nism. Vaswani proposed a simple architecture, dubbed as Transformer, that used only attention mechanism
and removed the recurrent neural network layers. They published their findings in the paper, appropriately
named, "Attention is all you need".[3] All subsequent breakthroughs in modern NLP, including BERT [4],
RoBERTa[5], AlBERT [6], builds on top of this transformer architecture.

2.4.1 Architecture Overview

The Transformer model is a sequence-to-sequence model composed of an encoder and a decoder module.
Figure 4 highlights the main parts of the transformer architecture.

6



Figure 3: A simple three dimensional vector space

• Positional encoding: Unlike Recurrent Neural Networks, this model does not operate sequentially.
As a result, we lose the position of tokens respective to each other. To overcome this the authors added
an extra feature to each embedding. This feature is positional encoding information. We can learn
this feature or generate it using a mathematical function. The authors chose the latter option. They
generated positional information using equation 1 for even and 2 for odd positions.

PE(pos,2i) = sin(
pos

10000
2i

dmodel

) (1)

PE(pos,2i+1) = cos(
pos

10000
2i

dmodel

) (2)

• Encoder: The encoder module is comprised of 2 types of layers, which are as follows:

7



Figure 4: Transformer Architecture

1. Multihead Attention Layer

2. Fully connected feed forward layer

The authors implement residual connections within the layers to tackle the effects of vanishing gradient.
Moreover, to prevent overfitting the architecture leverages drop out regularization technique.[7] The
main purpose of the encoder module remains natural language understanding, just like the traditional
RNN based seq2seq models.

• Decoder: The decoder module is comprised of three types of layers as mentioned below:

1. Multihead Masked Attention Layer: Attends over input sentence to generate output word.

2. Multihead Attention Layer: Attends over the output sequence generated thus far.

3. Fully connected feed forward layer

8



Similar to the encoder, residual connections and drop outs are used in this module as well.

• Stacking modules: The "Nx" term present next to the encoder and decoder signifies the presence of
multiple exact instances. In the original paper, the authors used 6 layers stacked on top of one another.

2.4.2 Attention

In simple terms, attention can be broadly interpreted as a vector of importance weights. We use this vector
to find correlation with other elements. Using this correlation we try to approximate the next word in a
generated sequence. Consider the sentence, "May is walking by the bank of the river". If we are asked
"Where is May", we will look at the sentence and focus or attend to the words "bank" and "river". This
is an example of attention. To generate our response we attend over the input sentence. The authors use
self attention or more specifically dot product attention mechanism. The mechanism is shown in figure 5.
Multihead attention performs multiple instances of this computation in parallel.

Figure 5: Self attention and Multihead attention

2.5 Search Strategies for Neural Language Generation

Language models output probability distribution of words that are to appear in a specific time stamp of the
generated sequence. The generated sequence can have multiple such timestamps. There are 3 main strategies
that we can adopt when generating the sequence.
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2.5.1 Greedy search

Pick the word with the highest probability to be outputted in each timestep. This is the simplest and most
efficient decoding approach. However, once an improper word is generated at a timestep there is no way to
undo it. For example, let us imagine we have the label sequence "I have rice". At timestep 1, our model
generates "I" from the "<start>". After that it generates "am" from "<start> I". This is the wrong
generated text, but there is no way to undo this generation. Next, it generates "rice" from "<start> I am"
and ends up with the sequence "I am rice". This example illustrates the problems of greedy decoding.

2.5.2 Exhaustive search

In this case, we construct all posible sequences and then output the best sequence. Needless to say, this
search pattern would give us the optimal solution but is infeasible to implement and deploy.

2.5.3 Beam search

This search strategy combines the best features of the above two approaches. In this decoding technique,
we maintain k of the best sequences seen so far. Each of these k sequences are fed into the model to get
more generated sequences in the next timestamp. Among those timestamp the top k sequences are kept for
the next timestamp. For example, we might get "I am rice" and "I have rice" as 2 sequences. The former
sequence would be discarded and the later would be kept. At the end of the sequence generation process the
best sequence among the k sequences is returned.

2.6 Evaluation

Text summarization is a Natural Language Processing task. To evaluate how well out system is performing,
we need evaluation metrics. There are two standard procedures to follow when evaluating summaries. These
are as follows:

1. Automatic Evaluation: The standard for evaluating summaries automatically is ROUGE or Recall-
Oriented Understudy for Gisting Evaluation.

2. Human Evaluation: The gold standard for evaluating summaries is through humans.

2.6.1 ROUGE Metrics

ROUGE is a set of metrics for evaluating automatic summarization systems proposed by Lin et. al. [8] There
are many varients of ROUGE, but the 3 most commons ones used are ROUGE-1, ROUGE-2, ROUGE-L.

• ROUGE-1: ROUGE-1 measures the number of unigram overlaps between the system generated sum-
mary and reference summary.

• ROUGE-2: ROUGE-2 measures the number of bigrams overlaps.
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• ROUGE-L: ROUGE-L measure the longest common subsequence length between the system generated
and reference summary.

Each of these metrics return three values which are as follows:

1. Recall: The ratio between the overlap count and reference summary length. The higher the recall
value the more amount of information from the reference summary is present in the computer generated
summary.

2. Precision: The ratio between the overlap count and system generated summary length. Precision
measures conciseness of the generated summary.

3. F1: This is a unified value derived from both recall and precision. It measures how concisely the
system summary captured elements from the reference summary. The formular for calculating the F1
score is given in 3

f1 =
2 ∗ precision ∗ recall
precision+ recall

(3)

2.6.2 Human Evaluation

The gold standard of NLP evaluation is human evaluation. In summarization, the system’s performance is
measure by getting human evaluators to assign scores to the generated summaries. There is no standard
procedure that is followed everywhere. However, the evaluation system follows a set of guidelines. These are
as follows:

1. The evaluators mustn’t know which is the computer generated summary and which is the reference
summary as it might introduce bias.

2. Evaluation should be taken from a large group of people from different backgrounds.

3. Evaluators should have minimum literacy competency to perform the evaluation.

3 Proposed Methodology

To perform Bangla text summarization, we have the following proposals

1. Accumulate large text corpus: Training deep learning models require volumnous amounts of data.
Our Transformer network will easily overfit small training datasets. As a result, the generalization
performance of the model will be quite horrible. To train a capable model, we need to acquire large
amounts of data for summarization. We propose text mining news articles from online Bangla news
portals as a way of collecting this data. We build an efficient text mining tool using Python to perform
this task. We discuss the data accumulation procedure in subsection 4.1
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2. Utilize Transformer Archtecture: Transformer is at the forefront of modern NLP research. We
propose the use of this revolutionary architecture to perform text summarization instead of the dated
RNN based Sequence to sequence networks. The details of our deep learning system is discussed in
subsection 4.3

3. Encorporate Subword tokenization: Word tokenization is plagued with many issues including
large vocabulary size and unknown words. We propose the use of subword tokenization to keep a small
vocabulary and to handle the issue of unknown words. To perform our tokenization we use Byte Pair
encoding algorithm and use the word piece encoding approach.

4 Experimentation

4.1 Dataset Accumulation

Deep learning models are data-hungry. Vast amounts of data are required to train these models. The
transformer architecture is no exception.

4.1.1 Limitations of Existing Datasets

After searching the internet, we found no single large dataset that fulfills our purpose. Most datasets for
Bangla text summarization are relatively small, containing at best 100 thousand examples. Powerful deep
learning models easily overfit small datasets. As a result, they perform poorly on unseen data. Only by
training these models on large amounts of data can we uncover their true potential. To satisfy our data
requirements, we started compiling a large dataset. We chose online Bangla news articles as a source of data.

4.1.2 Text Mining Procedure

To gather this massive amount of news data, we built several scrappers that could fetch and format data
from different Bangla news portals. We used the following tools:

• Python: General-purpose programming language

• Selenium: A library for scraping dynamic websites

• Requests: A library to handle HTTP requests and responses

We mainly employed the following approaches to developing our scraper:

1. Initial approach - Scraping text after loading website: We used Python and Selenium to build
a traditional scraper. It went through the website, parsed the HTML data, and saved it in a CSV
format. The system was slow as it had to load and process each page. It could scrap around 800
articles an hour. To gather enormous amounts of data within a brief timeframe, we required a faster
solution.
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2. Improved approach - Reverse engineering news API: Instead of parsing the HTML, we reverse-
engineered the news portal’s API endpoints and sent direct requests to those APIs using the Requests
library. In this way, we could get raw JSON data, for which parsing was very fast. Using this new
system, we could scrape 500 articles every second or 30,000 per hour. We used this improved version
for further data collection.

4.1.3 Dataset Structure

Our text summarization model requires the following sequences of texts for training:

1. Input sequence: A long piece of text. We decided to use news articles for this purpose.

2. Output sequence: A short piece of text. We decided to use the title of news articles as our reference
summary.

We list some of the subtle yet significant details of our data set here:

• Source: We chose the "Prothom Alo" news website as our data source. This reputable news publisher
maintains high editorial quality. Thus, we can be sure that the mined text data will be of high quality.

• Article Time Distribution: We scraped news articles from 2010 to 2020. Figure 6(a) shows number
of articles belonging a particular year.

• Dataset Size: In total, we have accumulated above 600 thousand examples. Listing 1 shows exact
details of the dataset.

• Example Tuple: Alongside the article content and title, we also saved the article tags for further
data processing needs.

• Article Variation: The news articles span almost all popular categories, including but not limited
to politics, sports, fashion, technology, education. A histogram of the top 10 article tags are shown in
figure 6(b).

• Text Length: On average the articles had a title and content spanning respectively 31 and 650
characters. The detailed quantile information is depicted in the two boxplots in figure 6 (c) and (d)

• Storing Format: The dataset is a collection of CSV files where each file has a name of the format
year_month.csv. We chose this naming convention to group articles by their publication month and
year.

1 <class ’pandas.core.frame.DataFrame ’>
2 Int64Index: 603167 entries , 0 to 4220
3 Data columns (total 2 columns):
4 # Column Non -Null Count Dtype
5 --- ------ -------------- -----
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6 0 title 602597 non -null object
7 1 content 603121 non -null object
8 dtypes: object (2)
9 memory usage: 13.8+ MB

Listing 1: Raw Dataset Details

Figure 6: Dataset Statistics

4.2 Data Processing Pipeline

Before we can feed out accumulated data into our model, we first need to process the data and make it
usable. To perform this task, we created a data processing pipeline. The steps of the pipeline is described
in algorithm 2.
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Algorithm 2: Data Processing Pipeline

1 for each csv file do
2 Read content from file.
3 Perform data cleaning operations.
4 Perform subword tokenization.
5 Pad and truncate token sequences.
6 Split dataset into train and test parts.
7 Generate TFRecords from processed examples.

8 end
9 Optimize fetching and retrieval operations.

4.2.1 Data Cleaning

Data cleaning is the first step of our processing pipeline. We perform the activities mentioned below to clean
our dataset:

1. Removing instances with NaN attributes: Our scrapper sometimes failed to scrap either the
news content or the title or both. As a result, some examples in the dataset were unusable for training
our model. Thus, we removed examples where both the article content and title weren’t present, which
gave us the dataset shown in Listing 2.

2. Removing string artifacts: Sometimes we got unnecessary details with our desired article contents
and titles. These details included names and email addresses of the journalists who wrote the article,
links, ad links, image links, and much more. These artifacts would be detrimental to our model training
process. Hence, we removed these artifacts from our dataset.

3. Replacing whitespaces: From observing the various instances, we noticed that the strings have
unnecessary white spaces. These white spaces came in the form of multiple whitespaces, newlines,
tabs. We replaced each of these with a single whitespace.

4. Removing non-Bangla text: We found some string instances to have characters from other lan-
guages, most frequently English. We deleted these characters from the strings.

1 <class ’pandas.core.frame.DataFrame ’>
2 Int64Index: 602551 entries , 0 to 4220
3 Data columns (total 2 columns):
4 # Column Non -Null Count Dtype
5 --- ------ -------------- -----
6 0 title 602551 non -null object
7 1 content 602551 non -null object
8 dtypes: object (2)
9 memory usage: 13.8+ MB

Listing 2: NaN removed dataset info
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4.2.2 Subword Tokenization

The next step in our data processing pipeline is the tokenization process. As discussed in the literature
review section, we chose subword level tokenization. To perform this, we selected the Byte Pair Encoding
algorithm. We opted to use a pre-trained tokenizer created by Benjamin Heinzerling and Michael Strube in
2018.[9] Pre-trained tokenizers for over 275 different languages, including Bangla, are available. We chose
a tokenizer with a vocabulary size of 10,000 and an embedding size of 100. We refrained from using large
vocabulary sized and embedding sized tokenizers due to computational requirement.

There is one problem with this tokenizer. It doesn’t recognize digits. All digits in Bangla are replaced by
the symbol ’0’. As a result, we lose any relevant numbers in the input document during this process, which
is one of the substantial drawbacks of our text summarization system. We theorize that the usage of word
piece tokenizer will solve this problem.

The actual process of tokenization is quite simple. We used the open-sourced "BPEmb" package to
perform the encoding process. Both our input and output texts are encoded. However, there is one subtlety.
We add two tokens to our output text after the encoding process, one at the beginning and the end. These
two tokens signify the beginning and end of the sequence. We initially feed our deep learning model with
the start token, which signals to the model that it should start the sequence generation process. Once the
model has generated the end token, we stop the process and output the generated sequence as the summary.
We talk more about this process in the deep learning model subsection.

4.2.3 Padding and Truncating

In this step, we make sure all input sequences have a uniform length. We perform the following operations
for this purpose:

1. Truncating operation: We truncate sequences to have a maximum of MAX_LEN tokens. Excess
tokens are discarded and not fed to the model as input.

2. Padding operation: We pad with 0s when input sequences have less than MAX_LEN tokens.

We considered the following constraints when choosing the optimal value for MAX_LEN :

1. MAX_LEN should be an exponent of 2: Digital electronics used in computers have two states:
on and off. So memory is a collection of elements that can either be on or off. Hence, in computers,
everything naturally is organized in the powers of two. When inputs have this length, the storage,
processing, and retrieval operations become efficient and fast.

2. Truncating and padding should be the bare minimum: Truncating discards parts of the input
sequence. If MAX_LEN is too small, we risk losing a large portion of our input. As a result, our deep
learning model might fail to capture the underlying meaning. Similarly, if we pad too many zeros to a
short input article, our model might under-perform. To choose the appropriate value for MAX_LEN,
we looked at the title and content length quantiles. The quantile information is displayed in Figure 7
and in table 1. The optimal number is the one that is closest to the 75% quantile value.
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Upon considering these conditions, we chose MAX_LEN to be 512 for our input content and 16 for our
output summary. We perform the actual truncating and padding operation using TensorFlow’s Sequence
API. We truncated tokens from and padded zeros to the back of our sequences.

Figure 7: Text Length Statistics

4.2.4 Train and Test Splitting

We need to prepare the dataset for training our deep learning model. Towards this end, we need to create
two subsets of our dataset, which are

• Training set: We will train our deep learning model on this subset. It will contain the majority of
the data.

• Testing set: We will use this subset to determine the performance of our model on unseen data.
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Quantile Content Length Title Length
min 1 3
25% 169.0 7.0
mean 369.0 8.7
75% 464.0 11.0
max 14739.0 651.0

Table 1: Tokenized article content and title length quantile

We perform the splitting operation on each CSV file. As mentioned before, we stored articles published
in the same month and year in the same file. Performing splitting at the file level ensure that the training
and testing set will have the same ratio of files published at different times. We keep 90% of the records
for training the deep learning model and the rest for testing. We can see in listing 3 that the training and
testing set consists of 520 and 60 thousand examples respectively.

1 ...
2 Processing: dataset/csvs /2020 _jun.csv Train: 4534 Test: 504
3 Processing: dataset/csvs /2020 _mar.csv Train: 2356 Test: 262
4 Processing: dataset/csvs /2020 _may.csv Train: 3967 Test: 441
5 Processing: dataset/csvs /2020 _nov.csv Train: 1086 Test: 121
6 Processing: dataset/csvs /2020 _oct.csv Train: 3861 Test: 430
7 Processing: dataset/csvs /2020 _sep.csv Train: 3754 Test: 418
8 Training set size: 523135
9 Testing set size: 58191

10 FINISHED in 917.0775

Listing 3: Train test splitting log

4.2.5 Generating TFRecords

To train our deep learning model, we can read records from the CSV files, split them, and then perform
the processing steps. Then we can directly feed them into the model. But this is an inefficient process
because we would have to process the data repeatedly before feeding it into the model. Making an already
lengthy procedure much longer. The standard norm is to convert the dataset into TFRecords when using the
TensorFlow framework. The TFRecord format is a simple format for storing a sequence of binary records
for efficient serialization of structured data. We perform this operation only once. We can directly feed the
generated TFRecords into the model without needing to perform any further processing. As a result, we
don’t have repeatedly waste precious time in processing the data.

4.2.6 Minimizing IO Bottleneck

Finally, we need to minimize the IO bottleneck during training time, allowing overall training efficiency to
be as high as possible. TensorFlow’s Data API provides the following functionalities to make this possible:
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1. The cache transformation can store a dataset, either in memory or on local storage. It will save some
operations (like file opening and data reading) from being executed during each epoch. Transformations,
like the file opening and data reading, are performed only during the first epoch. The next ones will
reuse the data cached by the cache transformation. The data execution time plot in figure 8 depicts
this process.

2. Prefetching overlaps the preprocessing and model execution of a training step. While the model in
training step s, the input pipeline is reading the data for step s+1. Doing so reduces the step time to
the maximum (as opposed to the sum) of the training and the time it takes to extract the data. The
data execution time plot for this process is shown inn figure 8.

Figure 8: Data execution time plot for cache and prefetch operation

4.3 Model Training

4.3.1 Model Architecture

We’re utilizing the Transformer architecture as our deep learning model. We applied the vanilla variant of
this architecture with a few minor alterations. Transformers, like most advanced deep learning models, are
computationally demanding. They require powerful hardware to run. Unfortunately, we didn’t have access
to this level of computing resources. So bearing the constraints in mind, we chose to use a smaller version
of the vanilla architecture. Table 2 details the parameter values used for our model.
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Hyperparameter Name Code Repository Name Value
Number of layers NUM_LAYERS 4
Embedding Size D_Model 128

Fully Connected Layer Nodes DFF 2048
Encoder sequence size TEXT_LENGTH 512
Decoder sequence size SUMMARY_LENGTH 16

Table 2: Selecter parameter values for small Transformer model

4.3.2 Loss Function

The transformer model outputs an array of probabilities at each time step t. We chose Sparse Categorical
Cross-Entropy as our loss function to measure the deviation at each time step. We calculate the loss using
equation 4

Jcross-entropy(w) = −
1

N

N∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)] (4)

But there will many such time steps in the summary generation process. We consider the mean of
cross-entropy losses over all the time steps as the final loss. We calculate the mean using equation 5

Jmean(w) =
1

T

T∑
t=1

Jt-th cross-entropy(W ) (5)

Here,

1. w refers to the parameters of the model

2. yi is the true label

3. ŷi is the predicted label

4. N is the number of instances

5. T is the total number of time steps/tokens in the generated text

4.3.3 Performance Metrics

We use Sparse Categorial Accuracy to measure the model’s performance during the training phase. This
metric emphasizes the correctness of the predictions at each time step. The model achieves higher accuracy
by generating the right tokens at the right time step.

4.3.4 Optimizer

We used Adam’s optimizer with custom learning rate scheduling.[10] We perform the scheduling mechanism
using the equation mentioned in equation 6. Figure 9 displays the learning rate changes with step number
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increasing.

learning_rate = d−0.5
model ∗min(step_num

−0.5, step_num ∗ warmup_steps−1.5) (6)

Figure 9: Custom learning rate scheduling

Adaptive Moment Estimation or Adam, is an optimization algorithm that uses exponentially weighted
averages to perform gradient updates. It combines the best of both momentum and RMSprop and generally
works well for a wide variety of deep learning tasks. Adam updates the gradient values by using two moments
called the first and second moment. The general update procedure of adam is shown in algorithm listing 3
and the selected hyperparameter values are shown in table 3

Hyperparameters Learning Rate (α) β1 β2 ε
Values Custom Rate 0.9 0.99 1e−8

Table 3: Selected hyperparameter values for Adam optmizer

21



Algorithm 3: Adam Optimizer

// Initialize

1 vdw = vdb = 0;
2 sdw = sdb = 0;
3 for t← 0 to T do

// Mementum like update

4 vdw = β1 ∗ vdw + (1− β1) ∗ dw, vdb = β1 ∗ vdb + (1− β1) ∗ db;
// RMSProp like update

5 sdw = β2 ∗ sdw + (1− β2) ∗ dw2, sdb = β2 ∗ sdb + (1− β2) ∗ db2;
// Bias correction

6 vcorrecteddw = vdw/(1− βt
1), vcorrecteddb = vdb/(1− βt

1);
7 scorrecteddw = sdw/(1− βt

2), scorrecteddb = sdb/(1− βt
2);

// Parameter update rule

8 W =W − α ∗ vcorrecteddw /(
√
scorrecteddw + ε), b = b− α ∗ vcorrecteddb /(

√
scorrecteddb + ε);

9 end

4.3.5 Checkpoint Management

Training deep learning models requires enormous amounts of time. Complications can arise out of the blue
and halt the training process. Systems can crash due to unforeseeable reasons. These will be quite devastating
for us if we need to start the training from scratch every time. To avoid such a catastrophe, we chose to use
the checkpoint saving mechanism available in the TensorFlow framework. We perform the saving process at
the end of each epoch using a custom callback.

4.3.6 Training Process Monitoring

Monitoring loss and evaluation metrics are critical when training neural networks. By observing them, we
can identify bugs in our code and anomalies in the training process. TensorBoard provides the visualization
and tooling needed for machine learning experimentation. We used it to visualize the loss and metrics during
the training phase. A snapshot of tensorboard is shown in figure 10.

4.3.7 Preventing Overfitting

Modern deep learning architectures excel at recognizing patterns in data. If we train them long enough,
they’ll start to uncover patterns from the noise. We say that the model has overfitted the dataset, and thus
it won’t generalize well to unseen data. An overfitted model will have significantly higher training accuracy
compared to its test accuracy. We avoid this issue by stopping encorporating the following strategies:

1. Early Stopping: A problem with training neural networks is deciding the appropriate number of
epochs to train our model. We risk overfitting the training dataset if it is too large. Conversely, it
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Figure 10: A snapshot of tensorboard

may underfit if not long enough. Early stopping is a method that allows us to specify an arbitrarily
large number of training epochs and stop training once the model performance stops improving on a
hold-out validation dataset. TensorFlow provides a callback class to perform this task.[11]

2. Dropout: Dropout is a regularization method that approximates training multiple neural networks
with varying architectures in parallel. During training, some number of layer outputs are randomly
ignored or dropped out. By dropping a unit out, we mean temporarily removing it from the network,
along with all its incoming and outgoing connections. Dropout has the effect of making the training
process noisy, forcing nodes within a layer to take on responsibility for the inputs. It simulates a
sparse activation from a given layer, which encourages the network to learn a sparse representation as
a side-effect. The result is a substantial reduction in overfitting.[7]
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5 Result Analysis

5.1 Loss and Accuracy

We trained our transformer model for 60 epochs. The loss and accuracy metrics are shown in figure 11.

Figure 11: Loss and accuracy graph for summarizer model

From metrics figure we can see that our peak accuracy was around 46%. This might seem low, but there
are several limitations of the automatic evaluation metric we used. First of all, even if a sentence is written
differently but conveys the same meaning, it will be assigned a high loss and low accuracy.

5.2 Summary Generation

To really understand how well our model performs, we need to analyze the summary generation performance.
To perform this we fed the model a constant article text at the end of each article and asked the model to
generate a summary. Five of the most important results are shown in Figure 12.

Figure 12: Generated summaries

We can see that the model is indeed learning as the epochs go up. In the first epoch the model only
generated the same word repeatedly. By epoch 10, it learnt that the input article was conveying information
about a road accident. At the 25th epoch, the model learnt the cause of the accident. At epoch 50 it learnt
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location information and tried to fit that into the summary. Finally, by epoch 60, the model learnt where
the accident happended to whom.

5.3 Challenges and Future Work

5.3.1 Complex model

The biggest room for improvement can be attained by using a larger and more complex version of transformer.
We used the small varient of transformer to perform summarization. The two main reasons our small
transformer model under performed are as follows:

1. Large vocabulary: Compared to the complexity of our model, our vocabulary size was much larger.
As a result, our model couldn’t effectively capture the complexity of the large set of words from the
text corpus. Current state of the art models like ProphetNet [12] and Pegasus [13] are huge models
with hundreds of millions of parameters. Although these models have state of the art performance,
they require immense computing power to train and deploy.

2. Long input sequence: Typically, large varients of transformers are needed to effectively work with
long input sequences. For example, BERT-large, a 768 million parameter model, is used to capture
context from a sequence containing 512 tokens. We tried to perform this task with a much smaller
model and failed as a result. Recent papers like Big Bird [14] and SMITH [15] try to tackle the problem
of long input sequences.

5.3.2 Shorter Input Length

Simple models perform admirably on short input sequences. However, our dataset mostly contains long news
content texts. Most of the news articles have a length near or exceeding 512 after tokenization. This means
that we are computationally limited by the amount of context we can capture and retain. Hence, a better
approach would be to target short news articles to train our simple model. This way its within the reach of
the model to effectively capture and retain contextual information from the input.

5.3.3 Human Supervision

Even though our dataset is large, it isn’t the best in terms of quality. We tried to clean our dataset using
automated methods. However, the quality of the writing hasn’t been judged by human experts. This is
an important step. We need human supervision to create a quality dataset. The better the quality of our
dataset the better our model will perform at its task.

5.3.4 Fine Tuning

Fine tuning approaching have become very successful in recent times. It is possible to get checkpoints of large
models that were trained on a huge text corpus. These models can be fine tuned to our text summarization
task. This will result in much greater performance than training from scratch because
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1. These models were trained on billions of examples by a large organization like Google, Microsoft, etc.

2. The models capture contextual representation extremely well because they were trained on large
datasets. As a result, they outperform models after being fine tuned on an end task.

5.3.5 Dataset Debiasing

The biggest and hardest problem to solve is dataset bias. Our dataset is heavily biased. Let us first describe
bias in terms of news articles. Most of the news in the year 2020 is about the covid-19 pandemic. As a
result, the model related almost everything to covid-19 and tries to generate a summary mentioning this
particular topic. To train an unbiased model, the dataset needs to avoid containing such skewness. This
is hard to avoid and organizations like Google and Microsoft tackle the same problem when training their
models. One of the ways to minimize this issue is by hiring human supervisors to monitor the distribution
of articles going into the dataset.

5.3.6 Better Tokenization Approach

As mentioned earlier, byte pair encoding has some major flaws. One of them is replacing digits with the
token 0. This means we lose numbers from our input data. This is catatrophic because we can’t associate
quantities into our model. We can use other tokenization schemes, like wordpiece tokenizer, to overcome this
drawback.

6 Conclusion

In this thesis research, we tried creating a text summarization system by utilizing the power of a transformer
model. We successfully trained a simple and small varient of the transformer model to perform text summa-
rization. Although, it was held back by its simplicity and computational constraints, our model performed
well in capturing context and generating grammatically accurate summaries. The performance is evident
from the sentences it generated. The performance of our summarizer can be improved by training a larger
model. In the future, we’d like to continue this research endevour by utilizing pretrained models and fine
tuning them to perform summarization. We also hope to manually clean the our accumulated dataset by
reviewing the articles and accessing their quality. This will make the task of detecting patterns easier for
our small model, which will further uplift its performance.
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