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ABSTRACT

The Unit Commitment Problem (UCP) is a complex engineering optimization prob-

lem of electrical power generation domain. Determining the scheduling for economic

consumption of production assets over a specific period of time is the premier objec-

tive of UCP. This paper presents a take on solving UCP with Binary Slime Mould

Algorithm (BSMA) optimizer. SMA is a recently developed nature-inspired stochastic

optimization technique that imitates the selective vegetative growth of slime mould

while foraging. A binarized SMA with constraint handling through heuristic adjust-

ment is proposed and implemented to unit commitment problem to generate optimal

scheduling for available power resources. Implementing modern heuristic techniques en-

sures an efficient solution to this non-linear, non-convex and complex constraint driven

optimization problem for any number of generating units with maximum profit. To test

BSMA as a UCP optimizer, IEEE standard power generating systems ranging from 10

to 100 units along with IEEE 118-bus system are used and the results are then com-

pared with existing classical, evolutionary and hybridized approaches. The comparison

reveals superiority of BSMA over all the classical and evolutionary approaches and most

of the hybridized methods that are considered in this paper in terms of total cost and

convergence characteristics.

Keywords: Binary Slime Mould Algorithm (BSMA), Heuristic optimization algo-

rithm, Unit Commitment Problem (UCP), Economic Load Dispatch (ELD), Power

system optimization.
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Chapter 1

Introduction

1.1 The Scheduling Problem in the Power System

Power demands vary according to activities of various consumers. This variation in

demand results in the fact that the load on a power plant is never constant, it varies

time to time. The inherent load fluctuations demanded by users cause most of the com-

plexities of modern power plant operations. Unfortunately, electricity cannot be stored,

and the power plant must therefore produce power to meet consumers requirements.

Usually, the average demand on the power station is higher during the afternoon and

early evening, and lower during the late evening and early morning.

Over a predetermined planning period, we’ve to determine the power output of

each generating unit at each hour along with the startup and shutdown times. The

electrical utilities in the regulated markets and the Independent System Operators in

the deregulated markets must decide in advance which units to commit and connect

to the grid such that the needs of the end-use consumers are satisfied. Turning ON

the enough generators throughout the day can be a solution for meeting the required

demand but it is not feasible because committing enough units and leaving them online

is not economical. Moreover, turning ON or committing a unit is not so simple because

various economic and physical factors come into play when taking this decision which

are both equally relevant and often contradictory.

Since a functional electrical power system may consist of thousands of generating

units, the issue of scheduling becomes a major problem in the system’s operation and

control that must be solved by the resources given by methods of mathematical opti-

mization. The estimation process for addressing the scheduling issue is referred to as

the day-ahead unit commitment process (UC). The Unit Commitment (UC) procedure
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is applied to assess the generation unit ON/OFF schedule in such a way that the system

is most economically satisfied with its projected load demand. In addition, inherent

physical constraints on the generating units and other special system conditions must

be taken into consideration in this program. The objective of UCP is to reduce the

cost of electrical energy generation by fulfilling various types of constraints regarding

system and production units.

The UC problem is mathematically classified as a large scale, nonlinear and mixed

integer optimization problem with highly constrained non-convex characteristics. The

binary existence of the on/off decision is creating non-convexity. The UCP’s non-

linearity is due to the input-output heat fuel curves and non-linear transmission con-

straints of each unit [1]. The presence of a mixture of binary and non-linear variables

allows the problem of combinatorial optimization to be formulated as a mixed-integer

problem. Also, such problem may have multiple feasible regions and multiple locally op-

timal points within each region. These characteristics make the UC problem difficult to

solve. Thus, the Researchers focused on finding an effective and efficient approach UC

algorithms that are near-optimal and can be used for large power scale power systems.

Two decisive steps are involved in the solution of the UC problem from a methodolog-

ical point of view. The UC choice incorporates the assurance of the producing units

to synchronize and running at every hour of the planed time-frame, considering the

units limitations, the beginning up and closure, and the framework limit necessities,

including holds. The "economic dispatch" choice incorporates the designation of the

framework interest and the turning hold limit among the working units during every

particular hour of activity [67].

1.2 Literature Review

Conventional power generation and supply systems at present deal with dynamic load

demand with numerous generating units. The load demand keeps fluctuating as the

time progresses from day to night, thus, the generating units must be turned on and
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off correspondingly. It is essential to decide which units are to be turned on and off.

These decisions are aggregately called unit scheduling. A better scheduling leads to

cost-effective generation, larger profit and efficient usage of electrical generation compo-

nents, besides satisfying the load demand. The process of determining the scheduling of

multiple generating units is Unit Commitment. The Unit Commitment Problem (UCP)

is the process of finding the optimal economic consumption of production assets over a

specific period of time. The objective of UCP is to reduce the cost of electrical energy

generation by fulfilling various types of constraints regarding system and production

units. UCP is a non-linear, non-convex, large scale mixed-integer optimization problem

having complex constraint specifications.

Over the last few decades, numerous classical, evolutionary heuristic/metaheuristic

and hybridized optimization techniques are designed, developed and applied by re-

searchers to solve UCP. Classical deterministic optimization techniques include Prior-

ity list (PR) [64], Dynamic programming (DP) [65], Lagrangian relaxation (LR) [54],

Benders decomposition (BD) [53], Mixed integer linear programming (MILP) [70], Sec-

ond order cone programming [78], Semi-definite programming (SDP) [23]. Some other

renowned methods of this class are: Branch and bound approaches (BBM) [16], En-

hanced adaptive lagrangian relaxation [54], etc. The different advantages of classical

deterministic approaches can be enlisted as simple, strong, straightforward character-

ization and approach, iteration-less swift convergence and integer type output. The

downsides are substandard solving caliber (PL), difficulties with system extent (Dy-

namic and linear programming), complication in calculation, rapid increase of calcula-

tion time with larger systems (BBM) and costlier solution.

Several stochastic search algorithms have been developed imitating natural occur-

rences and preying behaviors of animals. These algorithms were later implemented to

solve UCP. Particle swarm optimization by [36] and Grey wolf optimization by [49] are

certainly the most practiced approaches with numerous development and hybridization

in the UCP domain in this decade. PSO imitates the movement of a flock or a shoal and
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each bird or fish is considered a particle in the population. On the other hand, GWO

replicates the hunting process of grey-wolf pack termed as α, β, δ and ω with hierar-

chical significance. Both the approaches, depending upon the feedback of the particles

or wolves, corrects their position accordingly until they find the global best position.

Some of the nature-inspired metaheuristic and evolutionary techniques applied in UCP

are Genetic algorithm (GA) [35], Binary particle swarm optimization (BPSO) [25], Ant

colony optimization (ACO) [69], Binary grey wolf optimizer (BGWO) [56], Imperialistic

competition algorithm (ICA) [20], Enhanced PSO (EPSO) [77], Shuffled leaping frog

algorithm (SFLA) [18], Enhanced simulated annealing (ESA) [61], Binary gravitational

search algorithm (BGSA) [75], Evolutionary programming (EP) [29], Binary bat search

[52], etc. Repair techniques or penalty functions are applied alongside these optimiza-

tion approaches in order to find the feasible solution. However, drawbacks of these

algorithms are longer simulation time, restriction of variables, uncertainty of conver-

gence, excessive iterations and lastly exploration limitations. Different nature-inspired

metaheuristic approaches to solve UCP are discussed in [47].

Hybridized methods incorporate both classical optimization techniques and evolu-

tionary metaheuristic algorithms in order to solve UCP. Well known hybridized tech-

niques are Hybrid PSO-GWO [30], Lagrangian relaxation and genetic algorithm (LRGA)

[14], LRPSO [5], A solution modification process [39], Hybrid genetic ICA [60], Hybrid

harmony random search [32], Improved pre-prepared power demand table and muller

method [11], Local convergence average BPSO [72]. Quantum-inspired hybridization

is another popular attempt to hybridize classical and evolutionary techniques. QEA

[21], QIBGSA [27], QBPSO [26], QIBGWO [63] are some examples of that. Although

hybrid methods attain solving credits of both classical and heuristic approaches, they

still have some lackings. Most common drawback of hybridized methods is complex

sequential procedure, hence longer iteration time and slower convergence. For example,

convergence of hybrid PSO-GWO is much slower than NPSO due to sequential com-

putation of PSO and GWO [30]. Some of these metaheuristic and hybridized methods

are quite good in terms of solution quality. But, search for more efficient, cost-effective,
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modern and adoptive optimization approach is still going on as the power generation

optimization problem domain has broadened in recent years with the inclusion of simi-

lar complex optimization problems like UCP. Dynamic Economic Dispatch (DED) adds

non-linearity to the economic dispatch of UCP, which offers more accurate cost min-

imization based on actual physical and operational needs [80]. Combined Heat and

Power Economic Dispatch (CHPED) is a more complicated form of economic dispatch

where Combined Heat and Power (CHP) units and heat-only units are considered for

cost minimization alongside conventional thermal units [81].

Newer optimization algorithms like Salp Swarm Algorithm (SSA), Harris Hawk Op-

timization (HHO) and SMA have shown competitive performance compared to the

existing algorithms like GWO and WOA [41] for other engineering design problems

[48],[22],[46]. So the potential of these algorithms as a UCP optimizer should be ex-

plored.

Li et al. [46] proposed a newly developed nature inspired stochastic optimization

technique simulating the behavior and morphological changes of acellular slime mould

Physarum polycephalum. P. polycephalum can find the shortest path to a maze, solve

complex puzzles, and most importantly, can make multi-objective foraging decisions [7],

which resemble with UCP. Slime mould optimization algorithm involves continuous up-

dating of slime mould position to locate the optimal food source, which in case of UCP,

translated as optimal cost. However, continuous-natured decision making process of

original SMA should be transformed into binary decision making, as on/off scheduling

of UCP is represented with two binary values. So in this paper, sigmoid transforma-

tion [37] is used to binarize the continuous-natured SMA. Heuristic adjustment of [21]

is used for handling the UCP constraints. Then the consequent BSMA optimizer is

tested for solving UCP.

The rest of the thesis is organized as follows. Unit commitment problem formulation,

its constraint and boundaries are described in Chapter 2, Slime Mould Algorithm (SMA)

6



and its working phases are discussed in Chapter 3, Application of BSMA to solve UCP

is described in Chapter 4, Performance tests for different test systems, comparisons,

convergence and deviation characteristics are shown in Chapter 5. Lastly, the paper is

concluded with a brief summary and future prospects of this topic in Chapter 6.
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Chapter 2

Problem Formulation of Unit Commitment

This part is to introduce the numerical models of the constituents of the UC with

the end goal that it very well may be defined as a streamlining issue, from presently

alluded to as Thermal Unit Commitment Problem (TUCP) and be broke down from

a reasonable viewpoint. At that point, since each choice in the UC spins around what

to do (or not to do) with a bunch of thermal generating units (generally), a helpful

beginning point for the difficult plan is to present the attributes of such units. Prime

objective of Unit Commitment is to find the optimum generating schedule for available

units which will lead us to the lowest possible operating cost and therefore maximum

profit. The total operating cost of a generating unit is composed of three components,

fuel cost, startup cost and shutdown cost.

2.1 Characteristics of Thermal Generating Units

Numerous intriguing issues with regards to the force framework designing field are

included in the activity, control, and plan of these three segments (for example coor-

dinated machine plan, security considers, and so on). Albeit a plenty of fascinating

points are accessible, the investigation of the efficient activity of the force framework

and explicitly that of the age planning measure of the UC is of need. Subsequently,

principal to these examinations is the numerical connection between the information

and the yield (I-O) of the TGU [74].

The input is defined in terms of fuel cost in $/h (or heat input in MBTU/h) while

the output is expressed as the net electrical power in MW, henceforth denoted as

P (k), that is available to the EPS. This I-O relation is commonly called the unit fuel

consumption function or the operating cost function. The I-O curve is a smooth, convex,

and quadratic approximation of the actual nonlinear mathematical relation between the

unit’s input and output and is widely used in power system operations studies.
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2.2 Fuel Cost

The main idea behind the UC is to determine the ON/OFF status of a set of generating

units (predominantly TGU’s) such that an optimal generation schedule is obtained.

This generation schedule must then satisfy every power system requirement and must

consider the intrinsic physical limitations of the operating generating unit. Moreover,the

meaning of optimal may also vary depending on the desired objective. The first step in

the formulation of the UC as a TUCP is always to establish the objective to accomplish

and thus to determine the objective function to optimize. Having defined the I-O

characteristic of a TGU in terms of fuel cost and electric power output one possible

objective for the TUCP is to minimize the total fuel cost of a set of N TGU’s over a

predetermined study period T

The fuel costs are calculated using the data of unit heat rate and fuel price infor-

mation. It is a second order quadratic function of power output, of each generator at

each hour determined by Economic Dispatch (ED) [3]. Fuel cost can be expressed as:

F i
cost = ai + biP i

G + ciP i
G

2 (2.1)

where F i
cost is the fuel cost function of ith unit, P i

G is the power generated by the ith

unit and ai, bi, ci are the fuel cost coefficients of ith unit. A sinusoidal term is added

with Equation (2.1) due to valve point loading [71] in multi-valve steam turbines [12].

So fuel cost function with valve-point loading effect can be expressed as:

F i
cost = ai + biP i

G + ciP i
G

2
+ |disin(ei ∗ (P i

G_min − P i
G))| (2.2)

where di and ei are the valve-point coefficients of ith unit and P i
G_min is the minimum

generation limit of ith unit. Total fuel cost of overall generation can be expressed as:

Total Fuel Cost =
H∑
t=1

N∑
i=1

F i
costP

i
G ∗ δit (2.3)

∀ t ∈ H; i ∈ N ; δit ∈ {0, 1}
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where H is the total time period of load demand considered for unit commitment i.e.

total scheduling hours, N is the total number of generating units and δit is the generating

status bit of ith unit at tth hour.

These coefficients are determined either experimentally through historical or statis-

tical data of unit efficiency and operation or may also be included in the design data as

provided by the unit’s manufacturer. Also, notice that the c co-efficient is independent

of the TGU power output and thus is equivalent to the fuel cost incurred by operat-

ing the TGU with no power output. Furthermore, it can be observed that the output

power that can be produced by the TGU is bounded by a minimum output power and a

maximum. Evidently, this is due to the physical limitations of the TGU. For instance,

the minimum output power limitation is mainly influenced by the regenerative cycle of

the steam turbine and the combustion stability of the fuel input into the boiler. On the

other hand, the maximum output power is usually equivalent to the design capacity of

the turbine, boiler, or generator.

2.3 Startup Cost and Shutdown Cost

To bring a TGU on-line, the temperature and pressure in the boiler B must first build

slowly. Thus, a determined amount of time and fuel must first be invested to bring the

unit to the required operating temperature state.

Startup cost is required to bring a de-committed thermal generating unit back to

committed state. Startup cost is warmth dependent [31], and therefore can vary de-

pending upon the de-committed time period of inactive generating unit. Startup cost

can be expressed as:

SUcost
i
t =

SU
i
cost_hot, for T i

mu ≤ T i
off ≤ (T i

md + T i
cold)

SU i
cost_cold, for T i

off ≥ (T i
md + T i

cold)
(2.4)

where SUcost
i
t is the startup cost of ith unit at tth hour, SU i

cost_hot and SU
i
cost_cold are
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the hot and cold startup cost of ith unit respectively, T i
off is the consecutive hours of

de-committed state of ith unit, T i
mu and T i

md are the minimum up and down time of ith

unit, respectively. And lastly, T i
cold is the cold start hours of ith unit.

The value of SC is also influenced by the amount of time the TGU has been off

before being brought online. The value of SC can vary from an upper “cold-start” cost

to a much lower “hot-start” cost if the unit has been turned off recently and is close to

the operating temperature state.

The cold start and hot start costs can then be modeled by considering the expo-

nential decrease in temperature after the TGU (with some thermal time constant γ

has been turn OFF such that the best decision on when to turn ON again the TGU is

made.

Shutdown costs refers to a fixed amount of cost to maintain a de-committed gen-

erating unit and it is independent of the de-committed period. Shutdown costs are

neglected in this paper in accordance with the other approaches in [35], [56] and [26].

So, the total cost of overall generation can be represented as:

Total Cost =
H∑
t=1

N∑
i=1

F i
costP

i
G ∗ δit + SUcost

i
t ∗ (1− δit)δit (2.5)

2.4 Generation Regulating Constraints

In practical cases, plant operators face numerous generation regulating constraints. For

example, a generating unit has its minimum and maximum generation limits which

change over time. Also, we’ve to consider the time required to bring a de-committed

unit online. Three types of constraints are considered in this research as follows: 1)

System constraints, 2) Unit constraints and 3) Time-dependent constraints. Implication

of such constraints to UCP is stated below:
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2.4.1 Maximum and Minimum Generation Limits

The power generation of a particular committed unit should be within it’s maximum

and minimum generation limits.

P i
G_minδ

i
t ≤ P i

Gδ
i
t ≤ P i

G_maxδ
i
t (2.6)

where P i
G_min and P i

G_max are the minimum and maximum generation limit of ith unit

respectively.

2.4.2 Balancing Load Demand and Power Supply

As per load demand and power supply balance constraint, the summation of power

generation of all committed unit must be greater than or equal to the load demand at

time t.
N∑
i

PG
i
t ∗ δit ≥ PDt (2.7)

where PDt is the load demand at tth hour.

2.4.3 Spinning Reserve

An extra generation capacity should be reserved to continue satisfying load demand in

the cases of a sudden excessive load or any kind of generation failure. It makes the

system more reliable and immune to failures. This excess reserve capacity is known as

spinning reserve. Spinning reserve is added with the load demand and the summation

is considered as the generation requirement. So Equation (2.7) can be re-written as:

N∑
i

PG
i
t ∗ δit ≥ PDt + SRt (2.8)

where SRt is the spinning reserve required at tth hour.
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2.4.4 Minimum Up/Down Time

A generating unit should be brought online after a certain time interval from de-

committed status based on its thermal cooling characteristics. Similarly, the unit must

run for a certain period of time before it is shut down. These constraints are termed as

Minimum Up and Minimum Down Time, and can be expressed as:

δit =

1, for 1 ≤ Ton
i
t−1 ≤ T i

mu

0, for 1 ≤ Toff
i
t−1 ≤ T i

md

(2.9)

2.4.5 Initial Status

The terminal status of every unit from previous scheduling time period should be as-

sessed to avoid disrupting the minimum up/down time cycle of the generating units.

To summarize the unit commitment problem formulation, objective function of Equa-

tion (2.5) is a minimization problem. Equation (2.6), (2.8) and (2.9) are inequality

constraints. This constrained minimization problem of unit commitment is going to be

solved using BSMA.
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Chapter 3

Slime Mould Algorithm (SMA)

SMA is a recently proposed nature based optimization algorithm [46] which has been

adopted to solve many engineering optimization problems. The foundation and detailed

working procedure of SMA is presented in this chapter.

3.1 Foundation of Slime Mould Algorithm

Eukaryoric Slime mould occupies cold, moist places. The prime healthy stage of a slime

mould is Plasmodium, the active and dynamic stage of slime mould, and the funda-

mental exploration phase of this research. In this stage, the natural matter in slime

mould looks for food, encompasses it, and secretes proteins to process it. During the

migration process, the front end extends into a fan-shaped, followed by an intercon-

nected venous network that allows cytoplasm to flow inside [38], as shown in Figure

3.1. Due to their novel example and trademark, they can utilize various food sources

simultaneously to shape a venous organization interfacing them. If there is enough food

in the environment, slime mould can even grow to more than 900 square centimeters

[38].

Owing to the feature of slime mould can be easily cultured on agar and oatmeal [10],

they were broadly utilized as model organisms. Kamiya and his colleagues [33] were

the primary group to consider the definite interaction of the cytoplasmic progression of

slime mould. Their work is of extraordinary assistance to our resulting comprehension

of the manner in which slime mould move and associates food in the climate. We

now cognize that when a vein approaches a food source, the bio-oscillator produces a

propagating wave [50] that increases the cytoplasmic flow through the vein, and the

faster the cytoplasm flows, the thicker the vein. Through this mix of positive-negative

feedback, the slime can build up the ideal way to associate food in a generally prevalent

manner. Subsequently, slime mould was additionally numerically demonstrated and
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applied in diagram hypothesis and path networks.

The venous construction of slime creates alongside the stage distinction of the con-

striction mode [50], so there are three connections between the morphological changes

of the venous design and the withdrawal method of slime mould.

• Thick veins structure generally along the span when the compression frequencies

fluctuate from outside to inside.

• At the point when the compression mode is unsteady, anisotropy starts to show

up.

• When the contraction pattern of slime mould is no longer ordered with time and

space, the venous construction is not, at this point present.

Therefore, the connection between venous design and compression example of slime

mould is predictable with the state of normally framed cells. Physarum solver flow

feedback determines the thickness of each vein. [8]. The raise in the progression of

cytoplasm leads to an increment in the measurement of veins. As the stream diminishes,

the veins contract as a result of the reduction of the breadth.

Slime mould can fabricate a more grounded course where food fixation is higher,

along these lines guaranteeing that they get the greatest convergence of supplements.

Late investigations have likewise uncovered that sludge form have the skill of making

scrounging plans dependent on improvement hypothesis [42]. At the point when the

nature of different food sources is unique, slime mould can pick the food source with

the most elevated fixation. In any case, slime mould additionally needs to gauge speed

and danger in scavenging. For example, slime mould needs to settle on quicker choices

to keep away from natural harm to them. Tests have shown that the faster the dynamic

speed is, the prospects of slime mould to locate the excellent food source is more modest

[43]. Consequently, when choosing the wellspring of food, slime mould clearly needs to

gauge the speed and exactness.

Slime mould need to choose when to leave this territory and search in another region

when scavenging. When lacking total data, the most ideal path for an slime mould to
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Figure 3.1: Foraging morphology of slime mould.

assess when to leave the current position is to receive heuristic or exact principles

dependent on the deficient data presently accessible. Experience has shown that when

slime mould experience excellent food, the likelihood of leaving the zone is diminished

[44]. Nonetheless, because of its exceptional natural attributes, slime mould can use

an assortment of food sources simultaneously. Consequently, regardless of whether the

slime mould has discovered a superior wellspring of food, it can in any case isolate a

segment of the biomass to misuse the two assets all the while when better food is found

[8].

Slime mould can likewise powerfully change their hunt designs as per the nature of

staple provenience. At the point when the nature of food sources is high, the slime

mould will utilize the locale restricted pursuit strategy [34], along these lines zeroing

in the inquiry on the food sources that have been found. On the off chance that the

thickness of the food provenience at first discovered is low, the slime mould will leave

the food source to investigate other elective food sources in the district. This versatile

inquiry procedure can be more reflected when diverse quality food blocks are scattered

in a locale. A portion of the systems and qualities of the slime mould referenced above

will be numerically demonstrated in the ensuing segments.
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3.2 Working Principle of Slime Mould Algorithm

The working principle of SMA mimics the food searching phenomenon of slime mould.

Depending upon the odor of the food, slime mould proceeds to migrate through its

vegetative growth. It approaches the food with continuous course correction from its

cytoplasmic feedback. A slime mould can search for multiple food sources simultane-

ously, looking for a higher concentration of food. Feedback dependent propagation wave

from bio-oscillator controls the cytoplasmic flow, hence the thickness of vein towards a

food source. Figure 3.2 of [2] shows an exemplary visualization of the process.

The higher the concentration of food contacted by the vein, the stronger the wave gen-

erated by the bio-oscillator, the faster the cytoplasm flows, and the thicker the vein [46].

For choosing the optimal, most concentrated food source, slime mould also controls it’s

weight distribution in the search area. Upon realizing a lesser food concentration in

an area, slime mould shifts its weight to inspect the other regions. The whole food

searching procedure of slime mould can be summarized as:

• The odor of food at any position in search area will trigger the propagation wave

of bio-oscillator, and hence, control the course of cytoplasmic veins.

• The diameter of the veins will be thicker towards highly concentrated areas and

thinner towards the barely concentrated areas.

• The weight of the slime mould will be shifted mostly towards the higher concen-

trated regions.

3.2.1 Exploration phase

Exploration phase of SMA involves locating the food and approaching towards the

location in the search area. This process as in [46], can mathematically be expressed

as such:

~X(k + 1) =


~Xb(k) + ~vb ∗ ( ~W ~XA(k)− ~XB(k)), for r < p

~vc ∗ ~X(k), for r ≥ p

(3.1)
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(a) (b)

Figure 3.2: Slime mould exploits the nutrient source (oat flakes), (a) Exploiting oat
flakes by a network of cytoplasmic veins [2], (b) Scheme of the cytoplasmic propagation,
circles are nutrient source (oat flakes) and star mark is the primary slime mould position,
arrows are cytoplasmic veins [2]

.

∀ ~vb ∈ [−a, a]; ~vc ∈ [−1, 1]; r ∈ {0, 1}

where k represents the current iteration and r is a random number between {0, 1}. ~X(k)

represents the current slime mould location and ~X(k + 1) refers to the next location.
~Xb(k) is the best location with the strongest odor found so far. ~XA(k) and ~XB(k) are

two randomly selected slime mould positions. ~vb and ~vc oscillates in-between their limits

and refers to the decision making of slime mould, whether to reach the food source or

search for other higher quality sources (Figure 3.3). Both the variables reaches zero as

the number of iterations increases, because by then the slime mould finds it’s optimal

food source. The limits of ~vb can be expressed as:

a = arctanh(−( k

max_k
) + 1) (3.2)

where max_k denotes the maximum number of iteration.

p is a function formulated as:

p = tanh(|S(v)−DF |) (3.3)
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Figure 3.3: Exploration phase of slime mould: Possible positions in 2D and 3D.

∀ v ∈ {1, 2, 3, ..., n}

where v is the number of slime mould veins, S(v) is the current fitness value of ~X, and

DF is the best fitness among all the iterations. And lastly, ~W represents the frequency

of oscillation which determines the thickness of the veins. In simpler terms, ~W is the

weight of the slime mould. ~W is mathematically expressed as:

~W (SmellIdx(v)) =

1 + rlog( bF−S(v)
bF−wF

+ 1), for condition

1− rlog( bF−S(v)
bF−wF

+ 1), for others
(3.4)

where condition indicates that S(v) ranks first half of the population, bF and wF

are the best and worst fitness of the ongoing iteration routine respectively (Figure 3.4),

and SmellIdx(v) refers to a sequence of fitness value sorted in ascending order.

Figure 3.3 shows the effects of Equation 3.1. The position of individual slime mould
~X can be updated according to the best location ~Xb currently obtained, and the fine-

tuning of parameters ~vb, ~vc and ~W can change the position of the individual slime

mould. Figure 3.3 is also used to illustrate the location change of the slime mould in

3D space. rand in the equation can make people structure search vectors at any point,

that is, search arrangement space toward any path, so the calculation has the chance of

finding the ideal arrangement. Therefore, Equation 3.1 empowers the looking through
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Figure 3.4: Exploration phase of slime mould: Assessment of fitness.

individual to look on the whole potential bearings close to the ideal arrangement, in

this manner recreating the round area design of slime mould when moving toward food.

It is additionally pertinent to expand this idea to Hyper-dimensional space.

3.2.2 Exploitation phase

In the exploitation phase, SMA optimizer continuously updates the slime mould posi-

tion depending upon the feedback from the exploration phase. As in [46] this can be

expressed as follows:

~X∗ =


rand ∗ (UB − LB) + LB, for rand < z

~Xb(k) + ~vb ∗ (W ∗ ~XA(k)− ~XB(k)), for r < p

~vc ∗ ~X(k), for r ≥ p

(3.5)

∀ rand ∈ [0, 1]; r ∈ [0, 1]

where LB and UB are the lower and upper bounds of search area respectively. rand and

r are random values between 0 and 1, and lastly the value of parameter z is taken as 0.03,

as the probability maintains a proper balance between exploration and exploitation at

this constant z value [46].

This part mimics the withdrawal method of venous tissue construction of slime
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mould numerically while looking. The higher the convergence of food reached by the

vein, the more grounded the wave created by the bio-oscillator, the quicker the cyto-

plasm streams, and the thicker the vein. Equation 3.4 numerically mimicked the positive

and negative criticism between the vein width of the slime mould and the food fixation

that was investigated. The component r in Equation 3.4 recreates the vulnerability

of venous constriction mode. log is utilized to ease the change pace of mathematical

worth so the estimation of withdrawal recurrence doesn’t change excessively. condition

reenacts the slime mould to change their inquiry designs as indicated by the nature of

food. At the point when the food focus is content, the greater the load close to the

locale is; the point at which the food fixation is low, the heaviness of the district will

be decreased, hence going to investigate different areas. Figure 3.4 shows the process

of evaluating fitness values for slime mould.

Slime mould mostly relies upon the spread wave created by the natural oscillator

to change the cytoplasmic stream in veins, so they will in general be in a superior

situation of food fixation. On the motivation behind recreating the varieties of venous

width of slime mould, we used ~W , ~vb and ~vc to realize the variations. ~W numerically

recreates the wavering recurrence of slime mould almost one at various food focus, so

that slime mould can move toward food all the more immediately when they discover

great food, while approach food all the more gradually when the food fixation is lower

in individual position, hence improving the proficiency of slime mould in picking the

ideal food source. The value of ~vb wavers arbitrarily among [−a, a] and slowly moves

toward zero as the addition of cycles. The value of ~vc oscillates between [−1, 1] and
tends to zero anyway.

Synergistic interaction between ~vb and ~vc mimics the selective behavior of slime

mould. To locate a superior wellspring of food, regardless of whether slime mould has

discovered a superior wellspring of food, it will in any case isolate some natural matter

for investigating different regions trying to locate a more excellent wellspring of food,

instead of putting every last bit of it in one source.
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Chapter 4

Formulation of Binary Slime Mould Algorithm to

solve UCP

In this section, SMA binarization method, priority list of units, solving Economic Load

Dispatch (ELD) with lambda iteration method and constraint handling processes are

discussed. Then the use of BSMA to solve constraint minimization problem of unit

commitment is described in detail with necessary diagrams.

4.1 Population Structure and Binary Mapping

An illustration of BSMA population structure is shown in Figure 4.1. In the figure,

the commitment status of ith unit of sth slime mould at kth iteration and tth hour is

represented as δit
k
s . However, SMA itself is non-discrete in nature, meaning a particular

slime mould of the population can be assigned continuous values. Sigmoid transform

inspired from BPSO [37] is used to limit δit
k
s to only binary values. Sigmoid transform

equation is expressed as:

Sf (X
k
s ) =

1

1 + e−Xk
s

(4.1)

Xk+1
s =

1, for Sf (X
k
s ) > r

0, otherwise
(4.2)

where Sf denotes the transfer function, Xk
s is the position for sth slime mould at kth

iteration and finally r is a random number in [0,1].

Value "1" is assigned to δit
k
s if ith unit is committed at tth hour, and vice versa

for de-committed unit. An N by H matrix is assigned to each δks where N is the

maximum number of units, and i ∈ {1, 2, 3, ..., N} and H represents the total time

horizon, and t ∈ {1, 2, 3, ..., H}. NP denotes the overall population of slime mould and
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Figure 4.1: Population structure of unit commitment with BSMA.

s ∈ {1, 2, 3, ..., NP}.

4.2 Priority List of generating units

Not all the units have the same running cost as the cost parameters of a generator

change at a great extent over its lifetime. A priority list is formed according to the

objective function of fuel cost in Equation (2.1). Fuel cost, F i
cost of ith unit depends

greatly on it’s fuel co-efficients ai, bi and ci. The lesser the value of F i
cost of a generating

unit, the higher it is placed in the priority list, and consequently, kept committed for a

longer period of time.

4.3 Economic Load Dispatch using Lambda Iteration

method

The purpose of Economic load dispatch (ELD) is to distribute generation demand within

the available units so that the total generation and operation cost is minimized and
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Figure 4.2: Flowchart of UCP with BSMA.

none of the system operating constraints is violated. After determining a feasible unit

schedule, the generation schedule is obtained on tolerance basis. The margin specifies

the difference between the generation and load demand to a specified limited value.

After finding the optimal value, conventional cost calculation takes place. ELD using

a piecewise quadratic cost functions cannot be easily solved by conventional numerical

methods [66]. Therefore, an enhanced lambda iteration method [62] is used to execute

economic load dispatch.

4.4 Constraint handling and repairment

In order to eliminate the infeasible solutions from the search space, a heuristic approach

of [21] is adopted in this paper. Handling constraints like minimum up/down time
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Figure 4.3: Flowchart of Heuristic adjustment 1.

Figure 4.4: Flowchart of Heuristic adjustment 2.

improves the solution quality and reduces the possibility of failure significantly. On the

other hand, extra reserve capacity and unnecessary committed units can increase the

running cost by a wide margin. Therefore, the constraint handling heuristic approach

is used for each and every slime mould of the population.

4.4.1 Spinning reserve constraint repairment

Spinning reserve constraint is to be satisfied for system reliability. The solution in not

feasible as long as the spinning reserve constraint is violated, so the required number

of units are made committed until the requisite spinning reserve capacity along with
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Figure 4.5: Flowchart of spinning reserve constraint handling for constraint repairment.

the load demand is satisfied. The spinning reserve constraint repairment is depicted in

detail in Figure 4.5.

4.4.2 Minimum up/down time constraint repairment

All the units must follow the minimum up/down time as a prerequisite before be-

ing committed or de-committed. The heuristic adjustment process for any minimum

up/down time constraint violation is shown in Figure 4.6.

4.4.3 Unit de-commitment process

While satisfying the spinning reserve constraint and minimum up/down time constraint,

some extra thermal units might be committed, resulting in an unnecessary increase in

operational cost. De-commitment process described in Figure 4.7 is applied to de-

commit those inessential units.
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Figure 4.6: Flowchart of minimum up time, minimum down time constraint repairment.

Figure 4.7: Flowchart of de-commitment process to avoid excess spinning reserve.
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4.5 Fundamental steps of UCP with BSMA

A detailed illustration of UCP with BSMA is represented as flowcharts in Figure 4.2,

4.3 and 4.4. The fundamental steps are described below:

Step 1. Initialize the search agent population according to Section 4.1.

Step 2. Formation of priority list according to Section 4.2.

Step 3. Adjust unit status of each search agent to satisfy spinning reserve constraint

according to Section 4.4.1 and Figure 4.5.

Step 4. Modify the search agents to meet the minimum up/down time constraint as in

Section 4.4.2 and Figure 4.6.

Step 5. De-commit the redundant units following the procedure in Section 4.4.3 and Fig-

ure 4.7.

Step 6. Solve Economic Load Dispatch (ELD) with lambda iteration method as in Section

4.3

Step 7. Initialization of the BSMA parameters.

Step 8. Calculate the fitness value of each feasible search agent with the UCP objective

function Equation (2.5).

Step 9. Determine the bestF itness among the search agents by comparing individual

fitness values.

Step 10. Evaluate weight of the slime mould with the Equation (3.4).

Step 11. Update the values of p, ~vb and ~vc for each search agents.

Step 12. Reform the slime mould positions with Equation (3.5).

Step 13. Perform sigmoid transform for updated positions found in Step 12. according to

Equations (4.1) and (4.2).
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Step 14. If current iteration is less than the maximum number of iterations, then go to

Step 3. Otherwise continue.

Step 15. Obtain the values of the search agent with bestF itness as the optimal solution.
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Chapter 5

Performance Assessment of BSMA

In order to test its effectiveness in solving UCP, BSMA is modeled for three different

test cases. The first test case incorporates standard benchmark setups ranging from

10 to 100 units and the cost characteristics are considered quadratic in nature. The

second test case is a single set of 10 unit system with valve-point loading effect included

in the cost function. And the third test case is a standard IEEE 118-bus 54-unit

system. A MATLAB 2016b environment with INTEL core i3, 4gb RAM and Windows

operating system is used to simulate the performance tests. The outcomes are then put

in comparison with other established methods to demonstrate the efficacy of BSMA on

solving unit commitment problem.

The population of simulations is determined after studying the effect it had on the

results. Effect of population size on optimal cost and execution time is depicted in

Figure 5.1, for 40 unit system and 100 iterations. 40 unit system is considered as a

trade-off unit value between small, medium and large scale systems [56]. The study

suggests, population greater than 25 produces similar results with greater execution

time, hence, 25 is selected as slime mould population size for performance testing.

5.1 Case-I: 10-100 unit systems without valve-point

loading effect

These benchmark unit systems are further classified into three categories, Small Scale,

Medium Scale and Large Scale Systems. In all three cases, 10% spinning reserve is

considered and transmission losses are neglected.
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Figure 5.1: Variation of total cost and mean execution time with population size (for
40 unit system, 100 iterations).

5.1.1 Small scale test systems

Two types of test systems, 10 and 20 unit systems are studied as small scale generation

systems for performance testing. 24 hour load demand data used in 10-unit system is

shown in Table 5.1 and illustrated in Figure 5.2. Generating unit data used on this

occasion are shown in Table 5.2. The commitment schedule and demand distribution

found after simulation is shown in Table 5.3. From the scheduling in Table 5.3, the

generation cost is obtained $559866.23 and startup cost is found $4070. Performance

comparison with 20 other renowned approaches is shown in Table 5.4 for 50 trials. The

table shows the average cost of BSMA is on par with hybridized approach QIBGWO

[63], both with $563936, better than Binary grey wolf algorithm [56], Hybrid harmony

search/random search algorithm [32], Hybrid genetic imperialistic competitive algo-

rithm [60] and all the other classical, evolutionary and hybridized methods. The best

cost found for BSMA is $563662.12, which is significantly better than any other ap-

proach. Convergence and deviation characteristics for 1000 iterations and 50 trials are

shown in Figure 5.5a and Figure 5.6a respectively. Standard deviation, σ is 0.0293%

for 10-unit system, which is significantly better than other pure, non-hybridized meta-
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heuristic UCP optimization approaches. Mean execution time is shown in Figure 5.4.

Unit characteristics of 10-unit system are replicated and load demand is doubled for
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Figure 5.2: Test load demand curve for 10 and 20 unit systems.

Table 5.1: Test load demand data for 10 generating unit system

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

Load (MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Load (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

each instance as shown in Figure 5.2 for 20-unit system, in accordance with the other

renowned approaches in [25], [56] and [63]. The generation scheduling and demand dis-

tribution for a random trial is shown in Table 5.5. From Table 5.5, the total generation

cost is found as $1115010.63 and the startup cost for this load demand is obtained as

$8690. Standard deviation, σ is 0.0283%. Convergence and deviation attributes for

1000 iterations and 50 trials are illustrated in Figure 5.5b and 5.6b respectively. Mean

execution time is shown in Figure 5.4. Table 5.4 reveals the performance comparison

of BSMA with other approaches. In this case, the best cost recorded for 50 trials is

$1123204.99, and it is marginally better than QIBGWO [63], Ring crossover genetic
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algorithm [9] and Quantum-inspired binary PSO [26]. Average cost $1123700.63 is

however, better than all the other mentioned approaches except QIBGWO [63].

Table 5.2: Test data for 10 generating unit system.

Unit No. P i
G_max P i

G_min ai bi ci T i
mu T i

md SU i
cost_hot SU i

cost_cold T i
cold Initial Status

U1 455 150 1000 16.19 0.00048 8 8 4500 9000 5 8

U2 455 150 970 17.26 0.00031 8 8 5000 10000 5 8

U3 130 20 700 16.6 0.002 5 5 550 1100 4 -5

U4 130 20 680 16.5 0.00211 5 5 560 1120 4 -5

U5 162 25 450 19.7 0.00398 6 6 900 1800 4 -6

U6 80 20 370 22.26 0.00712 3 3 170 340 2 -3

U7 85 25 480 27.74 0.00079 3 3 260 520 2 -3

U8 55 10 660 25.92 0.00413 1 1 30 60 0 -1

U9 55 10 665 27.27 0.00222 1 1 30 60 0 -1

U10 55 10 670 27.79 0.00173 1 1 30 60 0 -1

5.1.2 Medium scale test systems

Similar to the approach taken for 20-unit system, 10-unit system and demand data

are replicated to produce inputs for all the medium and large scale UCP test systems.

40 and 60-unit systems are considered as medium scale test systems. Performance of

BSMA against 40-unit system is considered for showing the variation of cost and mean

execution time over number of population in Figure 5.1, as a trade-off between small,

medium and large scale systems. Also, the convergence comparison with QEA [21],

BGWO [56] and QIBGWO [63] is demonstrated in Figure 5.3, which reveals a com-

petitive convergence with QIBGWO and quicker convergence than the other two. Cost

comparison shown in Table 5.6 reveals the superiority of BSMA for both 40 and 60-unit

system over most of the approaches. Best, average and worst in case of convergences

are shown in Figure 5.5c and 5.5d for 40 and 60-unit system respectively. Deviation

characteristics are shown in Figure 5.6c and 5.6d with standard deviation σ. Declin-

ing value of σ suggests BSMA is more effective for larger systems. And lastly, mean
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Table 5.3: Commitment and Generation schedule for 10 generating unit system trial.
(with 10% spinning reserve)

Time (h)
Commitment Schedule for 10 generating unit system Generation Schedule for 10 generating unit system

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

1 1 1 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0
3 1 1 1 0 0 0 0 0 0 0 455 265 130 0 0 0 0 0 0 0
4 1 1 1 1 0 0 0 0 0 0 455 235 130 130 0 0 0 0 0 0
5 1 1 1 1 0 0 0 0 0 0 455 285 130 130 0 0 0 0 0 0
6 1 1 1 1 1 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0
7 1 1 1 1 1 0 0 0 0 0 455 410 130 130 25 0 0 0 0 0
8 1 1 1 1 1 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0
9 1 1 1 1 1 1 0 1 0 0 455 455 130 130 100 20 0 10 0 0
10 1 1 1 1 1 1 1 0 0 1 455 455 130 130 162 33 25 0 0 10
11 1 1 1 1 1 1 1 1 0 1 455 455 130 130 162 73 25 10 0 10
12 1 1 1 1 1 1 1 1 1 1 455 455 130 130 162 80 25 43 10 10
13 1 1 1 1 1 1 1 0 0 1 455 455 130 130 162 33 25 0 0 10
14 1 1 1 1 1 1 0 0 1 0 455 455 130 130 100 20 0 0 10 0
15 1 1 1 1 1 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0
16 1 1 1 1 1 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0
17 1 1 1 1 1 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0
18 1 1 1 1 1 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0
19 1 1 1 1 1 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0
20 1 1 1 1 1 1 1 1 0 0 455 455 130 130 162 33 25 10 0 0
21 1 1 1 1 1 1 1 0 0 0 455 455 130 130 85 20 25 0 0 0
22 1 1 0 0 1 1 1 0 0 0 455 455 0 0 145 20 25 0 0 0
23 1 1 0 0 1 0 0 0 0 0 455 420 0 0 25 0 0 0 0 0
24 1 1 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0

execution time for both the units is shown in Figure 5.4.
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Figure 5.3: Comparison of convergence characteristics with recent approaches for 40
unit system.
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Table 5.4: Comparison of results for 10 and 20 unit systems. (with 10% spinning
reserve)

10 unit system 20 unit system

Approach Best Cost ($) Average Cost ($) Worst Cost ($) Best Cost ($) Average Cost ($) Worst Cost ($)

GA [35] 563977 - 566606 1126243 - 1132059

EP [29] 564551 565352 566231 1126494 1127257 1129793

QEA [21] 563938 563969 564672 1123607 1124689 1125715

LR [54] 566107 566493 566817 1128362 1128395 1128444

ESA [61] 565828 565988 566260 1126254 1127955 1129112

PSO [79] 564212 565783 565103 1125983 - 1131054

IPSO [79] 563954 564579 564162 1125279 - 1127643

BDE [24] 563997 563997 563997 1126998 1127374 1127927

BPSO [25] 563977 563977 563977 1128192 1128213 1128403

IBPSO [76] 563977 564155 565312 1196029 - -

QBPSO [26] 563977 563977 563977 1123297 1123981 1124294

LCA-PSO [72] 570006 - - 1139005 - -

IQEA [15] 563977 563977 563977 1123890 1124320 1124504

BFWA [55] 563977 564018 564855 1124658 1124941 1125087

HGICA [60] 563935.31 563937 563938 1124565 1124933 1125147

HHSRSA [32] 563937.6 563965.31 563995.33 1124889 1124912.8 1124951.5

RCGA [9] 563937 564019 564219 1123297 1123851 1124537

QIBGWO [63] 563936.3 563936.3 563936.3 1123294 1123459 1123526

BBSA [52] 563937.3 564568.85 565205.72 1124720.76 1125598.56 1126985.16

BGWA [56] 563976 564378 565518 1125546 1126126 1127393

Proposed BSMA 563662.12 563936.66 564254.05 1123204.99 1123700.629 1124294.43

5.1.3 Large scale test systems

80 and 100-unit systems are studied as large scale systems. In these occasions, standard

deviation is found to be significantly less compared to smaller systems and BSMA

converges in lesser iterations. Comparison of total cost with other renowned approaches

is shown in Table 5.7. For the 80-unit test system, SMA has shown the most optimal

cost of $4483601.9, where QIBGWA [63] being the second best and RCGA [9] next on

the list. Similarly for 100-unit system, BSMA is leading with $5602705.28, better than

all the other approaches including QBPSO [26]. Table 5.6 and 5.7 indicate that the

BSMA proposed in this paper has shown better performance for the larger test systems
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Table 5.5: Commitment and Generation schedule for 20 generating unit system trial.
(with 10% spinning reserve)

Time (h)
Commitment Schedule (U1-U10) Generation Schedule (U1-U10)

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

1 1 1 0 1 1 0 1 1 0 1 455 150 0 120 25 0 25 10 0 10
2 1 1 0 1 1 0 1 1 1 0 455 195 0 130 25 0 25 10 10 0
3 1 1 0 1 1 0 1 0 1 1 455 295 0 130 25 0 25 0 10 10
4 1 1 0 1 1 0 0 0 0 0 455 417.5 0 130 25 0 0 0 0 0
5 1 1 0 1 1 0 0 1 0 1 455 455 0 130 30 0 0 10 0 10
6 1 1 0 1 1 0 0 0 0 1 455 432.5 0 130 25 0 0 0 0 10
7 1 1 0 1 1 1 0 1 0 0 455 455 0 130 35 20 0 10 0 0
8 1 1 0 1 1 1 0 1 0 0 455 455 0 130 125 20 0 10 0 0
9 1 1 0 1 1 1 0 1 1 1 455 455 0 130 157.5 20 0 10 10 10
10 1 1 1 1 1 1 1 1 0 1 455 455 130 130 162 33 25 10 0 10
11 1 1 1 1 1 1 1 1 1 0 455 455 130 130 162 73 25 10 10 0
12 1 1 1 1 1 1 1 1 1 1 455 455 130 130 162 80 25 43 10 10
13 1 1 1 1 1 1 0 1 1 1 455 455 130 130 162 43 0 10 10 10
14 1 1 1 1 1 0 0 1 0 1 455 455 130 130 110 0 0 10 0 10
15 1 1 1 0 1 0 0 1 1 1 455 455 130 0 135 0 0 10 10 10
16 1 1 1 0 1 0 0 0 0 1 455 435 130 0 25 0 0 0 0 10
17 1 1 1 0 1 1 1 0 0 1 455 362.5 130 0 25 20 25 0 0 10
18 1 1 1 0 1 1 1 0 0 0 455 455 130 0 37.5 20 25 0 0 0
19 1 1 1 0 1 1 1 0 1 0 455 455 130 0 122.5 20 25 0 10 0
20 1 1 1 1 1 1 1 0 1 1 455 455 130 130 162 33 25 0 10 10
21 1 1 1 1 1 1 0 1 1 1 455 455 130 130 82.5 20 0 10 10 10
22 1 1 0 1 1 1 0 0 0 0 455 397.5 0 130 25 20 0 0 0 0
23 1 1 0 1 0 1 0 1 0 0 455 287.5 0 130 0 20 0 10 0 0
24 1 1 0 1 0 1 1 0 0 1 455 375 0 130 0 20 25 0 0 10

Time (h)
Commitment Schedule (U11-U20) Generation Schedule (U11-U20)

U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20

1 1 1 0 0 0 0 0 0 0 0 455 150 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 455 195 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 455 417.5 0 0 0 0 0 0 0 0
5 1 1 0 0 0 0 0 0 0 0 455 455 0 0 0 0 0 0 0 0
6 1 1 1 1 0 0 0 0 0 0 455 432.5 130 130 0 0 0 0 0 0
7 1 1 1 1 0 0 1 0 0 0 455 455 130 130 0 0 25 0 0 0
8 1 1 1 1 0 0 1 1 0 0 455 455 130 130 0 0 25 10 0 0
9 1 1 1 1 1 0 1 0 0 0 455 455 130 130 157.5 0 25 0 0 0
10 1 1 1 1 1 1 1 0 0 0 455 455 130 130 162 33 25 0 0 0
11 1 1 1 1 1 1 1 1 1 0 455 455 130 130 162 73 25 10 10 0
12 1 1 1 1 1 1 1 1 1 1 455 455 130 130 162 80 25 43 10 10
13 1 1 1 1 1 1 0 0 1 1 455 455 130 130 162 43 0 0 10 10
14 1 1 1 1 1 0 0 1 1 0 455 455 130 130 110 0 0 10 10 0
15 1 1 1 0 1 0 0 1 1 0 455 455 130 0 135 0 0 10 10 0
16 1 1 1 0 1 0 0 0 0 0 455 435 130 0 25 0 0 0 0 0
17 1 1 1 0 1 0 0 0 0 0 455 362.5 130 0 25 0 0 0 0 0
18 1 1 1 0 1 0 0 0 0 0 455 455 130 0 37.5 0 0 0 0 0
19 1 1 1 0 1 1 0 0 0 0 455 455 130 0 122.5 20 0 0 0 0
20 1 1 1 1 1 1 1 0 0 0 455 455 130 130 162 33 25 0 0 0
21 1 1 1 1 1 1 1 0 0 0 455 455 130 130 82.5 20 25 0 0 0
22 1 1 1 1 1 0 1 1 0 0 455 397.5 130 130 25 0 25 10 0 0
23 1 1 0 1 1 0 0 0 0 0 455 287.5 0 130 25 0 0 0 0 0
24 1 0 0 1 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0

than the smaller ones. The convergence and deviation characteristics of these two test

systems are shown in Figure 5.5e, 5.5f, 5.6e and 5.6f respectively. Figure 5.4 shows the

mean execution time of 80 and 100-unit systems.
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Table 5.6: Comparison of results for 40 and 60 unit systems. (with 10% spinning
reserve)

40 unit system 60 unit system

Approach Best Cost ($) Average Cost ($) Worst Cost ($) Best Cost ($) Average Cost ($) Worst Cost ($)

GA [35] 2252909 - 2269282 3376625 - 3384252

EP [29] 2249093 2252612 2256085 3371611 3376255 3381012

QEA [21] 2245557 2246728 2248296 3366676 3368220 3372007

LR [54] 2258503 2258503 2258503 3394066 3394066 3394066

ESA [61] 2250012 2252125 2254539 - - -

PSO [79] 2250012 - 2257146 3374174 - 3382921

IPSO [79] 2248163 - 2252117 3370979 - 3379125

BDE [24] 2245700 2246600 2247284 3367066 3367405 3367783

BPSO [25] 2243210 2244634 2245982 3363649 3365301 3367171

IBPSO [76] 2243728 - - 3367865 3368278 3368779

QBPSO [26] 2242957 2244657 2245941 3361980 3367550 3367755

LCA-PSO [72] 2277396 - - 3420438 - -

IQEA [15] 2245151 2246026 2246701 3365003 3365667 3366223

BFWA [55] 2248228 2248572 2248645 3367445 3367828 3367974

HGICA [60] 2239186 2242612 2246085 - - -

HHSRSA [32] 2248508 2248652.7 2248757 - - -

RCGA [9] 2242887 2243569 2244117 3365337 3366052 3366873

QIBGWO [63] 2242947 2244071 2244279 3361766 3364280 3364873

BBSA [52] 2248259.85 2251980 2266356.1 3367650.89 3369425.55 3389428.94

BGWA [56] 2252475 2257866 2263333 3367276 3367550 3367755

Proposed BSMA 2242303.6 2243301.7 2244683.4 3363491.58 3364887.915 3366097.72
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Figure 5.4: Mean execution time of test systems for BSMA.

Table 5.7: Comparison of results for 80 and 100 unit systems. (with 10% spinning
reserve)

80 unit system 100 unit system

Approach Best Cost ($) Average Cost ($) Worst Cost ($) Best Cost ($) Average Cost ($) Worst Cost ($)

GA [35] 4507692 - 4552982 5626361 - 5690086

EP [29] 4498479 4505536 4512739 5626885 5633800 5639148

QEA [21] 4488470 4490128 4492839 5609550 5611797 5613220

LR [54] 4526022 4526022 4526022 5657277 5657277 5657277

ESA [61] 4498076 4501156 4503987 5617876 5624301 5628506

PSO [79] 4501538 - 4513725 5625376 - 5641378

IPSO [79] 4495032 - 4508943 5619284 - 5633021

BDE [24] 4489022 4490456 4491262 5609341 5609984 5610608

BPSO [25] 4491083 4491681 4492686 5610293 5611181 5612265

IBPSO [76] 4488351 - - 5608792 - -

QBPSO [26] 4482085 4485410 4487168 5602486 5604275 5606178

LCA-PSO [72] 4554346 - - 5706201 - -

IQEA [15] 4486963 4487985 4489286 5606022 5607561 5608525

BFWA [55] 4491284 4492550 4493036 5610954 5612422 5612790

HGICA [60] 4485936 4487958 4489283 5604022 5608561 5613260

RCGA [9] 4486991 4487476 4487949 5606663 5607088 5607850

QIBGWO [63] 4481925 4486761 4487935 5602365 5605773 5606974

BBSA [52] 4491248.13 4492746.8 4492278.5 5611769 5612450.6 5613759.7

BGWA [56] 4495173 4506362 4513026 5628975 5637699 5643899

Proposed BSMA 4482619.33 4483601.9 4485743.1 5601253.43 5602705.284 5604741.04
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Figure 5.5: Convergence curves of different test systems for BSMA: (a) 10 units, (b) 20
units, (c) 40 units, (d) 60 units, (e) 80 units, (f) 100 units.
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Figure 5.6: Deviation of results of BSMA on independent trials: (a) 10 units, (b) 20
units, (c) 40 units, (d) 60 units, (e) 80 units, (f) 100 units.
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5.2 Case-II: 10-unit system with valve-point loading

effect

In this second test case, a single set of 10-unit system is considered including the

sinusoidal term of valve-point loading effect in fuel cost function. Generating unit data

and Load demand are obtained from [6]. Spinning reserve is taken as 6% of the load

demand and transmission losses are neglected. Generation schedule is shown in Table

5.8. As in Table 5.9, average total generating cost of BSMA is better than NSGA-II [6],

BRABC [12] and TLBO [59]. Only QTLBO [59] has shown better cost than Proposed

BSMA in this test case.

5.3 Case-III: IEEE 118-bus test system

IEEE 118-bus test system consisting of 54 generating units is also considered for BSMA

performance test. Quadratic cost function is used in this test case. Spinning reserve

is taken as 10% of load demand and transmission losses are neglected. Comparison is

shown in Table 5.10 with SDP [4], BRABC [12], BRCFF [13] and FFA with multiple

workers [40]. The comparison shows the superiority of BSMA, with the best operation

cost for IEEE 118-bus system over the other 4 approaches. Load demand and generating

unit data used for this case are shown in 5.11 and 5.12.
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Table 5.8: Generation Schedule for 10-unit system with valve-point loading effect

Time (h)
Generation Schedule

Fcost ($/h) SU cost ($/h)
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

1 456.5 395.5 184.0 0 0 0 0 0 0 0 25181.2 550

2 379.9 395.5 334.5 0 0 0 0 0 0 0 26912.0 0

3 379.9 395.5 308.5 0 174.1 0 0 0 0 0 30457.9 900

4 456.5 308.2 297.1 120.4 223.9 0 0 0 0 0 34379.0 560

5 456.5 395.5 296.6 107.6 223.9 0 0 0 0 0 36100.5 0

6 456.5 395.5 310.8 241.3 223.9 0 0 0 0 0 39580.5 0

7 456.5 395.5 326.1 300.0 223.9 0 0 0 0 0 41461.7 0

8 456.5 395.5 298.8 241.4 222.6 159.9 0 0 0 0 43000.3 340

9 456.5 395.7 296.2 299.7 222.5 122.4 130.9 0 0 0 46092.1 520

10 456.5 395.5 321.1 299.8 222.8 160.0 131.0 85.4 0 0 50444.9 60

11 456.6 395.7 307.5 299.9 223.4 159.9 131.0 120.0 52.0 0 52793.3 60

12 456.5 458.6 300.7 299.9 222.6 160.0 130.9 85.3 52.0 53.4 55354.8 60

13 456.5 395.4 321.6 299.9 222.6 159.7 131.0 85.3 0 0 50446.3 0

14 456.5 395.5 296.6 299.5 222.6 122.4 130.9 0 0 0 46086.8 0

15 456.5 395.6 298.8 241.3 224.0 159.9 0 0 0 0 43000.1 0

16 456.5 395.5 297.3 180.8 224.0 0 0 0 0 0 37714.4 0

17 456.5 395.5 284.7 119.4 224.0 0 0 0 0 0 36092.6 0

18 456.5 395.5 302.1 120.4 222.6 0 130.9 0 0 0 39077.9 260

19 456.5 395.5 315.5 180.8 172.8 123.9 130.9 0 0 0 42687.3 170

20 456.5 395.5 339.8 299.8 222.5 159.9 130.9 47.0 20.1 0 50904.3 120

21 456.7 458.6 340.0 185.3 222.7 129.9 130.9 0 0 0 46628.0 0

22 456.6 395.5 325.0 299.8 0 0 130.9 0 20.0 0 39671.6 30

23 456.5 395.5 302.1 0 0 0 130.9 0 47.0 0 32131.4 0

24 456.5 395.5 331.9 0 0 0 0 0 0 0 28525.3 0
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Table 5.9: Comparison of results for 10-unit system with valve-point loading effect

Approach Average Cost ($)

Binary/Real Coded Artificial Bee Colony [12] 982949.55

Teaching-learning Based Algorithm [59] 978426.82

Quasi-oppositional Teaching Learning Based Algorithm [59] 976827.17

Proposed BSMA 978354.24

Table 5.10: Comparison of results for 54-unit 118-bus system

Approach Average Cost ($)

Semi-definite Programming [4] 1645444.98

Binary/Real Coded Artificial Bee Colony [12] 1644269.71

Binary/Real Coded Firefly Algorithm [13] 1644141

Firefly Algorithm with Multiple Workers [40] 1644134

Proposed BSMA 1644122.68

Table 5.11: Test load demand data for 54-unit system 118-bus system

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

Load (MW) 4200 3960 3480 2400 3000 3600 4200 4680 4920 5280 5340 5040

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Load (MW) 4800 4560 5280 5400 5100 5340 5640 5880 6000 5400 5220 4920
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Table 5.12: Test data for 54-unit 118-bus system.

Unit No. P i
G_max P i

G_min ai bi ci T i
mu T i

md SU i
cost_hot SU i

cost_cold T i
cold Initial Status

U1 30 5 31.67 26.24 0.0697 1 1 40 120 2 1
U2 30 5 31.67 26.24 0.0697 1 1 40 120 2 1
U3 30 5 31.67 26.24 0.0697 1 1 40 120 2 1
U4 300 150 6.78 12.89 0.0109 8 8 440 1320 7 8
U5 300 100 6.78 12.89 0.0109 8 8 110 330 7 8
U6 30 10 31.67 26.24 0.0697 1 1 40 120 2 1
U7 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U8 30 5 31.67 26.24 0.0697 1 1 40 120 2 1
U9 30 5 31.67 26.24 0.0697 1 1 40 120 2 1
U10 300 100 6.78 12.89 0.0109 8 8 100 300 7 8
U11 350 100 32.96 10.76 0.003 8 8 100 300 7 8
U12 30 8 31.67 26.24 0.0697 1 1 40 120 2 1
U13 30 8 31.67 26.24 0.0697 1 1 40 120 2 1
U14 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U15 30 8 31.67 26.24 0.0697 1 1 40 120 2 1
U16 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U17 30 8 31.67 26.24 0.0697 1 1 40 120 2 1
U18 30 8 31.67 26.24 0.0697 1 1 40 120 2 1
U19 100 25 10.15 17.82 0.0128 5 5 59 177 4 5
U20 250 50 28 12.33 0.0024 8 8 100 300 7 8
U21 250 50 28 12.33 0.0024 8 8 100 300 7 8
U22 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U23 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U24 200 50 39 13.29 0.0044 8 8 100 300 7 10
U25 200 50 39 13.29 0.0044 8 8 100 300 7 10
U26 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U27 420 100 64.16 8.34 0.0106 10 10 250 750 8 10
U28 420 100 64.16 8.34 0.0106 10 10 250 750 8 10
U29 300 80 6.78 12.89 0.0109 8 8 100 300 7 10
U30 80 30 74.33 15.47 0.0459 4 4 45 135 4 4
U31 30 10 31.67 26.24 0.0697 1 1 40 120 2 1
U32 30 5 31.67 26.24 0.0697 1 1 40 120 2 1
U33 20 5 17.95 37.70 0.0283 1 1 30 90 2 1
U34 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U35 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U36 300 150 6.78 12.89 0.0109 8 8 440 1320 7 10
U37 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U38 30 10 31.67 26.24 0.0697 1 1 40 120 2 1
U39 300 100 32.96 10.76 0.003 8 8 440 1320 7 10
U40 200 50 6.78 12.89 0.0109 8 8 400 1200 7 10
U41 20 8 17.95 37.70 0.0283 1 1 30 90 2 1
U42 50 20 58.81 22.94 0.0098 1 1 45 135 2 1
U43 300 100 6.78 12.89 0.0109 8 8 100 300 7 8
U44 300 100 6.78 12.89 0.0109 8 8 100 300 7 8
U45 300 100 6.78 12.89 0.0109 8 8 110 330 7 8
U46 20 8 17.95 37.70 0.0283 1 1 30 90 2 1
U47 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U48 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U49 20 8 17.95 37.70 0.0283 1 1 30 90 2 1
U50 50 25 58.81 22.94 0.0098 2 2 45 135 2 2
U51 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U52 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U53 100 25 10.15 17.82 0.0128 5 5 50 150 4 5
U54 50 25 58.81 22.94 0.0098 2 2 45 135 2 2
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Chapter 6

Conclusion and future prospect

This paper presents a binarized slime mould algorithm to solve single-objective thermal

Unit Commitment Problem. Foraging behavior of slime mould and searching proce-

dure for nutrition sources is mimicked in SMA, which is then translated to make it

compatible with UCP parameters. Original SMA is made confined to discrete val-

ues with sigmoid transform, fitness values are determined with lambda iteration based

Economic Load Dispatch and complex UCP constraints for all the search agents are

handled by heuristic adjustments. BSMA is tested for 10, 20, 40, 60, 80 and 100 unit

test systems and then compared with 20 renowned classical, heuristic-metaheuristic and

hybridized approaches. Performance assessment tests has shown that BSMA achieved

least production cost in a reasonable computational time compared to the other ap-

proaches for benchmark test systems. The convergence is found to be much quicker as

the optimizer reaches it’s final solution in lesser iterations. Comparatively lesser stan-

dard deviation for medium and large-scale test systems shows the potential of BSMA as

a suitable optimizer for larger systems. For IEEE 118-bus system, BSMA outperforms

the competing algorithms with the most cost effective solution. Therefore in future, pro-

posed SMA can be modelled to solve other power system problems like binary natured

profit-based Unit Commitment Problem (PBUCP) [58], [19], multi-objective Unit Com-

mitment Problem (MOUCP), where MOUCP deals with emission reduction, reliability

maximization and various uncertain gen- eration environments [56], [68], scheduling of

wind-powered, hydro-powered and other clean energy sources with or without secutiry

constraints [28], [73] and micro-grid associated stochastic optimization problems [51],

[45]. Real coded hybridization with classical methods like GA, LR, EP, evolutionary

methods like PSO, GWO, ACO and Quantum-inspired variant of SMA can also be

developed to solve problems of power generation and operation domain like Combine

Economic and Emission Dispatch (CEED) [57], [17] in future.
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