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Abstract
Deep learning has been monumental in Computer Vision, Natural Language Processing, Ma-
chine Translation task and so on. In bioinformatics, Deep learning is playing an important role
in drug discover and protein structure prediction. In cancer diagnosis, thanks to advances in
Computer Vision Deep Learning models are able to accurately classify cancer. However, not
much work has been done in the field of Cancer diagnosis with genomic data. Several authors
attempted to use genomic data using machine learning, however it was restricted to single cancer
subtypes. In this thesis, we explored classification of all types of cancer using miRNA genome
data by creating new model architectures.

We are proposing two new architectures a basic ANN and a novel architecture based on ResNet
called CResNet. We have trained 4 different kinds of model. LSTM, Artificial Neural Network,
CResNet (Variant of ResNet Architecture) and Ensemble models using model averaging. Our
models have achieved MCC (Mathew’s correlation coefficient) value of 0.8596,0.9625,0.9745 and
0.9439 which is greater than the SOTA model’s MCC model demonstrating that our architecture
performed better than the current architecture.
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1 Introduction
The domain of Computer Science most relevant to our research is Bioinformatics. Bioinformatics
is the study of the process of extraction of biological data, converting it into meaningful forms
and finally the analysis of said data. The specific part of Bioinformatics that we have focused on
is cancer subtype diagnosis. The data that will be used for this diagnosis is miRNA expression
data. Our rudimentary models will employ techniques such as LSTM (Long Short TermMemory)
models and NCA (Neighborhood Component Analysis), but this can be subject to future change
and we also are using ANN. The objective of our project is to build an efficient ML/DL model
to accurately detect the various cancer types and subtypes based on the miRNA expression data.

In this research we are trying to incorporate deep learning and bioinformatics in such a way
so that we can give cancer diagnosis based on gene expression of the cancer. Here we are im-
plementing LSTM which is a sequence model and ANN which are artificial neural network on
micro RNA sample to classify all cancer types and subtypes. Our approach will use all the
available features from the micro RNA. Then using those features we will perform classification.
After classification we will evaluate the performance of our model using confusion matrix and
Mathew’s coefficient. We are also implementing CResNet (a variant of ResNet) and Ensemble
model averaging on miRNA expression quantification data for classification of 8 cancer types
and subtypes

Our research will bring new avenues and ways to use deep learning in classification for cancer.
Existing classification methods of cancer heavily relies on Convolutional Neural Network which
deals with images. Our approach will present a way to preprocess data, analyze micro RNA
reads and use that data to perform classifications using sequential models.

In short, our research goal is to use deep learning models to evaluate the performance of classi-
fication on all types of cancer.
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2 Motivation and Problem Statement
Cancer is the second leading cause of death globally, and is responsible for an estimated 9.6
million deaths in 2018. Better understanding of etiological and biological nature of cancer will
equip us with better methods of preventive, diagnostic and therapeutic tools to help reduce the
burden of this disease.

Early diagnosis of cancer is extremely important when it comes to treatment. When cancer is
found at an early stage before it has spread, the 5-year relative survival rate is about 80%. But
only cervical cancer and breast cancer can be detected early. When cancer has spread outside
the affected area, survival rates are lower. Therefore, current screening and detection technolo-
gies being more competent than ever before are still very limited and there is significant room
for improvement. Adding to this, Cancer is a heterogeneous disease and many cancer types do
not represent a single entity, but are composed of biologically and clinically diverse subtypes.
Different treatment strategies exist for different subtypes and therefore it is important to ascer-
tain the subtype as well. Machine Learning/Deep Learning algorithms are a burgeoning entity
in various fields of health sciences. An instance would be the extensive use of computer vision
technologies in determining various malignant cell growth from imaging with greater specificity
than a specialist. Machine learning techniques are also used in many bioinformatics research to
mine new knowledge on existing sequence data. Our research employs a similar approach. The
problem that our research aims to tackle is the accurate diagnosis of cancer types and subtypes.

LSTM is a recurrent neural network algorithm that is capable of learning order dependence on
sequence prediction problems. Our goal as researchers is to discover the potential of this LSTM
algorithm in cancer subtype detection by running it on microRNA expression data. microRNA
expression levels in various cancers serve as informative biomarkers and can also be obtained from
patients in non invasive methods. Not all microRNA have equal weight as cancer biomarkers,
therefore it is important to determine the most impactful microRNA in diagnosis. Finally our
problem statement stands as: Finding the most impactful microRNA in terms of acting as
biomarkers and then using said microRNA data to classify cancer types and subtypes .
ANN stands for artificial neural network. The idea is to introduce non linear activation function
to capture non linear patterns in miRNA quantification data. It is of great importance that
we capture non linear activation pattern the reason being that all types of cancer will be clas-
sified. While cancer subtypes might show linear patterns, different cancer subtypes will show
non linear pattern. We believe that ANN will be able to capture those pattern and offer greater
classification accuracy.

CResNet is a variant of ResNet model architecture. ResNet is a popular model architecture that
uses skip connections. It is an important feature for deep neural network architectures. This
is because as model’s get deeper and deeper some features might get lost. So skip connections
retains the information and then adds with the activation calculation performed on the informa-
tion. This retains some feature which might get lost as the architecture gets deeper and deeper.

We are also building an ensemble of deep neural networks. We are going to use model voting
which takes the most common prediction and gives the output. Ensemble techniques are popular
in Kaggle a site where Ml competition is hosted.

We propose to build a stage independent deep learning models for early detection and classifi-
cation of cancer.
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3 Related Works
In this section we are going to discuss about related works related to our research, background
study as to why microRNAs are the perfect biomarker for Cancer classification.

3.1 The role of microRNAs in Cancer [15]

MicroRNAs are small, 18–24 nucleotide RNAs that regulate the translation and stability of
specific target mRNAs.They are responsible for regulating a wide array of biological processes
including carcinogenesis. In cancer cells. it has been observed that miRNAs are heavily dysreg-
ulated.

They are dyregulated in human cancer through various mechanisms,including amplification or
deletion of miRNA genes,abnormal transcriptional control of miRNAs, dysregulated epigenetic
changes and defects in the miRNA biogenesis machinery. These dysregulation will make miRNAs
function as oncogenes or tumor suppressors under certain conditions.

3.1.1 miRNA biogenesis and Regulation

The miRNA biogenesis begins with transcribing gene into large primary transcript (pri-miRNA),
which is 5 capped and 3 polyadenylated in structure. transcription is typically mediated by
RNA polymerase3. The pri-miRNA are cleaved by a microprocessor complex, composed of
RNA-binding protein into a 85-nucleotide stem-loop structure called precursor miRNA. After
transporting from nucleus to cytoplasm by GTP 5 complex, it is then processed by another
RNA polymerase into 20-22 nucleotide, miRNA duplex. Then it is unwound and and the mature
miRNA is incorporated into a protein complex known as RNA-induced silencing complex (RISC)
and guides it to target miRNA. The mature miRNA can be degraded to form RNAs and it can
also combine with TLR to trigger downstream signaling pathways.

Figure 1: miRNA biogeneis
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3.1.2 Mechanisms of miRNA dysregulation in cancer

Alterations in genomic miRNA copy numbers and gene locations are the main reasons behind
abnormal miRNA expression in malignant cells compared with normal cells. Earliest discovery
of miRNA gene location change is the loss of miR-15a/16-1 cluster gene at chromosome 13q14,
which is frequently observed in leukemia patients. In lung cancer, the 5q33 region harboring
miR-143 and miR-145 is often deleted,resulting in decreased expression of both miRNAs [1]. Am-
plification of miR-17-92 cluster gene was observed in B-cell lymphomas[20] and lung cancers [7],
and translocation of this cluster gene was also observed in T-cell acute lymphoblastic leukemia,
leading to over expression of these miRNAs in these malignancies[12].High frequency of genomic
alterations in miRNA loci was confirmed by high-resolution array-based comparative genomic
hybridization in 227 specimens from human ovarian cancer, breast cancer and melanoma[23].
Overall these findings suggest that abnormal miRNA expression in malignant cells could arise
from amplification or deletion of specific genomic regions encompassing miRNA genes.

3.1.3 Significance of the altered miRNA expression in tumors

It has been proposed by Hanahan and Weinberg [6] that the hallmarks of human cancer comprise
of six biological capabilities they are:

• Sustaining proliferative signaling

• Evading growth suppressors

• Resisting cell death

• Enabling replicative immortality

• Activating invasion and metastasis

• Angiogenesis

Evading growth suppressors and sustaining proliferative signaling Cell proliferation is the most
important hallmark of cancer and its abnormality is the leading cause of tumorigenesis. In
details, cell- cycle progression is controlled by intracellular programs and extracellular signal
molecules, to reach the balance between promoting cell proliferation and suppressing it. Cells
become cancerous when cell growth or division is out of control. Over the years of studies, it be-
comes apparent that some miRNAs functionally integrate into multiple critical cell proliferation
pathways, and the dysregulation of these miRNAs is responsible for evading growth suppressors
and sustaining proliferative signaling in cancer cells.

Evasion of apoptosis is another significant hallmark of tumor progression, which is believed to be
regulated by miRNAs. Tumor cells evolve a variety of strategies to limit or circumvent apoptosis.
Among them, the loss of p53 tumor suppressor function is most common. The alternative ways
to evade apoptosis include upregulation of anti-apoptotic regulators, suppression of proapoptotic
factors and inhibition of death pathway induced by extrinsic ligands. The components involved
in anti-apoptosis are broadly inhibited or activated by miRNAs.

Metastasis is a complex, multistep and dynamic biological event. Epithelial–mesenchymal tran-
sition (EMT) is considered an early and key step in the metastatic cascade, characterized by
loss of cell adhesion through repression of E-cadherin and activation of genes associated with
motility and invasion. EMT is thought to be regulated by a variety of signaling pathways such
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as transforming growth factor (TGF)-β, all of which converge on the key transcription factors
such as ZEB, SNAIL and TWIST.

Since the discovery of miR-15a and miR-16-1 deletions in chronic lymphocytic leukemia, many
laboratories around the world have demonstrated the expression of miRNAs is dysregulated in
different tumors. Such dysregulation could be caused by multiple mechanisms, including ampli-
fication or deletion of miRNA genes, abnormal transcriptional control of miRNAs, dysregulated
epige- netic changes and defects in the miRNA biogenesis machinery. Cancer cells with abnor-
mal miRNA expression evolve the capability to sustain proliferative signaling, evade growth sup-
pressors, resist cell death, activate invasion and metastasis and induce angiogenesis. MiRNA
may function as either tumor suppressor or oncogene under certain circumstances. Genome-wide
profiling demonstrates that miRNA expression signatures are associated with tumor type, tumor
grade and clinical outcomes, so miRNAs could be potential candidates for diagnostic biomarkers,
prognostic biomarkers, therapeutic targets or tools.

3.2 The Role of microRNAs in Colorectal Cancer [17]

MicroRNAs are small, 18–24 nucleotide RNAs that regulate the translation and stability of spe-
cific target mRNAs.Almost 18 years ago, microRNAs, were implicated in the initiation of chronic
lymphocytic leukemia [2]. Since that discovery, microRNAs have been shown to be involved in
almost every aspect of cancer biology, as tumor suppressor genes or oncogenes depending on
the cellular context in which they are expressed. Evidence supports a role for microRNAs at
every stage of CRC initiation, progression and development. Extensive research were aimed at
determining if microRNAs can be used as diagnostic biomarkers. In this review paper, the role
of microRNA in CRC was mainly discussed in different phases of CRC.

3.2.1 MicroRNA expression is consistently altered in CRC

More than 20 studies were taken when the paper was released. Those studies have examined
microRNA expression patterns in CRC and confirmed that microRNAs have consistently and
reproducibly altered in CRC [10]. These studies used a variety of techniques ranging from global
miRNA expression profiling with deep sequencing[3] or microRNA microarrays[9] to examine
the expression of selected microRNAs with quantitative reverse transcriptase polymerase chain
reaction (qRT-PCR). The main underlying theme of these studies is that microRNA expression
of CRC is distinctly different than non tumor tissues, which is consistent with the hypothesis
that aberrant microRNA expression has a role in CRC initiation and development.

In contrast to the original report that microRNA expression levels are globally reduced in can-
cer,[9], more microRNAs have been found to have elevated expression in CRC compared to those
with reduced levels. A review of 23 micro RNA expression studies found that of the 164 microR-
NAs that are significantly altered in CRC in at least one study, approximately 2/3 of them were
elevated and 1/3 that were reduced in tumors[10]. This indicates that microRNAs may have
more oncogenic than tumor suppressive functions in CRC. This means that certain microRNAs
have important oncogenic functions while others have important tumor suppressor functions
and these functions need to be evaluated for each microRNA individually in the context of the
specific tissue/tumor type.

MicroRNA expression patterns can also classify tissue types and tumor types and microRNA ex-
pression patterns perform at least as well as mRNA expression profiles for this purpose.[9].Therefore,
microRNA expression pattern may help classify different phenotypic subgroups of CRC.
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3.2.2 MicroRNAs function at early stages in CRC development

Adenomas are benign growths that are frequently a precursor lesion of colon adenocarcinoma. If
microRNAs are altered in adenomas, it suggests that microRNAs have a role in the initiation of
cancer. This is indeed the case. MicroRNA expression patterns can distinguish normal colonic
mucosa, colon adenomas, and colon carcinoma [14]. These expression patterns are consistent
with the stepwise, multi-hit model for colon carcinogenesis and support a role for microRNAs
in each step. MiR-21 is a good example as it is elevated in adenomas and colon carcinomas
[16].Higher expression levels of miR-21 correlate with advance stages of CRC indicating a role
for miR-21 in initiation and progression of CRC [16].

3.2.3 micoRNAs as diagnostic biomarkers for CRC

For successful treatment of CRC early detection will provide the best chances for successful
treatment. Surgery before metastatic spreading of the disease is considered the only curative
form of treatment. The screening methods of colonoscopies and fecal occult blood tests (FOBT)
have improved survival rates for CRC by detecting patients and earlier stages of cancer, but there
is still much room for improvement and neither test is ideal. While colonoscopies are considered
the best screening tool because it can also remove precancerous polyps during the procedure,
they are both invasive and expensive, which leads to lower compliance rates. FOBT is less
invasive, but also less sensitive and specific. New non-invasive, accurate biomarkers are needed
to improve both the accuracy and screening rates for CRC. MicroRNAs are being evaluated for
their potential in this area.

3.2.4 microRNA expression as prognostic and predictive biomarkers

Molecular classifiers can serve as prognostic and predictive tools to help stratify cancer patients
into appropriate risk groups to aid physicians in making therapeutic decisions. These decisions
can include whether or not to provide adjuvant chemotherapy or what types of therapy are
appropriate. Expression patterns of microRNAs are associated with both prognosis and ther-
apeutic outcomes in CRC; therefore they have potential as prognostic and predictive biomarkers.

Figure 2: Role of miRNA in CRC
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3.3 A Machine Learning Approach for the Classification of Kidney
Cancer Subtypes Using miRNA Genome Data [13]

In this paper the main objective of the authors were to develop automated tools that can ac-
curately determine kidney cancer subtypes. At the time of publishing the paper, it has been
confirmed by researchers from biomedical field that miRNA dysregulation cause cancer. They
have built a machine learning approach for the classification of kidney cancer subtypes using
miRNA genome data. In this paper through empirical studies it was found that 35 miRNAs
possess distinct key features that aid in kidney cancer subtype diagnosis. In this research Neigh-
borhood Component Analysis (NCA) is employed to extract distinct key features from miRNAs
and Long Short Term Memory, a type of Recurrent Neural Network, is adopted to classify a
given miRNA sample into kidney cancer subtypes.

For this experimental study,the miRNA quantitative read counts data, which was provided
by The Cancer Genome Atlas data repository (TCGA). The NCA procedure selected 35 of
the most discriminative miRNAs into five subtypes with average accuracy around 95% and
Matthews Correlation Coefficient value around 0.92 under 10 runs randomly grouped 5-fold
cross-validation, which were very close to the average performance of using all miRNAs for
classification.

3.3.1 Data preparation

In this research, kidney cancer RNA-sequence data represented by the miRNA expression that
is publicly available on TCGA was used. For kidney cancer three TCGA and two TARGET
projects defined the most relevant kidney cancer types as

• High-Risk Wilms Tumor

• Kidney Renal Papillary Cell Carcinoma

• Kidney Chromophobe

• Rhabdoid Tumor

• Clear Cell Sarcoma

• Kidney Renal Clear Cell Carcinoma

3.3.2 Categorization

All kidney cancer cases were considered in which miRNA information was provided. Cases
represent the samples taken from patients who had kidney cancer which belonged to one of five
different cancer sub-types. For data preparation the following diagram was followed

Figure 3: Data preparation for kidney cancer subtype classification

Based on the schematic the following steps were taken.
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• Data from TCGA was downloaded and then it was categorized using a MATLAB program.

• First the information related to each case was matched with its miRNA quantification
files using the file ID.The information of miRNA read per million for each miRNA was
considered in the experiment.

• The miRNA files were then matched with those in clinical data, stored in javascript file,
using the case ID. This clinical data provides the record of cancer sub-types and other
patient clinical information such as age, sex, and demographics

• The above procedure of preparing the cancer data facilitated automatic classification of
kidney cancer sub-types based on the miRNA quantification expression information of the
patients.

The most discriminative data features were extracted using NCA algorithm. The authors used
all the features to train the model too and found that using all the features generally gave better
results. However it was not possible to tell for which features were important for classification.

3.3.3 Model

For classification, LSTM network algorithm with two LSTM layers were used

• The first LSTM layer had 500 neurons

• The second layer had 250 neurons

NVIDIA TITAN X GPU was used for training. Ten runs of five-fold validation was adopted for
data analysis which is the procedure followed largely by the Data Analysis Protocal(DAP). The
miRNA dataset were randomized for training.

3.3.4 Challenges and Solutions

The challenges that the authors faced were the following

• The dataset was not balanced. To overcome the imbalance in dataset small, random
Gaussian noise with zero mean and 0.02 variance were added to the points of those classes
with fewer cases, resulting in a balanced dataset [4]. Test samples were excluded from this
data augmentation mechanism.

3.3.5 Methodologies applicable in our research

Our research will utilize similar data pre-processing mechanisms. We will also use NCA for
feature extraction and LSTM or other variants of LSTM for training our model.

To analyse the result we will use Confusion matrix and Matthews Correlation Coefficient (MCC)
[11]. Effectiveness of the selected miRNAs for classification needs to be validated through wet-lab
experiments and further clinic studies.
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3.4 Deep Learning with Sampling in Colon Cancer Histology [18]

In this paper, the main objective was to apply a deep learning cell identification algorithm to
diagnostic images from the colon cancer repository at The Cancer Genome Atlas (TCGA). Here
the study shows how experimentally that a cell identification algorithm using deep learning
can uncover interesting relationships between tissue morphology and a range of clinical variables
and that systematic sampling of tissue regions can improve performance without losing accuracy.

A statistically significant association between morphology and various clinical variables was
found in this study; The TNM grading system used in cancer treatment considers tumor pen-
etration, node3s, and metastasis. From this study, we saw Cellularity which is referred to the
morphological feature corresponds to the spatial density of the corresponding cell type.

Apart from this cellularity, more features can be calculated using deep learning regarding colon
cancer. We may learn about features that include tumor budding, serrated cancers where the
colonic glands are of the distinctly serrated form. Jass [8] classified colorectal cancers accord-
ing to molecular features, Felipe De Sousa et al. [5] reported serrated cancers to have distinct
molecular features. So in the future, there is an expectancy that deep learning will help to link
the morphological, clinical, and molecular data.

This work already minimized a lot of computational costs. It takes into account a lot of test
samples and allows more data to be trained and analyzed if compared with the previous process.
Even though there is no guarantee that this approach will always be successful. But further
research on finding more features of cell using deep learning will lead to more prominent results.

3.4.1 Methodology and Procedure

In the experiment described in the paper, three Methods were followed which were helpful in
the study of identifying cell features which will help in the diagnosis of colon cancer.

1. Sampling of the set of patches: Here sampling was employed in the analysis of cases of
colon cancer where pathologists were asked to categorize the tissue type at 300 randomly
selected points in a dense region of tissue. In histopathology, simple sampling methods
cannot be used as it takes spatial dependencies into account. So, two suitable types of
sampling were implemented.

• Random Sampling

• Systematic Random Sampling

2. Cell Identification: Firstly a cell identification algorithm was trained. This algorithm
mainly comprises of two convolutional neural networks (CNNs) working in series. The first
network detects the cells and the second network simply classifies each cell as epithelial,
inflammatory, a fibroblast or as ‘others’.

3. Profile generation: In the process of Profile Generation images of 1500 cells were hand
marked by a pathologist. Cells were classified into four types normal epithelial cells,
malignant epithelial cells, inflammatory cells, or fibroblasts. These cell’s patches were run
through a cell identification algorithm and the accuracies of detection and classification
were computed. Both achieved a 65% accuracy on average.

Both sampling policies are applied using a nominal sample size, two batches were run, and
in each batch run the sampling policy were applied to the 142 whole slide images. Different
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scatter plots and comparisons are analyzed between the two sets of sampling batches. The
clinical variable of the data was cross-checked against the four profile features of the cell.

By cross-checking, all the data different combinations of the profile features were found
resulting in unique problems like Mucinous carcinomas were associated with fewer inflam-
matory cells than were non-mucinous carcinomas, and for metastasis, residual tumor, and
venous invasion were related to lower numbers of epithelial cells.

Figure 4: In the figure above the process is summarized on how the cell feature is analyzed

From this paper we can see how images can be analysed to identify CRC. Our research will
explore miRNA expression for CRC so we might not used the methodologies introduced here.
We could use random sampling and systematic random sampling for data augmentation in our
procedure.
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3.5 Identification of 12 cancer types through genome deep learning

In this paper [19] the authors create a new neural network called Genome Deep Learning. Deep
neural network, a high level abstraction algorithm very competent in finding patterns in large
sets of data, was used as a classifier to diagnose patients with 12 different types of cancer. Data
that was used to train and test the classifier were point mutation data, which denote the genomic
variation between a harmful allele of the principal gene and their healthy variants. Mutations in
oncogenes play more of a role in cancer development compared to any other genes and therefore
those were chosen as a principal point of focus, some examples would be BRCA1 and BRCA2 for
the development of breast cancer. The process outlined in the paper includes data collection and
preprocessing, model training (deep neural network in TensorFlow environment) and evaluation.

Figure 5: Architecture of GDL (Genomic Deep Learning)

The genomic data of patients were compared to healthy alleles to generate point mutation files
and the most significant point mutations were chosen as the dimensions of the input data.
Through this model, the authors were able to achieve the accuracy, specificity and sensitivity
values of 94.70%, 97.30% and 85.54%, respectively. The method outlined in the paper is able
to diagnose a patient irrespective of the stage the cancer is in and therefore fare better in
diagnosis compared to traditional means when the cancer is in a nascent stage. A limitation
the proposed methodology faces is that it does not take into account other factors such as age,
sex, trascriptome and proteome data, which may contribute to accurate diagnosis. Another
limitation is the number of cancers that are possible to diagnose is still very low and there is
room for further research and development.
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3.6 Deep Residual Learning for Image Recognition

Deep neural networks are actually complicated to train. So the residual learning is used here
for image classification. The residual Networks are easier to optimize and they can get accuracy
to a higher level. Using this network of the ImageNet dataset we were able to get results for a
depth of 152 layers (8 times deeper than VGG) with a very lower complexity with an error of
only 3.2%.
The deep convolutional neural network has breakthroughs for Image Classification. However, it
faced some complications like the vanishing gradient problem which hampers the convergence.
When deeper networks are able to start converging a degradation problem has been exposed,
with increase in depth the accuracy falls and degrades rapidly. This shows not all systems are
similar to optimize, and thus the deep residual learning framework is introduced for the degra-
dation process.

Residual Network:
The residual learning is for every few stacked layers.

y = f(x, {Wi}) +Wsx

It is the equation for the residual mapping. x and y are the input and output vectors. The RELU
and the biases are omitted for simplifying notation. The operation ’f+x ’ was performed by
shortcut connection and element-wise addition. No extra parameter or computation complexity
increases for the shortcut connection. The form of the residual connection ‘f ’ is flexible which
has multiple layers, but if it only has one layer then it is similar to a linear layer.The function

f(x,Wi)

can represent multiple convolutional layers. The element-wise addition is performed on two
feature maps, channel by channel.
For experiments two networks are used:

• Plain Network
It has convolutional layers mostly have 3x3 filters and the network has global average
pooling layers and 1000 way fully connected layers with softmax.

• Residual Network
Based on the plain network, shortcut connections are applied which turns the network into
its counterpart residual version.

Experiments on both ImageNet Classification and also with the CIFAR-10 data set are done for
the two different networks .

For ImageNet Classification ,with the plain network it is seen that when a deeper 34- layer
network is applied rather than the 18-layer, the validation error increases and it has higher
training error as well. However, for Residual networks the 34-layer network gives lower error
than the 18-layer network and the accuracy keeps increasing with increasing the number of lay-
ers. The 152 layer gives even better results than the 34-layer network.

For CIFAR-10, using a plain network it is seen that the error keeps increasing with more num-
ber of layers, and at the same time lots of parameters are required. However, using the residual
network the error decreases for higher layer networks and even less parameters are required
compared to the plain network. Though there is a limitation, when more than 1000 layers are
used, the optimization becomes difficult and the accuracy starts to fall due to overfitting. So for
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such a data set it is unnecessary to use more than 1000 layers.

Using the residual network it is also seen that it has good generalization performance on other
recognition tasks such as PASCAL or in MS COCO. Faster R-CNN detection methods can be
obtained. Research on this particular field is still going on where this residual network can be
used to improve the object detection techniques even further.

4 Proposed Methodology
A typical machine learning algorithm starts with feature selection, though deep learning algo-
rithms can also be designed to handle raw data [21]. With regard to feature selection, it was
demonstrated in [22] that NCA is an effective method for selecting significant feature points for
high-dimensional data. This method is a nearest neighbor-based feature weighting algorithm. As
a feature selection tool, the NCA method was successfully tested on several microarray datasets
for various cancers, such as colon cancer, brain tumor, leukemia, lung cancer, and prostate can-
cer [22].In this research, the NCA algorithm was adopted for selecting high-rank features form
miRNA data. We will also consider using artificial neural network to train our model

4.1 Neighborhood Component Analysis

Let us consider a multi-class classification problem. Let c be the number of classes and n be the
number of observations. Then a given training set can be described as follows [22]:

S = {(xi, li), i = 1, 2, 3, .., n} (1)

where xi ∈ Ri are the featire vectors and Ii ∈ {1, 2, ...., c} are the class labels. Let f : Rp →
{1, 2, ...., c} be the classifier to be trained.

Consider a randomized classifier that picks a reference point randomly, Ref(x) then labels x using
the label of the randomly selected reference point Ref(x). Choice of reference point is based on
some probability, which is called the selection probability. The probability P (Ref(x) = xj|S)
will be higher if the reference point of x, xj, is closer to x, as measured by the distance function

dw(xi, Xj) =

p∑
r=1

w2
r |xir − xjr| (2)

Where wr for r= 1,2..,p are feature weights. Assuming that the selection probability is direct
proportional to k(dw(xi, xj)), where k is a kernel or similarity function, such that it produces
large values when dw(xi, xj) is small.Since the reference point is chosen from the set, the sum of
P (Ref(x) = xj|S = 1) for all j [22]. Thus we consider the following probability P

P (Ref(x) = xj|S) =
k(dw(xi, xj))∑n
j=1 k(dw(xi, xj))

(3)

This is a classifier using the strategy of leave-one-out (Training on all points excluding a single
point). The probability that point xj is picked as the reference point for xi is

Pij =
k(dw(xi, xj))∑n

j=1,j 6=i k(dw(xi, xj))
(4)

Pi =
n∑

j=1,j 6=i

pijlij { (5)
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where lij = 1 if the yi = yj or 0 if the condition is not satisfied. Where pi is the average leave-
one-out probability of correct classification of the observation i using Si. We can express the
probability of correct classification by the randomized classifier as

F (w) =
n∑

i=1

pi − λ
p∑

r=1

w2
r (6)

where λ is the regularization parameter, and F(w) depends on the weight vector w. The
Neighborhood Component Analysis procedure tries to find the maximum F(w) with respect
to w. Many of the weights in w will vanish by regularization. We can find the vector w by
minimizing (6) given lambda.

4.2 LSTM

LSTM is one type of Recurrent Neural Network that deals mostly with sequential data. In
LSTM to retain memory cell state is used. The cell state is similar to production chain, the
parameter flows straight forward, but some linear processes, such as addition and multiplication,
will interact. The state of the cell depends on the interactions, and if there are no interactions, it
will flow along without changes. LSTM will add or remove information to the cell state through
gates which are structures that allow optional information to cross. Gates are implemented using
sigmoid functions which produces two decisions either 0 or 1 assuming that 0 will block infor-
mation flow and 1 will allow it. Three of these gates are available in LSTM, which determines
the final cell state.

Figure 6: One Long Short-Term Memory block

The block or neuron shown here in Figure 3 is described by the following functions

ft = σ(Wf .[ht−1, xt] + bf ) (7)

it = σ(Wi.[ht−1, xt] + bi) (8)

C̃t = tanhWC [ht−1, xt] + bC (9)

Ct = ft ∗ Ct−1 + it ∗ C̃t (10)
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Qt = σ(WQ.[ht−1, xt] + bQ) (11)

ht = Qt ∗ tanhCt (12)

where

• ft is the activation vector of the forget gate

• σ is the sigmoid function

• W is weight matrices to be learned during training,

• xt is the input vector to the LSTM unit

• b is the bias vector parameters to be learned during training,

• it is activation vector of the input gate,

• Ct is cell state vector,

• Qt is activation vector of the output gate and

• ht is output vector of the LSTM unit.

4.3 Artificial Neural Network

Figure 7: Neural Netowrk Architecture

Artificial Neural Networks are layers of neurons connected together in sequence. The idea behind
these types of architecture is to capture non linear patterns in the data. It usually contains three
types of layers input layer, hidden layer and output layer. The input layers are used to take the
input of the data. The hidden layer are used to introduce non linear activation functions. This
functions transform the data non linearly. So that they can be later separated linearly. The
output layer finally gives out the probability to which the classes belong to.
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4.4 Ensembles Neural Network

Methods:
Methods employ the potential of many machine learning models and then use a voting function
to evaluate labels of data. The primary advantage of ensemble learning is that it tries to solve
the high variance problem endemic to deep learning models in general when dealing with com-
plex models. The series of learning models or classifiers that are used in the primary phase are
called base learners. Our goal in the primary phase is to improve the diversity of output, for
this a variety of different types of learners are used for classification or the same type of learner
may be used but with different subsets of the data set being used to train the models. When
we receive the output from each of these base learners a voting or averaging technique is used
to obtain the final label. Two different methods of ensemble learning are the most prominent.

Bootstrap Aggregating:
Also known as bagging, in this method from the training data set, random samples with replace-
ment are chosen and fed to the individual base learners. After training the models are run on
a test data set. The results or output classes from these individual models are aggregated for
which there exist various methods as discussed previously. In bagging, all the individual base
learners can be trained simultaneously.

Boosting:
In this process each tuple or instance in the training dataset has a weight associated with it.
These weights represent the probability of being chosen when random selection occurs for train-
ing the individual base learners. For each training unit we randomly select from the dataset
and then train the model. After training the entire dataset is used as a test set and the labels
are determined accordingly. For those instances of the dataset the labels were incorrect, their
weights are increased, this has the implication that when the next base learner is to be trained,
the instances with the higher weights will have a higher probability of being chosen in random
selection.

4.5 ResNet

As our model gets deeper and deeper we are proposing a neural network with residual block
for skip connections. Skip connections enable models to add the input the activation output in
order to retain lost information. This has been used commonly in image classification and it is
a common base network in object detection.

In figure 8 the skip connections are denoted by curved arrows. It can be observed that a part of
input is passed through the convolutional layers and the other part is skipped and added with
the output of the convolutional layers.

4.6 Data Preparation

In this step we are going to download all the publicly available miRNA expression data in TCGA
from the following projects

• Acute Myeloid Leukemia,Bone Marrow

• Infiltrating duct Carcinoma, Breast

• Clear cell adenocarcinoma, Kidney

• Serous cystadenocarcinoma, Ovary
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Figure 8: Comparison of ResNet with different architectures
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• Malignant melanoma, Skin

• Squamous Cell Carcinoma, Lung

• Papillary Adenocarcinoma, Thyroid Gland

• Papillary Adenocarcinoma, Kidney

After downloading the data we will follow the following schematic diagram to preprocess our
data.

Figure 9: Data preprocessing architecture

For our initial training phase we have downloaded data from the following 5 tissues

• Bone Marrow

• Breast

• Kidney

• Prostate Gland

• Ovary

• Lung

• Thyroid Gland

• Skin

These data consists of miRNA quantification file for all the cancer subtypes of the 5 tissues. The
following diagram shows the distribution of the miRNA quantification files data

Figure 10: Data distribution of all samples
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Cancer Types Number of
Samples

Acute Myeloid Leukemia,Bone Marrow 301
Infiltrating duct Carcinoma, Breast 301
Clear cell adenocarcinoma, Kidney 301
Serous cystadenocarcinoma, Ovary 301
Malignant melanoma, Skin 301
Squamous Cell Carcinoma, Lung 235
Papillary Adenocarcinoma, Thyroid Gland 301
Papillary Adenocarcinoma, Kidney 291

Table 1: Sample Counts

Train Samples 1749
Test Samples 583

Table 2: Train and test split for the experiment

Then we selected only 300 samples from the top 8 classes given in the top diagram. Which gives
an equal distribution of data
Then we fed this data to our models

4.7 Model

For our deep learning model first we are going to extract the most distinguishable features using
NCA as described above. Then we will pass it through our LSTM network for training and
evaluate the performance of our model using confusion matrix and Matthew’s coefficient [11].
We are also going to use ANN model for training this model. We have created a ResNet variant
where instead of using Convolutional layers we are using dense layers with residual blocks. We
are also creating an ensemble method based on 5 models trained on different architectures

This diagram gives an overview of our procedure.

Figure 11: Model training architecture

In order to train the deep learning model it is imperative that we split the data in balanced
manner across all the classes so that there is no imbalance on our dataset that we are going to
feed to our model. We must also keep a portion of data separate which won’t be seen by the
model in the training phase. This data will be used to test our model on unseen data, so that
we can apply it in real life scenarios.For this reason, we have split the dataset into 75% and 25%
for train dataset and test dataset respectively. From the following diagram it can be observed
that each classes have the same number of sample counts. Before passing the data to the model
we normalize the data to reduce variance and make mean 0.
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4.7.1 ANN

After splitting our data, we have trained our ANN model. Neural Networks are inspired from
biological neurons. At each layer there are nonlinear activation functions. These functions intro-
duce non linearity to capture the non linear patterns in the data.Our model used 5 dense layers
and between each layer we used batch normalization and dropout to introduce regularization to
ensure that the model doesn’t over fit the data. Otherwise the model will fail to generalize on
unseen data.

The diagram in figure 12 shows our Neural Network architecture

4.7.2 LSTM

Our LSTM model has 3 LSTM units and 2 Dense layers. It uses an embedding layer to embed
the features so that it can be captured by the model. The idea is to capture sequential infor-
mation such as context. In each time step the the information from previous time step is either
retained or forgotten. Then, it takes the input from the current time step. Finally it calculates
the and updates the state of current cell and gives the output

The diagram in figure 13 shows our LSTM architecture

4.7.3 CResNet

CResNet is a variant of the popular deep learning architecture called ResNet. The difference
between these two networks is that instead of using convolutional layers, dense layers are used.
It consists of Residual Block which performs the skip connection. The diagram in figure 14
represents our CResNet architecture

Inside ResBlock there are two Dense layer and two batch normalization layer. The batch nor-
malization layer normalizes the activation output in each dense layer.Normalizing the inputs to
the layer has an effect on the training of the model, dramatically reducing the number of epochs
required. It can also have a regularizing effect, reducing generalization error much like the use
of activation regularization. The activation layer applies non linear activation function on the
output of the final Batch Normalization layer to get the non linear effect. Finally the input of
Resblock is added with the activation output.

Finally our CResNet model consists of 4 dense layers and 2 ResBlock layers. Each layer has a
Relu activation function. The final layer has sigmoid function which gives us the probability for
which each classes belong to.

4.7.4 Ensemble

Deep learning models compared to traditional machine learning models can offer an increased
amount of flexibility and can be scaled in proportion based on the amount of available training
data. However since deep learning models have large number of layers they tend to over fit which
might cause high variance. Generally that means, the model performs well on training data but
fails to generalize well on unseen data.

So the alternative way to tackle is to introduce ensemble learning. In this approach instead of
training a single model multiple models are trained. The results of multiple mobiles are combined
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Figure 12: Neural Network
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Figure 13: Lstm
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Figure 14: CResNet

to give predictions. This not only reduces overfitting but it can also result in predictions that
are better than any single model. The diagram in figure 16 shows our model Architecture

Figure 15: Ensemble method using model averaging

4.8 Activation and Optimizer

For the activation functions two activation function were used. Relu was used to introduce non
linearity. Softmax activation was used to calculate the probability of the class based on the
output of the final layer.For optimization Adam was used

4.8.1 Relu

Relu is a non-linear activation function that is used to introduce non linearity in the deep learning
network.It takes the maximum of the given value and 0.

Relu(0, x) = max(0, x) (13)
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Figure 16: Relu

4.8.2 Softmax

It is used in multi classification problems. It takes the logits(output of the last layer) and pass
it through a softmax function which classifies to which class these features represent

Softmax =
ezi∑K
j=1 e

zi
(14)

4.8.3 Adam

Adam optimization algorithm is an extension to stochastic gradient descent that has recently
seen broader adoption in the deep learning world. Adam stands for adaptive moment estimation.
On non-convex optimization problems Adam offers the following benefits

• Straightforward to implement

• Computationally efficient compared to other optimization algorithms

• Little memory requirements

• Well suited for problems that are large in terms of data and/or parameters

4.9 Matthew’s Correlation Coefficient(MCC)

Matthew’s Correlation is a machine learning metric which is used to measure the quality of
classification. It is a widely used metric in the field of Biometrics.It always yield value in
between -1 to 1. It basically measures the correlation between the true and predicted values.
The confusion matrix is the easiest way to represent our model results as it uses the coefficient
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which takes into account the true and false positive and negative values.This gives a balance in
our measures even though the classes are of different size The equation is shown below

TP.TN-FP.FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(15)

4.10 Training

For training our model we have used TensorFlow’s Keras API. We have used the following
configuration for our model ANN, CResNet, Ensemble and LSTM. We have trained all the
models on google colab.

• Optimizer: Adam

• Learning rate: 0.001

• Epochs: 200

• Batch size: 64

• Framework : TensorFlow

• GPU : Tesla K80

• RAM: 13 GB

Since we are going to use Stochastic gradient descent like Adam optimization our loss will fluc-
tuate a lot. Because a single batch cannot capture the entire variance of the dataset. Which
means a particular batch might increase the loss and the other batch might decrease the loss.

The diagrams in figure 17 ,figure 18 and figure 19 shows the accuracy and loss of both the ANN
model and LSTM model

Figure 17: Accuracy and Loss of LSTM
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Figure 18: Accuracy and Loss of CResNet

Figure 19: Accuracy and Loss of ANN
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5 Result Analysis
For our result analysis we will be analyzing the performance of our models in 3 ways

• Metrics Comparison

• Confusion Matrices

• Tables for calculating Mathew’s correlation coefficient

5.1 Metrics Comparison

In Metrics Comparison we have combined the accuracy, loss and MCC value of the 4 types of
model we trained to demonstrate which model has the best performance. From the table it
can be seen that the architecture we have proposed using CResNet and ANN, outperforms the
LSTM architecture proposed by the paper of Kidney Cancer Classification [13]

Loss Accuracy MCC
Artificial Neural Network 0.1864 97.07% 0.9625

LSTM 0.4079 87.48% 0.8596
CResNet 0.2876 97.77% 0.9745
Ensemble N/A 95.03% 0.9439

5.2 Confusion Matrices

One of the most popular way to demonstrate the classification of a machine learning model or
deep learning model is with the use of Confusion matrix. A confusion is a matrix which consists
of the actual labels denoted by the rows and predicted labels denoted by the column. From this
matrix it is possible to calculate true positive, false positive, true negative and false negative.
These metrics can be further used to calculate accuracy, MCC, recall, precision, F1-score etc.

The following figures 20, 21 ,22, 23 represents our confusion matrices of the models we have
trained for ANN, CResNet, Ensemble and LSTM models respectively
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Figure 20: Confusion Matrix of Artificial Neural Network
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Figure 21: Confusion Matrix of CResNet
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Figure 22: Confusion Matrix of Ensembles
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Figure 23: Confusion Matrix of LSTM
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5.3 Mathew’s Correlation Coefficient

In order to find out how the models have performed with existing architectures, it was imperative
to calculate Mathew’s Correlation Coefficient. In order to do that the we needed the model’s
prediction on test data which will give us true positives, true negatives, false positive and false
negative. These are defined below:

• True positive : A value in a confusion matrix is true positive if the predicted label and
the actual label are positive or true

• True negative : A value in a confusion matrix is true negative if the predicted label
and the actual label are negative. Which means that the class is not present in this set of
features and this absence of class has been picked up by the model

• False positive : A value in a confusion matrix is false positive if the predicted label is
true and the actual label is false. This means despite the absence of the class in the data,
the model gives a false prediction about the presence of the class in the data

• False Negative : A value in a confusion matrix is false negative if the predicted label is
false and the actual label is true. This means that if the class is present in the data the
model fails to identify that class given the data

For our cancer classification task it was important that the models gave low number of false
negatives. This is because if a patient has cancer and the model fails to detect cancer, then the
person would end up suffering due to mis diagnosis. Fortunately, our models gave a high MCC
score and our CResNet model and ANN model has beaten the LSTM model in terms of MCC
which can be observed from the tables. The MCC will be calculated using the equation 15

The tables 3, 4, 5, 6 represents the calculation of true positives, true negatives, false positives
and false negatives of our ANN, CResNet, Ensemble and LSTM model respectively

6 Future Work and Conclusion
In conclusion, we believe that our approach to classifying cancer sub types will be less invasive
and less expensive and has the potential to save large amounts of life through early diagnosis.We
have introduced 4 types of models ANN, CResNet, Ensemble and LSTM . We saw that the best
model which gave us the best results was using the CResNet model and the second best result
was given by our ANN model. Our ANN model and CResNet model gave an MCC score of
0.9624625 and 0.97445 respectively. This is better than the architecture LSTM which gave an
MCC value of 0.859625.

For future works the interpretability between the features and classification can be explored. So
that when a patient is diagnosed with cancer the doctor or clinician will be able to immediately
recognize which of the 1881 features are responsible for this particular type of cancer. This will
offer the doctors an easier diagnosis and make the treatment of a cancer patients much smoother.
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ANN
Disease True

Positive
True
Negative

False
Positive

False
Negative

MCC
(Matthew’s
Correlation
Coefficient

Acute myeloid leukemia,
NOS Bone marrow

75 507 1 0 0.9924

Infiltrating duct carcinoma,
NOS Breast, NOS

70 505 3 5 0.9084

Clear cell adenocarcinoma,
NOS Kidney, NOS

73 505 4 2 0.9547

Serous cystadenocarci-
noma, NOS Ovary

73 508 0 3 0.9772

Malignant melanoma, NOS
Skin, NOS

74 509 2 1 0.9772

Papillary adenocarcinoma,
NOS Thyroid gland

75 508 0 0 1

Papillary adenocarcinoma ,
NOS Kidney, NOS

68 514 1 5 0.9524

Squamous cell carcinoma,
NOS Upper lobe, Lung

58 525 6 1 0.9374

Average 0.9624625

Table 3: MCC for ANN

CResNet
Disease True

Positive
True
Negative

False
Positive

False
Negative

MCC
(Matthew’s
Correlation
Coefficient

Acute myeloid leukemia,
NOS Bone marrow

75 507 1 0 0.9924

Infiltrating duct carcinoma,
NOS Breast, NOS

71 505 3 4 0.9462

Clear cell adenocarcinoma,
NOS Kidney, NOS

73 506 2 2 0.9694

Serous cystadenocarci-
noma, NOS Ovary

74 506 1 2 0.9772

Malignant melanoma, NOS
Skin, NOS

73 507 1 2 0.9769

Papillary adenocarcinoma,
NOS Thyroid gland

75 507 1 0 0.9924

Papillary adenocarcinoma ,
NOS Kidney, NOS

70 510 1 3 0.9684

Squamous cell carcinoma,
NOS Upper lobe, Lung

59 521 3 0 0.9727

Average 0.97445

Table 4: MCC for CResNet
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Ensemble
Disease True

Positive
True
Negative

False
Positive

False
Negative

MCC
(Matthew’s
Correlation
Coefficient

Acute myeloid leukemia,
NOS Bone marrow

74 508 0 1 0.9923

Infiltrating duct carcinoma,
NOS Breast, NOS

69 506 3 6 0.9302

Clear cell adenocarcinoma,
NOS Kidney, NOS

63 508 2 12 0.8894

Serous cystadenocarci-
noma, NOS Ovary

72 510 0 4 0.9695

Malignant melanoma, NOS
Skin, NOS

74 509 0 1 0.9923

Papillary adenocarcinoma,
NOS Thyroid gland

73 509 0 2 0.9846

Papillary adenocarcinoma ,
NOS Kidney, NOS

70 513 13 3 0.8846

Squamous cell carcinoma,
NOS Upper lobe, Lung

59 525 11 0 0.9086

Average 0.9439375

Table 5: MCC of Ensembles

LSTM
Disease True

Positive
True
Negative

False
Positive

False
Negative

MCC
(Matthew’s
Correlation
Coefficient

Acute myeloid leukemia,
NOS Bone marrow

72 505 3 3 0.9541

Infiltrating duct carcinoma,
NOS Breast, NOS

52 485 23 23 0.6481

Clear cell adenocarcinoma,
NOS Kidney, NOS

58 509 7 17 0.8083

Serous cystadenocarci-
noma, NOS Ovary

73 509 0 3 0.9772

Malignant melanoma, NOS
Skin, NOS

72 508 20 3 0.8463

Papillary adenocarcinoma,
NOS Thyroid gland

71 511 3 4 0.9462

Papillary adenocarcinoma ,
NOS Kidney, NOS

61 522 12 12 0.8131

Squamous cell carcinoma,
NOS Upper lobe, Lung

51 532 5 7 0.8837

Average 0.859625

Table 6: MCC of LSTM
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