
B.Sc. in Computer Science and Engineering Thesis

A Reliable System To Detect Security Attacks In A Scalable
SDN Architecture.

Authors

Md. Sultanul Islam Ovi
160041036

Nafil Mahmud
160041031

Abida Taskin Oishee
160041035

Supervisor

Dr. Muhammad Mahbub Alam
Professor

.

Department of Computer Science and Engineering(CSE)
Islamic University of Technology(IUT)

Organization of the Islamic Cooperation (OIC)

Gazipur, Bangladesh

March, 2021

CANDIDATES’ DECLARATION

This is to certify that the work presented in this thesis, titled, “A Reliable System To Detect
Security Attacks In A Scalable SDN Architecture.”, is the outcome of the investigation and
research carried out by under the supervision of Prof. Dr. Muhammad Mahbub Alam, Depart-
ment of Computer Science and Engineering (CSE), Islamic University of Technology (IUT),
Dhaka, Bangladesh.

It is also declared that neither of this thesis nor any part of this thesis has been submitted any-
where else for any degree or diploma. Information derived from the published and unpublished
work of others has been acknowledged in the text and a list of references is given.

Authors:

Md. Sultanul Islam Ovi
160041036

Nafil Mahmud
160041031

Abida Taskin Oishee
160041035

i

CERTIFICATION

This thesis titled, “A Reliable System To Detect Security Attacks In A Scalable SDN Ar-
chitecture.”, submitted by the group as mentioned below has been accepted as satisfactory in
partial fulfillment of the requirements for the degree B.Sc. in Computer Science and Engineer-
ing in March, 2021.

Group Members:

Md. Sultanul Islam Ovi

Nafil Mahmud

Abida Taskin Oishee

Supervisor:

Dr. Muhammad Mahbub Alam
Professor
Department of Computer Science and Engineering(CSE)
Islamic University of Technology(IUT)

ii

ACKNOWLEDGEMENT

At the outset, we express utmost gratitude to Almighty Allah for His blessings which allowed
us to shape this research into reality and give it form.

We are very grateful to our supervisor Prof. Dr. Muhammad Mahbub Alam, Department of
Computer Science and Engineering, Islamic University of Technology (IUT), for his supervi-
sion, knowledge and support, which has been invaluable for us.

Finally, we seize this opportunity to express our profound gratitude to our beloved parents for
their love and continuous support both spiritually and mentally.

Gazipur,
Bangladesh
March, 2021

Md. Sultanul Islam Ovi

Nafil Mahmud

Abida Taskin Oishee

iii

Contents

CANDIDATES’ DECLARATION i

CERTIFICATION ii

ACKNOWLEDGEMENT iii

List of Figures vii

ABSTRACT viii

1 Introduction 1
1.1 Software Defined Networking (SDN) Paradigm 1
1.2 Main Reasons for SDN Vulnerability . 3
1.3 Types of Attacks . 4
1.4 Security Threats From Compromised SDN Devices 6
1.5 Must-Have Characteristics of a Viable Solution 7
1.6 Problem Statement . 7
1.7 Overview of Our Solution Approach . 8

1.7.1 Clustering Technique . 8
1.7.2 Detection Mechanism . 8
1.7.3 Network Scalability . 8

1.8 Our Contribution . 9

2 Background Study 10
2.1 Wedge-Tail: An Intrusion Prevention System for the Data Plane of Software

Defined Networks . 10
2.1.1 Attack Detection . 11

2.2 SDN-RDCD: A Real-Time and Reliable Method for Detecting Compromised
SDN Devices . 13
2.2.1 Attack Detection . 13

2.3 FOCES: Detecting Forwarding Anomalies in Software Defined Networks . . . 14
2.4 WhiteRabbit: Scalable Software-Defined Network Data-Plane Verification Method

Through Time Scheduling . 16

iv

2.4.1 Attack Detection . 17
2.5 SPHINX: Detecting Security Attacks in Software-Defined Networks 18

2.5.1 Attack Detection . 19
2.6 HSA . 20
2.7 NetSight . 20

3 Proposed Method 21
3.1 Clustering Technique . 21

3.1.1 K means Clustering . 21
3.1.2 K-means++ Initialization . 22
3.1.3 K-means using Cluster Shifting . 22
3.1.4 1D K-means Clustering . 22

3.2 Detection Mechanism . 23
3.2.1 Custom Topology . 23
3.2.2 Attack Implementation . 23
3.2.3 Expected Path Calculation . 23
3.2.4 Actual Path Calculation . 23
3.2.5 Attack Detection . 23

3.3 Network Scalability . 24

4 Experimental Setup 25
4.1 SDN Controllers Overview . 26
4.2 OpenFlow . 27

4.2.1 Switch Components . 28
4.2.2 Openvswitch . 28
4.2.3 Openflow channel . 28
4.2.4 SDN Switch(Openflow Switch) . 29
4.2.5 Counters . 29
4.2.6 OpenFlow Flow Table . 29
4.2.7 OpenFlow Matching . 30

4.3 Tools used for our experiment . 30
4.4 Mininet . 31
4.5 WireShark . 31
4.6 Time4 . 32
4.7 Flow-Manager . 32

5 Conclusion 33
5.1 Summary . 33
5.2 Future Work . 34

v

References 35

vi

List of Figures

1.1 SDN Paradigm . 2
1.2 SDN Architecture . 3
1.3 Packet Misrouting . 4
1.4 Packet Replay . 5
1.5 Packet Dropping . 5
1.6 Packet Delay . 5
1.7 Packet Manipulation . 6

2.1 Wedgetail . 11
2.2 SDN-RDCD . 14

4.1 SDN Bigger Picture . 25
4.2 OpenFlow . 27
4.3 OpenFlow Flow Table . 30
4.4 Wireshark . 32

vii

ABSTRACT

Software-Defined Network (SDN) is a promising solution of network virtualization.

But it is vulnerable to attacks by corrupted switches as existing detection mechanisms do

not work in this environment. A corrupted switch can also compromise the SDN controller.

In this paper, we propose a detection mechanism that can detect both compromised SDN

switches and controllers. Our main idea is to cluster to the frequently used devices and then

collect statistics of those switches to create the expected and actual path for a packet. Thus,

we can identify specific compromised switches and also specify the attacks. The detection

mechanism is not dependent on the controller performance as we collect statistics of the

switches in real-time and in a periodic manner.

viii

Chapter 1

Introduction

The primary innovation of SDN is the decoupling of the control and forwarding planes and the
centralization of the network control function. It allows for network optimization, as well as
flexible and scalable system management and creativity.

Nevertheless, this new architecture also brings potential security risks. SDN is based on an
important assumption: all network devices will follow the network manager’s commands. That
is, all network switches should process packets according to programmed rules. When an SDN
switch is exploited by an intruder, however, the presumption falls apart. Corrupted network
entities may be used to steal sensitive data, conduct vulnerability exploits on other users, or
maybe even bring the entire network down [1] [2].

To avoid these attacks, it is necessary to develop a compromised SDN switch detection mech-
anism to find out black sheep from all SDN switches [3] [4] [5]. Our research is based on
identifying real-time security threats on network topology and data plane forwarding that exist
within SDNs.

1.1 Software Defined Networking (SDN) Paradigm

SDN is the virtualization of a network by splitting the network’s control layer from the data
plane, which handles traffic. In a network infrastructure, there is a sophisticated device (a single
or a group of controllers) that oversees all network traffic and a collection of dumb routers and
switches that only transmit messages. The main goal of SDN is to be open and programmable.
Network virtualization has many benefits, including the ability to dynamically spin up and down
networks, fine-tune them for unique application use cases, and install security policies on each
network.

1

1.1. SOFTWARE DEFINED NETWORKING (SDN) PARADIGM 2

Figure 1.1: SDN Paradigm

SDN has become one of the most common methods for deploying applications in organiza-
tions. It’s a design that decreases running costs and reduces the time it takes to make improve-
ments or add new services. To improve security and application performance, SDN allows
the network to connect directly to applications through APIs. SDN provides a versatile and
adaptable network architecture that can adjust in response to evolving business requirements.
This is achieved through the standardization and abstraction of network functions in a software-
defined network (SDN). Through separating the system and control forwarding features, SDN
allows network management to become customizable and the fundamental structure to be ab-
stracted for applications and network operations. Through extrapolating network parameters,
including control plane functionality, and deploying them on an SDN controller running SDN
applications, IT teams can gain centralized control. Network teams may use the controller and
application to interact with physical or virtual network elements using the OpenFlow network-
ing protocol. Teams may use an Application Program Interface (API) to make improvements
to the network that govern multiple devices without learning multiple proprietary commands or
syntax from vendors. These networks are configurable and can be quickly updated depending
on current market needs because they are centrally controlled and optimised using free soft-
ware. Today’s network environments are much more complex, manageable, cost-effective, and
adaptable thanks to software-defined networking (SDN).

The three layers in an SDN are:

(i) Application layer

(ii) Control layer

(iii) Infrastructure layer

The Infrastructure Layer defines the real-world tools that the virtual SDN interacts with. The
Application Layer is a representation of the network that has been developed. The Control
Layer is in charge of managing the mapping between the actual and produced networks.

1.2. MAIN REASONS FOR SDN VULNERABILITY 3

Figure 1.2: SDN Architecture

1.2 Main Reasons for SDN Vulnerability

Networks are vulnerable to attacks by compromised devices [6] [7]. In SDN, the networks are
more vulnerable than traditional ones since, in SDN, it uses programmable software switches.
[8]

(i) The first is that current solutions are incompatible with securing SDN. In reality, conven-
tional network security mechanisms can no longer function as a result of the removal of
intelligence from forwarding devices.

(ii) The second aspect is the unproven and full dependence on switches by the control plane.
An SDN controller’s view of the network is focused on PACKET-IN messages, which are
not safely authenticated or checked. A Denial of Service (DoS) attack can be executed
using the same flaw. [8]

(iii) It’s more difficult to protect configurable soft-switches like Open vSwitches than it is to
secure hardware alternatives, which are harder for an intruder to physically manipulate.
[8]

(iv) The fourth point is that the SDN protection framework is a moving target of continuously
evolving principles and guidelines. [8]

(v) Fifth, Performance benefits such as smaller latency reply to network events and improved
specification optimization for cryptography, MAC training, and codec control message
(CCM) interactions have prompted plans to give the SDN data plane more capacity [8].
This makes the network more vulnerable to conventional attacks and broadens the types
of attacks a malicious system might conduct against it.

1.3. TYPES OF ATTACKS 4

In SDN, all the control functionalities from the switches are taken away. So they have become
vulnerable to different kinds of attacks [9] [10] [11] [12]. And given time a compromised switch
can also compromise the controller.

1.3 Types of Attacks

When an OpenFlow switch is compromised, the attacker may launch two kinds of attacks,
passive attacks, and active attacks. [8] It is hard to detect a passive attack since the compro-
mised switch acts as a normal switch except that the attacker can silently get all information
of the switch. As for active attacks, the attacker will command the compromised switch to do
abnormal actions instead of actions programmed by the controller [13]. In this case, though
the OpenFlow controller can use an ofp-flow-stats-request to get all flow rules from the com-
promised switch, the switch can easily respond to the correct answer to the controller without
following these rules. So ofp-flow-stats-request cannot be used as a detection approach. Here,
we focus on active attacks. An intruder may use a corrupted forwarding device to perform the
following malicious actions:

(i) Packet Misrouting: When a packet is deviated from its actual destination and does not
arrive at its final destination, this happens. This may be used to initiate a network avail-
ability attack or as part of a more complex threat.

Figure 1.3: Packet Misrouting

(ii) Packet Replay: When a switch sends a copy of a packet to a third destination in addition
to the actual destination, this happens. An intruder can use a switch that replays packets
to carry out surveillance and authentication attacks.

1.3. TYPES OF ATTACKS 5

Figure 1.4: Packet Replay

(iii) Packet Dropping: A network black or grey gap is formed by a corrupted switch that
dumps packets. In the past, it drops all packets; in the latter, it drops packets on a regular
basis or re-transmits them, or it drops packets at random. Packet falling is used in attacks
against network operators, such as Denial of Service (DoS).

Figure 1.5: Packet Dropping

(iv) Packet Delay: A packet delay is a threat against time-sensitive traffic [14]. A delay in
the TCP stream triggers false timeouts and unwanted re-transmission, placing the TCP
throughput in jeopardy [15],

Figure 1.6: Packet Delay

(v) Packet Manipulation: The attacker may modify packets that pass the compromised
switch. Though packets may be protected by encryption techniques, this attack can block
all communications by decryption errors.

1.4. SECURITY THREATS FROM COMPROMISED SDN DEVICES 6

Figure 1.7: Packet Manipulation

All above attacks aim at flow actions since an OpenFlow switch processes packets according to
programmed flow rules. Undoubtedly, an attacker may command the compromised switch to
do more malicious behaviors other than the above attack models.

1.4 Security Threats From Compromised SDN Devices

The centralized control plane of SDN brings new security risks. Owing to the unavoidable
software vulnerability, controllers have a potential risk of being compromised, and the whole
network might be taken over by attackers even without being perceived by operators. The
potential security threats brought by controller hijacking are mainly concluded as follows.

• Maliciously Damaging: The attacker may command a compromised controller to disable
its switches by deleting all their flow table entries or to utilize its switches to launch DDoS
attacks against servers, links, other controllers, switches, etc.

• Resource Stealing: The attacker may arbitrarily steal and utilize the network resources
that belong to legitimate users by the compromised controller.

• Monitoring and Manipulating:The attacker may sneakily change the data flow between
a pair of virtual machines through a certain switch for monitoring and manipulating.

• Further Hijacking: The attacker may continue to hijack other controllers for controlling
more switches until achieves the attack objective.

• Network View Tamper: The attacker may tamper with the network view (topology) and
flow table statistics (link utility), which will impact normal network Functions.

• Log Tamper: The attacker may tamper with the log of a compromised controller to
prevent operators from detecting the hijacking attack or to accuse innocent SDN devices
of misguiding operators.

Meanwhile, the switch (especially software switch) also has a risk of being compromised. Since
the switch is the actual executant of controller instructions, compromised switches could bring

1.5. MUST-HAVE CHARACTERISTICS OF A VIABLE SOLUTION 7

similar six kinds of security threats. In particular, switch hijacking is competent to enhance the
impact of controller hijacking attacks.

1.5 Must-Have Characteristics of a Viable Solution

We propose that the ‘should always’ features of an effective approach against suspicious switches
should include: [8] Considering significant variables and the shortcomings of current work such
as SPHINX [16], we propose that the ‘must-have’ features of an effective approach toward
malicious switches must include:

(i) To be able to identify intrusion attempts leveraging both hardware and/or software flaws
of switches, there should be a reasonable dependency on predetermined rules and regula-
tions for identification.

(ii) Ability to prioritize switches for examination in a structured and autonomous manner to
enhance detection efficiency and rate of success.

(iii) To avoid executing overlapping and redundant procedures when reacting to attacks, Ca-
pability to identify malicious forwarding behavior and localize maliciousness.

(iv) Programmability for Threats: the capacity to modify actions when vulnerabilities are
discovered.

(v) When identifying and reacting to attacks, the suggested solution should cause minimal
system interruption, making it ideal for real-world network implementation.

In our study, we’re attempting to come up with a solution that fits the following guidelines.

1.6 Problem Statement

In SDN, switches can be compromised by different kinds of attacks. Detection of compromised
switches is a huge problem in the present time. We first need to identify if there is any com-
promised controller or not, if there is any compromised switch or not. If there is any, then we
need to identify the compromised switches and also the specific attack for which the switch got
compromised. And as the existing detection algorithm is dependent on the performance of the
controller. We need a detection mechanism independent of the controller performance.

The problem can be described more specifically as:

”Given a large-scale SDN network, how efficiently a system can detect a compromised device?”

1.7. OVERVIEW OF OUR SOLUTION APPROACH 8

1.7 Overview of Our Solution Approach

The objective of our work is to develop a compromised SDN device detection algorithm with
better complexity and which can be easily implemented in a real-world large-scale SDN archi-
tecture. We consider the scenario that both the controller and the switches can be compromised.
The existing solutions to this problem are resource-heavy and time-consuming.

1.7.1 Clustering Technique

We will be using a different clustering Algorithm to cluster the switches into separate groups
based on their frequency. It will assist us in finding greater complexity. We are currently focus-
ing on the improved k-means Algorithm using Cluster Shifting and k++ initialization Algorithm
for our research. We have implemented 1d K means algorithm for our experiments. It has re-
duced the time complexity needed for clustering of the forwarding devices.

1.7.2 Detection Mechanism

We want to improve the existing detection algorithm by adding a compromised switch identifi-
cation mechanism. First, we localize the possible compromise switches. Then use probe packets
to isolate the exact compromise switches. We collect statistics from switches for each packet to
create expected path and actual path for each flow. Then we have implemented different kinds
of active attacks then we detect those attacks.

1.7.3 Network Scalability

Network scalability is an issue in SDN architecture. The detection mechanisms usually depend
on the statistics gathering by the controller performance. We want to use real-time statistics
gathering independent of controller performance. We need to schedule the OpenFlow control
messages at the switches. By using that we can get all those stat reply messages at the same
time.

1.8. OUR CONTRIBUTION 9

1.8 Our Contribution

In summary, our contribution to this work is an improved detection system for compromised
SDN devices.

• Detection algorithm will have better time complexity than the existing solutions.

• Detection algorithm can identify the specific compromised switches.

• Detection algorithm is independent of the performance of the controller so that it can be
implemented in a scalable SDN network.

• Proposed system will be less vulnerable to an unwanted script running on the controller.

• Method is adaptable to multi-controller environments.

Chapter 2

Background Study

2.1 Wedge-Tail: An Intrusion Prevention System for the Data
Plane of Software Defined Networks

Wedge-Tail [8] was built to keep the data plane of the SDN secure. This paper examines the
issue of shielding SDNs from unauthorized switches by deciding whether the switch’s traffic
forwarding feature is stable. Wedge-Tail treats switches as nodes in a graph, and edges repre-
sent the paths packets follow when traversing the network. To save time, it uses an unsupervised
trajectory-based sampling mechanism to prioritise switches until review. It is capable of auto-
matically locating malicious forwarding devices and detecting the same malicious activity by
observing the predicted and real trajectories of packets.

Researchers believe that a sophisticated enemy has taken complete possession of one or more
of the switches. The attacker can perform different types of malicious activity. When a switch
does not process packets according to the flows defined by the controller, it is referred to as
”compromised.” The data plane collects messages from the control plane and the specified poli-
cies in a stable and reliable manner. Except for their own name, the switches can lie about
everything.

Wedge-Tail has two sections, Detection mechanism and Response program. The Detection
program listens for OpenFlow messages between the controller and switches, creating a virtual
simulation of the network that can be used to compute predicted packet path. The Response
Machine, on the other hand, is installed as a program on top of the controller and assigns policies
to the network OS, which decides how and when to implement them. For its inspection, Wedge-
Tail emphasises forwarding instruments. The central principle is that the investigation should
start with the switches that the bulk of packets meet as they travel across the network. When
the Actual path [17] are not a part of the Expected path [18], then there maybe some corrupted
switches in the path.

10

2.1. WEDGE-TAIL: AN INTRUSION PREVENTION SYSTEM FOR THE DATA PLANE OF
SOFTWARE DEFINED NETWORKS 11

Figure 2.1: Wedgetail

2.1.1 Attack Detection

Packet Replay

When a switch sends a copy of a packet to a third destination in addition to the actual destination,
this happens. An intruder can use a switch that replays packets to carry out surveillance and
authentication attacks. This attack can be detected by checking if there is any unwanted switch
in expected path or not, and if the packet reaches the destination or not. If the packet reaches
the destination, the packet replay attack has occurred.

Packet Misrouting

When a packet is deviated from its actual destination and does not arrive at its final destination,
this happens. This may be used to initiate a network availability attack or as part of a more
complex threat. This attack can be detected by checking if there is any unwanted switch in
expected path or not, and if the packet reaches the destination or not. If the packet does not
reach the destination then packet misroute attack has occurred.

Packet Generation

The attacker may modify packets that pass the compromised switch. Though packets may be
protected by encryption techniques, this attack can block all communications by decryption
errors. Labeling is used to detect this attack. If labeling is changed then packet path becomes
undefined

2.1. WEDGE-TAIL: AN INTRUSION PREVENTION SYSTEM FOR THE DATA PLANE OF
SOFTWARE DEFINED NETWORKS 12

Packet Delay

A packet delay is a threat against time-sensitive traffic [14]. A delay in the TCP stream triggers
false timeouts and unwanted re-transmission, placing the TCP throughput in jeopardy [15]. This
attack can be detected by checking the actual path time difference with the expected average
path time.

Packet Dropping:

A network black or grey gap is formed by a corrupted switch that dumps packets. In the past,
it drops all packets; in the latter, it drops packets on a regular basis or re-transmits them, or it
drops packets at random. Packet falling is used in attacks against network operators, such as
Denial of Service (DoS). This attack can be detected by checking if the cardinality of the actual
path is less than the expected path.

Malicious Localization

A trajectory is regarded as a totally ordered set. By comparing Actual path and Expected path,
it is possible to identify the corresponding forwarding system after one of the malicious actions
has been identified.

2.2. SDN-RDCD: A REAL-TIME AND RELIABLE METHOD FOR DETECTING
COMPROMISED SDN DEVICES 13

2.2 SDN-RDCD: A Real-Time and Reliable Method for De-
tecting Compromised SDN Devices

SDN-RDCD [19],The aim of this paper is to solve the problem of identifying corrupted SDN
devices where both the controller and the switch are untrustworthy. The basic concept is to
use backup controllers to inspect the handling details of network update obtained from the
primary controller and its switches, and to identify corrupted devices by identifying irregular or
abnormal handling actions within the primary controller, backup controllers, and switches.

The controller and switch have a risk of being compromised.However, to keep our proposed
method effective, we need to assume that at least one of the switches involved in a hijacking
attack and at least one of the relevant auditor controllers are honest.

Master controller is designed to mirror every received legitimate network update request and the
corresponding execution result to each of its auditor controllers. According to the inspection
ID, the backup controller will create an audit record for each submitted valid network update
request and re-execute every network update request. An auditor controller will add the received
execution result of a certain network update request and its own execution result of this request
to a matching audit Each audit record created by an auditor-controller will normally include five
kinds of information:

1. the network update request.(Packet-In)

2. The execution result of the network update request in the master controller, denoted by
RM ,

3. The execution result of the network update request in the auditor-controller, denoted by
RA,

4. The corresponding network update instructions received by relevant switches, denoted by
IS , and

5. the corresponding state updates in relevant switches, denoted by RS .

If RM = IS = RS = RA, Then it means the corresponding four kinds of information are
consistent and the network update request was correctly handled by the master controller and
relevant switches.

2.2.1 Attack Detection

• RM = IS = RS 6= RA. This means the execution results of the network update request
in the master and auditor controllers are inconsistent and the master controller might be

2.3. FOCES: DETECTING FORWARDING ANOMALIES IN SOFTWARE DEFINED
NETWORKS 14

Figure 2.2: SDN-RDCD

compromised.

• RM = IS 6= RS . This means some network update instructions were incorrectly per-
formed in some switches and those switches might be compromised.

• RM 6= IS . This means some network update instructions were possibly manipulated dur-
ing the transmission from the master controller to some switches and man-in-the middle.

• Unmatched switch state update. This means a state update in some switch fails to match
any audit record and the switch is thus suspected to surreptitiously perform a state update
without the network update instruction from the master controller.

2.3 FOCES: Detecting Forwarding Anomalies in Software
Defined Networks

FOCES [20] endeavors to address stream counter condition frameworks, which require register-
ing grid reversals. This can be expensive when there are countless streams and rules, To make
FOCES adaptable, we propose a technique by cutting the first huge FCM into numerous more
modest sub-FCMs, whose network reversal can be registered a lot quicker.

• FOCES [20] proposes, a network-wide sending inconsistency discovery technique in
SDN, which can check whether all streams in a network are sent accurately at the same
time, without introducing additional guidelines.

2.3. FOCES: DETECTING FORWARDING ANOMALIES IN SOFTWARE DEFINED
NETWORKS 15

• FOCES [20] hypothetically investigate the condition for effective discovery utilizing FO-
CES and lessen the condition to the issue of finding a circle in a bipartite diagram.

• FOCES [20] plans an edge-based location calculation to dispose of bogus positives brought
about by counter commotions, and a cutting-based technique to make FOCES adaptable
for bigger networks.

• FOCES [20] utilizes tests to show FOCES can precisely identify sending inconsistencies
in four network geographies, with insignificant calculation overhead.

The foe intends to change the ways that packets ought to be sent, subsequently causing what we
call sending inconsistency.

• Way Deviation: Packets take an unexpected way in comparison to what is normal by the
regulator.

• Switch Bypass: Packets are gotten by the objective switch, yet at least one switches are
skipped.

• Way Detour: Packets go amiss starting with one switch Si then onto the next switch other
than the expected next-bounce Si+1, and return to Si later.

• Early Drop: Packets are dropped prior to arriving at the objective switch.

It is certainly expected the last-bounce switch isn’t undermined, as it can drop packets imagining
that packets are gotten by the end has.

In light of the above thought, FOCES [20] first concentrates the imperatives that all counters in
the network ought to fulfill, from the network arrangements (e.g., stream tables) in the control
plane. At that point, FOCES [20] gathers counters from the information plane and checks
whether these counters fulfill the requirements. On the off chance that the requirements are
abused, there should be some sending oddities in the network.

2.4. WHITERABBIT: SCALABLE SOFTWARE-DEFINED NETWORK DATA-PLANE
VERIFICATION METHOD THROUGH TIME SCHEDULING 16

2.4 WhiteRabbit: Scalable Software-Defined Network Data-
Plane Verification Method Through Time Scheduling

This paper,WhiteRabbit [21], makes the accompanying commitments. It presents the arrange-
ment of the measurements gathering with time planning using Scheduled Bundle in WhiteR-
abbit [21]. By social affair the exchange measurements usingScheduled Bundle all the while,
WhiteRabbit [21] can accumulate the insights without relying upon controller execution. This
paper present the verication calculation for utilizing the insights assembled in planned time de-
pendent on the byte consistency check in SPHINX [22]. It analyzes the passed time for sending
messages to all switches and the booking mistake. it additionally reports the planning mistake
is lower than the time needed in sending the messages to all switches. It assesses WhiteR-
abbit [21] to show that it can accomplish lower bogus positives than SPHINX, and it doesn’t
influence packet moving.

WhiteRabbit [21] can be used not exclusively to recognize traded off switch practices yet addi-
tionally to find network deserts. Concerning suspicion of SPHINX, we accept that the controller
applications are trusted and most of the switches are real. Consequently, the messages from the
controller are dependable, though those messages from any switches might be produced by
undermined switches. To center the investigation on just OpenFlow control messages, we con-
sider that the verier knows the solid actual geography data and accept a shut SDN framework.
Furthermore, we accept that the hours, everything being equal, also, controllers are synchro-
nized precisely through the time synchronization convention, like PTP. Despite the fact that
undermined switches synchronized time like real switches and masked the byte move insights,
numerous other switches report real insights. The distinction in byte move measurements is,
therefore, higher than that with the traded off and many authentic switches. In this way, Whit-
eRabbi [21]t can recognize assaults by undermined switches

• The approval sequence to a specic traffic flow utilizing WhiteRabbit [21] is as following:

1) Calculate the way that the controller assumes, utilizing actual geography data and
FLOWMOD messages sent from the controller application.

2) Obtain the real exchange measurements of all switches utilizing Booked Bundle all the
while.

3) Validate the exchange state consistency utilizing the expected way of the controller and
the distinction of measurements among the adjoining switches.

WhiteRabbit [21] requires an flow graph, which is a diagram hypothetical viewpoint of the
network expected by a confided in controller, to get a current way like that of SPHINX. The flow
graph is developed just utilizing the FLOWMOD messages given by the confided in controller.

2.4. WHITERABBIT: SCALABLE SOFTWARE-DEFINED NETWORK DATA-PLANE
VERIFICATION METHOD THROUGH TIME SCHEDULING 17

It incorporates coordinate eld and guidance, including a src/dst MAC address, src/dst IP address,
and in/out port data of the switches. The flow diagram doesn’t experience the ill effects of
untrusted switches on the grounds that the untrusted STATSREPLY messages are not utilized
in constructing this diagram.

The current way expected by the believed controller can be get by joining data of FLOW-
MOD messages also, actual geography. The current way is utilized for recognizing the switches
through which a specic trafc passes when during the verication execution.

WhiteRabbit [21] intermittently assembles move measurements in genuine time from the switches.
When gathering measurements, a controller for the most part sends STATSREQUEST messages
all the while, and the time needed to send these messages relies upon the controller execution.
Specifically, WhiteRabbit [21] utilizes STATSREQUEST wrapped with Scheduled Group since
it accumulates insights progressively between switches. Moreover, it can accumulate insights
without depending on the controller execution. The insights distinction between the switches
may happen attributable to the circumstance of FLOWMOD message sent by means of the
controller application relying upon the system of the directing control. Moreover, the insights
of constant social affair depend on the presentation of the switches, for example, Flow table
size also, plan execution exactness. Accordingly, WhiteRabbit employments moving midpoints
of the distinction of the last four measurements report (i.e., use bytecnt contrast) all the while
between switches, alluded to as ByteDiff . Since this span is sufficient to kill the impacts of
scheduling mistakes and traffic blasts, our component can maintain a strategic distance from
bogus cautions. Dissimilar to with of SPHINX [22], given that scheduling instrument assem-
bles the measurements progressively, ByteDiff of WhiteRabbit doesn’t rely upon the controller
execution.

2.4.1 Attack Detection

To begin with, this calculation approves the insights of the switches over a current way of
the traffic stream F from the closest change from a source have. Thus, the calculation needs
ought to think about the distinction of the measurements esteems that happen attributable to
spread deferral, scheduling mistake, and the distinction of the stream table sizes kept up by
the switches. Second, the calculation confirms whether the insights of the switches that are
excluded from the current way related with the traffic stream F are zero. Accordingly, it can
affirm that no traffic has been infused and dropped by the switches that are out of the current
way.

The calculation requires the limit () as an info, which is utilized as the edge of the insights
esteem comparability. Taking into account that ByteDiff fluctuates with correspondence cir-
cumstance, the calculation ascertains the most extreme/least ByteDiff by increasing PrevByte

2.5. SPHINX: DETECTING SECURITY ATTACKS IN SOFTWARE-DEFINED NETWORKS 18

with the limit. Furthermore, in light of the fact that the presentation of insights gathering relies
upon the switch execution, which happens from the timetable execution precision, stream table
size [22], and switch usage , should be controlled by considering the switch execution. On the
off chance that the estimation of in this calculation is altogether huge, at that point bogus neg-
atives may happen and a certifiable caution may not be yielded. Conversely, if the estimation
of is minuscule, at that point the calculation may result in bogus positives. Subsequently, the
director ought to altogether decide the estimation of .

2.5 SPHINX: Detecting Security Attacks in Software-Defined
Networks

SPHINX [22] analyses specific OpenFlow control messages to discover new system behavior
and information for both geometrical and forwarding states, and creates flow graphs for each
traffic stream seen in the network. It constantly refreshes what’s more, screens these stream
diagrams for allowable changes, and raises cautions on the off chance that it recognizes de-
generate conduct. SPHINX influences custom calculations that gradually interaction network
refreshes to decide in realtime if the updates causing deviant conduct ought to be permitted or
not. SPHINX [22] additionally gives a light-weight strategy motor that empowers chairmen to
determine expressive arrangements over network assets and identify security infringement. Not
at all like the present controllers where every module actualizes its own checks making strategy
implementation cart, SPHINX gives an essential issue to implementing complex approaches.

This paper makes the accompanying commitments:

• The paper analyze four famous SDN controllers and illustrate that they are defenseless
against a different cluster of assaults on network geography and information plane for-
warding.

• Sphinx present gradual stream charts as a novel deliberation for realtime recognition of
security dangers.

• The paper present the plan and execution of SPHINX and its arrangement motor, which
permits network executives to indicate fine-grained security arrangements, and empowers
simple activity attribution.

• It evaluates the detector to see if it is functional and has adequate overheads. We moreover
report on encounters acquired utilizing SPHINX in four extraordinary contextual analyses
.

Attackers frequently break into the network to use inside vantage focuses, and hence dispatch

2.5. SPHINX: DETECTING SECURITY ATTACKS IN SOFTWARE-DEFINED NETWORKS 19

assaults on the inward network. Since the objective is to (I) check beginning of assaults on
network geography and information plane forwarding, and (ii) recognize infringement of ap-
proaches inside SDNs, our danger model centers solely around situations where the enemy
starts assaults from inside the SDN. Consequently, we model SDNs as a shut framework. Elim-
inating requirements on the obscure outside correspondence helps center our investigation just
around OpenFlow control messages inner to the SDN

2.5.1 Attack Detection

Flow graphs are used by SPHINX to model network topology and data plane forwarding in
SDNs. It extracts flow metadata from OpenFlow control messages and constructs flow graphs
incrementally to closely resemble current network activities, allowing real-time validation of
all network changes and restrictions on any flow graph in the network. As a result, flow graphs
offer a simple method for detecting various constraint breaches in SDNs, including network
topology and data plane forwarding. Since FLOWMOD messages are sent by the trustworthy
controller, only FLOWMOD messages are used to create flow routes. Untrusted STATSREPLY
messages from each switch only change the corresponding switch’s flow statistics and have no
effect on the flow graph structure. As a result, even in the case of untrusted switches and hosts,
the flow-specific network topology and data plane forwarding condition as embodied in the flow
graph remains unaffected. Furthermore, the presence of an honest plurality of switches along
the flow path allows SPHINX to specifically identify any deceptive changes to flow statistics at
any switch along the flow path.

To detect intrusions occurring within the SDN, flow graphs use the predictive power and struc-
ture of both topological and data plane forwarding observed from control messages. Although
flow graphs are a useful instrument for verifying natural and consistent network operations, the
existence of messages sent over the control plane and the dynamism of the topology limit their
capabilities. If a large number of messages have been tampered with or are untrustworthy, flow
graphs will interpret inaccurate messages as common actions and will not raise any alarms.
Furthermore, if the topology of the network varies repeatedly, some of the taught invariants can
be broken, leading to attacks.

A Flow is a coordinated traffic design saw between two endpoints with unmistakable MAC ad-
dresses over determined ports. A flow diagram is a conceptual illustration of a traffic flow in
which the edges represent the flow information and the nodes represent the switches. SPHINX
utilizes these Flow charts to demonstrate both network geography and information plane for-
warding in SDNs.It gathers Flow metadata from OpenFlow control messages and gradually
assembles the Flow charts to intently rough the real network tasks, accordingly empowering
approval of all network updates and limitations on each Flow diagram in the network in real-
time. Hence, Flow diagrams give a clean system that guides discovery of different imperative

2.6. HSA 20

infringement for both network geography and information plane forwarding in SDNs.

Flow ways are developed just utilizing FLOWMOD messages since they are given by the con-
fided in controller. Untrusted STATSREPLY messages from each switch just update Flow mea-
surements of the comparing switch, and don’t influence the Flow chart structure. Consequently,
the Flow explicit network geography and information plane forwarding state as typified in the
Flow chart stays uncorrupted even within the sight of untrusted switches,the presence of a gen-
uine dominant part of switches along the Flow way empowers SPHINX to exactly identify any
malignant updates to Flow insights at any switch in the Flow way. Flow charts misuse the
consistency and example in both topological and information plane forwarding derived from
control messages to distinguish assaults beginning inside the SDN. While Flow diagrams are a
compelling apparatus to confirm typical furthermore, unsurprising network activities, they are
restricted in their capacities by the idea of messages sent over the control plane and the dy-
namism in the geography. On the off chance that there is a dominant part of altered or untrusted
messages, at that point Flow diagrams will see off base messages as ordinary conduct and not
raise any cautions. Further, if the network geography changes very habitually, at that point a
few of the learned invariants might be disregarded, bringing about cautions.

2.6 HSA

Header Space Analysis(HSA) [18] is a strategy for troubleshooting network setup. HSA treats a
L-bit packet header as L-dimensional space, and models all cycles of switches and center boxes
as move capacities, which change subspaces of the L-dimensional space to different subspaces.
Along with esteemed lines, by breaking down the sending rules of the network, HSA can figure
the way a packet traversing the network on a specific port will take.

2.7 NetSight

NetSight [17] is a network investigating arrangement that permits the SDN application to re-
cover the packet history. netshark is an illustration of apparatuses worked over this stage, which
empowers clients to characterize and execute channels on the whole history of packets. With
this apparatus, a network administrator can likewise see the total rundown of packet properties
at each jump, like an info port, a yield port, and packet header esteems.

Chapter 3

Proposed Method

The objective of our work is to develop a compromised SDN device detection algorithm with
better complexity and which can be easily implemented in a real-world large-scale SDN archi-
tecture. We consider the scenario that both the controller and the switches can be compromised.
The existing solutions to this problem are resource-heavy and time-consuming. There are three
sections to our proposed system.

3.1 Clustering Technique

Previous detection methods use unsupervised trajectory sampling Algorithms to switches into
separate groups. But the problem with this method is that it is a time-consuming method and it
performs poorly when we consider the whole network. We will be using a different clustering
Algorithm [23] to cluster the switches into separate groups based on their frequency. It will be
faster and more efficient considering we take the whole network at a time. We are currently
focusing on the different modified versions of the k-means algorithm that can be used for our
purpose.

3.1.1 K means Clustering

A cluster is a set of data points that have been clustered together due to similarity. the K-
means algorithm identifies the k number of centroids, and then allocates every data point to the
nearest cluster while keeping the centroids as small as possible. One of the most common and
frequently used unsupervised machine learning algorithms is K-means clustering.

21

3.1. CLUSTERING TECHNIQUE 22

3.1.2 K-means++ Initialization

The K-means algorithm has the downside of being susceptible to the initialization of the cen-
troids or mean points. As a consequence, if a centroid is set to be a ”much further” point, it
might have no points associated with it. Similarly, if more than one centroids are allocated into
the same cluster, the clustering would be weak. We use K-means++ [24] to solve these pitfalls.
This algorithm ensures that the centroids are properly configured and that the clustering effi-
ciency is increased. The majority of the algorithm is similar to the regular K-means algorithm,
with the exception of initialization. That is, K-means++ is the traditional K-means algorithm
with better centroids initialization. While K-means++’s initialization is more computationally
costly than the regular K-means algorithm, K-means++’s runtimes for convergence to the op-
timum is reduced significantly. This new initialization method makes k-means more accurate
and fast.

3.1.3 K-means using Cluster Shifting

The quadratic time complexity of the k-means algorithm is well known. As a consequence,
the algorithm cannot be used successfully in large - scale applications. The classical method
can be used to construct a linear time complexity k-means algorithm. To achieve this linear
time complexity for the k-means algorithm [25], a technique of gradual shifting of intermediate
clusters, at consecutive iterations has been used.

3.1.4 1D K-means Clustering

kmeans1d is a Python library that implements k-means clustering on 1D data, relying on the
methodology provided in section 2.2 of (Gronlund et al., 2017) [26] by (Xiaolin 1991) [27]. The
Lloyd’s algorithm is a well-known method for determining a locally efficient solution. There
are polynomial-time algorithms for 1-dimensional input. This algorithm has a complexity of
O(kn + n logn). C++ and Python are used to write the code.

For our implementation, we have used the 1D K-means clustering [26] as it is more efficient
and suited for our purpose. It also provides a better time complexity.

3.2. DETECTION MECHANISM 23

3.2 Detection Mechanism

We want to improve the existing detection algorithm by adding a compromised switch iden-
tification mechanism. First, we localize the possible compromise switches. Then use probe
packets to isolate the exact compromise switches.

3.2.1 Custom Topology

We have created custom SDN topology using python script in mininet emulator. We have assign
mac address, ip address, port address to each hosts so that they can be easily identified. We will
use this topology for our detection implementation.

3.2.2 Attack Implementation

We have implemented different kinds of attacks using rest API applications. We have added,
modified, deleted flows for creating different kinds of active attacks. Attacks include Packet
Replay, Packet Misroute, Packet Drop, Packet generation, Packet modification.

3.2.3 Expected Path Calculation

We calculate expected path for every packet by collecting statistics from every switch. The
flows are filtered according to our needs. We can collect packet count, byte count etc based on
each flow. We can use them to generate expected path for each packet. For our experiments we
have used k-means algorithm here.

3.2.4 Actual Path Calculation

We can calculate the actual path similar in the similar manner we calculated the expected path.
But Generating actual path is very tricky as the a compromise switch may lie about anything
except it’s identity.

3.2.5 Attack Detection

We can detect any compromise switch by checking the difference between expected path and
actual path. Then we can isolate the compromised switches and specify the type of attacks.

3.3. NETWORK SCALABILITY 24

3.3 Network Scalability

In SDN architecture, network scalability is a concern. The detection mechanisms usually de-
pend on the statistics gathering [28] by the controller performance. We want to use real-time
statistics gathering independent of controller performance. We need to schedule the OpenFlow
control messages at the switches.

Chapter 4

Experimental Setup

Traditional networks’ static architecture is decentralized and complex, while today’s networks
need more simplicity and ease of troubleshooting. SDN was developed to fix this issue. SDN
recommends centralizing network information in a single network component ie. control plane
by decoupling network packet forwarding (data plane) from the routing process.The control
plane consists of some controllers who serve as the network’s brain. Control plane is centralized
and runs on a computer. Two planes ie. control plane and data plane are separated from each-
other. SDN network is programmable and application and network services are ensured by the
abstraction of underlying architecture. SDN implementation is highly depended on OpenFlow
protocol.

Figure 4.1: SDN Bigger Picture

SDN architectures mostly made of three components or functionality:

• SDN Networking Devices / Network Infrastructure: Network devices mainly focus on
the forwarding of packets and data processing. Data path identification is also a major

25

4.1. SDN CONTROLLERS OVERVIEW 26

task of network devices. Example: Openvswitch (OpenFlow protocol)

• Southbound interface makes the connection between physical networking hardware and
the controller.Using this interface controller communicates with the lower layers of the
architecture.

• SDN Controller: SDN controller is the middle man between application layer and net-
working devices. It receives instructions from the application layer and pass them to
the intended devices of the network. Controller also does the job of collecting statistics
from the network devices and send necessary information to the Application layer. Con-
troller contains abstract view of the whole network. Example: RYU, OpenDayLight [29],
ONOS [30], FloodLight etc

• Northbound interface is the communication medium between the controller and upper
layer applications.

• SDN Applications: SDN Application uses an application programming interface(APIs)
through which it provides the resources and instructions needed by the controller. These
applications indirectly manage the whole network and process large data and give analyt-
ical decisions. This is the area of creativity, inventions, research, etc.

4.1 SDN Controllers Overview

The Controller uses OpenFlow protocol to configure the network devices of the Software-
defined network. SDN Controller uses southbound API to instruct the switches of the actions
that need to be performed. Packets in the switches are forwarded according to the flow table.
Northbound interface is used for providing information to the application layer. Controller is
positioned in the middle of applications and devices. Openflow is widely used as the commu-
nication protocol between controllers and network devices.

The controller is in charge of the manipulation of Flow Tables in a switch. When a packet
comes to a switch there are two scenarios that can happen. One is Packet matches an existing
flow entry of the switch and switch takes necessary forwarding actions according to the flow
entry. Another scenario is when a packet comes and doesn’t match with existing flow entries.
In this case, switch sends a Packet In message to the controller for further instructions or drop
the packet.

• POX: POX is an open-source controller that provides an efficient way to use and imple-
ment Openflow Protocol. Different applications are supported in POX controllers like
switch, hub, load-balancer, etc.

4.2. OPENFLOW 27

• RYU: RYU is an open-source SDN controller developed in Python language. It is modu-
lar and provides a network operating system. New control application can be constructed
using RYU. It supports all the versions of OpenFlow protocol(v1.0,v1.2, v1.3, v1.4, v1.5).
RYU also supports Ofconfid and Netconf.

• OpenDayLight: OpenDayLight is an open-source SDN controller whose aim is to create
robust code that can be used on the devices of SDN architecture. It is mainly developed
for commercial products and wants acceptance among the users.

• ONOS: ONOS is developed in JAVA language and mainly used in Telecom used areas.
It comes with operator support for the users.

• Floodlight: Floodlight is an open-source JAVA based SDN controller. It is considered
an enterprise-class and has Apache-license. It comes with several modules. Modules use
API to give services to applications as well as other modules.

Figure 4.2: OpenFlow

4.2 OpenFlow

OpenFlow [31] is an SDN standard that has two main entities, OpenFlow Switch and OpenFlow
Controller.OpenFlow Switch is the forwarding plane of the network. On the other hand, Control
plane is implemented by controller. These two entities communicate with each other with the
help of Openflow protocol. Openflow switches have software installed in them to communicate
with the controller. Switch has flow tables and forwards the packet. Quality of service is ensured
by a Meter table.OpenFlow standard describes the network devices and functions of switches

4.2. OPENFLOW 28

and OpenFlow switch protocol is used to manipulate the switches from a Controller. Openflow
Version Details:

Most widely supported: Openflow 1.3

4.2.1 Switch Components

OpenFlow [31] Logical Switch contains flow tables as well as group tables for the purpose of
packet forwarding and packet lookup. The switch has OpenFlow channels to a controller.

The switch communicates with the controller using the OpenFlow switch protocol, and the
controller controls the switch. The controller can add, refresh, and uninstall flow entries in flow
tables both reactively (in response to packets) and proactively (in advance) using the OpenFlow
switch protocol. Each flow table in the switch has a collection of flow entries, which are made
up of match fields, counters, and directions to apply to matching packets.

The matching process begins with the first flow table and may extend to all flow tables in the
pipeline. Flow entries are used to align packets in order of precedence, with the first corre-
sponding entry in each table being used. The instructions associated with the unique flow entry
are followed if a similar entry is detected. If no match is made in a flow table, the result is
determined by the table’s configuration. If the packet fails to enter the flow table, it may be
forwarded to the controllers over the OpenFlow channel, dropped, or continued to the next flow
table. Packet routing, packet adjustment, and group table processing are all described in the
instructions. Flow entries may be routed to a specific port. This is normally a physical port,
but it may also be a switch-defined logical port (such as link aggregation classes, tunnels, or
loopback interfaces) or a reserved port defined by this specification.

4.2.2 Openvswitch

Open vSwitch [32] is a high-performance multilayer virtual switch licensed under the Apache
2.0 open-source license. It’s designed to support common management interfaces and protocols
while allowing for vast network automation by programmatic expansion (e.g. NetFlow, sFlow,
IPFIX, RSPAN, CLI, LACP, 802.1ag).

4.2.3 Openflow channel

The OpenFlow [31] channel serves as the connection between each OpenFlow Logical Switch
and an OpenFlow controller. The controller uses this interface to set up and monitors the trans-
fer, as well as accept events from it and send packets out of it. A single OpenFlow channel

4.2. OPENFLOW 29

with a single controller may be supported by the switch’s Control Channel or several OpenFlow
channels with multiple controllers may be supported by the switch’s Control Channel. The
OpenFlow channel is usually encrypted with TLS, but it can also be run over TCP. 6653 is the
default port code.

4.2.4 SDN Switch(Openflow Switch)

SDN Controller IP and Openflow protocol version are installed on the switch. The contact
between the switch and the SDN controller is created. The default OpenFlow rule (TABLE
MISS ENTRY) is installed by SDN Controller in the turn flow table. MISSED TABLE ENTRY
The CONTROLLER receives all packets that match the OpenFlow law. In the table, the lowest
priority comes first (0) The Host Data Packet will be paired with TABLE MISS ENTRY as
it arrives in the Switch, and the packet will be sent to the Controller (PACKET IN Message)
The packets are received by the controller, and the packets are used to construct the Switch
Logic. The OpenFlow flows are added to the switch by the controller. The controller adds the
OpenFlow flows to the switch. Now, the Switch data path is built with flows. So next time,
when the Packet arrives it will be matched with the Flow table and forward the packet to the
respective port.

4.2.5 Counters

Counters are used to maintain and collect statistics about the network from OpenFlow Switches.
Counters are implements on a per-flow entry basis, per-flow table basis, per switch port basis,
and many more.

4.2.6 OpenFlow Flow Table

A flow table entry is defined by its match fields and priority: when the match fields and priority
are combined, a single flow entry in a given flow table is identified. Flow entries make up a flow
chart.

The table-miss flow entry is a flow entry that has precedence equal to 0 and wildcards all match
fields (all fields omitted). At the very least, the table-miss flow entry must allow packets to be
sent to the controller through the CONTROLLER reserved port.

4.3. TOOLS USED FOR OUR EXPERIMENT 30

Figure 4.3: OpenFlow Flow Table

4.2.7 OpenFlow Matching

Depending on pipeline processing, the switch can perform table lookups in other flow tables
after performing a table lookup in the first flow table. There are two kinds of match fields:
header match fields and pipeline match fields. Match fields derived from packet headers are
known as header match fields. The majority of header match fields correspond to a field in the
packet header specified by a data path protocol. Sizes, prerequisites, and masking capabilities
vary across header match fields. Pipeline match fields, such as METADATA and TUNNEL
ID, are match fields that match values added to the packet for pipeline processing but are not
correlated with packet headers.

4.3 Tools used for our experiment

OS: Ubuntu 20.04 Desktop Edition

Test Bed: Mininet Emulator

Controller: RYU Controller

4.4. MININET 31

Switch: Openvswitch

Packet Capture: Wireshark Packet Analyzer

Traffic Generator: IPerf

4.4 Mininet

Mininet is a network emulator which creates a network of virtual hosts, switches, controllers,
and links. Mininet hosts run standard Linux network software, and its switches support Open-
Flow for highly flexible custom routing and Software-Defined Networking.

Mininet provides an easy way to get correct system behavior and to experiment with topologies.
Mininet networks run real code including standard Unix/Linux network applications as well as
the real Linux kernel and network stack including any kernel extensions which you may have
available, as long as they are compatible with network namespaces. Because of this, the code
you develop and test on Mininet, for an OpenFlow controller, modified switch, or host, can
move to a real system with minimal changes, for real-world testing, performance evaluation,
and deployment. Importantly this means that a design that works in Mininet can usually move
directly to hardware switches for line-rate packet forwarding.

4.5 WireShark

Wireshark [33] intercepts traffic and converts that binary traffic into human-readable format.
This makes it simple to see what traffic is passing through the network, how much of it is
passing through, how often it is passing through, how much latency there is between those
hops, and so on. Although Wireshark supports over 2,000 network protocols, many of which
are obscure, rare, or obsolete, the current security specialist will find that analyzing IP packets
is the most helpful. TCP, UDP, and ICMP are expected to make up the bulk of packets on your
network. Given the high amount of traffic that passes through a standard business network,
Wireshark’s methods for filtering the traffic are particularly useful. Capture filters can only
collect the kinds of traffic that you’re interested in, while view filters will let you zoom in on
the traffic you’re looking at. The network protocol analyzer includes search features such as
regular expressions and colored coloring to help users find what they’re searching for.

4.6. TIME4 32

Figure 4.4: Wireshark

4.6 Time4

TIME4 [28], an approach that uses accurate time to coordinate network updates. TIME4 [28] is
a powerful tool in softwarized environments, that can be used for various network update sce-
narios, including in heavily utilized networks. Specifically, we characterize a set of update
scenarios called flow swaps, for which TIME4 [28] is the optimal update approach, yield-
ing less packet loss than existing update approaches without requiring spare capacity, and
without temporarily reducing the network’s bandwidth.The prototype is publicly available as
open source. TIME4 [28] requires the switches and controller to maintain a local clock, en-
abling time-triggered events. Hence, the local clocks should be synchronized. The OpenFlow
time extension defined does not mandate a specific synchronization method. Various mecha-
nisms may be used, e.g., the Network Time Protocol (NTP) [34], the Precision Time Protocol
(PTP) [35],or GPS-based synchronization. The prototype we designed and implemented uses
REVERSEPTP [36], a variant of PTP that is customized for SDN.

4.7 Flow-Manager

The Flow-Manager is an RYU controller that allows users to manually manipulate the flow
tables in an SDN network. Directly from the program, someone can build, alter, and uninstall
flows. we will also display statistics and watch the OpenFlow switches. The Flow-Manager
is suitable for studying SDN in a lab setting or for tweaking the actions of network flows in a
production setting when used in combination with other applications.

Chapter 5

Conclusion

5.1 Summary

For traditional networks, identifying corrupted network devices has long been a concern. Misbe-
havior identification for conventional network equipment, such as routers, switches, and hosts,
is the focus of relevant study. Our system for detecting corrupted SDN devices, on the other
hand, is expected to yield much better performance. We have modeled the SDN network with
a mininet emulator. The OpenFlow messages are analyzed using the WireShark [33] tool. The
RYU controller, which is based on Python, is used. Switch clustering was applied to locate the
most commonly used switches. For coordination of control messages, Time4 technology would
be introduced as an API on top of the Controllers. However, several simulations are to be used
to test our verifier’s compliance with distributed controller environments.

One of our challenges was switch clustering. It takes a long time to perform a detection mech-
anism through an entire network. We used a number of clustering methods in our solution for
this study. We have implemented switch clustering with the help of the 1d k-means algorithm.
It provides better complexity than previous methods. Another difficulty was determining the
individual switches that had been exploited as well as the method of attack so that adequate
responses could be made. We need to improve the existing algorithm to identify the individual
corrupted device. And the last challenge was to make the verifier controller independent. We
used a schedule bundle to collect statistics of switches in real-time to get better accuracy. Our
entire setup of the experiment is based on ideal situation assumptions and theoretical calcula-
tions. We hardly tested the setup in a practical situation with widespread unpredictability. We’re
creating a plan to deploy our setup in a real-world scenario.

33

5.2. FUTURE WORK 34

5.2 Future Work

Our tests were carried out using a single controller (RYU controller). We must verify our ver-
ifier’s compliance with distributed controller environments such as ONOS and OpenDayLight
controllers. The real-world environment varies from the emulated environment in a variety of
aspects. Extensive research in real-world conditions will be needed in the future. This algo-
rithm is incapable of identifying corrupted Edge switches. It is important to identify corrupted
edge switches in order to provide End-to-End verification.

References

[1] R. Klöti, V. Kotronis, and P. Smith, “Openflow: A security analysis,” in 2013 21st IEEE

International Conference on Network Protocols (ICNP), pp. 1–6, IEEE, 2013.

[2] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The internet topology
zoo,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 9, pp. 1765–1775,
2011.

[3] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uh-
lig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE,
vol. 103, no. 1, pp. 14–76, 2014.

[4] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in software defined
networks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 623–654, 2015.

[5] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A survey of securing networks using
software defined networking,” IEEE transactions on reliability, vol. 64, no. 3, pp. 1086–
1097, 2015.

[6] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and dependable software-
defined networks,” in Proceedings of the second ACM SIGCOMM workshop on Hot topics

in software defined networking, pp. 55–60, 2013.

[7] A. Feldmann, P. Heyder, M. Kreutzer, S. Schmid, J.-P. Seifert, H. Shulman, K. Thim-
maraju, M. Waidner, and J. Sieberg, “Netco: Reliable routing with unreliable routers,”
in 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks Workshop (DSN-W), pp. 128–135, IEEE, 2016.

[8] A. Shaghaghi, M. A. Kaafar, and S. Jha, “Wedgetail: An intrusion prevention system for
the data plane of software defined networks,” in Proceedings of the 2017 ACM on Asia

Conference on Computer and Communications Security, pp. 849–861, 2017.

[9] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage, “Detecting and isolating malicious
routers,” IEEE Transactions on Dependable and Secure Computing, vol. 3, no. 3, pp. 230–
244, 2006.

35

REFERENCES 36

[10] A. T. Mzrak, S. Savage, and K. Marzullo, “Detecting malicious packet losses,” IEEE

Transactions on Parallel and distributed systems, vol. 20, no. 2, pp. 191–206, 2008.

[11] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig, “Lightweight source
authentication and path validation,” in Proceedings of the 2014 ACM Conference on SIG-

COMM, pp. 271–282, 2014.

[12] S. Lee, T. Wong, and H. S. Kim, “Secure split assignment trajectory sampling: A mali-
cious router detection system,” in International Conference on Dependable Systems and

Networks (DSN’06), pp. 333–342, IEEE, 2006.

[13] P.-W. Chi, C.-T. Kuo, J.-W. Guo, and C.-L. Lei, “How to detect a compromised sdn
switch,” in Proceedings of the 2015 1st IEEE Conference on Network Softwarization (Net-

Soft), pp. 1–6, IEEE, 2015.

[14] R. Ghannam and A. Chung, “Handling malicious switches in software defined net-
works,” in NOMS 2016-2016 IEEE/IFIP Network Operations and Management Sympo-

sium, pp. 1245–1248, IEEE, 2016.

[15] Y. J. Zhu and L. Jacob, “On making tcp robust against spurious retransmissions,” Com-

puter communications, vol. 28, no. 1, pp. 25–36, 2005.

[16] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: detecting security attacks in
software-defined networks.,” in Ndss, vol. 15, pp. 8–11, 2015.

[17] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown, “I know what your
packet did last hop: Using packet histories to troubleshoot networks,” in 11th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 14), pp. 71–85,
2014.

[18] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis: Static checking for
networks,” in Presented as part of the 9th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 12), pp. 113–126, 2012.

[19] H. Zhou, C. Wu, C. Yang, P. Wang, Q. Yang, Z. Lu, and Q. Cheng, “Sdn-rdcd: A real-time
and reliable method for detecting compromised sdn devices,” IEEE/ACM Transactions on

Networking, vol. 26, no. 5, pp. 2048–2061, 2018.

[20] P. Zhang, S. Xu, Z. Yang, H. Li, Q. Li, H. Wang, and C. Hu, “Foces: Detecting forwarding
anomalies in software defined networks,” in 2018 IEEE 38th International Conference on

Distributed Computing Systems (ICDCS), pp. 830–840, IEEE, 2018.

[21] T. Shimizu, N. Kitagawa, K. Ohshima, and N. Yamai, “Whiterabbit: Scalable software-
defined network data-plane verification method through time scheduling,” IEEE Access,
vol. 7, pp. 97296–97306, 2019.

REFERENCES 37

[22] K.-F. Lee, H.-W. Hon, and R. Reddy, “An overview of the sphinx speech recognition
system,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 1,
pp. 35–45, 1990.

[23] N. Pelekis, I. Kopanakis, C. Panagiotakis, and Y. Theodoridis, “Unsupervised trajectory
sampling,” in Joint European Conference on Machine Learning and Knowledge Discovery

in Databases, pp. 17–33, Springer, 2010.

[24] S. Vassilvitskii and D. Arthur, “k-means++: The advantages of careful seeding,” in
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pp. 1027–1035, 2006.

[25] M. K. Pakhira, “A linear time-complexity k-means algorithm using cluster shifting,” in
2014 International Conference on Computational Intelligence and Communication Net-

works, pp. 1047–1051, IEEE, 2014.

[26] A. Grønlund, K. G. Larsen, A. Mathiasen, J. S. Nielsen, S. Schneider, and M. Song,
“Fast exact k-means, k-medians and bregman divergence clustering in 1d,” arXiv preprint

arXiv:1701.07204, 2017.

[27] X. Wu, “Optimal quantization by matrix searching,” Journal of algorithms, vol. 12, no. 4,
pp. 663–673, 1991.

[28] T. Mizrahi and Y. Moses, “Time4: Time for sdn,” IEEE Transactions on Network and

Service Management, vol. 13, no. 3, pp. 433–446, 2016.

[29] S. Badotra and J. Singh, “Open daylight as a controller for software defined networking.,”
International Journal of Advanced Research in Computer Science, vol. 8, no. 5, 2017.

[30] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow, et al., “Onos: towards an open, distributed sdn os,” in Proceed-

ings of the third workshop on Hot topics in software defined networking, pp. 1–6, 2014.

[31] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,” ACM

SIGCOMM computer communication review, vol. 38, no. 2, pp. 69–74, 2008.

[32] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, et al., “The design and implementation of open vswitch,” in 12th

{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 15),
pp. 117–130, 2015.

[33] U. Lamping and E. Warnicke, “Wireshark user’s guide,” Interface, vol. 4, no. 6, p. 1, 2004.

REFERENCES 38

[34] D. Mills, RFC1305: Network Time Protocol (Version 3) Specification, Implementation.
RFC Editor, 1992.

[35] K. Correll, N. Barendt, and M. Branicky, “Design considerations for software only imple-
mentations of the ieee 1588 precision time protocol,” in Conference on IEEE, vol. 1588,
pp. 11–15, Citeseer, 2005.

[36] T. Mizrahi and Y. Moses, “Reverseptp: A software defined networking approach to clock
synchronization,” in Proceedings of the third workshop on Hot topics in software defined

networking, pp. 203–204, 2014.

	CANDIDATES' DECLARATION
	CERTIFICATION
	ACKNOWLEDGEMENT
	List of Figures
	ABSTRACT
	Introduction
	Software Defined Networking (SDN) Paradigm
	Main Reasons for SDN Vulnerability
	Types of Attacks
	Security Threats From Compromised SDN Devices
	Must-Have Characteristics of a Viable Solution
	Problem Statement
	Overview of Our Solution Approach
	Clustering Technique
	Detection Mechanism
	Network Scalability

	Our Contribution

	Background Study
	Wedge-Tail: An Intrusion Prevention System for the Data Plane of Software Defined Networks
	Attack Detection

	SDN-RDCD: A Real-Time and Reliable Method for Detecting Compromised SDN Devices
	Attack Detection

	FOCES: Detecting Forwarding Anomalies in Software Defined Networks
	WhiteRabbit: Scalable Software-Defined Network Data-Plane Verification Method Through Time Scheduling
	Attack Detection

	SPHINX: Detecting Security Attacks in Software-Defined Networks
	Attack Detection

	HSA
	NetSight

	Proposed Method
	Clustering Technique
	K means Clustering
	K-means++ Initialization
	K-means using Cluster Shifting
	1D K-means Clustering

	Detection Mechanism
	Custom Topology
	Attack Implementation
	Expected Path Calculation
	Actual Path Calculation
	Attack Detection

	Network Scalability

	Experimental Setup
	SDN Controllers Overview
	OpenFlow
	Switch Components
	Openvswitch
	Openflow channel
	SDN Switch(Openflow Switch)
	Counters
	OpenFlow Flow Table
	OpenFlow Matching

	Tools used for our experiment
	Mininet
	WireShark
	Time4
	Flow-Manager

	Conclusion
	Summary
	Future Work

	References

