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Abstract

For reliable disease diagnosis in renal pathology, accurate glomerular microscopic

medical image segmentation is important. In this study, we work on a pixel-level

labeled glomerular microscopic medical image segmentation dataset, the HuBMAP

kidney dataset, and improve a novel pipeline for implementing automatic segmen-

tation of glomerular microscopic medical images. In our thesis work, we have tried

using many variations of segmentation models, encoders, feature extractors and

explored their potentials for semantic segmentation of glomeruli. In our proposed

approach, we used the network architecture which gives the most promising re-

sult on the dataset, consisting of LinkNet with EfficientNet as modified encoder

block, pretrained on ImageNet. Here the Compound Scaling provides better per-

formance without compromising the efficiency. This pipeline outperformed other

models that we have experimented with and allowed better performance than

previous non deep learning based methodologies of glomerular identification.
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1 Introduction

1.1 Overview

A tuft of small blood vessels (capillaries) situated at the beginning of a nephron

in the kidney is known as a glomerulus (plural glomeruli). It is the kidney’s basic

filtration unit[10]. The glomerulus’ main task is to filter plasma into glomerular

filtrate, which then flows down the length of the nephron tubule to form urine.

Disease damage to the glomerulus may enable red blood cells, white blood cells,

platelets, and blood proteins including albumin and globulin to move through the

glomerular filtration barrier. The glomerular filtration barrier, which is responsible

for the filtration of blood into urine, is affected by disturbances in the glomerular

structure. Proteinuria, a condition marked by the presence of excessive proteins

in the urine and a common indicator of a variety of renal diseases, is the product

of this disturbance. As a result, when analyzing a renal biopsy, specialists focus

on the histological damage within the glomeruli to distinguish kidney diseases[11].

Furthermore, numerous studies have focused on various compartments within the

glomeruli, such as the mesangial matrix[12], capillary walls[13], and podocytes[14,

15], in order to better understand the changes that occur within the kidney during

various stages of disease. However, in order to detect these compartments, it is

important to first accurately define the glomerular boundaries within the whole

slide picture (WSI)[14].

1.2 Problem Statement

Due to its complex nature and intense variations in size and shape within the re-

nal section, automated glomerular segmentation remains a challenge today[16]. In

vivo, the glomerulus swells during hypertension[17], hypertrophy[18], and diabetes[19],

despite being consistent under normal conditions. Furthermore, due to differences

in sectioning angles, manual tissue sectioning induces variations in glomerulus

sizes. Aside from that, the task is made more difficult by the differences in stain-
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ing intensities. Because of the inconsistencies in the geometrical parameters, de-

veloping a single robust algorithm capable of detecting and segmenting all of the

glomeruli within a tissue section is difficult.

Our goal is to obtain proper identification of glomeruli in human kidney tissue

images by semantic segmentation.

Figure 1: [1](A) Periodic acid-Schiff image patch containing a glomerulus. (B)

Corresponding immunofluorescence image patch. (C) Mask generated by the

Butterworth band-pass filter

1.3 Motivation

According to our best estimations, the Earth has over 7 billion inhabitants and

the Milky Way galaxy has 300 billion stars. The adult human body, on the other

hand, comprises 37 trillion cells. It’s a mammoth task to figure out what these

cells do and how they interact. If we can better understand cellular behavior, it

will have an effect on many aspects of human health. Automated reliable meth-

ods of glomerular identification will ultimately improve accuracy and speed of

kidney research. This process will help us in finding changes within the kidney

during different stages of diseases. Complex nature and intense variations in size

and shape of glomeruli makes it a very interesting research topic. The current

clinical practice for glomerular detection involves the manual observation of his-

tologically stained biopsied tissues under a standard bright-field microscope by
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a pathologist[20], which is time consuming, tedious, subjective and requires ex-

pertise.Because of these problems there’s absence of a highly accurate automatic

segmentation process of Glomeruli.

The developed method could thereby aid in renal disease diagnosis and track-

ing of disease progression and therapeutic response by alleviating the burden of

manual detection of glomeruli within the tissue. It would also aid in the develop-

ment of a tool, capable of rapidly generating glomerular databases by detecting

and segmenting them from whole slide renal tissue images, which are crucial for

training neural networks. Furthermore, it could also be used to extract various

compartments within the glomerulus, such as the mesangium, the podocytes and

the capillary walls which are the focus of several stus.

1.4 Research Challenges

The primary research challenge of any medical image is the scarcity of accurately

labelled data. Moreover, these data have to be individually double checked and

labelled by a specialist of the corresponding sector. The amount of data to research

on is very low compared to other fields of studies. Variations of medical data are

a huge factor due to the fact that there are people spread out all around the

world, and their geographical location, habits, etc. affect the types of diseases

they have. One of the most common research challenges is that medical data has

to be accurate to the point which amounts to large sized pictures. Even a single

slide of image may be of several gigabytes in size. So, these data need a high

computation power to process and analyze which isn’t available everywhere.

To put it simply :

• Firstly, Scarcity of accurately labeled data by specialist.

• Secondly, Variation of Medical Data based on geographical location and

health conditions.

• Thirdly, Amount of properly labeled dataset is relatively low.
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• Finally, For microscopic renal data, a single slide scan can consume sev-

eral gigabytes of storage. Significant amount of computational resources is

needed.

1.5 Application

Many diseases affect kidney function by targeting the glomeruli, the tiny units in

the kidney that clean the blood. Glomerular diseases encompass a wide range of

disorders with a wide range of genetic and environmental causes, but they can be

classified into two groups:

• Glomerulonephritis is an inflammation of the kidney’s membrane tissue,

which acts as a barrier, removing wastes and excess fluid from the blood.

• Glomerulosclerosis is a disorder in which the tiny blood vessels in the kidney

scar or harden.

While the causes of glomerulonephritis and glomerulosclerosis vary, both can result

in kidney failure.

However, the accurate diagnosis of renal disease solely depends on detecting the

glomeruli properly and efficiently. This research will also help in finding changes

within the kidney during different stages of diseases.

1.6 Contribution

In our thesis work, we have tried using many variations of segmentation models,

encoders, feature extractors and explored their potentials for semantic segmenta-

tion of glomeruli.

• In our proposed approach, we used the network architecture which gives

the most promising result on the HuBMAP dataset which is a variation of

LinkNet, where we replaced the default encoder of LinkNet with EfficientNet

which is already pretrained on ImageNet database.
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• This model achieved a DICE score of 82.7% when tested on the dataset.

• Here the Compound Scaling provides better performance without compro-

mising the efficiency.

• This pipeline outperformed other models that we have experimented with

and allowed better performance than previous non deep learning based meth-

ods of glomerular identification.

1.7 Organization of Thesis

The rest of the report is organized as follows:

• Chapter 2 shows our background study regarding our research.

• Chapter 3 gives a literature review discussing different approaches for med-

ical image segmentation used over the years.

• Chapter 4 introduces our proposed methods for efficient and accurate seg-

mentation of glomeruli.

• Chapter 5 describes in detail the different experiments we performed and

their result analysis and comparisons.

• Chapter 6 presents an overall conclusion of our thesis and discusses our

future plan of work.
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2 Background Study

2.1 Semantic Image Segmentation

Image segmentation is a computer vision task in which specific regions of an image

are labelled based on what’s being seen. In semantic Image Segmentation, also

known as dense prediction, each pixel of an image is labelled with a corresponding

class of what is being represented.

In computer vision pixel wise dense prediction is the task of predicting a label for

each pixel in the image. Convolutional neural networks achieve good performance

on this task, while being computationally efficient[21].

Instances of the same class are not don’t distinguished in semantic segmentation,

we just consider the category of each pixel. In other words, if the input image

includes two objects of the same type, the segmentation map will not automatically

identify them as separate objects.A particular type of model, known as instance

segmentation models, distinguishes between different objects of the same class.

Figure 2: [2]Computer Vision Tasks

The expected output in semantic segmentation are not just labels and bounding

box parameters. In semantic segmentation, the predicted output is more than

just labels and bounding box parameters. The output is a high-resolution image
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(typically the same size as the input) with each pixel categorized into a different

class. As a consequence, it’s a pixel-by-pixel image classification.

Before the advent of deep learning, classical machine learning techniques like SVM,

Random Forest, K-means Clustering were used to solve the problem of image

segmentation. But as with most of the image related problem statements deep

learning has worked comprehensively better than the existing techniques and has

become a norm now when dealing with Semantic Segmentation.

2.2 Convolutional Neural Network

Convolutional neural networks (CNN) are widely used in image recognition appli-

cations of machine learning. Convolutional neural networks provide an advantage

over feed-forward networks because they are capable of considering locality of fea-

tures. CNN image classifications take an input image, process it and classify it

under certain categories. Computers see an input image as an array of pixels and

it depends on the image resolution.

Figure 3: [3]Convolulational Newural Network

Technically, deep learning CNN models to train and test, each input image will

pass it through a series of convolution layers with filters (Kernals), Pooling, fully

connected layers (FC) and apply Softmax function to classify an object with prob-

abilistic values between 0 and 1. The figure is a complete flow of CNN to process

an input image and classifies the objects based on values.
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2.2.1 Convolution Layers

A convolution layer provides a window through which we can inspect a subset

of the image and then scans the entire image when looking through it. Since it

generates an output image that focuses exclusively on the regions of the image that

exhibit the function it was looking for, this window is also known as a filter/kernel.

A feature map is a representation of the output of a convolution.

By learning image features with small squares of input data, convolution maintains

the relationship between pixels. It’s a mathematical operation with two inputs:

an image matrix and a filter or kernel. Convolution of an image with various

filters may be used to perform operations such as edge detection, blurring, and

sharpening.

There are two key advantages of performing convolutions on images rather than

connecting each pixel to the neural network units:

1. Reduces the number of parameters we need to learn. We just need to learn

the weights of the filter, rather than the weights connecting each input pixel

(which usually is a lot smaller than the input image).

2. Locality is maintained. The image matrix does not need to be flattened into

a vector, so the relative locations of the image pixels are retained. If we

represent the picture as a long string of numbers, we lose the insights.

2.2.2 Depth

Depth corresponds to the number of filters we use for the convolution operation.

In the network shown in Figure, convolution of the original image is performed

using three distinct filters, thus producing three different feature maps.

2.2.3 Padding

Filters do not always exactly match the input image. There are two possibilities:

1. To suit the image, padding it with zeros (zero-padding) is required.
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Figure 4: [4]A simple ConvNet.

2. Delete the portion of the image where the filter didn’t operate. This is known

as true padding, and it just holds the image’s valid pieces.

The image’s dimension is diminished when it is convolutioned. The image size

shrinks and gradually becomes too small to be useful if the input is passed through

several convolution layers without padding. Same-padding is the method of ap-

plying zero padding to an image such that the output has the same width and

height as the input.

2.2.4 Strides

The number of pixels the filter will pass over the input matrix each time is referred

to as the stride. We shift the filter to n pixels at a time when the stride is n.

2.2.5 Pooling Layer

Pooling reduces the number of parameters that the network must learn by per-

forming nonlinear downsampling on the output. Spatial Pooling (also known as

downsampling or subsampling) reduces the dimensionality of each function map

while preserving the most relevant details.

Different forms of spatial pooling exist: maximum, average, sum, and so on. In

case of Max Pooling, a spatial neighborhood is defined and the largest element

from the rectified feature map within that window is taken. Instead of taking the
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largest element also take the average (Average Pooling) or sum of all elements in

that window.

In practice, Max Pooling has been shown to work better. When Max Pooling is

used, a spatial neighborhood is specified, and the largest element from the rectified

feature map within that window is selected. Take the average (Average Pooling)

or total of all elements in that window instead of the largest element. Max Pooling

has been shown to perform better in practice.

2.2.6 Non Linearity (ReLU)

ReLU stands for Rectified Linear Unit for a non-linear operation. The output is

ƒ(x) = max(0,x).

The aim of ReLU is to add non-linearity to our ConvNet. Since the data we want

our ConvNet to learn in the real world is non-negative linear values. In addition

to ReLU, other nonlinear functions such as tanh and sigmoid can be used. ReLU

is mostly used because it outperforms the other two in terms of results.

2.2.7 Fully Connected Layer

This layer takes an input volume (whatever the output of the conv, ReLU, or pool

layer before it is) and outputs an N-dimensional vector, where N is the number of

classes from which the program must choose. The fully connected layer looks at

the performance of the previous layer (which should reflect the activation maps of

high level features) and decides which features are most associated with a specific

class. Basically, an FC layer looks at the high-level features that are most closely

correlated with a particular class and assigns weights to them such that when

the products of the weights and the previous layer are calculated, the correct

probabilities for the various classes are obtained.
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2.3 Fully Convolutional Networks for Semantic Segmenta-

tion

A CNN’s basic architecture consists of a few convolutional and pooling layers,

followed by a few fully connected layers. According to the paper published in

2014[5], the final fully connected layer can be thought of as performing a 1x1

convolution that covers the entire region.

Figure 5: [5]Transforming fully connected layers into convolution layers enables

a classification net to output a heatmap. Adding layers and a spatial loss pro-

duces an efficient machine for end-to-end dense learning.

As a result, the final dense layers can be replaced with a convolution layer and

the result will be the same. However, the benefit of doing so now is that the size

of the input does not have to be set. When dealing with dense layers, the size of

the input is small, so if a different size input is needed, it must be resized. This

restriction is eliminated when a dense layer is replaced with convolution.

Also, when a larger image is used as an input, the result is a feature map rather

than a class output, as is the case for a smaller image. The final feature map’s

observed behavior also reflects the appropriate class’s heatmap, with the location
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of the object highlighted in the feature map. The feature map’s output is a

heatmap of the required object, which is useful information for segmentation use-

case.

Since the feature map obtained at the output layer is down sampled as a conse-

quence of the convolutions performed, it must be up-sampled using an interpo-

lation technique. While bilinear up sampling is efficient, the paper recommends

learning up sampling with deconvolution, which can also learn non-linear up sam-

pling.

The network’s encoder is responsible for down sampling, while the decoder is

responsible for up sampling. This is a common trend in many architectures, with

the encoder reducing the size and the decoder raising the sampling rate. In an

ideal world, we would not use pooling to down sample and keep the sample size

constant throughout, but this would result in a large number of parameters and

would be computationally inefficient.

Despite the fact that the output results were satisfactory, the output observed

was rough and not smooth. The explanation for this is that downsampling by 32

times using convolution layers causes information loss at the final feature layer.

It is now extremely difficult for the network to perform 32x upsampling with this

little data. FCN-32 is the name of this architecture.

The paper proposed two additional architectures to solve this problem: FCN-

16 and FCN-8. The knowledge from the previous pooling layer is merged with

the final feature map in FCN-16, and the network’s job is now to learn 16x up

sampling, which is better than FCN-32. FCN-8 attempts to boost it even further

by adding data from a previous pooling layer.

2.4 Mask R-CNN

There are two stages to the faster R-CNN. A Region Proposal Network (RPN)

is the first stage, which proposes candidate object bounding boxes. The second
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Figure 6: [5]fcn32, fcn16, fcn8 overall diagram.

stage, known as Fast R-CNN, extracts features from each candidate box using

RoIPool and then performs classification and bounding-box regression. For faster

inference, the features used by both stages can be shared.

Figure 7: [6]The Mask R-CNN framework for instance segmentation.

The concept of Mask R-CNN is simple: Faster R-CNN outputs a class label and a

bounding-box offset for each candidate object; we add a third branch that outputs

the object mask, which is a binary mask that shows the pixels where the object is

in the bounding box. The additional mask output, on the other hand, is distinct

from the class and box outputs, necessitating the extraction of a much finer spatial
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layout of an object. To achieve this, RCNN employs the Fully Convolutional

Network (FCN).

Mask R-CNN, then, is a hybrid architecture that combines the two networks —

Faster RCNN and FCN. The total loss in classification, generating the bounding

box, and generating the mask is the loss function for the model. Mask RCNN has

a set of enhancements over FCN that make it much more accurate[6].

2.5 U-Net for Semantic Segmentation

U-Net builds on top of the fully convolutional network. It was built for medical

purposes to find tumours in lungs or the brain. It also consists of an encoder which

down-samples the input image to a feature map and the decoder which up samples

the feature map to input image size using learned deconvolution layers[22].

The main contribution of the U-Net architecture is the shortcut connections. In

FCN, since we down-sample an image as part of the encoder we lost a lot of

information which can’t be easily recovered in the encoder part. FCN tries to

address this by taking information from pooling layers before the final feature

layer.

U-Net proposes a new approach to solve this information loss problem. It proposes

to send information to every up sampling layer in decoder from the corresponding

down sampling layer in the encoder as can be seen in the figure above thus cap-

turing finer information whilst also keeping the computation low. Since the layers

at the beginning of the encoder would have more information they would bolster

the up sampling operation of decoder by providing fine details corresponding to

the input images thus improving the results a lot.

2.6 Data Augmentation for Semantic Segmentation

Data augmentation is a technique for increasing the amount of training data avail-

able by changing or transforming existing data in a realistic way. Data augmen-

tation is a technique for increasing the number of samples in a training dataset.
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Overfitting can be minimized with data augmentation. The augmented images

would introduce variance to the model, making it more robust. The following are

some of the most widely used data augmentation strategies in semantic segmen-

tation tasks:

• Random Crop: To retain the shapes of objects, Random Crop randomly

selects a region and crops it out to generate a new data sample. The cropped

region should have the same width/height ratio as the original image.

• CenterCrop: CenterCrop is used to crop the central part of the size H x

W, from both image and the mask.

• RandomRotate90: Randomly rotate both the image and mask by 90

degrees. After RandomRotate90, GridDistortion may be used to transform

both image and mask.

• Horizontal Flip: Horizontally flip both image and mask.

• Vertical Flip: Vertically flip the image and mask.

• Cutout: Cutout involves randomly masking out square regions of image

during training.

2.7 Encoders

The encoder basically compresses the input and produces the code. Different kind

of encoders used in different kind of deep learning tasks.

2.7.1 Residual Networks (ResNet)

ResNet is a Convolutional Neural Network (CNN) architecture composed of resid-

ual blocks (ResBlocks) with skip connections, which distinguishes ResNets from

other CNNs[7].

ResNet won the ImageNet competition that year by a wide margin because it

solved the vanishing gradient problem, while as more layers are introduced, train-

ing slows and accuracy stagnates or worsens. This is achieved by networks missing
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links. Shorter connections between layers closer to the input and those closer to

the output can make convolutional networks significantly deeper, more accurate,

and more efficient to train.

The loss surface (the search space for the varying loss of the model’s prediction)

tends to be a collection of hills and valleys when visualized. The lowest point is also

the lowest loss. Even if it is an exact part of a larger network, a smaller optimal

network may be overlooked. This is attributable to the difficulty of navigating the

loss surface. This means that adding a lot of deep layers to a model will make it

worse at predicting.

Adding cross connections between layers of the network has proved to be a very

successful solution, allowing large parts of the network to be skipped if necessary.

It is also easier to train the model with optimal weights in order to reduce the

loss.

Figure 8: [7]Bottom 34 Layer CNN, top 34 Layer ResNet CNN.

Each ResBlock has two connections from its input, one of which goes through a

series of convolutions, batch normalization, and linear functions, while the other

bypasses those steps. An identity, cross, or skip connection is what these are

called. Both connections’ tensor outputs are added together. A ResNet can be

used for the encoder/down sampling section of the U-Net (the left half of the U).

Pretrained Encoder: If a pretrained model is used to train an image genera-

tion/prediction model, it significantly reduces training time. The model now has a

basic understanding of the types of features that must be detected and enhanced.

It’s popular to use a model and weights that have been pre-trained on ImageNet.
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2.7.2 MobileNet Network

MobileNet is an efficient network architecture and a set of two hyper-parameters

in order to build very small, low latency models that can be easily matched to the

design requirements for mobile and embedded vision applications[23].

MobileNet is built on the core layers which are depthwise separable filters. We then

describe the MobileNet network structure and conclude with descriptions of the

two model shrinking hyperparameters width multiplier and resolution multiplier.

Figure 9: Standard Convolution Filters.

Figure 10: Depthwise Convolutional Filters.

Figure 11: 1×1 Convolutional Filters called Pointwise Convolution in the con-

text of Depthwise Separable Convolution.
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Figure 12: Depthwise Separable convolutions with Depthwise and Pointwise lay-

ers followed by batchnorm and ReLU.

The MobileNet model is based on depth wise separable convolutions which is

a form of factorized convolutions which factorize a standard convolution into a

depthwise convolution and a 1×1 convolution called a pointwise convolution. For

MobileNets the depthwise convolution applies a single filter to each input chan-

nel. The pointwise convolution then applies a 1×1 convolution to combine the

outputs with the depthwise convolution. A standard convolution both fifilters and

combines inputs into a new set of outputs in one step. The depthwise separable

convolution splits this into two layers, a separate layer for filtering and a separate

layer for combining.

2.7.3 MobileNetV2

MobileNetV2, that improves the state-of-the-art performance of mobile models on

multiple tasks and benchmarks as well as across a spectrum of different model

sizes[24]. Our main contribution is a novel layer module: the inverted residual

with linear bottleneck. This module takes as an input a low-dimensional com-

pressed representation which is first expanded to high dimension and filtered with

a lightweight depthwise convolution. Features are subsequently projected back to

a low-dimensional representation with a linear convolution.

The bottleneck blocks appear similar to residual blocks where each block contains
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an input followed by several bottlenecks followed by expansion . However, inspired

by the intuition that the bottlenecks actually contain all the necessary information,

while an expansion layer acts merely as an implementation detail that accompanies

a non-linear transformation of the tensor, we use shortcuts directly between the

bottlenecks.

Figure 13: Basic building block of MobileNet V2.
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3 Related Work

3.1 Non-Deep Learning Methods

3.1.1 Glomerular detection and segmentation using a Butterworth

band-pass filter

Previously, a rapid, high throughput, scalable, and robust computational pipeline,

capable of detecting and segmenting multiple glomeruli within the field-of-view

was developed, using minimal computational complexity, by integrating the two

different microscopic imaging modalities of immunofluorescence and histology[1].

Figure 14: [1] Schematic diagram of the computational pipeline used to extract

accurate glomerular boundaries.

In the above figure-

(A) Whole-slide image (WSI) of renal tissue section stained via immunofluores-

cence markers.

(B) WSI of the same renal section post-stained with Periodic acid-Schiff (PAS).

(C) Result of image registration by matching speeded up robust features.
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(D) Extracted image patches containing glomeruli, from registered immunoflu-

orescence WSI. The cell nuclei were stained with DAPI (blue). The green

signal depicts tissue autofluorescence.

(E) Mask generated upon band-pass filtering of the image in Fig. D. (F) Image

patches from PAS WSI corresponding to the ones shown in Fig. D.

(F) Overlay image of the masks shown in Fig. E and the PAS image patch shown

in Fig. F.

This pipeline utilizes the robust yet simple Butterworth band-pass filter to ex-

ploit previously unexplored innate features of fluorescence photo physical proper-

ties of DAPI generated and tissue autofluorescence signals, thereby reducing the

computational cost and complexity when compared to other techniques[25], while

generating comparable performance.

Here, the standard Butterworth band-pass filter[26] with an order of n = 1 was

used. The transfer functions of the low pass and high pass filter used to design

the Butterworth band-pass filter are:

HLP (u, v) =
1

1 + D(u,v)
D2n

L

HHP (u, v) = 1 − 1

1 + D(u,v)
D2n

H

HBP (u, v) = HLP (u, v) ∗HHP (u, v)

where, DL and DH indicate the upper and lower cut off frequencies and D(u, v)

indicates the distance of each pixel from the origin.

3.1.2 Automatic glomerular identification using image analysis and

machine learning

Previously, glomerular identification required expert pathologists as identification

of glomeruli in pathology samples is difficult for both computers and untrained

individuals.. Earlier methods of scoring histological kidney samples (glomeruli)
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did not allow for collection of quantitative data in a high-throughput and con-

sistent manner. Manual analysis and identification can be time consuming and

often inefficient. Therefore, usage of machine learning approaches was initiated

to develop high-throughput methods which will automatically identify and collect

quantitative data from glomeruli with minimal human interaction between steps

and provide quantifiable data independent of user bias. Previous works which

didn’t use machine learning methods were limited in recognizing glomeruli with

varying characteristics (size, disease state, race).

Here, the goal was to achieve an automated reliable method of glomerular tuft

classification, with an expandable workflow for phenotype quantification within

glomeruli. Ilastic, a software which uses various machine learning techniques for

image segmentation and ImageJ for scientific image analysis and enhancement

were used[27].

Figure 15: [8] Overview of the workflow and tools used throughout the acquisi-

tion, segmentation, and quantification of images.

3.2 Deep Learning Methods

3.2.1 Segmentation of Glomeruli Within Trichrome Images Using Deep

Learning

Shruti Kannan et al. used a deep learning approach to correctly detect glomeruli

and used a segmentation pipeline to segment the glomeruli.
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In one of the previous implementations[28], there were three classes of data:

1. No glomerulus.

2. Normal or partially sclerosed (NPS) glomerulus.

3. Globally sclerosed (GS) glomerulus.

Figure 16: Schematic of the deep neural network. The classification technique is

based on leveraging a pretrained convolutional neural network, which was fine-

tuned on this dataset

At first Google’s Inception v3 architecture was used in the images to correctly

detect classes of images within given data. Then it was split into a 7:3 train

test ratio. Some data augmentation techniques were used like random whitening,

cropping which helped accurately identifying glomeruli within the border of the

images. These images were put into a segmentation pipeline. A heatmap was

generated which found how confident the model was in terms of detecting the

presence of a GS glomerulus in that area, Then it was binarized and a distance

transform was calculated. Finally the watershed segmentation provided with a

segmentation of glomeruli within given data.

3.2.2 U-Net: Convolutional Networks for Biomedical Image Segmen-

tation

This paper[22] illustrates an elegant architecture using the fully convolutional

network[5]. This architecture was modified such that it works with very few

training images and yields more precise segmentations. The main idea in[5] is
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to supplement a usual contracting network by successive layers, where pooling

operators are replaced by upsampling operators. As a result, these layers increase

the resolution of the output. In order to localize, high resolution features from

the contracting path are combined with the upsampled output. A successive con-

volution layer can then learn to assemble a more precise output based on this

information

Figure 17: U-net architecture (example for 32x32 pixels in the lowest resolu-

tion).

It consists of a contracting path (left side) and an expansive path (right side).

The contracting path follows the typical architecture of a convolutional network.

It consists of the repeated application of two 3x3 convolutions (unpadded convo-

lutions), each followed by a rectified linear unit (ReLU) and a 2x2 max pooling

operation with stride 2 for downsampling. At each downsampling step the num-

ber of feature channels was doubled. Every step in the expansive path consists

of an upsampling of the feature map followed by a 2x2 convolution that halves

the number of feature channels, a concatenation with the correspondingly cropped

feature map from the contracting path, and two 3x3 convolutions, each followed
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by a ReLU. The cropping is necessary due to the loss of border pixels in every

convolution. At the final layer a 1x1 convolution is used to map each 64- compo-

nent feature vector to the desired number of classes. In total the network has 23

convolutional layers.

3.2.3 Double U-Net

Figure 18 shows an overview of the proposed architecture. As seen from the figure,

DoubleU-Net starts with a VGG-19 as encoder sub-network, which is followed by

decoder subnetwork. What distinguishes DoubleU-Net from U-Net in the first

network (NETWORK 1) is the use of VGG-19 marked in yellow, ASPP marked in

blue, and decoder block marked in light green. The squeeze-and-excite block[29]

is used in the encoder of NETWORK 1 and decoder blocks of NETWORK 1 and

NETWORK 2. An element-wise multiplication is performed between the output

of NETWORK 1 with the input of the same network. The difference between

DoubleU-Net and U-Net in the second network (NETWORK 2) is only the use of

ASPP and squeeze-and-excite block. All other components remain the same.

In the NETWORK 1, the input image is fed to the modified U-Net, which gen-

erates a predicted mask (Output1). We then multiply the input image and the

produced mask (Output1), which acts as an input for the second modified U-Net

that produces another mask (Output2). Finally, we concatenate both the masks

(Output1 and Output2) to see the qualitative difference between the intermediate

mask (Output1) and final predicted mask (Output2).

We assume that the produced output feature map from NETWORK 1 can still be

improved by fetching the input image and its corresponding mask again, and con-

catenating with Output2 will produce a better segmentation mask than the previ-

ous one. This is the main motivation behind using two U-Net architectures in the

proposed architecture. The squeeze-and-excite block in the proposed networks re-

duces the redundant information and passes the most relevant information. ASPP

has been a popular choice for modern segmentation architecture because it helps

to extract high-resolution feature maps that lead to superior performance[30].
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Figure 18: The DoubleU-net architecture

Encoder Explanation The first encoder in DoubleU-Net (encoder1) uses pre-

trained VGG-19, whereas the second encoder (encoder2), is built from scratch.

Each encoder tries to encode the information contained in the input image. Each

encoder block in the encoder2 performs two 3×3 convolution operations, each fol-

lowed by a batch normalization. The batch normalization reduces the internal

co-variant shift and also regularizes the model. A Rectified Linear Unit (ReLU)

activation function is applied, which introduces non-linearity into the model. This

is followed by a squeeze-and- excitation block, which enhances the quality of the

feature maps. After that, max-pooling is performed with a 2 × 2 window and

stride 2 to reduce the spatial dimension of the feature maps.
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Decoder Explanation As shown in Figure 18, we use two decoders in the entire

network, with small modifications on the decoder as compared with that of the

original U-Net. Each block in the decoder performs a 2 × 2 bi-linear up-sampling

on the input feature, which doubles the dimension of the input feature maps. Now,

we concatenate the appropriate skip connections feature maps from the encoder

to the output feature maps. In the first decoder, we only use skip connection from

the first encoder, but in the second decoder, we use skip connection from both the

encoders, which maintains the spatial resolution and enhances the quality of the

output feature maps. After concatenation, we again perform two 3 × 3 convolution

operations, each of which is followed by batch normalization and then by a ReLU

activation function. After that, we use a squeeze and excitation block. At last,

we apply a convolution layer with a sigmoid activation function, which is used to

generate the mask for the corresponding modified U-Net.

3.2.4 Glomerular Microscopic Image Segmentation Based on Convo-

lutional Neural Network

Xueweu Han et al. proposed The Improved Masked R-CNN algorithm.

In this paper, the deep learning method is applied to glomerular microscopic image

segmentation to replace the traditional glomerular segmentation method. They

constructed the glomerular microscopic image segmentation dataset, and for the

first time, the Improved Mask R-CNN algorithm based on convolutional neural

network[6] is applied to the glomerular segmentation of medical microscopic im-

ages. The Improved Mask R-CNN algorithm achieved a simple, flexible, and accu-

rate glomerular microscopic medical image segmentation by changing the length

of square anchor side in pixels and increasing the head mask branch deconvolution

layers. For comparison, we apply the Improved Mask R-RNN algorithm and other

existing classic methods on the dataset we built. The experimental results show

that our improved algorithm achieves superior performance in the segmentation

and detection of the glomerular microscopic medical image dataset.

The Improved Mask R-CNN algorithm consists of a two-stage procedure. In the
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first stage, region proposal network (RPN) proposes multiple candidate object

bounding boxes by sliding a 3x3 spatial window over convolutional feature maps.

Since the glomerulus is small in the microscopic image, the number is one or more

and the size is not uniform, for the glomerular medical image segmentation, their

improved algorithm reduces the length of square anchor side in pixels to improve

the accuracy of model training. In the second stage, the network head predicts

softmax probability of the class, bounding-box regression, and outputs a binary

mask for each region of interest (Rol). Medical segmentation datasets tend to have

a small number of images and concentration of categories, thus they increased the

number of deconvolution layers on the head mask branch to improve segmentation

accuracy. The Improved Mask R-CNN network framework is presented in the

following figure.

Figure 19: Improved Masked R-CNN algorithm network structure
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4 Proposed Approach

4.1 Efficient LinkNet

In order to be useful in real-time applications, pixel-wise semantic segmentation

for visual scene comprehension must be accurate as well as effective. Current

algorithms, while accurate, do not concentrate on effectively using the parameters

of neural networks. As a consequence, they are large in terms of parameters and

operations, and therefore redundant.

Figure 20: (a) LinkNet architecture; (b) Encoder block; (c) Decoder Block

Many current semantic segmentation techniques have an encoder-decoder pair at
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the heart of their network architecture. The encoder encodes data into feature

space, and the decoder encodes that data into spatial categorization in order to

perform segmentation.

The pooling indices or complete convolution are used to recover spatial informa-

tion lost in the encoder due to pooling or strided convolution. Bypassing spatial

information and moving straight from the encoder to the corresponding decoder,

accuracy is increased while processing time is reduced significantly. In this way,

information that would have otherwise been lost at the encoder stage is saved,

and no additional parameters or operations are wasted in relearning this lost in-

formation.

Semantic segmentation involves labeling each and every pixel of an image and

therefore, retaining spatial information becomes utmost important. Despite the

fact that semantic segmentation is targeted at applications that need real-time

activity, most existing deep networks have an extremely long processing time.

On existing embedded hardware, the majority of these networks were unable

to perform real-time segmentation. Apart from that, recurrent neural networks

(RNNs) have recently been used to obtain contextual knowledge[31], but RNN use

is computationally costly. There was also some work done in the field of develop-

ing efficient networks, with DCNN being designed for a faster forward processing

time but a decline in prediction accuracy.

4.2 Network

The architecture of LinkNet[32] is presented in Fig. 20 (a). Here, conv means con-

volution and full-conv means full convolution[5]. Furthermore, /2 denotes down-

sampling by a factor of 2 which is achieved by performing strided convolution, and

*2 means upsampling by a factor of 2. We use batch normalization between each

convolutional layer and which is followed by ReLU non-linearity[33], [34]. Left half

of the network shown in Fig. 20 (a) is the encoder while the one on the right is

the decoder. The encoder starts with an initial block which performs convolution
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on the input image with a kernel of size 7 × 7 and a stride of 2. This block also

performs spatial max-pooling in an area of 3 × 3 with a stride of 2.

The later portion of encoder consists of encoder-block. Layers within these encoder-

blocks are shown in detail in Fig. 20 (b). Similarly, layer details for decoder-blocks

are provided in Fig. 20 (c).

For the first block of encoder and decoder is

m = n = 64

, while for rest of the blocks

mencoder = ndecoder = 64 ∗ 2i−1

and

nencoder = mdecoder = 64 ∗ 2i

.

Contemporary segmentation algorithms use networks such as VGG16 (138 million

parameters), ResNet101 (45 million parameters) as their encoder which are huge

in terms of parameters and GFLOPs. We used EfficientNet as an encoder which

is fairly lighter and outperforms other encoders which we will discuss later.

LinkNet uses the technique of full-convolution in our decoder as proposed earlier

by[5]. Every conv(k × k)(im, om) and full-conv(k × k)(im, om) operations have

three parameters. Here, (k × k) represent (kernel size) and (im, om) represent

(inputmap, outputmap) respectively.

Unlike other neural network architectures for segmentation, the network links each

encoder to the decoder. Any spatial information is lost when the encoder conducts

several downsampling operations. Using only the encoder’s downsampled output,

it’s difficult to recover this missing information. Each encoder layer’s input is also

bypassed to the output of its corresponding decoder in this paper. Missing spatial

information is expected to be recovered so that it can be used by the decoder and

upsampling operations by doing so.
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Furthermore, since the decoder shares the encoder’s information at each layer, the

decoder may use fewer parameters.

Model ClassIoU ClassiIoU

SegNet* 56.1 34.2

ENet* 58.3 34.4

Dilation10 68.7 -

Deep-Lab CRF (VGG16) 65.9 -

Deep-Lab CRF (ResNet101) 71.4 42.6

LinkNet Without bypass 72.6 51.4

LinkNet 76.4 58.6

Table 1: Cityscape[9] test set result

Despite the fact that the network’s primary objective was to operate on handheld

devices, we discovered that it is also very effective on high-end GPUs such as the

NVIDIA Titan X.

This may be useful in data-center applications where large numbers of high-

resolution images must be processed. Our network enables large-scale compu-

tations to be done much faster and more effectively, potentially saving a lot of

money.

4.3 Encoder

ConvNets are commonly scaled up to increase accuracy. ResNet[7] can be scaled

up from ResNet-18 to ResNet-200 by adding layers; GPipe[35] recently achieved

84.3 percent ImageNet top-1 accuracy by scaling up a baseline model four times

larger. The method of scaling up ConvNets, on the other hand, has never been

well known, and there are currently various approaches. The most popular ap-

proach is to increase the depth[7] or width[36] of ConvNets. Another less com-

mon, but growingly popular approach is to scale up models based on their image

resolution[35].
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Figure 21: Compound Scaling

An empirical study shows that balancing all dimensions of network width, depth

or resolution is important, and that this balance can be accomplished surprisingly

easily by simply scaling each of them with a constant ratio. A simple but successful

compound scaling method is used on this observation.

The compound scaling method makes sense because if the input image is big-

ger, then the network needs more layers to increase the receptive field and more

channels to capture more fine-grained patterns on the bigger image.

The compound scaling method, which use a compound coefficient φ to uniformly

scales network width, depth, and resolution in a principled way

depth : d = αφ

width : w = βφ

resolution : r = γφ

s.t. α× β2 × γ2 ≈ 2α ≥ 1, β ≥ 1, γ ≥ 1

where α, β, γ are constants that can be determined by a small grid search. In-

tuitively, φ is a user-specified coefficient that controls how many more resources

are available for model scaling, while α, β, γ specify how to assign these extra

resources to network width, depth, and resolution respectively
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Figure 22: Scaling Network Width for Different Baseline Networks

Each dot in a line denotes a model with different width coefficient (w). The

first baseline network (d=1.0, r=1.0) has 18 convolutional layers with resolu-

tion 224x224, while the last baseline (d=2.0, r=1.3) has 36 layers with resolution

299x299.

Since model scaling does not change layer operators in the baseline network, having

a good baseline network is also critical. The scaling method is evaluated using

existing ConvNets, but in order to better demonstrate the effectiveness of the

scaling method, a new mobile-size baseline, called EfficientNet was also developed.

Figure 23: EfficientNet-B0

The baseline network is leveraged by a multi-objective neural architecture search

that optimizes both accuracy and FLOPS. Specifically, The same search space
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is used as[37], and use ACC(m)×[F LOP S(m)/T]w as the optimization goal,

where ACC(m) and FLOPS(m) denote the accuracy and FLOPS of model m, T is

the target FLOPS and w=-0.07 is a hyperparameter for controlling the trade-off

between accuracy and FLOPS. Unlike[37], here optimization is done on FLOPS

rather than latency since there are no target specific hardware devices. The search

produces an efficient network, which is named EfficientNet-B0. It is slightly bigger

due to the larger FLOPS target (our FLOPS target is 400M). Its main building

block is mobile inverted bottleneck MBConv[24], to which squeeze-and-excitation

optimization is added.

Figure 24: Scaling Up EfficientNet-B0 with Different Methods.

5 Experimental Analysis

5.1 Dataset

The Glomeruli FTU Segmentation Dataset provided by HuBMAP includes histo-

logical images of the kidney and annotation information representing the glomeru-

lar segmentation. The anatomical structure segmentation information and addi-

tional information (including anonymized patient data) about each image.

The HuBMAP data includes 11 fresh frozen and 9 Formalin Fixed Paraffin Em-
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bedded (FFPE) PAS kidney images. Glomeruli FTU annotations exist for all 20

tissue samples.

Figure 25: Sample image from the dataset.

The dataset consists of very large (>500MB - 5GB) TIFF files. There are 8 train-

ing set. This csv includes ids corresponding to data in the train directory. Also it

has mask data in encoding column. This data is encoded with RLE encoding. The

public test set has 5. All the histological images of the kidney are in tiff format.

We also have a dataset information file where the training images can be sectioned

into sex, ethnicity, race, weight, bmi for further analysis.

We can decode masks from the encoding column of train.csv file.

The dataset also includes two kinds of annotation files. The annotations denote

segmentations of glomeruli.Both the training and public test sets also include

anatomical structure segmentations.

1. Glomerulus segmentation file: According to the description of the data-

set, the same information as the rle-encoded mask is stored.
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Figure 26: Enhanced version of the sample image containing glomeruli.

2. Anatomical structure file: In the same way with a glomerulus segmen-

tation file, anatomical structure segmentations are shown. This file contains

anatomical structure segmentations. It’s used to identify the various parts

of the tissue

It is also notable that there is a private hidden dataset similar to the public

dataset but larger. It’s used in testing in order to ensure the unbiased performance

measure of the model.

5.2 Preprocessing

Each of the images in the dataset has 50k pixel size and is saved as a high-

resolution tiff image. To make such large images to be suitable for training of

a neural network, they must be cut into tiles. Based on the size of the detected

features, the appropriate tile size for this data should be 1024x1024. But, it would

be an overshoot for a starter code and the initial model development. Therefore,

tiles of 4 times lower resolution are used - 256x256. After this we got 256x256

sized trained images cut into tiles and their corresponding masks.
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Figure 27: Sample image from training dataset with glomeruli mask applied.

5.3 Data Augmentation

We used many combinations of data augmentation techniques. We used - Com-

pose which composes several transforms together. At First Horizontal Flip, Ver-

tical Flip, RandomRotate90, ShiftScaleRotate is used in one Compose. Then one

of OpticalDistortion, GridDistortion and PiecewiseAffine is used. Finally one of

HueSaturationValue ,CLAHE ,Random Brightness Contrast is used.

5.4 Methodology

Among many variations of segmentation models, encoders, feature extractors, the

model which gave the most promising result is: LinkNet with EfficientNet-B5 as

modified encoder block, pretrained on ImageNet. Our models and overall proce-

dure used PyTorch and required libraries. When using LinkNet with EfficientNet

encoder, pre-trained EfficientNet worked as the backbone and feature extractor of

our model. EfficientNet had pretrained encoder weights from ImageNet dataset.

The loss that works the best for semantic segmentation in most of the cases is

symmetricLovasz-Softmax loss, a differentiable surrogate of IoU. However, ReLU
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Figure 28: Sample training image cut into tiles as 256x256 images.

in it must be replaced by (ELU + 1), Because sometimes regular ReLU in lovasz

predicts a lot of noise that must be eliminated by careful selection of the threshold.

With ELU+1 usually the prediction is close to zero where it should be zero, but

with ReLU we have quite many predictions with 0.1-0.3 probability even if they

are quite easy to identify as negative examples.

defsymmetric lovasz(outputs, targets) :

return0.5∗(lovasz hinge(outputs, targets)+lovasz hinge(−outputs, 1.0−targets)

We have tried with batch sizes of 64, 32 and 16. Number of workers is taken as

4. We’ve used k-fold cross validation with 4 folds. In each fold first only the head
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was trained in 6 epochs, freezing other layers. Then after unfreezing the layers,

the whole model was trained in 32 epochs.

5.5 Result Analysis

We used Dice Coefficient as our evaluation metric since it performs well in case of

our semantic segmentation problem.

DiceCoefficient =
2 × AreaofOverlap

TotalNumberofP ixelsinbothImages

Figure 29: Dice Coefficient.

In our case we specifically used dice with automatic threshold selection. After

numerous experimentation our pipeline finally produces a 0.827 score. The com-

parison table is given below :

Model Dice

DoubleU-Net 0.736

U-Net + MobileNetV2 0.770

U-Net + MobileNetV2 (Pretrained on ImageNet) 0.801

LinkNet + MobileNetV2 (Pretrained on ImageNet) 0.806

LinkNet + EfficientNet-B5 (Pretrained on ImageNet) 0.827

Table 2: Result Comparison

44



From the above table we can see that our proposed method produces overall the

best result. UNet which is the state of art model for medical image segmentation

produces 0.801 which is 2.6% less than our final result. Even using pre-trained

enocoders like mobilenetv2 we get less optimized results. Later we tried with more

complex architecture like DoubleUnet but the performance of that network was

very poor due to our tiles’ low resolution images.

Model Dice

LinkNet + EfficientNet-B2 (Pretrained on ImageNet) 0.820

LinkNet + EfficientNet-B3 (Pretrained on ImageNet) 0.825

LinkNet + EfficientNet-B5 (Pretrained on ImageNet) 0.827

Table 3: Result Comparison among variants of Efficient LinkNet

So we needed more lighter models like EfficinetNet but since our dataset is very

small and comprises very high resolution images we needed to use a feature ex-

tractor which performs better than the network in compound scaling method but

in the meantime can handle a small number of training data. Due to our hardware

resource limitations we could implement upto EfficinetNet-B5 which finally gives

us overall the best performance till now.

6 Conclusion

6.1 Summary

Segmentation of Glomeruli in Kidney Tissue Images may have a wide range of

health impacts. Glomerular identification methods that are automated and accu-

rate would ultimately increase the accuracy and pace of kidney study. Manually

identifying functional tissue units is time and cost inefficient due to the dynamic

nature of glomeruli and their intense variability in size and shape. While glomeru-

lar identification is a difficult task, deep learning semantic segmentation models

have shown promising results in this area.
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In our thesis work, we have tried using many variations of segmentation models, en-

coders, feature extractors and explored their potentials for semantic segmentation

of glomeruli. In our proposed approach, we used the network architecture which

gives the most promising result on the dataset, consisting of LinkNet with Effi-

cientNet as modified encoder block, pretrained on ImageNet. This model achieved

a DICE score of x% when tested on our dataset. Here the Compound Scaling

provides better performance without compromising the efficiency. This pipeline

outperformed other models that we have experimented with and allowed better

performance than previous non deep learning based methodologies of glomerular

identification.

6.2 Future Work

Our main problem was we were not able to train with large dataset due to our

limited computational resources. As a result we did not get better results as

expected in our test set. In future our main focus is to work with larger data. We

also aim to work on developing a more complex network to handle the problem

efficiently.

We plan to work in an online competition on Identifying glomeruli in human

kidney tissue images and we hope that as time passes we will be able to grow our

model in order to improve performance without sacrificing accuracy.
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