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Chapter 1

Introduction

In this chapter, we present an overview of our thesis. The overview contains a detailed problem
statement and the significance of solving this problem. In the later parts of this chapter, a dis-
cussion on the research challenges to be faced is included. Out research motivation, objectives,

and our contributions are noted in sections. The end of this chapter contains the description of
the organization of the thesis.

1.1 Overview of Action Quality Assessment

Human action or activity refers to human body movement that includes the movement of limbs,
joints, or other body parts. Action quality assessment (AQA) addresses the problem of auto-
matically judging the quality of an action performed by a human and assigning a score to it.
The target of AQA is to enable computers to quantify how well a human being performed a
certain action and provide feedback for improving the body movement of said human so that
the performance improves. Usually, the AQA system analyzes an RGB video of the human
performing the action and assigns a score. In some cases, additional information in the form of
skeleton data and pose is provided through additional sensors.

AQA relies on accurate human motion detection and tracking, segmenting the action from
a long video sequence, creating an accurate and dense high-level description of the said action,
etc. Currently, human actions are quantified by real-world judges using specific rules. Defining
these rules to the computer and analyzing human action using these rules is quite difficult.
Different human actions have different human body movement patterns and different rules for
assessment. This is why AQA systems are built for specific action classes.
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Figure 1.1: Human Action Quality Assessment
1.2 Significance of AQA

In recent years, a lot of works have focused on this problem. Some new datasets have also been
introduced. Most of these datasets contain videos of athletes performing some action (diving,
snowboarding, etc.) and corresponding scores assigned by human judges. The goal is to design
a system that can accurately predict the scores assigned by human judges to the athletes based
on the input videos.

An AQA system has potential use in applications such as health care [17], sports video
analysis [ 18], skill discrimination for a specific task [19], assessing the skill of trainees in profes-
sions such as surgery [20], driving, swimming, piloting aircraft, etc, video understanding [21].
In healthcare and rehabilitation, physical therapy is a vital recovery step for stroke survivors and
sports injury patients. Currently, the patient has to depend on medical professionals and ther-
apy professionals for these treatments. A vision-based rehabilitation system that can evaluate
the therapy and provide feedback can offer more economical treatment options. Human action
evaluation can also help learners of skills on self-training platforms. For example, simulation-
based surgical training platforms have been developed for surgeons, flight simulation exists for
pilots, etc. Combining an AQA system with these platforms would enable the trainee to assess
their skills as well as receive feedback on how to improve. AQA systems can help automate
sports activity scoring. In the case of a lot of sports, replacing a human judge would result in
less error. Such a system could also function as a Virtual Assistant Referee (VAR). AQA also
has potential usage in video retrieval, as a video retrieval system could rank the videos based on
the performed actions and return the best one. These potential use cases were our motivation to
engage in research in this field.

1.3 Basic Steps in Performing AQA

Most works implementing AQA do so in 3 stages [1]:
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| 3. BASIC STEPS IN PERFORMING AQA

(1) Detect and segment human action from a long video.

(i1) Extract features for assessing the quality of said action.

(iii) Developing a method to assess the action quality and assign a score based on the ex-
tracted features.

In this work, we focus more on the later 2 stages as the first one falls under the focus of video
action localization.

Based on what type of features are used, AQA systems can be of 3 types:

* Using Pose Information: Human action quality is heavily dependant on body movement.

I
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Figure 1.2: Pose information can be used as features for AQA [1]

The movement of limbs and joints contains a lot of information regarding how the action
is performed. This information can be achieved using motion capture equipment dur-
ing the performance of the action. However, in real-world applications, wearing motion
capture equipment during action performance is impractical.

Another approach is to extract pose information from the RGB video of said action per-
formance. This is, on the other hand, much more difficult to implement accurately due
to the complex body motions the different actions might have. Extracted/ recorded pose
information can be transformed using Graph Convolution [22], LSTM [16], DCT [23],
etc. into a higher-level representation. Based on this a linear-regressor can predict the
quality score.
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1.3. BASIC STEPS IN PERFORMING AQA 4

* Hand Crafted Features: This approach was popular before the advemt oA desy lean
ing. Like other disciplines in computer vision, hand-crafted features were extracted fronn
action performance videos. These techniques included but were not Timited 1 Syatizl-
Temporal Interest Points (STIP) (24, Histogram of Gradients (HOG) [25), Histogram
of Optical Flow (26), Scale-Invariant Feature Transform (SIFT) (27], Mfion Boundary
Histogram (MBH) [25]. These were used to define and extract higher-level features, us-
ing which a linear classifier or regressor could predict action quality scores, Opftismization
techniques such as Bag of Words [29] and Hidden Markov Model [ 4] were also used
to directly formulate the problem of action score prediction s an optimization problerm.
Using hand-crafted features is computationally inexpensive, but the performance and ac-
curacy of the system are less superior than using skeleton/pose data or directly using RGE
video as input to a deep learning framework.

* Deep Feature Method: Recently, computer vision research has been taking advantage of
convolutional neural networks (CNN). CNNs have been successfully used in the domain
of image classification [31], object recognition [32], semantic-segmentation [?), etc. In
the realm of processing video data, CNNs have also become popular.

ow V= G T ]

Figure 1.3: Extracting Deep Features using CNNs for AQA

3D convolutional network (C3D) has been successfully used for both action recognition
from videos [10] as well as AQA [8]. For AQA, deep convolutional neural networks are
used to extract higher-level features from input RGB videos. These higher-level features
are used by a Support Vector Regressor (SVR) [33] or by a linear-regressor to make action
quality predictions. As shown in figure 1.3, the video is divided into clips. The CNN
extracts deep features from individual clips. These clip-level features are then aggregated
to form video-level features. These are then used by SVR or linear-regressor for making
action score predictions. As this technique has been shown to produce more promising
results, we restrict our focus to this approach in this thesis work.
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| 4 PROBLEM STATEMENT

1.4 Problem Statement

mm«kofdcvclopmgag(mdActioanlityAss&ssmmfruncworkhaslweivedlklof
attention over the last decade. The more recent approaches have focused more on deep-feature-
M@dmm“i(hsigniﬁan(impmvem(inresults_Thccommonlppmachinmost'u’ts
in the literature is to extract features from small clips of the action performance video and later
aggregating the features to achieve a global video level description. This is then used as input
to a linear regressor or an SVR for predicting action scores. Most works have utilized the C3D
network for extracting features. While C3D is a good feature extractor when initialized with
pretrained weights from a related big scale dataset, it is relatively shallow when compared to
decper CNNGs like ResNets. When it comes to aggregation techniques, the literature has taken
onc of two paths. One is to average them, another is to use a time series model such as RNN
a[ﬂM.mcfmmaistmsimp]emmtunpmaldamdgniﬁmthehMmquhts
bigger datasets (0 train than is currently available. So, the problems we have identified in the
approaches taken in the literature are:

1) Shallow Feature Extractor: The C3D [10] used as a feature extractor in the majority of
works is a shallow CNN in modern standards. It cannot take advantage of bigger datasets
even if they were to become available. The features extracted from the videos are poor in
quality when compared with the features deeper networks can extract.

ii) Feature Aggregation Technique: Previous works suggest there is not enough data avail-
able to train time-series-based models. And averaging as aggregation is a bad match for
video data that has temporal ordering.

These facts present themselves as natural areas of improvement. We aim to solve these
problems in this thesis work.

1.5 Research Challenges

Dealing with video data can be challenging in and of itself when compared to image data. To
understand why this is the case, let us look at frameworks used to process image data. Usually
the images are represented using a 3D tensor of dimensions C' x H x W (C = Number of
channels, H = Height, W = Width). However, most systems that deal with video data also
have to look at multiple frames from the input data. Hence the input tensors from video data
end up having dimensions N x C x H x W (N = Number of frames). Some earlier works
attempted to solve this problem by using the same 2D CNN's to extract frame-level features and
then aggregating them through temporal pooling such as averaging or time series mechanisms.
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4 KRESEARCH CHALLENGES

Mhese tochnigues, while being resource-efficient, were poor at capturing the temporal relation
petwoen frames that are close together in time. Some later works attempt at dealing with this
problem by dedicating a separate pipeline for performing temporal reasoning from optical flow.
Most recent works have however switched to 3D CNNs that take ns input small clips made
of multiple frames from the input video and perform temporal as well as spatial reasoning.
Finally, these clip-level Teatures are pooled temporally to calculate video-level features (7).
Computation resources generally available now permit training 3D CNNs that can operate on
small clips containing 8, 16, 32 frames,

To perform Action Quality Assessment accurately, one needs to examine the entire input
video. To understand why: imagine an athlete performing a dive. The clip we look at might
be the initinl phase of the video where the athlete made no mistakes, thus we may conclude
the performer should get a good rating. However, the diver might make an error while entering
the water. Hence the rating should be much lower than what was initially predicted. What
this means is, whatever automated system we design, has to accurately and effectively process
all the frames from the entire input video to correctly analyze the athletes’ performance. This
is especially challenging because analyzing the entire video requires immense memory and
processing power. Most works in the literature have opted for dividing the video into non-
overlapping clips, processing the clips using 3D CNN to extract features, and then aggregating
features and training a regressor (o predict the final score.

Most recent works in computer vision have shifted towards a data-driven approach. Be-
cause most recent works depend on deep learning to leverage data available from large-scale
datasets. However, building large-scale AQA datasets requires annotating the actions per-
formed. Judging such actions can only be done by domain experts. Human experts of a specific
domain have trained for years in that domain to learn complex rules based on which they can
assess performance. Thus building large-scale datasets would require annotating every single
video by a human apt in his/her domain. As a consequence, even the biggest AQA dataset
contains only 1415 samples, Because of the small scale of datasets, designing a deep learning
model and training it on the dataset without overfitting is a difficult task.

All the samples in an AQA dataset are very similar (as long as the task being performed
is the same). The quality of the action depends on fine-grained details of the action performed.
This type of fine-grained action classification is difficult for a deep learning architecture to
perform. In other words, any system built for AQA has to deal with poor inter-class discriminant

samples and excel at discriminating them,
Although AQA is a new, challenging, and resource-demanding field, the implications of
developing a good system that can mimic human judges are massive.
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1.6. RESEARCH OBJECTIVES

1.6

1.7

Research Objectives

Proposing a novel and improved AQA pipeline that can mimic the judgment of a human
Jjudge.

Studying the effects of deeper convolutional neural network feature extractors on the
performance of AQA pipelines in benchmark datasets. Currently, deep CNNs such as
ResNets are being used in action recognition tasks. We think they are capable of ex-
tracting richer and more complex features from videos due to increased depth. Hence

deeper ResNets should improve performance in theory. We aim to confirm this through
experimentation.

Finding out if current big scale datasets hold enough data to train a deep CNN-based
AQA pipeline. If 5o, is there an optimum depth after which going any deeper results in
overfitting on the dataset?

Exploring the effect of the clip-size from which the features are extracted on the accuracy
of the final score prediction. Often videos are divided into clips to accommodate them in
memory during feature extraction. These features are then aggregated together. We wish
to find out if using bigger/smaller clip-size affects the outcome.

Formulating a better aggregation technique that is also resource-friendly.

Contributions

‘We have demonstrated that 3D and (2+1)D ResNets can be used as good feature extractors
for AQA. We have established an optimum depth of the ResNet feature extractor for
achieving good results.

We have shown that number of frames in each clip processed by the feature extractor has
a significant impact on the quality of the score predicted by the system. Essentially, a
bigger clip-size translates to a significant boost in performance.

Our proposed aggregation scheme (WD) achieves superior performance when compared
to averaging as aggregation. Experiments suggest that this performance boost is more
significant for smaller clip-sizes and less apparent for bigger clip-sizes.

¢ Our proposed method outperforms all the previous works on the MTL-AQA dataset.
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1.8. ORGANIZATION OF THE THESIS

1.8 Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 provides an overview of different appronches to performing Action Quality As

sessment from videos in the published literature. 1t also outlines various methods of feature

extraction from videos that have been used in the existing computer-vision literature

Chapter 3 includes a detailed explanation of our methods and the design for a better AOA
pipeline. It holds a discussion about various feature extractors we have used, how we have
incorporated them in our pipeline, our pr oposed aggregation technique, and how it can improve

performance. It contains our proposed framework, methodologies, and other methodologies
that we have tested. |

Chapter 4 contains an analysis of the results that we have obtained in our experiments, the
interpretation of these results, and a comparison with the state-of-the-art.

Chapter 5 presents the conclusion and discusses future works.
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Chapter 2
Literature Review

In this chapter, we present a detailed study of AQA systems in the existing literature. We cover
different methods used to solve this problem throughout the years, In the next section, we
provide a literature review of spatio-temporal feature extractors, Finally, we dedicate a section
for various score predictors used in the literature,

2.1 Action Quality Assessment Systems

Human action quality assessment is a rather young field of research in computer vision. This
field is somewhat related to the task of action-recognition which has received significantly more
focus in the past decades. Computer vision-based systems have been developed for recognizing
human actions from videos quite accurately. Recently, the focus has shifted on researching hu-
man action quality assessment. This can be attributed to the huge number of applications such a
system might have. Gordon and Andrew [34] were the first to propose the problem of automat-
ically assessing human performance from videos. Their work proposed teaching computers to
analyze human performance that has been recorded in a video. Ilg et al. [35] attempted to solve
a similar problem of estimating the sports skill level of individuals by using 3D trajectory data
captured with motion capture gear. Most studies investigating AQA in the early stage [36—41]
directly tried to apply and fine-tune state-of-the-art action recognition methodologies to the
task of AQA. This was done by either regarding the AQA task as a classification task (good
action\bad action) or by changing the classifier with a regressor at the final stage and changing
the optimization function. Needless to say, these approaches failed to perform well. The reason
behind this is the increased difficulty of performing AQA when compared to action recognition.

From the perspective of what type of features are being used for performing AQA, method-
ologies can be divided into three categories. These categories are:

(i) Hand-crafted feature representation methods

9
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() Powme enthimmtiom aned shedeton data baned methiods

() Dyeep Teature representution methiody

210 Hand-Crafted Veature-Based AQA Methods

fefore the evn of deep learming, hand-orafted features were used by computsr-vision ressarchers
o identify pattermnn in images and videos, Actlon quality sssessment 16 no exception 1o this
practioe. Some popular handerafied featuren are Bpitial Temporal Interest Polnts (5111 [ 4],
Histogram of Cradients (HOC) [25), Histogeam of Optical Flow (20), Boale-tnvariant Veature
Transform (SUTF) [ 271, Motion Boundary Histogram (MISH) [ 2],

Glordon et al. [ V1) used motion tracking systems (o record hody positions. Then the miuthors
ased the difference in positions in the spatiotemporal dimensions and used these s fentures (o
ausess human action quality,

g et al. [ 15] developed an AQA dataset by capturing humin motion using 11 cameras and
41 markers, Their proposed dataset contalng 14 videos of action performance, They caleulated
angular velocity, curvature, and torslon of 3D trajectories as initial features, In the following
step, & sliding window was used to correlate features extracted from a test video (o the features
extracted from training videos (o mark the most similar video, Then spatio-temporal morphable
models learned 1o model action sequences bised on different styles of movements, Finally, a
Radial Basis Function (RBF) was trained with expert ratings to predict the final score,

Wiuk and Soatto [42] proposed an AQA dataset comprising of diving videos from the 13"
FINA World Championships. Their proposed AQA method begin with subtracting background
reglons 1o obtain foreground regions. Then they applied Kalman filtering to keep a track of
the center of mass of the diver. Then, various pose descriptors, action modeling methods, and
classification approaches were utilized o classify the dive types. Experiments described in
this work suggest that using SIFT pose features computed from the result of foreground mask
application in a fixed square window, divided in a 4 % 4 spatial bin configuration and & bin

orientation gave the best resulty,

Pirsiavash et al, [23] proposed yet another dataset,
and figure skating videos from various Olympic events and way named MIT Olymple Scoring

Dataset. Their work was based on both low-level and high-level features, They used STIP as a
Jow-level feature to assess the quality of human action.

Venkataraman et al, [37] computed multivariate approximate entropy and modeled dy-
namics in distinct body joints as well as cross approximate entropy to model the body joint
interactions. Their approach outperformed that of Pirsiavash et al. [23] on the MIT Olympic

Scoring Dataset.

This dataset contained 309 diving

n
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21,2  Pose and Skeleton Data-Based AOA Methods
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Figure 2.1: Skeleton Data and Pose extracted using motion sensors. (2]

Recently, methods to extract pose information from RGB video have been developed.
These are popularly known as pose estimation techniques, Such a technique called DeepPose
was proposed by Toshev and Szegedy [7).

This work attempted to estimate the precise position of human body joints 1o estimate pose.

The authors used a two-step process. In the first step, they used a seven-layer convolutional
neural network to predict the location of body joints using regression. In the second step, the
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Figure 2.2: Visualization of pose results on images from FLIC using DeepPose [7]

regressors try to refine their prediction by using higher-resolution subsets of the original image.
DeepPose outperformed the previous hand-crafted pose estimation techniques and remains a
baseline for DNN based pose estimation techniques at the time of this writing.
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Figure 2.3: Architecture of DeepPose (3]

OpenPose [4] developed in Carnegie Mellon University’s perceptual computing lab, is the
first real-time multi-person pose estimation system. This work applies two CNNs as well as a
part affinity field to encode the coordinates and orientation of the limbs. This system can handle
2D multiperson and 3D single person pose estimation in real-time.

Figure 2.4: Skeleton model and detection examples extracted using OpenPose [4]

Despite these advances, estimated skeleton data can contain noise due to occlusion and
background clutter in most real-world use-cases. To obtain good action quality estimation, this
noise has to be minimized. This is done through noise filtering.
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Paiement et al. [40] extracted skeleton data using a Microsoft Kinect. Then the skeleton
data is preprocessed using scaling and spatial alignment. Then diffusion maps are applicd for
gimensionality reduction of the feature vectors. The method is then tested on gait data of people

walking on stairs.

2.1.3 Deep Feature-Based AQA Methods

There has been a trend of using deep features extracted using deep convolutional neural net-
works. This is not unlike most fields of computer vision.
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Figure 2.5: AQA pipeline as proposed by Parmar and Morris [5]

Deep neural networks can learn to extract complex patterns and high-level features in an
efficient manner. Especially the Convolutional 3D (C3D) network, proposed by Tran et al. [10],
has been used as a feature extractor in several recent works. This is not surprising as C3D has
been shown to be very successful at capturing salient motion cues and appearance through 3D
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spntiﬂ-‘c'“p“““ convolutions on the related task of action recognition,

parmar and Morris [5] proposed three architectures. These are: C3D-SVR, C3D-LSTM,
CID-LSTM-SVR. All of these architectures divided the video into non-overlapping contiguous
clips. These clips were then processed by the C3D network and features were extracted. These
features were later aggregated for predicting an action score. For C3D-SVR this aggregation
was done using averaging. Then a Support Vector Regressor (SVR) predicted action quality
scores based on these aggregated features. In C3D-LSTM, the aggregation was done by using
an LSTM [16]. The LSTM regarded the features extracted from the clips to be part of a time
series. The final hidden state of the LSTM was then used by a fully connected neural network
Jayer to predict the score. In the case of C3D-LSTM-SVR, an SVR predicted the score based
on the final hidden state of the LSTM.

Xiang et al. [6] used Pseudo-3D (P3D) network [43] as the feature extractor. They broke

the video into action-specific segments. These segments were fed into a pretrained P3D network
which output extracted features.

16 frames Predict Truth
S

f 92.2 9Lz

92.3 || 94.0

61.8 || 64.3

{P3D

\ 50.7 || 52.4

546 || 544

78.4 || 79.8

Figure 2.6: Pseudo-3D (P3D) network based AQA pipeline as proposed by Xiang et al. [6]

These features are then processed using a fully connected regression layer, SVR, or a
linear-regressor to predict the final action quality score.

Li et al. [7] used 9 different C3D networks to process 9 different clips corresponding to the
different stages of diving. These features are aggregated and processed through convolutional
and fully-connected layers to produce a final AQA score.
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As shown in figure 2.8, the proposed method extracts features from each clip using deep
networks and finally pools the features. The blue blocks denote temporal stream while the
orange ones denote spatial stream. Temporal pyramid pooling aggregates the features in both
of the streams. The scores are finally combined using weighted averaging fusion.

Parmar and Morris [19] proposed a new dataset containing samples from 7 different scores
to see if knowledge transfer is possible in AQA. The authors used the C3D-LSTM model from
their prior work [5] and trained it to predict scores across 6 different actions.
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Figure 2.8: C3D-AVG-MTL architecture as proposed by Parmar and Morris [8]

In a later work, Parmar and Morris [8] took a multitask approach towards action quality
assessment. Here they released a novel AQA dataset called MTL-AQA. Their proposed multi-
task learning-based C3D-AVG-MTL framework (Figure 2.8) outperformed all previous works
on the MTL-AQA dataset. Their approach was to extract features using a C3D network and then
10 aggregate these features through averaging. These averaged video level features were used

i
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1 task dependant heads containing linear-regressor, Softmax function, and Gated Recurrence
do score prediction, action classification, and to generate captions in that order

Unit | 14] 1o

(Common network body)
C3(32): BN
MP(1.2.2)
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Figure 2.9: MSCADC-MTL architecture as proposed by Parmar and Morris [8]

This meant that the C3D had to extract features that were good for all of the three tasks
(AQA, action classification, and caption generation). This led to better performance in the task
of AQA. In the same work, the authors proposed another framework termed MSCADC-MTL
(Figure 2.9), which proposed using a different aggregation technique called Multiscale Context ‘
Aggregation with Dilated Convolutions [45] instead of simple averaging. However, this could
not outperform C3D-AVG-MTL.

Tang et al. [9] took a probabilistic approach to address the inherently uncertain nature of
predicting action quality score. They used 13D [46] architecture to extract clip-level features.
The authors used a special ordering technique to divide the video into multiple non-overlapping
clips. The 13D network then extracted features from these clips. After averaging the clips
for aggregation, these video-level features were used to predict parameters of a probabilistic
distribution form which the final score prediction was sampled (Figure 2.10). Usually, there
are 7 judges scoring Olympic dives. Normally, the middle 5 scores are added together and
multiplied by difficulty degree to attain a final score. Tang et al. [9] tried to model 7 different
probabilistic models to mimic these 7 judges. They then sample 7 scores and added the middle
5 scores and multiplied with difficulty degree to achieve the final score.
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Figure 2.10: MUSDL architecture for AQA by Tang et al. [9]

Our proposed approach differs from these works in that we plan to use 3D and (2+1)D
ResNets [13, 15] as feature extractor and we aggregate these features using the WD network,
which is a light-weight and learning-based feature aggregation scheme.

2.2 Deep CNN Feature Extractors

Processing video data to encode them into higher-level representations is a very important part
of computer vision. The specific problem of action-recognition from videos has received signif-
icant attention in this case. Initially, this domain was dominated by the tracking of spatiotempo-
ral points [25,28,47,48]. However, with the emergence of deep-learning and the introduction
of large-scale datasets, deep convolutional neural networks [49] have become the default choice
when it comes to extracting video representations. Here, the most popular architectures are
2D CNNs (2 stream approach using RGB frame and optical flow [50, 51]), Temporal-Segment-
Networks [52] and 3D CNNs (C3D [10], 13D [46], P3D [43], (2+1)D CNN [15]).
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221 C onvolution 3D (C3D) Network

3p convolutions are becoming the most popular choice with the improvement of processing
;‘O“ﬂ and GPUs. C3D [10] network can process video clips of 16 frames to find higher-level
ncp,,gscnum'ons. This was proposed by Tran et al. [10].

i i ==

Figure 2.11: Architecture of C3D [10] network

The architecture of the C3D network is given in Figure 2.11. This architecture has 8
convolutional layers, 5 max-pooling layers, and 2 fully connected layers. The authors utilized
3 x 3 x 3 convolution kernels with a stride of 1 to capture the spatio-temporal patterns in the
data. The numbers in the “conv” boxes in Figure 2.11 refer to the number of filters in that
layer. The max-pooling filters are of size 2 x 2 x 2, the first one has a pooling filter of size
1 x 2 x 2. In this work, the authors demonstrated that 3D convolutions are more effective
than 2D convolutions when the CNN is trained on a big scale dataset. They also experimented
with various convolution kernel sizes and showed that 3 x 3 x 3 is the optimum configuration.
The authors demonstrated that the features learned by C3D are generalized enough for transfer
learning to other related tasks.

22.2 Residual Networks (ResNets)

Residual Networks (ResNets) were first proposed by He et al. [11]. It was proposed as a means
of going deeper with convolutions without degrading the performance of the deep neural net-
works. Making neural networks deeper generally improved performance up to a point, provided
datasets were made bigger proportionally. However, this relation did not hold for very deep net-
works. Performance usually degraded after a certain point even if the network was trained on
a bigger dataset. He et al. [1 1] investigated this problem and found that the gradients used for
weight updates during back-propagation would explode or vanish if a network became too deep.
This prevented the earlier layers of the neural network from learning anything useful.
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Figure 2.12: Side by Side comparison of a plain 34-layer CNN (left) and one with residual
connections (right). [11]
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To solve this problem, He et al. [11] proposed employing a technique called residual learn-
ing. If the input to a layer in a neural network is = and the layer is represented using F* with
|carﬂ3b‘° parameters ), then usually the output of the layer would be:

y= F(z,w) 2.1

Heetal. [11] replaced this with

y=F(z,w)+z 2.2)

This meant that it became easier for the network to learn identity mapping. Theoretically,
this implied that the network will be able to do at least as good as a shallower one. Experiments
showed that this translated into better performance in image datasets like ImageNet [53]. Using
residual connections, the authors could build 34, 50, 101, and 152 layer deep networks and
showed performance increased proportionally with depth.

The difference between a 34-layer ResNet architecture and a plain 34-layer CNN architec-
wre can be seen in Figure 2.12. The authors successfully outperformed 19 layer deep VGG-
19 [54] using ResNet-34 on the ImageNet image classification challange [53].

223 Two-Stream ResNets

The ResNets discussed in the previous section can only process images. They can extract fea-
wres from images. Hence they cannot naturally process or extract features from videos. Videos
can be thought of as a collection of multiple frames of images. Early works such as Karpathy
et al. [12] tried extracting features from videos by using 2D-ResNets.

A video quite naturally has spatial as well as temporal data encoded in it. A two-stream
approach tries to decouple the processing of these two types of information by using two differ-
ent information streams. One stream is dedicated to processing each frame as an RGB image.
This is called a spatial stream. The spatial stream is usually a Deep 2D-ResNet that can extract
features from images. Usually, this network would be initialized with pretrained weights from
ImageNet [53] dataset.

20
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Figure 2.13: Two-Stream Approach of Extracting Video Features [12]

a

mufti-frame
optical flow

The second stream would be dedicated to processing temporal information present in the
gata. This is usually done by taking advantage of something called optical-flow [55]. Optical
flow assumes that the brightness should be constant from frame to frame if the objects are not
moving. Hence, it tries to measure movement using the change in brightness in consecutive
frames. The optical-flow calculation assumes that:

I(z,y,t) = I(z + Az,y + Ay, t + At) 2.3)

In other words, it is assumed that for every pixel, the intensity I of a pixel at position (z, y)
and at time £ should match with the intensity I of some pixel at time (¢ + At). Oprical flow
vector is denoted with v and is defined as follows:

Az
V= [ :I dt 24)
Ay
dt can be assumed to be infinitesimally small, which leads to the following approximation
in the first order:

I(z,y,t) + (AI)(z,y,t)"vdt + Li(z,y,t)dt = I(z,y,t) 2.5)

This can be simplified to the following expression:

(AD(z,y,t)"v + L(z,y,t) =0 (2.6)

Equation 2.6 can be solved to obtain the optical flow vector v. However, in this case, there
are two unknowns (the two components of the vector v) and only one equation. This implies
the impossibility of the solution.
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The collection of v for all .
all pixel positions of the frame is termed optical flow field. |
. . d, LACan
(z,y), there exist

and Kanada [ 50] propose a solution for thix They assu |
: ' ume th
multiple points around p with the same optical flow, Let ml"” o
. ) wuc i
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Thus, after choosing a neighborhood, the optical-flow field can be calculated. The col-
Jection of v for all pixels in the image is known as optical flow field. The optical flow field
calculated from consecutive frames can be thought of as encoding the temporal information in

those consecutive frames. Karpathy et al. [12] stacked optical-flow field calculated from L con-
secutive frames and treated the resulting tensor as a 2L channel image (each field vector has a
z component and a y component). The resulting 2L channel image is input into a 2D CNN that
extracts temporal features. Finally, the temporal and spatial stream features are fused together

and used for action classification.

2.2.4 Spatio-Temporal ResNets

ne stream. This is done

temporal data using only 0
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the video data is proc
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y Kensho Hara et al. [13]. The authors replaced 3 x 3
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Netin [] 1] with 3 X
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3D ResNets were popularized b
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kemels. The authors inflated ImageNet
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Figure 2.15: Performance of ResNets on the Kinetics action recognition dataset. [14]
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Figure 2.16: 3D convolution kernel VS (2+1)D convolution kernel [15]

These blocks replace the 3 x 3 x 3 spatio-temporal convolutional kernels with the a spatial
convolution kernel of size 1 x 3 x 3 followed by a temporal convolution kernel of size 3 x
1 x 1 (Figure 2.16). This provides the ResNet being trained the idea that spatial and temporal
dimensions are inherently different. This also increases the number of non-linearities in the
neural network. This translates to better performance on the Kinetics action recognition [58]
dataset. Open-source implementations and pretrained weights on large-scale action recognition
datasets (Kinetics [58], Sports-1M [12], Ig-65M [59]) exist for various depths and input clip




S TTTTRRRSSSSNNEENTIRERRRRRRRRRRRRTTTTT
\ _ GCORE PREDICTORS

24

. This makes these networks ideal for transfer leamning to a related task such as Action
nt from videos.

23 Score Predictors

The features extracted from videos using various feature extractors are used to predict the final
oction quality score. For this, a video-level feature description is necessary. Most works in
jicrature 4o this using a simple average. Some works have tried to do this using time serics
nodeling such as Long Short-Term Memories. The final score prediction is often done using
machine learning techniques such as linear regression, support vector regressors, etc. Some
works have tried using Gated Recurrent Units and even Long Short-Term Memories.

23.1 Linear Regression

Linear Regression is the simplest type of regression analysis. It models the relationship between
» dependant variable and a set of independent variables in a linear fashion. That is, this method
assumes that the dependant variable y is a linear combination of independent variables (say

21,73, - -+ Tn) Such that:

Yy=bzi +bz2+---+bn

I
s
— e e R
In
= Y= bz (2.9)

Now, for a given set of datapoints (z*),y"), (z?, y?), ..., (z'™,y™), Linear regres-
sion tries to estimate the vector b such that 3@ = b7z(*) is as close to y¥ as possible. More
founaﬂy,ilnicstonﬁnimizedlcmnsquaredenorofmc prediction and the real value of y.

1 <, 7
AL @) _ ()2 210
Error mZ(y y”) (2.10)

=1

UnwmgmsdonaimsatﬁndingmevahwofbsuchdmtmeEuorinequaﬁon 2.10 is
minimized. For two dimensional case, this problem can be thought of as finding the best fitting



Figure 2.17: Linear Regression for 2D case

raight line that goes through a set of points (Figure 2.17).

232 Support Vector Regression

4 Support Vector Regressor provides the flexibility to decide how much error is okay to be
accepted in the model. This controls the shape of the line/hyperplane that will fit the data. In

SVR, the objective function is to minimize the coefficients. In this case, we have to minimize

the L2 norm of the coefficient vectors. The absolute error is instructed to be less than a hyper-
desired accuracy of the model. In other words,

parameter called €. This can be tuned to gain the

the objective function that we need to minimize looks like the following:

1 n
MIN§||W||2 +eyl&l (2.11)
i=1

Given the constraints:

lys — wimi| S €+ & (2.12)
efines the hyperplane that fits the data. SVR is

Solving these, we get the vector W which d
off between generalization and

2 powerful algorithm, as it has the ability to balance the trade-
the amount of error on the training data.
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Figure 2.21: LSTM networks as proposed by Hochreiter and Schmidhuber [16].

Like, RNNs, LSTMs also have a chain-like structure. The inner structure of an LSTM cell
is presented in Figure 2.21. The key idea here is the cell state C,, which retains the data from
previous states. Another concept is the gates. These gates decide how much new information
and how much old information influences the cell state. There are multiple gates.

Jo=0(Wy.[he—y + by]) (2.13)
iy = o (Wi[he—s + bi]) (2.14)
¢ = tanh(W,.[hi—1 + b]) (2.15)

ft denotes the forget gate. Intuitively this implies how much of the previous state informa-
tion ¢, will the LSTM cell forget on time-step t. Equation 2.13 is used to calculate f,. Wy is a
learnable parameter, h,_; is the internal state of previous time-step, and by is a bias term that is



" eamed through training, o denotes an activation function denoted by:
X ,
O0) & s (2.16)

i, denotes the input gate. Intuitively this implies how much input of the present state 7
wil mﬂucncc the internal state /i, in the timc-nlcpl Equation 2. 14 is used to calculate f;. Wy

¢ a leamable parameter, /i1 18 the internal state of previous time-step, and by is a bias term
1h at is als0 Jearned through training,

7 is the potential update. W, b, are trainable parameters and biases. The state h, is
culated using the following set of equations:

cal
Ct=fiwc—y+iy%é (2.17)
— a(u/u-[hl.-] + b,,]) (218)
he = o, » tanh(c,) (2.19)

This is how LSTMs can retain information in the long term and process sequential data
cﬁicicmly.




Chapter 3

proposed Method

This chapter describes our proposed methodologies in detail.
general approach towards building an AQA Pipeline. In the su
we improve upon this system by enhancing the feature ex
aggregation technique.

In the first section, we describe the
bsequent sections, we explain how
tractor and developing an improved

3.1 Genral Pipeline Overview

Existing AQA pipelines in the literature have three parts. A feature extractor, a feature aggre-

gator, and a regressor. We aim at building an improved AQA pipeline by improving the feature
extractor as well as the feature aggregator.

To improve the feature extractor, we experiment with deeper CNNs. Going deeper with
convolutions usually results in a drop in performance. ResNets [11, | 3, 15] have been shown to
solve this problem by adding residual connections between layers. We, therefore, experiment
with using ResNets as feature extractors. We experiment with 34, 50, and 101 layers spatio-
temporal ResNets. We demonstrate with experiments that 34 layers and 50 layer ResNets can
act as good feature extractors for AQA systems when trained on currently available big-scale
AQA datasets. We further experiment to see the effect of 3D [13] and (2+1)D [15] convolutions
on the performance of the AQA model. We investigate the effect of input clip size as well.

We improve the aggregation technique by introducing a trainable module called Weight-
Decider (WD). The WD module proposes weights for a weighted average of the clip-level fea-
ture vectors. WD does this based on the importance of the information encoded in the clip-level
feature vector. In our experiments, we have found this to be more effective than a simple average
of the feature vectors.

Figure 3.1 outlines our solution approach. Generally, the input video is divided into clips.

30
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Figure 3.1 Overview of Our Solution Approach
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wﬂlypodedwcmweVideo-lcvclfmmru, Finally, the task becomes calculating the final

HOA seore from these higher-level features,

Mathematically, let’s assume the RGB video is divided in N non overlapping clips A”.E,--.

mmmmgmminadipﬂmdcalmlmamfammmmmdimdmﬂspwc
denoned by f;.
fi=g(F;), fori=1...N @3.1)

Using some pooling technique p, video level features fiae, is calculated

/'m=p(fll,21""jN) (3.2)

Following most previous works [5,8,19,23,43] in this domain, we treat AQA as a regres-
sion problem, This makes sense as the action quality score is a real number as opposed to one
from a set of discrete values, In other words, the final score prediction is assumed to be a linear
combination of the video level features and is modeled as follows:
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3.2
Seore = W7 a0 + b (3.3)
where W is a parameter vector that has the same dimension as fvideo and b is the bias.
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Figure 3.2: General pipeline of our proposed method for performing AQA

32 Improving the Feature Extraction

We experiment with various architectures and try to find the best one for this task. Most prior
works [5, 8, 19] try to use the C3D [10] network as a feature extractor. Some works experiment
with P3D [43]. The C3D network takes in 16 frames of size 3 x 112 x 112, propagates them
through 5 convolution layers, each employing 3D convolutional kernels of size 3 x 3 x 3. Finally,
it outputs an 8192-dimensional feature vector. Tran et al. [10] showed this architecture is an
effective and lightweight feature extractor to use for most video-based works such as scene
and object recognition, action similarity assessment, action recognition etc. In the original
paper presenting C3D architecture [10], two fully connected layers followed the convolutional
layers, and finally, a softmax layer was used for performing classification. Figure 3.3 shows the
architecture of C3D as proposed by Tran et al. [10].

il el el el el e

i

Figure 3.3: Architecture of C3D [10] network

Parmar and Morris used this C3D network (up until the fc6 layer) in a number of recent
Works in AQA [5, 8, 19]. In all of the aforementioned works, the authors worked on scoring

32
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i sport videos. These videos are short and have around 100 frames per sample. The
divided The videos into 16 frame clips, each having size 112 x 112. These RGB clips
.16 x 3 X 112 x 112 were then input to the C3D network. The authors collected the
- ( of the final convolutional layer and flattened it to obtain an 8192-dimensional feature
N“P“, The extracted features are aggregated temporally across the clips. Then the authors
ector: o LSTM on the pooled features followed by a regressor in [ 19] or averaged the features
and put one fully connected layer followed by regression in [8].

We re-implement C3D-AVG-STL and C3D-AVG-MTL proposed by Parmer and Morris
g). Notice this work cumntl‘y holds the State-of-the-Art result among all regression based
AQA rechniques. We have noticed lha.( the C3D architecture based C3D-AVG-MTL and C3D-
AG-STL 3] architectures proposed in Parmer and Morris (8] suffer from poor optimization.
As we can see from figure 3.4, the loss saturates after training for almost 80 epochs and even
then, it seems 1o increase in some epochs. These all indicate that the architecture is under-fitting
on the rraining data. Thus we think, to achieve higher performance and better training on the

data, the natural approach would beto make the network, especially the convolutional neural

petwork acting as

However, making a deep neural network deeper by simply adding more layers usually
tomatically improve performance. As shown by He et al. [?], adding more layers (0
ral network can even degrade performance. The authors argue this 1s

the feature extractor much deeper.

does not au
a deep convolutional neu
due 10 exploding )\ vanishing gradient problems. Increasing the number of layers usually means

the error gradient has to be backpropagated through all these layers, getting multiplied by a
weight matrix at each layer. Soon, these many multiplications can make the gradient either
infinitesimally small or exponentially large. Thus preventing the earlier layers from learning
anything meaningful. A solution proposed in the same work is residual connections that make
learning identity function easy for the deep neural network layers. Thus motivating the network

10 do at least as well as a shallower counterpart. The authors argued this should give the network

an intensive to at least learn the identity mapping. If the network learns to detect some extra

patterns, then performance would improve. But residual connections should at least prevent the
network from performing worse when it has increased depth.

The authors proposed ResNet architectures that leveraged this residual connection to make
deep convolutional neural networks with up to 200 layers. But these only processed image data.

In the video processing realm, Hara et al. [14] proposed something similar. They inflated
the 2D ResNets proposed by Tran et al. [11]. To accomplish this, the authors replaced the
3 x 3 kernels of 2D ResNets with 3 x 3 x 3 spatio-temporal convol
thors had access to large scare video datasets such as kinetics-700 [58] which enabled them to
train such a deep neural network from scratch without overfitting. The authors demonstrated
through experiment that their 34 layers 3d ResNet trained from scratch on kinetics can outper-

ution kernels. The au-

RRJ



o OVING THE FEATURE EXTRACTION
I

"
#

vairing loss

o P ) ) &0 100
Epoch 2

Figure 3.4: Poor optimization of C3D-AVG-MTL

form sports-1m [12] pretrained and fine-tuned C3D [10] architecture quite convincingly on the
action recognition task.

Some works in the action-recognition field have demonstrated that factorizing the spatial
and temporal components of the 3D convolution kernels used in such ResNets often leads to
better results. For example Xie et al. [60] propose something similar for 3d-inception convolu-
tion networks [inception] and Tran et al. [15] propose something similar for 3D ResNets. Tran
etal. [15] propose to replace each 3 x 3 x 3 convolution block in the ResNet with a 3 x 3 convo-
lution in the 2 spacial dimensions, followed by a 1D convolution along the temporal dimension
using a kernel of size 3. From an implementation point of view, this means replacing a 3 x 3 x 3
convulsion kernel followed by batch-normalization and a ReLU (or some other non-linearity)
with a component containing:
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. VoLx identity

F(x) + x

Figure 3.5: Residual Learning Building Block

. A convolution with kernel 3 x 3 x 1
. Batch-Normalization

« ReLU (or some other non linearity)
« A convolution with kernel 1 x 1 x 3
« Batch-Normalization

« ReLU (or some other non linearity)

The authors term this version of the ResNet a (2+1)D Rensnet.

A useful aspect of using spatio-temporally factorized kernels is the possibility to introduce
more non-linearity. It has been shown that non-linearities help [61] deep neural nets converge
faster, and to express and/or approximate more complex patterns. Because we are replacing one
3D kernel with 2 kernels, one with 2 dimensions and another with 1 dimension, it is possible to
introduce a non-linearity (for example ReLU) in between the 2 filters. It was showed by Tran et

al. [15] this helps (2+1)D ResNets to optimize faster and produce lower error than a 3D ResNets
with same depth.

Based on the prior discussions, we believe utilizing a deep ResNet as a feature extractor
for action quality assessment is a promising idea. Our initial observation was that the C3D
extracted features were less than optimal when it came to using them for AQA. We concluded
that we need a deeper CNN that could extract rich features from the video based on which the
linear-regressor might predict better scores. We think that a ResNet should be ideal for a feature
Extractor, as most datasets to be used for supervised training on the task of AQA are quite small
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Figure 3.6: Spatio-temporally factored convolution kernel

. training samples in the order of a few thousand), thus a network any deeper might
e erfitting. This is supported by the finding discussed by Hara et al. [14], where the
T w through experiments that datasets like sports-1M [12] and kinetics-700 [58] can
E Sh:) train 3D ResNets with layers up to 200 without overfitting. However, small scale
wmfonabtsylikc UCF-101 [57], ResNets having more than 34 layers seemed to overfit. We
on' dawszlumn to this problem might be pretraining the ResNet on a big scale related dataset.
m-kas ognition datasets contain video data of humans performing actions. Hence, large-
A‘mon-n'i‘):ll-gl-l:cognition datasets can be used for pretraining the feature extractor ResNet. Then
:llff::m extractor can be fine-tuned to perform well on AQA tasks. This is made easile(r as
such open-source weights exist on the internet, provided by various authors of related works.

To experiment with the relation of the ResNet feature extractor’s depth with the AQA
pipeline’s ability to learn, we experiment with 3 different depths:

321 34-layer ResNet

We experiment with both 34 layer 3D ResNets and (2+1)D ResNets. The only difference bein.g
3D ResNet uses 3 x 3 x 3 convolution kernels, on the other hand (2+1)D ResNetusesa 1 x 3 x 3
convolution followed by 3 x 1 x 1 convolution. We take the final average-pool layer outputs,
which is a feature vector of size 512, and pass it through 2 back-to-back fully-connected layers
having 256 and 128 units. The final 128 dimensional feature vector is defined as the output
of the feature extractor. The 3D ResNet takes input 16 frame clips, making the input size

6
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. 112 x 112, l.)“c to the availability of pre-trained weights, we additionally experiment
6 \ gifferent variations of (241)D 34-1ayer ResNet, each process

' ing different-sized clips
W

g frame clips, input clip dimension: § x 3 x 112 x 112
|6 frame clips, input clip dimension: 16 x 3 % 112 112

1 frame clips, input clip dimension: 32 3% 112 % 112

22 50-layer ResNet
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Figure 3.7: Using ResNets as feature extractor.

We experiment with both 50 layer 3D Resnets and (2+1)D ResNets. In this case, the final
average-pool layer outputs a feature vector of size 2048. We take this feature vector and input
it into 3 back-to-back fully-connected layers having 512, 256, and 128 units. The final 128
dimensional feature vector is defined as the output of the feature extractor. Both the 3D and the
(2+1)D ResNets take input 16 frame clips, making the input dimensions 16 x 3 x 112 x 112.

323 101-layer ResNet

We experiment with 101 layer 3D ResNet. In this case, the final average-pool layer outputs a
feature vector of size 2048. We take this feature vector and input it into 3 back-to-back fully-
connected layers having 512, 256, and 128 units. The final 128 dimensional feature vector is

defined as the output of the feature extractor. the 3D ResNet take input 16 frame clips, making
the input dimensions 16 x 3 x 112 x 112.

All of our proposed frameworks work with videos of 96 frames. As shown in figure 3.7,
it divides the video into non-overlapping and contiguous clips. In the case of 16 frame fea-
lre extractors, the original video is divided into 6 clips, for 32 frame feature extractors, the
Video is divided into 3 clips, and for 8 frame feature extractors, the video is divided into 12

clips. Each clip is processed sequentially using the same feature extractor, later aggregating

;
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. .N"""'"""m' fonture veaton 1o oMain one video.level fenture descriphon 1o trmin he

" LAl on

s peature Aggregation with Weight-Decider

1 of the proviouk workn dealing with AQA process the entire input video by first dividing i
) .

c’ altiple smaller clips of equal size, due 1o memory and computational budget, Most CNNs
L AL '

:'t'dcumnod o process 8, 16, or 32 frames at once, Then the features extracted by the CNN are

ated to form a video-level feature vector, Finally this feature vector is used to caleulate

appeP prediction by means of regression,

fho final 40T
The best performing works aggregated the clips by simply averaging them [5,%,9). One
ok titled C3D-MSCADC architecture by Parmar and Morris 4] tried to use Multiscale Con-
- Mgrcgulion with Dilated Convolutions [45) to aggregate the clip-wise features, but this was
- pcrf(m""‘l by C3D-AVG-MTL architecture in the same work where simple averaging was
Jone 10 aggregate. Some other works [5, 19] aggregated using LSTMs [16]. However, LSTM
petworks [16), which make sense in theory because of their ability to handle time sequences,
perform worse due to the lack of big-enough datasets dedicated 1o AQA.

previous works like Parmer and Morris 4] argue this is effective, They argue an athlete
gaining OF losing points throughout action is analogous to an addition operation. Hence, they
propose that if good features are learned, linear operations on those features become meaning-
ful, Thus using a lincar combination of these features for calculating the final score should
make sense. However, the authors do not describe any reasons as to why they prefer averaging
over other any other form of linear combination.

We believe simply taking an average to aggregate the feature vectors temporally might be
detrimental to the assessment of the quality of actions and a potential area for improvement.

We agree with Parmer and Morris [%] that a linear combination is meaningful when it is
modeling a task where a human achieves a score through his/her actions. However, we propose
that a more sophisticated linear combination might make more sense than a simple average.
We propose that simply averaging the clip-wise features is an ineffective measure. It should
not be able to preserve the temporal information available in the data. This follows from the
fact we could change the order of the clip level features and we will still get the same average
and hence the same score prediction. Furthermore, if we look at real-world judging schemes,
we will see those expert judges focus more on mistakes and deviations and these have a bigger
impact on the score. Hence we think, a weighted averaging technique might be more suitable, as
the linear-regressor in the final layer will be able to base its decision on features more important
from each clip,
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We call this shallow neural network Weight-Decider ot WD for short. The architecture
neurons. The neurons use

includes 4 fully connected layers containing 64, 32, 64 and 128
RdaU(RectiﬁedUnearUniLs)forac' ation. Tbcnetwakcanbesecnasaveryshallow
encoder-decodernetwrok.’l‘hcinptuandwhouxpmsimarcthc
FOPMWeightVeaorcmbeusedtoscalcmem'iginalfeanuev
seen in Figure 3.8.
Now.meoutpmofmeWDmodulccanbeclcmcmwise multiplied with the feature vector:
Tlli““’&l)'ﬂ!cf&amrman:s(;aledbcforebcing;,—ummedtog.ctm:r. The final video level feature
yecior’s each element is a weighted sum of the clements in the same position of the clip level
feature vectors. Howeve, wewishwmakcmisweighwd sum an weighted average- To do so,
"Wmmbowmauuﬂwwagmmmeweigmmm,soamdmmtsinmesame
Mmmuptoexaalyone.Oncsimplcwaywdodﬁsism
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Figure 3.8: The architecture of the WD network
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softmax(z,) = _’L
[tmazx(z)) >, & (3.4)

Finally, this way, it is possible for the linear regressor to make a more informed and focused
jecision about the final score prediction,
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Figure 3.9: Proposed Method Architecture with ResNet feature extractor and WD aggregator.

More concretely, if the feature vector extracted from clip C; is f;, we propose the video
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For 2 better understanding of the proposed method including both the ResNet feature ex-
B’mrdeDaggreganon, please refer to figure 3.9. The video is divided into N clips. The
2esNet feature extractor encodes each clip into a feature vector. The ResNet can have depths
31,50, or 101. N can have a value of 12 (8 frames per clip), 6 (16 frames per clip), or 3 (32

fzmes pa—clip). Both the feature vector and the proposed weight-vectors have size 128. The ap-
glication of softmax to the weight vectors has not been shown for simplicity. The same ResNet

fzamre extractor and WD processes all the clips one after another. In the figure, the elements
with 2 solid border indicate trainable modules, whereas elements with a dotted border indicate
feamre vectors. The solid bordered white module (ResNet Feature Extractor) is initialized with
pretrzined weights, on the other hand, the solid bordered grey modules (WD and Regressor) are
nitialized with random weights during training.

After the score is predicted by the framework, the loss is calculated using the L2 loss
between the predicted score y; and the ground-truth score Y.

N
=1, g (3.8)
Loss = N Z‘:l:(y‘ vi)

Here N is the number of training examples in the minibatch being used to train the modc-l.
Using this loss function, supervised learning can be done by optimizing the proposed archi-
lecture weight/parameters using an optimization algorithm like Stochastic Gradient Descent or
ADAM optimizer [62].
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figure 3.10: Example: The video being processed by the pipeline. Weights proposed by WD

The video is then processed by the ResNet feature extractor. In this example we do not
dhow any specific ResNet. It can be ResNet-34, ResNet-50 or ResNet-101. One can even
choose to use a deeper ResNet. The ResNet can use either (2+1)D convolution or 3D Convolu-
tion. Finally the ResNet outputs a 128 dimensional feature vector for each of the clips. In Figure
310, we these feature vectors are Feature-1, Feature-2 and Feature-3. The Weght-Decider mod-
ule described in Figure 3.8 takes input each of these feature vectors Feature-1, Feature-2 and
Feature-3 and outputs corresponding weight vectors Weight-1, Weight-2 and Weight-3. These
weight vectors all have the same dimensions (128) as the feature vectors. Notice that the ele-
ments in the same index of the weight vectors do not add up to one. For examle the elements at
the index 0 of Weight-1, Weight-2 and Weight-3 sum up to 0.3 + 0.6 + 1.2 = 2.1. Ideally this
should be 1. To fix this, these weights are normalized using the softmax function described in

The direction of the application of softmax can be seen in 3.11. After the appliction of

( the weights at index 0 of Weight-1, Weight-2 and Weight-3 sum up to 0.1+02+0.7=
 The same can be observed for indices 1,2,3,...,127. Now these can be used for weighted
ging. Next, weight vectros are elementwise multiplied with the feature vectors. This can
seen in Figure 3.12. After this multiplication, we have 3 weighted-feature vectors. Adding

lem together gives us a video level feature vector.
sed as input to the linear regressor that calculates

Finally, this video level feature vector isu
does so by multiplying this input feature vectoer

al score prediction. The linear regressor
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Figure 3.12: Example: Final Score Prediction

with a parameter vector that is learned through training during back-propagation. Finally a
bias vector is added to this result to produce the final score. The bias vector is also leamed
through training during back propagation. Finally, we choose to multiply this score with the
corresponding difficulty degree. This is done to decouple the difficulty degree prediction from
the score prediction. This increases the accuracy of the system. Notice that the judges in
an official event are provided with these score as well. Hence we believe this to be a fair
comparison. However, in cases where this difficulty degree was missing form the dataset, we
used a value of 1 which is equivalent to making the network predict the difficulty degree as well.
However, this puts the system under extra stress.

In this way, using a deeper ResNet and Weigh-Decider aggregation, better performance
¢an be achieved in Action Quality Assessment. We targeted, trained and tested out system for

AN
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gesult Analysis

s chapter, We discuss the dataset we have trained and tested our proposed methods on,
n . :
(aluation metnc that we have used, the experimental setup used, and the result of these

e ; .
A ments- Finally, a comparison with the state-of-the-art is also presented.

41 Benchmark Dataset: MTL-AQA

MTL- AQA [8] is the biggest dataset in the AQA domain published to this date. The dataset
contains 1412 video samples. All the samples are of Olympic dive collected from 16 events.
The videos are made up of 103 frames. They have varying perspectives, camera angles. The
dataset contains samples of both male and female athletes, individual and synchronous diving.
It contains samples from both 3m and 10m platform diving. The annotations accompanying
ihis dataset are detailed. It contains the final action quality score from the Olympic judges, the
scores made by the 7 individual judges, task difficulty level, commentary from the broadcast
of the event, and fine-grained action labels (number of somersaults, twists, starting position,
rotation type, and armstand). The most popular split used by the contemporary works divides
the dataset into a 1059 sample training set and 353 sample testing set. The current SOTA results
reported by various works evaluate their work on the MTL-AQA dataset. We, therefore, shift
our primary focus on training out methods on this dataset and testing it.

42 Performance Metric

Action quality assessment is modeled as a regression problem. In contemporary works in lit-
;m“"e- the performance of a system to properly measure the quality of scores is done using
Pearman’s rank correlation. Spearman’s rank correlation can measure the rank correlation be-

45
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Using Spcarman's rank correlation to compute the rank correlation between the ground-

(h scores and predicted scores by the proposed system tells us how much the rank of the
rcdicied scores matches the rank of the ground truth scores. That is, instead of measuring
if the scores match up perfectly, we are trying to conclude if task A has a better ground-truth
than task B, does that same relation hold in the case of the predicted scores. A perfect

score 3
an’s rank correlation of +1 would suggest that the prediction system can mimic the rank

spear™

co;relatiOﬂ present in the ground-truth scores perfectly.

4.3 Experimental Setup

plememed our proposed methods using PyTorch [63]. We experimented with various
types of 3D ResNets [13] and (2+1)D ResNets [15] as feature extractors. All the 3D ResNets
and (2+41)D ResNets processing 16 frame clips and were pre-trained on kinetic-700 [58] action
recognition dataset'. The (2+1)D Resnets processing 8 frame clips and 32 frame clips were pre=
wrained on IG-65M dataset [59] and fine tuned on Kinetic-400 [58] action recognition dataset”.

For each ResNet feature extractor, wWe separately experimented using both averaging as feature

aggregation and WD as feature aggregation.

We im

from the last 6 and

mly picking an ending frame
0171 x 128 and a

deo frames are resized t
n by random horizontal

We did temporal augmentation by rando
chose the preceding 96 frames for processing. The Vi
center crop of 112 x 112 was taken. We performed spatial augmentatio
flipping. The 96 frames were divided into 6 clips in case of 16 frame clips, 12 clips in case
of 8 frame clips, and 3 clips in case of 32 frame clips. All the clips were non-overlapping and
fontaincd frames in the original order present in the video. Batch-normalization [64] was used
In the convolutional layers for rcgularization.

/3p-ResNets-PyTorch

W
23‘?3‘“5 available at ht tps: //github. com/kenshohara :
eights available at ht tps ://qithub.com/moabitcoin/iq 65m-pytorch




" dcﬁ""d the loss function as L2 loss between th g
o we optimized this loss. For each experiment t: predicted score and ground-truth score
he S , the entire network i
simizer [62] £ was trained end-to-end
usi“g e ADAM op Odu]cs th]h or 50 CPOC"\S. We found through trial and error that a learnin
e of 0.0001 for rod ith randomly initialized weights and 0.00001 for modul 'ugm
. A es Wi
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44 Effect of ResNet Depth on the Performance

MTL-AQ.A da@ contains difficulty-degree of the action, and real-world judges
orc.wnh difficulty-degree to produce a final score, we choose to multiply the
linear-regressor with difficulty-degree.

Because the
ultiply their ¢
output score of the

1 Table 4.1, we present the experiment results of varying the depth of the ResNet feature
extractor 2 well as varying the aggregation scheme. All the ResNets, in this case, are initial-
ized with Kinetics-700 [58] Action Recognition dataset pretrained weights. We can see that
34 layer ResNet with WD as aggregation performs the best with a Spearman’s correlation of
0.8990. This Jeads us to conclude that when initialized with pretrained weights on a related task
Jike action recognition, the MTL-AQA dataset has enough data to train at least 34 layer deep
ets without overfitting. Interestingly, increasing the depth to 50 layers somewhat decreases

ResN
Spearman’s correlation. However, the results are still competitive.
Depth Convolution Type Aggregation
Average WD
34 3D 0.8982 0.8951
(2+1)D 0.8932 0.8990
50 3D 0.8880 0.8935
(2+1)D 0.8818 0.8814
101 3D 0.6663 0.6033

ature extractors in our

Table 4.1: Performance comparison of the various types of ResNets as fe

pipeline

alized with pretrained weights from Kinetics
fairly quickly. The overfitting is also evident
plot in figure 4.1 is the train and

With 101 layer deep ResNets, even when initi
Action Recognition dataset [58], overfitting occurs
ffom the train/test curves presented in figures 4.1, 42,4.3. The
test losses obtained for various feature extractors using WD as aggregation.
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Figure 4 : Train and Test loss curves obtained from training the pipeline using 3D-ResNet 34,
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Figure 4.2: Train and Test loss curves obtained from training the pipeline using 3D-ResNet 34,
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.50, and 101 as feature extractors.

RlcsNet 34

plot in Figure 4.2 shows train and test losses obtained using averaging (AVG for short)
ations. In both cases, the values of the have been clipped at 40 for better visualization.

The

as aggres
The plot in Figure 4.3 contains the Spearman’s rank correlations on the test set. Notice that

ResNet-101 based architectures show signs of significant overfitting compared to ResNet-34
and ResNet-50 based architectures. The likely reason behind this is the increased number of
parameters leading to overfitting. This leads us to establish that the current biggest AQA dataset
has enough data to train a 34-layer and 50-layer ResNet feature extractor with generalization,
nowever it overfits 101-layer ResNet feature extractor. Because of how (2+1)D ResNets are
designed, they have a similar parameter count to their 3D counterparts [15]. Because the over-
fitting is occurring due to the high parameter count, we do not repeat the experiment with a
(2+1)D ResNet-101 feature extractor.

We can see from Table 4.1 that 3D and (2+1)D convolution-based architectures with the
same depth have similar performances. We can also see using WD as aggregation can give
the performance a little boost in some cases. However, in case of ResNet-101, performance
decreases by quite a big margin when WD aggregation is used. We think the reason might be
that introducing the WD increases parameter count leading to more overfitting, which translates

10 Worse performance.

i
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45 Effect of Clip Length on Performance

we check the effect of clip length (the number of frames per clip processed by the R
tractor at on ssed by the ResNet fea-
ture €X e go) on the performance. For lack of resources and open-source pretrained

weights, we only stick to (2+1)D-ResNet-34. Recall, in Table 4.1, this was the best performi
’ ing

model.

We ?ms'ent our results in Table 4.2. We can see clearly that as the number of fra
in each clip increases, the performance of the pipeline does too. We hypothesize that | Pt
s allow the ResNet to look for bigger patterns in the temporal dimension, which i: :ﬁ:
o be more informative. This enables
looking examples with fine-grained
over simple

clip
enables the feature descriptors extracted by the ResNets t
the linear-regressor to better discriminate between similar-
action fluality differences. It is further observable, no matter the clip size, using WD
averaging as aggregation gives a boost in performance. However, this performance boost is quite

significant in case of 8 frame clips. We think the reasons are:

Clip length Aggregation
(Input Frames) Average WD

\ 8 0.8570 0.8853
| 16 0.8932 0.8990
32 0.9289 09315

Table 4.2: Performance comparison of ResNet(2+1)D-34 with varying input clip size

« Using 8 frame clips, the 96 frame video is divided into 12 clips, which means finally 12
ature descriptors need to be aggregated. On the other hand, using 32 frame
clips means finally 3 clip-level feature descriptors are being aggregated. Thus, whatever
detrimental effect the averaging might have, it will be more prominent when the number
of objects being averaged is larger, and less when this number is smaller. Hence using a
32 frame clip, the performance gained by using WD aggregation OVer averaging is only
0.0026 (0.28%), while in case of 8 frame clips, the performance gain is 0.0283 (3.30%).

clip level fe

frames, this in effect increases their

extracted would have a better encod-

rm well enough even

« CNNs with bigger clips as input can look at more
temporal horizon. It follows that the feature vectors

ing of action patterns across time, to begin with. Thus they perfo
with averaging as aggregation. But using WD increases performance nevertheless.
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46 Qualitative Results

The gualitative results for 4 random samples from the test set are presented in Table 4.3. Due to
gpace constraints, we show every 16" frame processed starting from frame 0. The blue scores
correspond to score prediction produced using WD as aggregation, while the black scores corre-
spond to score prediction produced using average as aggregation. The 8, 16, and 32 correspond
(0 input clip sizes.

ResNet-34 ResNet-50 ResNet-101
Input Frames zl:ndldlon Prediction Prediction  True
1D
L2, D | @D 3D T e

8 16 32

“ ! P ” 54.84 3046 839 729 | 3323 34.10 4522
E_E;'ME‘E it 38.76 18.11 1641 2293 | 3829 29.93 52.21 il
“--a 66.94 59.69 4792 6792 | 4357 5830 122.20

K — 63.85 40.88 5321 63.62 | 52.80 5231 76.64 SED

. g@'.n 7146 7134 6939 8334 | 6738 8041 167.60

IS S wpeszez j=2i7)ic - - B 4 o
ﬁ& 69.85 6490 7040 B81.31| 67.53 7425 132.50 @5
g-“ 67.13 46.16 2773 34.25| 4406 46.61 54.28 46.20
= o 64.54 3229 42.87 39.62| 49.03 47.13 SIS 1 j

Table 4.3: Qualitative results

4.7 Comparison With the State-of-the-Art on the MTL-AQA
Dataset

In Table 4.4, we compare our best performing models of each depth with previous state-of-the-
art works on the MTL-AQA dataset. We can see that our ResNet34(2+1)D processing 32 frame
clips with WD as aggregation scheme outperforms all previous works in the literature. This

shows the effectiveness of our approach.

If we further look at the results in Table 4.1 and compare with Table 4.4, we see that 34
layers ResNets based pipelines achieve performance comparable to the SOTA when trained
on the AQA-MTL dataset. The 50 layer ResNets perform somewhat worse and the 101 layer
ResNets overfit and perform poorly.

Again, comparing Table 4.2 with Table 4.4, we can see that 34 layers (2+1)D ResNets
processing 8 frame clips perform worse than some C3D based models, even after having the
advantage of depth over C3D networks. 16 frame models perform comparable to the best C3D




Proposed ResNet50-3D-WD (16 frame) 0.8935
Proposed ResNet101-3D-AVG (16 frame) 0.6633

Table 4.4: Comparison with the State-of-the-Art

.7, COMPARIC N WITH THE STATE-OF-THE-ART ON THE MTL-AQA DATASET 52
Method ix] Sp. Corr.
Pose+DCT [21) 02687
C3D-SVR [5] 07716
CAD-LSTM [5] 0.84%9
MSCADC-STL [¥] 08472
MSCADC-MTL [¥] 0.8612
USDL-Regression [9] 0.8905
C3D-AVG-STL (5] 0.8960
C3D-AVG-MTL (8] 0.9044
MUSDL [9] 0.9273
Proposed ResNet34-(2+1)D-WD (32 frame)  0.9315

based approaches, however, are beaten by 13D based approaches. The 32 frame clip processing
models clearly outperform all previous works. Hence it can be argued, based on the data already
available in MTL-AQA dataset, processing more frames per clip and focusing on improving the

aggregation techniques can lead to better performance than going deeper with convolutions.

k< |




Chapter 5

Conclusion

5.1 Summary

AaijmhtyAsscssmmtisancwyachalbngingdixiplinc. It has potential application
automatic sports judgment, automated training systems with accurate feedback, video retrieval,
etc. However, this is a challenging task due to the huge amount of computation required 1o
accurately measure action quality from video data. The lack of big-scale datasets dedicated
to this discipline introduces further complications. In this work, we proposed a ResNet-based
regression-oriented pipeline for action quality assessment. We demonstrated experimentally
thmdeTLAQAdammhasawughdaxawuain%mdSOhyaRuNa-bucdpipdhu
when initialized with pretrained weights from a related task (like action recognition). Our
experiments suggest processing longer clips is more effective than using deeper ResNets. We
ﬂmmopouawphisﬁcawdlwmng-bawdaggwyﬂmwcmiqmcaldeDquﬂaasmvk
averaging. Experiments show our methods to be more effective than previous works.

5.2 Limitations and Future Works

Self-attention [65]hasrcvolulionizcdthcﬁcldofdccplaming, NLP has seen success in re-
placing CNN and LSTMs with transformers that are based on self-atiention. Recently the ficld
of computer vision has also taken inspiration. Zhou et al. [66] has shown that the application
of Transformers can boost performance significantly on the video to caption generation. We
think the application of a similar model utilizing Self-Attention in videos might be able to out-
perform existing AQA and action recognition pipelines. We also want o evaluate our current
archiwcmreonod)adatasctslikcm'r-dive[23]andAQA7[l9]tocbeckwbahaourpropowd
methodcanachicvcgoodremlmonmoscdmamsaswcll.
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JONS AND FUTURE WORKS

2 LIMIT/\T

One of the limitations of work is that it only deals with small action sequences, In the
el world, action sequences are generally bigger. It might be an interesting avenue to study,
Another Jimitation out work has is its inability to provide feedback and corrections to the action
pcrformc"s- This can be done if skeleton and pose data was also processed side by side. We

think this a promising area of study.
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