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Abstract

Automatic detection of violence from surveillance footage holds special signifi-

cance among the various subsets of general activity recognition tasks due to its broad

applicability in autonomous security monitoring systems, web video censoring, etc.

In this paper, we propose a two-stream deep learning architecture based on Separa-

ble Convolutional LSTM (SepConvLSTM) and pre-trained truncated MobileNet, in

which one stream processes difference of adjacent frames and the other stream takes

in background suppressed frames as inputs. Fast and efficient input pre-processing

techniques were used to highlight moving objects in frames by suppressing non-

moving backgrounds and capturing motion in between frames. These inputs assist

in producing discriminative features as violent activities are predominantly charac-

terized by rapid movements. SepConvLSTM is built by replacing each ConvLSTM

gate’s convolution operation with a depthwise separable convolution, resulting in ro-

bust long-range spatio-temporal features with significantly fewer parameters. We

experimented with three fusion strategies to merge the output feature maps of the

two streams. Three standard public datasets were used to assess the proposed meth-

ods. On the larger and more difficult RWF-2000 dataset, our model outperforms the

previous best accuracy by more than 2%, while matching state-of-the-art results on

the smaller datasets. Our studies demonstrate that the proposed models excel both in

terms of computational efficiency and detection accuracy.

viii



Chapter 1

Introduction

We provide an overview of our thesis in this chapter. At first, we discuss the research
area of general activity recognition and its applications. Then we introduce violence de-
tection, one of the significant sub-tasks of action recognition. We present a brief overview
of the research so far in the area of violent activity detection and its applications in real-
world scenarios. Then we stated problem statement of our research work and mention the
challenges. We discuss the objective and contributions of our thesis. Lastly, we provide
the organization of the rest of our thesis.

1.1 Action Recognition

Human activity classification is a widely investigated task in the field of computer
vision that has diverse applications in human-computer interaction, robotics, surveillance,
etc. [9–12] In recent years, large-scale video action recognition has gained impressive im-
provements mostly because of the wide availability of large datasets, deep neural network
architectures, video representation techniques, etc. Many works, on the other hand, fo-
cused on specific sub-tasks of action recognition such as spatial-temporal localization of
activity, anomaly detection, action quality analysis (AQA) [13, 14], egocentric activity
recognition [15], etc. One such important subset is violence detection which is widely
applicable in public monitoring, surveillance systems, internet video filtering, etc.

1



1.2. VIOLENCE DETECTION 2

Figure 1.1: A typical methodology or workflow for general action recognition. For each
video clip action recognition aims to predict a label or class defining the corresponding
action.

1.2 Violence Detection

As digital media technologies like surveillance cameras are getting more and more
ubiquitous, detecting violence from captured footage using manual inspection seems
increasingly challenging. To counter this issue, researchers have suggested different
methodologies that can detect violence from surveillance footage automatically without
requiring any human interaction. Violence detection is a section of general action recog-
nition task which specifically focuses on detecting aggressive human behaviors such as
fighting, robbery, rioting, etc.

Figure 1.2: Violent activity caught on surveillance camera. Video clips taken from RWF-
2000 dataset [1]

Earlier works on violence detection mostly focused on engineering various descrip-
tors that could effectively capture violent motion present in the video [16–18]. Later
on, the performance of these handcrafted features was surpassed by several end-to-end
trainable deep learning methods which require little to no pre-processing [7, 19, 20]. To
validate the effectiveness of these methods, commonly three standard violence detection
datasets were used called Hockey, Movies, and Violent-Flows. Recently, a new dataset
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called RWF-2000 has been proposed which is substantially bigger and more diverse. For
applying these deep learning models in real-life practical scenarios both computational
efficiency and accuracy need to be considered. In this respect, we present a novel two-
stream CNN-LSTM based network that can produce discriminative Spatio-temporal fea-
tures while requiring fewer parameters. In general action recognition tasks, surroundings
or background information may serve as discriminative clues. For example, to identify
the action playing golf, a background with green grass might be a good indicator. On the
other hand, violent activities are mostly characterized by the body position, movements,
and interactions whereas appearance-based features like color, texture, and background
information play a minor role. Considering these factors, we used background suppressed
frames and frame difference as the inputs to our network both of which help generate dis-
criminative features to recognize violence.

1.3 Problem Statement

As violence detection is most likely to be applied in real-life time-sensitive scenar-
ios where detection of violence needs to be both accurate and fast. Recent approaches
in action recognition uses optical flow as inputs for enhancing the encoding of temporal
information. But calculating optical flow for each frame is computationally expensive.
Most of the networks proposed so far in the existing literature use modules with large
parameter counts which also increases the computational burden. Reducing the compu-
tational burden while maintaining performance is a possible area of improvement. The
existing literature don’t reach very high accuracy in the most diverse and challenge dataset
in the field of violence detection indicating the lack of generalization ability in many of
these approaches. Proposing a network which generalizes well for diverse types of videos
like black and white and color, day and night, various resolution and modalities can be
an important contribution. The problem statement can be summed up as follows - “Mod-

elling a system for violent activity detection from surveillance footage which is robust in

varying real-life situations and efficient enough to be deployed in low-end devices.”

1.4 Challenges

There are many difficulties and challenges which make the problem of violence de-
tection quite hard. The first issue is representation of the input video from which the
presence of violent activity needs to be determined. Generally, video clips are repre-
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sented as a 4d tensor of shape T × H × W × C where T is the number of time-steps,
H and W is the height and width of each frame, C is the number of channels. In a video
clip there are T time-steps or frames. But, many studies show that in most video clip
where the fps is 30 or higher adjacent frames don’t contain very different information. To
put it differently, adjacent frames mostly contain redundant information. Producing ro-
bust and effective feature from each video clip that can help distinguishing violent videos
from non-violent is crucial in the task of violence detection. In the classical hand-crafted
feature based method designing the most effective feature to represent the video was an
important area of study. Various works aimed to capture motion information using feature
descriptors. Later on with the advent of deep learning research, these features are now
mostly automatically learned by the deep neural network. Another challenge is finding
the best neural network architecture that fits the task. Among the various architecture of
neural networks, researchers in the field of action recognition initially opted to use 3D
convolutional networks. Later some works used separate streams of networks where each
stream specifically focuses on certain types of information. Recurrent neural networks are
heavily researched in action recognition task because recurrent neural networks deal with
sequential data and video is a sequence of frames or images. Another crucial aspect of
developing a violence detection system is efficiency. If the system proposed for violence
detection is resource inefficient or computationally expensive, then it would not effective
in real-life time-sensitive scenarios. As surveillance cameras are very ubiquitous at the
present, it would be particularly beneficial if violence detection systems can be deployed
in low-end devices or mobile embedded vision applications as well.

1.5 Objectives

• To build a robust yet efficient violent activity detection method using modern deep
learning methods in video classification that can be leveraged to implement real-
time autonomous surveillance systems or internet video filtration.

• Finding out an optimum deep neural network architecture that best fits the task. The
network should achieve good accuracy while ensuring that the number of param-
eters and FLOPs used is as less as possible making the computational cost of the
proposed method low in terms of time and memory.

• Finding out an optimum type of recurrent neural network module (LSTM) that can
effectively encode spatio-temporal features without requiring high computational
cost.
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• Analyzing the performance and effectiveness of our proposed methods in compari-
son to the methods presented in the existing published literature.

1.6 Contributions

We can encapsulate our significant contributions of this work in the following points:

• We developed an efficient two-stream deep learning architecture leveraging Sepa-
rable Convolutional LSTM (SepConvLSTM) and truncated MobileNet.

• We used fast and efficient input pre-processing techniques to emphasize moving
objects in frames by suppressing non-moving backgrounds and capturing motion in
between frames.

• We employed SepConvLSTM, which is built by replacing each ConvLSTM gate’s
convolution operation with a depthwise separable convolution, allowing us to use
much less parameters. Three fusion techniques for integrating the performance
features of two streams were examined.

• Three standard benchmark datasets are used to validate our models’ efficiency. On
the RWF-2000 dataset, the proposed model outperforms the previous best result
and matches state-of-the-art performance on the other datasets. Our model is also
efficient in terms of the required number of parameters and FLOPs.

1.7 Organization of the Thesis

We organized the rest of this thesis as follows:

In chapter 2, we provide various existing published literature in the field of violence
detection. We explain various methods used for detection violence presented in the exist-
ing literature in brief.

In chapter 3, we present our proposed methods with detailed explanation. We go over
various parts of the proposed deep learning pipeline like input pre-processing, network
architecture etc. This chapter provides various diagrams and schematics representing the
proposed methodology for better understanding.

Chapter 4 presents analysis of results that we obtained in our experiments. It con-
tains comparison of the proposed method with other existing methodologies. This chapter
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also present discussion and analysis of the obtained results both qualitatively and quanti-
tatively.

Lastly in chapter 5, we discuss possible future works and conclude this thesis.



Chapter 2

Background Study

We present a detailed study of the existing methods proposed for violence detection
in the publised literature. We discuss an overview of the hand-crafted feature based meth-
ods and deep learning based methods. As our proposed method for violence detection
is based on CNN-LSTM network we dedicate a separate section on CNN-LSTM based
methods on violence detection at the end of this chapter.

Several studies approached the problem of violence detection using various methods
ranging from hand-crafted motion feature based methods to end-to-end trainable deep
learning networks. In the most recent literature it is evident that deep learning based
methods have gained superiority both in terms on accuracy and efficiency.

Figure 2.1: Contrast between machine learning and deep learning approach for violence
detection

7
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2.1 Hand-crafted feature based methods

Classical methods for violence detection were mostly focused on designing hand-
crafted features that explicitly represent motion trajectory, the orientation of limbs, local
appearance, inter-frame changes, etc.

Using two such features, Motion Scale Invariant Feature Transform (MoSIFT), and
Spatio-temporal Interest Points (STIP), Nievas et al. [2] proposed leveraging Bag-of-
Words framework. MoSIFT descriptor represents spatiotemporal points of interest at var-
ious scales is based on popular image feature descriptor called STIP. They also introduced
two well-known violence detection datasets. They are called Hockey and Movies dataset.

Figure 2.2: Extraction of moSIFT features from video frames. [2]

Hassner et al. [21] developed the Violent Flows (ViF) feature using changes of op-
tical flow magnitudes. The Violent Flows feature is a descriptor that describes various
statistics for short duration clips reflecting motion patterns. They used a Linear Support
Vector Machine to classify these descriptor and thereby detect violence in videos.

Improving upon this work, Gao et al. [3] incorporated motion orientations and pro-
posed Oriented Violent Flows (OViF). They made two primary contributions in this field.
They proposed a novel feature extracting method which they named Oriented Violent
Flows. This method fully utilizes the change in motion magnitude and orientation. Ex-
traction of OViF features from video sequence is shown in figure 2.3. For classification,
a combination of OViF and ViF with AdaBoost and Linear SVM beat the previous best
results on Violent Flows dataset.

Deniz et al. [22] proposed estimating extreme acceleration using Radon Transform
on adjacent frames. But the computational cost of this method is a obstruction for its full
utilization in real-life scenerios. Senst et al. [16] proposed using Lagrangian directional
fields for background motion compensation. Seranno et al. [23] leveraged Hough Forests
and 2D CNN to create a hybrid framework combining both handcrafted and learned fea-
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Figure 2.3: Extraction of Oriented Violent Flows feature descriptors which utilizes change
in motion magnitude and orientation. [3]

tures. However, handcrafted feature-based methods are mostly unsuitable for deploying in
real-world applications due to their restricted generalization ability in diverse situations.

2.2 Deep learning based methods

Popularity of deep learning based methodologies lead to many works on violence
detection focusing on building end-to-end trainable networks that perform well with little
to no pre-processing. Ding et al. [4] employed a 3D Convolutional Network to recognize
violence directly from raw inputs. They evaluated the model in hockey dataset with a
result accuracy of 91%, which shows that the method achieves better performance than
using handcrafted features. The neural network architecture used by Ding et al. is illus-
trated in figure 2.4. This task, however, uses 3D convolution with 2D pooling which allow
the input signals to lose temporal information.

Following the success of two-stream networks [24] on general activity recognition
tasks, Dong et al. [6] added acceleration stream with spatial and temporal ones for detect-
ing person to person violence. Trajectory based representation techniques such as optical
flow, acceleration, or frame difference on separate streams boost temporal feature learn-
ing. The the spatio-temporal interest points are extracted and passed in the next layers in
the model to extract features and perform classification.

Dai et al. [25] employed a CNN-LSTM based architecture with two streams. They
train a CNN model with ImageNet dataset sub-classes that are particular to violence de-
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Figure 2.4: 3D ConvNets architecture for detecting violence in video clips proposed by
Ding et al. [4]

tection. One of the streams in the two stream architecture is for feature extraction from
static frames, while the other stream is for motion optical flows. The two stream CNNs
are followed by a 1 dimensional LSTM to capture the temporal dynamics and a final SVM
classifier for classification.

The initial works on CNN-LSTM models used a fully connected regular LSTM layer
that takes in 1-dimensional feature vectors as inputs and does not retain the spatial prop-
erties of the features learned by CNNs [6]. On the other hand, using fully connected 2D
LSTM layers is not feasible as they need a huge number of parameters.

Sudhakaran et al. [20] proposed using ConvLSTM [26] as the recurrent unit to ag-
gregate frame-level features which implements gate operations inside LSTM cell using
convolutions reducing parameter count to a great extent. ConvLSTM can preserve spa-
tial information and are capable of working on 2D features without flattening them to 1D
vectors. They also showed that training on the difference of adjacent frames enhanced
performance. Later, Hanson et al. [7] extended this work to allow bidirectional temporal
encodings in the feature vectors by using BiConvLSTM that leverages long-range infor-
mation in both temporal directions. Li et al. [19] proposed an efficient 3D CNN based
on DenseNet [27] architecture which requires significantly fewer parameters, which does
not require the hand-crafted features or RNN layers solely for temporal feature encoding.
The improved design follows lightweight units that capture motion patterns exploiting the
DenseNet model to facilitate reuse of features and channels.
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Peixoto [5] et al. employed two deep neural nets to extract spatio-temporal features
representing specific concepts. One of the neural network streams is for visual feature
extraction using the Inception v4 architecture, while the other extracts audio features using
the proposed shallow network classifier. On a later stage the extracted visual features and
respective auditory features are merged to make a single feature vector which is then fed
into a fusion layer to predict the result. Their proposed network is illustrated in figure 2.5.

Figure 2.5: Visual-Auditory feature fusion network proposed by Peixoto et al. [5]

Peng et al. claim previous analysis was simplistic, for example short-clip grouped,
single scenario or under-supplied (single modality). So they published a large-scale and
multi-scene dataset named XD-violence [28] with a total length of 217 hours that contains
4754 untrimmed audio signals and weak labelled videos to resolve the issues mentioned.
Some works [5, 28] reviewed here focuses on multimodal detection of violence by com-
bining visual and auditory cues. However, as the audio signal is generally unavailable in
surveillance footage, most works concentrated on visual information.

In our work, we leveraged MobileNet [29] which is a lightweight 2D CNN that uses
depthwise separable convolutions and clever design choices to develop a fast and efficient
model geared towards mobile and embedded vision applications. The paper present two
global hyperparameters, width multiplier and resolution multiplier, that can effectively
trade off between accuracy and latency. These hyperparameters allow models to have
custom size suitable for the application based constraints. The model weights are trained
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on the widely popular ImageNet dataset. Despite the low parameter count, MobileNet
has a higher classification accuracy comparable to larger classification models. We also
employed Separable Convolutional LSTM (SepConvLSTM) which is constructed by re-
placing the convolution operations in the LSTM gates with depthwise separable convolu-
tions. In a recent study, Separable Convolutional LSTM has been used for speeding up
video segmentation task [30]. However, we did not find any work in the field of activity
recognition that focuses on utilizing SepConvLSTM.

2.3 CNN-LSTM architectures

Since our proposed method is based on CNN-LSTM networks, in this section we
first discuss the basic architecture of a general CNN-LSTM based model. Then we go
over two previous such architectures used for detecting violence in detail.

Figure 2.6: Basic architecture of a CNN-LSTM model for video data

In a basic CNN-LSTM based architecture, there are two parts. The first part is a
Convolutional Neural Network or CNN part which is followed by a Long Short Term
Memory or LSTM part. As shown in Figure 2.6, the CNN layer works on each frame
separately and generate a spatial feature map set for each frame. As CNN acts of each
frame separately it has no context or information of the temporal dynamics in-between the
frames. On the other hand LSTM is designed to work time-series data. Here the LSTM
layer works with a time-series of frames or more precisely the spatial feature maps. The
spatial feature maps of each timestep is passed into the LSTM layer. As, LSTM is a
recurrent neural network the outputs at each time-step is passed into the LSTM as input
of the next time-step. The hidden state of the last time-step is extracted as the output
of the LSTM layer which gives us spatio-temporal feature maps representing the entire



2.3. CNN-LSTM ARCHITECTURES 13

video clip as it contains information of both spatial and temporal dimensions.

2.3.1 Detecting Violent Scenes and Affective Impact in Movies with
Deep Learning

Dai et al. [25] presented a violence detection method of concatenating two streams
of ConvNet to LSTM and used an SVM classifier for final predictions. Following with the
traditional popular trajectory-based models, the paper suggests the use of feature descrip-
tors like HOG, HOF and MBH for object detection and feature extraction which is further
used to identify the spatio-temporal interest points (STIP). Dai et al. aimed to formulate
the scene features into consideration, the features used here limited absolute representa-
tions as they are local feature extractors. As illustrated in figure 2.7, the extracted features
are fed into CNN streams one each for spatial, temporal and violence information extrac-
tion. The CNN features are then concatenated which is processed using an LSTM and
finally passed through an SVM classifier.

Figure 2.7: Proposed Network Architecture by Dai et al.
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2.3.2 Multi-stream deep networks for person to person violence de-
tection in videos

Dong et al. proposed a three-stream neural network comprising of 2D CNN and 1D
LSTM layers. The proposed network architecture by Dong et al. [6] illustrated in figure
2.8. The first stream called the spatial stream learns to extract features from video frames
and the other stream which is the temporal stream capture the information from neigh-
boring frames and approximate the velocity variation per unit time which are used for
general activity recognition applications. In addition to the prior mentioned two streams,
the paper suggests the use of an acceleration stream that can capture more violent cues
that deals with elements such as velocity and acceleration for actions.

Input
Video

Acceleration Flow

Optical Flow

Raw Video Frame

Spatial 
CNN 

stream

Temporal 
CNN 

stream

Acceleration 
CNN 

stream

LSTM

LSTM

LSTM

Score
Fusion

Figure 2.8: Proposed Architecture by Dong et al. [6]

Velocity is first order change while acceleration is second order change in frames,
computed on the basis of 3 consecutive frames. The acceleration stream is a novel feature
of this paper, used to extract the dynamic information resulting in multi stream ConvNets
architecture. The acceleration stream uses a proposed novel feature descriptor, acceler-
ation flow. The stacked optical flow or acceleration streams can only map short-term
movements in specific time window, so LSTMs are required to capture the whole infor-
mation. All the streams pass through respective CNN and LSTM layers and later fused
to get a fusion score. Their proposed method uses 1D LSTM layers which can not re-
tain the 2D spatial information learned by CNNs as 1D LSTM only works with flattened
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1D features. Another drawback is that, The aforementioned optical flow and acceleration
streams are computationally expensive to calculate.

2.3.3 Learning to Detect Violent Videos using Convolutional Long
Short-Term Memory

Sudhakaran et al. [20] employed a CNN-LSTM based network for violence detec-
tion. CNN layers learn to extract 2D spatial features from video frames, which are then
processed by the LSTM layer for exploring the temporal dynamics in-between the frames.

Figure 2.9: Convolutional LSTM Model Architecture

Their proposed neural network architecture for detecting violence in video clips is
presented in figure 2.9. The following is an outline of how the network operates: one by
one, the frames from the video are transferred to the model. We get the representative
feature maps of the input video after all the frames have been applied from the hidden
state of the convLSTM layer in this final time step. The feature maps derived from the
convLSTM layer in passed to the classification layers which are basically some fully-
connected layers with Relu activation in-between.

Authors employed the AlexNet network [31] pre-trained on ImageNet as the CNN
model for extracting features from each frame of the input video clip. Each LSTM gate in
the Convolutional LSTM cell has 256 filters. When they used the difference of adjacent
frames as inputs, they showed a slight improvement in performance. For earlier and
smaller datasets, this architecture worked well. However, when we tested this method
on a recently proposed larger dataset, we discovered that it fell short of state-of-the-art
accuracy. This structure has a lot of space. This architecture has a large memory and
computation requirement which makes it unsuitable to be deployed in low end devices.
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2.3.4 Bidirectional Convolutional LSTM for the Detection of Vio-
lence in Videos

Hanson et al. [7] expanded the work of Sudhakaran et al. [20] and proposed the
model Spatiotemporal Encoder which is illustrated in figure 2.10. The Spatiotemporal
Encoder consists of a VGG13 model as a spatial encoder, a BiConvLSTM layer (bidirec-
tional convolutional LSTM), and lastly a classifier part constructed by some fully con-
nected layers.

The input frames from each video clip are first resized to 224×224. Then, the frame
difference is calculated by performing subtraction between adjacent frames. In VGG13
network, the fully connected layers and the last 2D max-pooling layer have been truncated
( shown in blue and red color). Feature maps derived from the CNN part for each frame
(colored orange) are then resized to 14×14×512. The spatial features given by the CNN
part are fed into the BiConvLSTM (green), which generates spatiotemporal encodings for
the frames (cyan). To create the final video representation, a max pooling layer is applied
to the spatiotemporal features (gold) to shrink the spatial dimensions of the feature maps.
A fully connected classifier is then used to classify this video representation as violent or
nonviolent (purple).

Their Spatiotemporal Encoder model learns to produce feature maps that have both
spatial and temporal information. The temporal encoding works in both directions, allow-
ing future information to be accessed from the current state. They do well in datasets like
Hockey, Movies, and Crowds. However, they have a large amount of redundant parame-
ters that makes it inefficient to implement and deploy in real-world applications.
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Chapter 3

Proposed Method

The objective of our proposed approach is to develop an end-to-end trainable deep
network that can effectively capture long-range Spatio-temporal features to recognize vi-
olent actions while being computationally efficient. To this end, we developed a novel
and efficient two-stream network for violence detection. We also developed a simple
technique to highlight the body movements in the frames and suppress non-moving back-
ground information that promulgates the capture of discriminative features. In this sec-
tion, we first describe Separable Convolutional LSTM (SepConvLSTM) which is an in-
tegral component of our model. We discuss depthwise separable convolution which is
utilized in SepConvLSTM. Then, we discuss the input pre-processing steps that are uti-
lized in our pipeline. A description of the architecture of the proposed network, the fusion
strategies and fully connected layers are presented.

Background 
Suppression

Frame
Difference

CNN

CNN

SepConvLSTM

SepConvLSTM

Fusion Classification

Figure 3.1: Schematic overview of our proposed network
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Figure 3.1 illustrates an overview of our proposed methodology for violence de-
tection. We employed a two stream deep learning architecture comprised of CNN and
SepConvLSTM layers. We used a fusion layer to combine the outputs of two stream and
pass the features into some fully connected layers for classification.

3.1 Pre-processing

(a)

(b)

(c)

Figure 3.2: Input pre-processing for the proposed model. (a) shows key-frames of an
example video clip. (b) demonstrates the effect of performing background suppression
on video frames of (a). The last row (c) shows time-steps of the frame difference derived
from the video clip of (a).

On one stream of our network, we pass the difference of adjacent frames as in-
puts that promotes the model to encode temporal changes between the adjacent frames
boosting the capture of motion information. They were shown to be effective in previ-
ous works [7, 20]. Frame differences serve as an efficient alternative to computationally
expensive optical flow.

fdi = framei+1 − framei (3.1)

In equation 3.1, framei denotes ith frame and fdi is the ith time-step of frame difference.
A video clip with k frames produces a corresponding frame difference of k−1 time-steps.

On the other stream, instead of using frames directly, we opted to use background
suppressed frames. We employed a simple technique to estimate the background to avoid
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adding computational overhead. We first calculate the average of all the frames. The av-
erage frame mostly contains the background information because they remain unvarying
across multiple frames. Then we subtract this average from every frame which accen-
tuates the moving objects in the frame by suppressing the background information. As
violent actions like fighting etc. are mainly characterized by body movements and not
the non-moving background features, this promotes the model to focus more on relevant
information. Equations 3.2 represent this procedure formally.

avg =
N∑
i=0

framei
N

bsfi = |framesi − avg|

(3.2)

Here, framei denotes ith frame, avg is the average of all the frames, and bsfi is the ith
time-step of background suppressed frames that we use as inputs to our model.

Figure 3.2 shows the effect of background suppression and frame difference on video
frames. Frame difference mostly encodes temporal information like movements by high-
lighting the change in body positions. On the other hand, background suppressed frames
subdue the background pixels while retaining some textural or appearance-based infor-
mation of the foreground moving objects.

3.2 Network Architecture

The proposed network comprises two separate streams with the similar architecture.
Each stream has a 2D convolutional network that extracts spatial features from each time-
step of the clip. An LSTM layer learns to encode these spatial features to generate Spatio-
temporal feature maps which are passed to the classification layers. On the first stream,
background suppressed video frames are passed sequentially to the model. After all the
frames of the input video clip is passed through the CNN, we extract the Spatio-temporal
features from the hidden state of the last time-step of the LSTM. The same procedure
is followed on the second stream but here we use the difference of adjacent frames as
inputs. Frame differences serve as an efficient approximation of optical flow avoiding
the computational complexity of calculating optical flow. The frame difference stream
learns to encode temporal changes capturing the motion in-between frames while the other
stream mainly focuses on spatial appearance-based information. The output features of
both streams combined produce robust Spatio-temporal feature maps which are capable
of detecting violent activities in videos. Our proposed network is illustrated in figure 3.3.
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Table 3.1: Summary of the proposed model’s architecture with parameter counts and
output shapes. Here, b stands for batch size.

Layer Output Shape Param #
frames CNN (b, 32, 7, 7, 56) 111984
frames diff CNN (b, 31, 7, 7, 56) 111984
frames SepConvLSTM2D (b, 7, 7, 64) 35296
frames diff SepConvLSTM2D (b, 7, 7, 64) 35296
frames Maxpool2D (b, 3, 3, 64) 0
frames diff Maxpool2D (b, 3, 3, 64) 0
Fusion (b, 3, 3, 64) 0
Flatten (b, 576) 0
Fully Connected 1 (b, 64) 36928
Fully Connected 2 (b, 16) 1040
Fully Connected 3 + Sigmoid (b, 1) 17

We used MobileNetV2(α = 0.35) [8] pre-trained on ImageNet dataset [31] as the
CNN to extract spatial features where α is the width multiplier. The last 30 layers from the
MobileNet models were truncated as we found them to be redundant in our preliminary
experiments. Pretraining improves generalization and speeds up training. We use Sep-
arable Convolutional LSTM (SepConvLSTM) for producing localized Spatio-temporal
features from the output feature maps of the CNN. Previously, SepConvLSTM has been
used to speed up video segmentation tasks [30] but have not been explored for action clas-
sification tasks. Frames of shape 224×224 ×3 are passed into the model. In each stream,
the CNN extracts spatial features of shape 7× 7 × 56. As we used SepConvLSTMs with
64 filters, they output a feature map of shape 7 × 7 × 64 each. After passing through a
Max-Pooling layer with window size (2,2), the output features maps from the two streams
are fused using a Fusion layer which is presented in the next section. Then, the combined
feature maps are passed to fully connected layers for classification. LeakyRelu [32] acti-
vation is used in between the FC (fully connected) layers. Finally, binary cross-entropy
loss is calculated from outputs of the last layer. We also experimented with one-stream
variants of our model to analyze the contribution of each stream. One-stream variants are
constructed by simply removing the layers of other stream and the Fusion layer from the
proposed model.

3.3 Depthwise Separable Convolution

In the proposed network, both CNN and LSTM parts utilize depthwise separable
convolutions. That is why in this section, we explain depthwise separable convolution in
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D x D x M
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a) Standard Convolution Operation
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Figure 3.4: SepConvLSTM cell

detail by contrasting it with standard convolution.

Standard convolution operation performs spatial-wise and channel-wise computation
in one-pass. But, depthwise separable convolution breaks down the process of convolution
into two separate parts. Depthwise separable convolution is an efficient modification of
standard convolution operation where one filter is used to perform convolution on each
input channel separately to produce an output with the same number of channels. Then,
a 1 × 1 convolution is applied to recombine the information across the channels. This
results in a reduction of computation by a ratio of

1

N
+

1

Dk
2

where, Dk is kernel size and N is number of output channels [29].

In figure 3.4 the difference between a standard convolution operation and a depthwise
separable convolution operation is illustrated. In standard convolution, an input of shape
D×D×M is transformed into an output of shapeD×D×N after being convolved with
a kernel of shape Dk ×Dk ×N ×M . On the other hand, in case of depthwise separable
convolution, this process is broken down into two parts. First part is called depthwise
convolution. In this part, M kernels with shape Dk×Dk×1 is convolved separately with
M channel of the input. The output of this operation does not have any cross-channel
information. Then using N kernels with shape 1 × 1 ×M the channel information are



3.3. DEPTHWISE SEPARABLE CONVOLUTION 24

intermixed to produce an output of shape D×D×N . The reduction of computation can
be found out from the ratio of kernel shapes of these two operations.

Dk ×Dk ×M × 1 + 1× 1×M ×N
Dk ×Dk ×N ×M

=
1

N
+

1

Dk
2 (3.3)

This shows that depthwise separable convolution can speed up convolution operation
and reduce the number of parameters.

Figure 3.5: bottleneck residal block in MobileNetV2 [8]
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3.4 MobileNet

The proposed network utilizes convolutional neural network modules to produce
spatial features from each frame. Out of the different variants and designs of convolu-
tional networks we opted to employ MobileNets [29]. MobileNets are light-weight and
efficient deep convolutional neural networks which utilizes depthwise separable convolu-
tions drastically reducing the number of parameters and computation without sacrificing
much accuracy.

Figure 3.6: Model architecture summary of mobilenet

Figure 3.6 shows the architectural summary of MobileNet model. In the summary, s
represents standard convolution and dw signifies depthwise separable convolutions. The
size of the model can be controlled using two parameters - α which the width multiplier
controlling the number of channels at each layer of the network and ρ which controls the
input image size.

We used MobileNetV2(α = 0.35) [8] as the CNN to extract spatial features where
α is the width multiplier which controls the size of the network. For faster training and
better generalization we used MobileNetV2 pre-trained on ImageNet dataset [31]. This
pre-training significantly boosts the networks ability to learn quickly as the earlier layers
of the CNN are already trained to detect shapes, edges etc. low level features. The main
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building block of MobileNetV2 is called bottleneck residual block. Instead of a Conv-
Relu-BatchNorm block in traditional CNNs, bottleneck residual block is comprised of
depthwise convolution, pointwise convolution, Relu activation and residual connection.

3.5 Separable Convolutional LSTM

The proposed network uses a recurrent neural network layer for combining the spa-
tial feature maps of each frame to produce spatio-temporal feture maps. We opted to used
separable convolutional LSTM as the recurrent network layer which is an integral compo-
nent of our model. In this section we describe separable convolutional LSTM in greater
detail.

In regular convolutional LSTM [33] layer, each gate of the LSTM is constructed
using standard convolution operation. Separable convolutional LSTM is a modification
of standard convolutional LSTM. In each gate of the LSTM, the convolution operations
are replaced with depthwise separable convolutions. This makes the LSTM layer compact
and drastically reduces the number of weights because depthwise separable convolution is
an efficient modification of standard convolution operation which results in a reduction of
computation compared to a standard convoluitona operation by a ratio of 1

N
+ 1

K2 where,
K is kernel size and N is number of output channels [29]. Convolutional LSTM is a
good choice to encode temporal changes in a sequence of spatial feature maps as it can
preserve spatial information. We replace the convolution operations in the ConvLSTM
cell with depthwise separable convolutions which reduces the parameter count drastically
and makes the cell compact and lightweight. Equations 3.4 represent the operations inside
a SepConvLSTM cell.

ft = σ(1×1W
x
f ∗ (W x

f ~ xt) + 1×1W
h
f ∗ (W h

f ~ (ht−1)) + bf ) (3.4)

it = σ(1×1W
x
i ∗ (W x

i ~ xt) + 1×1W
h
i ∗ (W h

i ~ ht−1) + bi) (3.5)

c̃t = τ(1×1W
x
c ∗ (W x

c ~ xt) + 1×1W
h
c ∗ (W h

c ~ ht−1) + bc) (3.6)

ot = σ(1×1W
x
o ∗ (W x

o ~ xt) + 1×1W
h
o ∗ (W h

o ~ ht−1) + bo) (3.7)

ct = ft ⊗ ct−1 + it ⊗ c̃t (3.8)

ht = ot ⊗ τ(ct) (3.9)

Here, ∗ denotes convolution,⊗ represents the Hadamard product and ~ represents depth-
wise convolution. 1×1W and W are pointwise and depthwise kernels respectively. Mem-



3.6. FUSION STRATEGIES 27

ory cell ct, hidden state ht and the gate activations it,ft and ot are all 3D tensors. The
proposed Seperable ConvLSTM is effective in encoding localized spatio-temporal fea-
ture maps which can be used to differentiate between videos containing violence and
non-violent actions.

Figure 3.7: SepConvLSTM cell

3.6 Fusion Strategies

We get two sets of feature maps from the two streams of the proposed network.
We utilized a fusion layer for merging these two sets of feature maps and passing it into
the classifier network. Three fusion strategies were experimented to combine the output
feature maps of the two streams. These three strategies produce three variants of our
proposed model - SepConvLSTM-M (M for Multiply), SepConvLSTM-C (C for Concate-
nation) and SepConvLSTM-A (A for Addition). Fusion layers of these three variants are
described below.
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SepConvLSTM-M: In this variant of our model, the output of the frames streams
is passed through a LeakyRelu activation layer. On the other hand, the feature maps
from frame difference stream goes through a Sigmoid activation layer. Then, we use an
element-wise multiplication to generate the final output feature maps.

Ffused = LeakyRelu(Fframes)⊗ Sigmoid(Fdiff ) (3.10)

Here, Fframes and Fdiff denotes the feature maps from frames stream and frame differ-
ence stream respectively. Ffused is the output feature map of the Fusion layer.

SepConvLSTM-C: In this variant, we simply concatenate the two output features of
two streams and pass it to the classification layers.

Ffused = Concat(Fframes, Fdiff ) (3.11)

Here, the Concat function concatenates Fframes and Fdiff along the channel axis.

SepConvLSTM-A: In the last variant of fusion layer, the output feature maps of the
two streams are added element-wise to generate the final video representation.

Ffused = Fframes ⊕ Fdiff (3.12)

Here, ⊕ refers to element-wise addition operation combining the output feature maps of
the two streams.

The output of fusion layer which contains fused feature maps from both stream is
flattened into 1D vectors and passed into the classifier network.

3.7 Classifier Network

The proposed network has a classifier network at the end which is comprised of some
fully connected, leaky relu and dropout layers.

The output of the fusion layer is flattened into an 1D vector and passed into the clas-
sifier network. We used three fully connected layers of shape 128, 16 and 1 respectively.
Between each of the two adjacent fully connected layers we placed a Leaky Relu activa-
tion layer and a dropout layer. As we used binary cross-entropy loss the output needs to
be within the range of 0 to 1. That is why the last fully connected layer is connected to a
sigmoid activation layer. The classifier network is illustrated in figure 3.8.
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Figure 3.8: classifier network of the proposed network

3.8 Loss Function

Loss function is the measurement which tells the model how it is performance for
a given training instance or example. The loss value is propagated backwards using the
back-propagation algorithm which is turn updates the weights value of the model. Af-
ter gradual weight updates through many iterations the model’s weights are adjusted to
minimize the loss.

We used binary cross-entropy loss as the violence detection task is a binary clas-
sification problem. Binary cross-entropy loss is used in binary classification tasks. It
penalizes the model if the label predicted by the model does not match the ground truth
label. The total loss a batch of training examples can be represented using the following
equation -

J = − 1

m

m∑
i=1

[
y(i) log(a(i)) + (1− y(i)) log(1− a(i))

]
Here, J is the total loss for each batch, m is the number of training examples, y(i) is

the target ground truth and a(i) is the value predicted by the model.
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3.9 Training Methodology

Adjacent frames in a video tend to contain redundant information. So, we extract
only 32 frames from each video using uniform sampling and resize to 320× 320. Before
passing onto the model they are cropped with random sizes and resized to 224×224. This
gives us video frames of shape 32× 224× 224× 3. Performing elementwise subtraction
between adjacent frames, we get frame differences of shape 31×224×224×3. We were
restricted to a batch size of 4 due to the limitation of memory. Various data augmenta-
tion [34] techniques like random brightness, random cropping, gaussian blurring, random
horizontal flipping were employed in the training phase to prevent overfitting.

The proposed model was implemented using Tensorflow library [35]. The CNNs are
initialized using weights pre-trained on the ImageNet dataset. We used Xavier initializa-
tion [36] for the kernel of SepConvLSTM. Hockey and Movies datasets are very small
which can cause overfitting. That’s why we first train on the RWF-2000 dataset. Then,
we use the weights of this trained model to initialize training on the other two datasets.
For model optimization, we used AMSGrad variant of Adam optimizer [37]. We start our
model’s training with a learning rate of 4 × 10−4. After every 5 epochs, we reduced the
learning rate to half until it reaches 5×10−5. We keep it unchanged since that epoch. The
model is optimized to minimize sigmoid loss between the ground truth and the predicted
label.



Chapter 4

Result Analysis and Discussion

We evaluate the performance of our proposed models on three standard benchmarks
violence detection datasets.

4.1 Datasets

RWF-2000 [1] is the largest dataset on violence detection containing 2000 real-life
surveillance footage. Each video is a 5-second clip with various resolutions and a fram-
erate of 30 fps. The videos have diverse backgrounds and lighting conditions.

Hockey [2] contains 1000 videos collected from different footage of ice hockey. Each
video has 50 frames. All the videos have similar backgrounds and violent actions.

Movies [2] is relatively smaller dataset containing 200 video clips with various reso-
lutions. The videos are diverse in content. The videos with the ‘violent’ label are collected
from different movie clips.

The mentioned datasets contain an equal number of videos containing violent and
non-violent action to prevent class imbalance. We found RWF-2000 to be the most chal-
lenging one because of its wide variety in its content.

31
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Table 4.1: Comparison of Classification Results on Standard Benchmark Datasets

Method RWF-2000 Hockey Movies
ViF [21] - 82.90% -
ViF + OViF [3] - 87.50% -
Radon Transform [22] - 98.9% 90.1%
Hough Forest + 2D CNN [23] - 94.6% 99%
Improved Fisher Vector [38] - 93.7% 99.5%
Three Streams + LSTM [6] - 93.9% -
FightNet [39] - 97.0% 100%
ConvLSTM [20] - 97.1% 100%
BiConvLSTM [7] - 98.1% 100%
Efficient 3D CNN [19] - 98.3% 100%
Flow Gated Net [1] 87.25% 98.0% 100%
Proposed (SepConvLSTM-A) 87.75% 99% 100%
Proposed (SepConvLSTM-C) 89.25% 99.50% 100%
Proposed (SepConvLSTM-M) 89.75% 99% 100%

4.2 Experiment on Standard Benchmark Datasets

Evaluation of the proposed methods was done on 20% of the dataset. The rest 80%
of the clips are used for training our models. From Table 4.1, we can see that newer
deep learning methods outperform the earlier methods which focus on extracting hand-
crafted features. All three variants of the proposed model outperforms the previous best
result on the larger and more challenging RWF-2000 dataset while matching the state-
of-the-art results on the smaller datasets. The SepConvLSTM-M model achieved more
than 2% margin in terms of accuracy in RWF-2000 dataset which has a fusion strategy of
multiplying the LeakyRelu activation of the frames stream with sigmoid activation of the
difference stream. In Hockey fights dataset, the SepConvLSTM-C variant of our model
performed the best. Out of the three variants, SepConvLSTM-A achieved the lowest ac-
curacy in RWF-2000 dataset which indicates that simple element-wise addition is not as
effective as the other fusion strategies. We speculate that the proposed models were able
to achieve good performance due to the use of robust and compact modules like SepCon-
vLSTM which mitigates the chances of overfitting, especially when working with datasets
that are not large enough. Even though many ambiguous body movements in sports are
similar to violent behavior, still the proposed models achieve state-of-the-art accuracy
on the Hockey dataset indicating the model’s effectiveness at handling ambiguous move-
ments. The videos on the two categories of the Movies dataset are easily distinguishable.
That’s why almost all of the methods achieve very good accuracy on this dataset. Our
experiments show that our models can effectively capture Spatio-temporal feature repre-
sentation to distinguish between violent and non-violent videos.
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Figure 4.1: a) Training curve of experimenting with SepConvLSTM-A model. b) Train-
ing curve of experimenting with SepConvLSTM-C model. c) Training curve of experi-
menting with SepConvLSTM-M model. The SepConvLSTM-M model achieved the best
accuracy among the three variants of our proposed model which has a fusion strategy of
multiplying the LeakyRelu activation of the frames stream with sigmoid activation of the
difference stream.
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4.2.1 Learning Curves

Training curves shows how a model is performing at every epoch of training. We
have plotted the training accuracy and test accuracy against epochs to understand the
progress of learning for each model.

Figure 4.1 shows the training curves derived from training three different variants of
our model - SepConvLSTM-A, SepConvLSTM-C, SepConvLSTM-M. We cay see that
accuracy on SepConvLSTM-A model’s training is not as consistently high as the others.
After about 80 epochs, the test accuracy curves flattens out whereas the train curve is still
rising. This points to overfitting. The SepConvLSTM-M gives consistent high accuracy
on the test set without overfitting as much as the others. The fluctuations in different
epochs are also slightly less.

4.3 Ablation Studies

In deep learning, ablation is the process of removing a component of the model to
understand its contribution to the performance of the model. In this section, we present
some ablation studies that we used to understand the significance of different components
of the proposed model. In the first ablation study, we aimed to find out the individual
contribution of each stream to our model’s performance. On the other hand, in the second
ablation study, we seeked to understand out the contribution of SepConvLSTM to the
proposed model.

In Table 4.2, we analyze the individual contribution of each stream to our model’s
performance by evaluating one-stream variants of the model SepConvLSTM-C. Using the
variant with only frame difference stream, we get 88.25% accuracy that is better than the
previous best result while using only 0.186 million parameters. On the other hand, using
the variant with only frames stream, we get an accuracy of 83.75%. The regular variant
of SepConvLSTM-C which uses both streams together achieves an accuracy of 89.25%.
This indicates that body movements and motion patterns produce more discriminative
features than appearance-based features like color, texture, etc.

In Table 4.3, we analyze the contribution of the SepConvLSTM module to the pro-
posed models by replacing it with other modules. Replacing the SepConvLSTM module
of the SepConvLSTM-C model with a block of some 3D Convolutional layers, we get an
accuracy of only 84% which is much lower than our best performing model. It also in-
creases the number of parameters by a factor of 2. Replacing the SepConvLSTM module
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Table 4.2: Analyzing contribution of each stream to our model for violence detection on
RWF-2000 dataset

Model Accuracy Parameters
SepConvLSTM-C (only frames stream) 83.75% 185,521
SepConvLSTM-C (only differences stream) 88.25% 185,521
SepConvLSTM-C (both streams) 89.25% 371,009

Table 4.3: Analyzing contribution of SepConvLSTM to our model by replacing it with
3D-Conv and ConvLSTM layers

Model Accuracy Parameters
Proposed (using 3D-Conv Layers, C Fusion) 84.00% 685,697
Proposed (using ConvLSTM, M Fusion) 87.50% 815,937
Proposed (using ConvLSTM, C Fusion) 88.50% 853,889
Proposed (using SepConvLSTM, M Fusion) 89.75% 333,057

with a regular ConvLSTM module in SepConvLSTM-M and SepConvLSTM-C variants
of the proposed model we get accuracies slightly lower than our best performing models.
But, using the ConvLSTM module increases the parameter count by a great deal. This
indicates that SepConvLSTM is a more efficient and robust choice over ConvLSTM for
this particular task.

Figure 4.2 shows the training curves derived from training using the one stream
versions of our model. One stream variants of SepConvLSTM-C model can be easily
constructed by removing the layers of other stream and fusion layer. Accuracy curve
of Difference stream is consistently higher than Frames stream. Difference of adjacent
frames serves as a much more discriminative input feature than the frames of the clip
themselves indicating that body movements and motion patterns produce more discrimi-
native features than appearance based features like color, texture, etc.

Figure 4.3 shows the training curve of experimenting by replacing SepConvLSTM
layer with 3D convolutional layers and by replacing SepConvLSTM layer with ConvL-
STM in the model SepConvLSTM-M and SepConvLSTM-C. The lower accuracy and
higher parameter count of the model after these modifications indicates that SepConvL-
STM is a more efficient and robust choice over these layers.
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Figure 4.2: a) Training curve of experimenting with only Difference stream of
SepConvLSTM-C model.b) Training curve of experimenting with only Frames stream
of SepConvLSTM-C model. Accuracy using Difference stream is much higher than us-
ing Frames stream only. This indicates that body movements and motion patterns produce
more discriminative features than appearance based features like color, texture, etc.
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Figure 4.3: a) Training curve of experimenting by replacing SepConvLSTM layer with
3D convolutional layers. b) Training curve of experimenting by replacing SepConvLSTM
layer with ConvLSTM in the model SepConvLSTM-M. c) Training curve of experiment-
ing by replacing SepConvLSTM layer with ConvLSTM in the model SepConvLSTM-C.
The lower accuracy and higher parameter count of these models indicates that SepCon-
vLSTM is a more efficient and robust choice over these layers.
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Table 4.4: Comparison of Efficiency with Earlier Models

Model Parameters FLOPs
AlexNet + ConvLSTM [20] 9.6M 14.40G
Efficient 3D CNN [19] 7.4M 10.43G
Flow Gated Net [1] 0.27M 0.54M
Proposed (SepConvLSTM-C, 1 Stream) 0.186M 1.004M
Proposed (SepConvLSTM-C, 2 Streams) 0.371M 2.009M
Proposed (SepConvLSTM-M/A, 2 Streams) 0.333M 1.933M

4.4 Comparative Analysis of Efficiency

To evaluate the efficiency of the proposed model, we compared the number of param-
eters and FLOPs count with that of the previously proposed models for violence detection.

Table 4.4 shows that our model is significantly more light-weight than previous mod-
els. Compared to models proposed in [20] [19], our models have a very low parameter
count enabling them to require a drastically fewer number of floating-point operations
(FLOPS) and making them faster and computationally efficient. The one-stream variant
of our proposed models has the lowest number of parameters. Inspite of that, the one-
stream variant of SepConvLSTM-C with difference stream achieves an accuracy higher
than the previous best results. Flow Gated Net [1] uses only 0.27 million parameters but
it uses optical flow as inputs which are computationally expensive to calculate. Whereas,
the proposed models are light-weight and do not require any computationally expensive
pre-processing on the inputs. The low parameters and FLOPs count will be particularly
beneficial if they are deployed for time-sensitive applications or in low-end devices like
mobile or embedded vision applications.

4.5 Qualitative Analysis

We demonstrate the qualitative results of the proposed method on the RWF-2000
dataset in Figure 4.4. We used the variant SepConvLSTM-M of our proposed model
as it achieved the best performance on the RWF-2000 dataset. In Figure 4.4, each row
contains six key-frames from a video clip with a corresponding ground truth label and
the predicted label. The first two rows contain examples of video clips for which our
model gives a correct prediction. The key-frames of first video clip show that the body
positions are not aggressive and the body movements are very slow and minimal. These
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are good indicators of the absence of violence in this video clip which enables our model
to give correct prediction. On the other hand, the key-frames of the second clip contain
fast fighting movements of multiple persons which helps the model to identify it as a
violent clip. The last four rows contain examples of failure cases of our proposed model.
The key-frames of the third and fifth row contain ambiguous body movements which may
cause incorrect prediction. In the key-frames fourth example video clip, a large portion
of the bodies of the people involved in fighting is occluded which may cause the network
to incorrectly classify the clip as non-violent. The video clip of the last row has very
poor quality and resolution. Moreover, the people involved in the fighting are far from the
camera. These factors may contribute towards incorrect classification of this clip by our
model.

Ground Truth Predicted LabelVideo Frames

Violent Non-violent

Violent Non-violent

Non-violent Violent

Violent Violent

Non-violent Non-violent

Violent Non-violent

Figure 4.4: Qualitative results of the proposed model (SepConvLSTM-M) for violence
detection on the RWF-2000 dataset. The first two rows contain examples of video clips
for which our model correctly predicts the presence of violence. The last four rows con-
tain examples of failure cases where ambiguous body movements and poor quality of
surveillance footage may lead towards incorrect prediction.



Chapter 5

Conclusions

In our works so far, we present a novel and efficient method for detecting violent
activities in real-life surveillance footage. The proposed network can learn discriminative
Spatio-temporal features effectively which is reflected in its high recognition accuracy in
the standard benchmark datasets. Furthermore, it is computationally efficient making it
suitable to deploy in time-sensitive applications and low-end devices. We showed that the
SepConvLSTM cell is a compact and robust alternative to the ConvLSTM cell. As Sep-
ConvLSTM uses fewer parameters, stacking multiple layers of LSTM with residual con-
nections seems feasible and may improve the results further. As the datasets for violence
detection are not large enough, pre-training on large-scale action recognition datasets
like Sports 1M [40], UCF-101 [41] might help achieve better generalization. Extracting
Object-level features from recent object detection deep models such as YOLO [42], Faster
R-CNN [43] and adding them as additional input might help, as object-level features in-
herently focus on relevant objects like people. We hope to investigate such possibilities
in the future.

40



References

[1] M. Cheng, K. Cai, and M. Li, “Rwf-2000: An open large scale video database for
violence detection,” arXiv preprint arXiv:1911.05913, 2019.

[2] E. B. Nievas, O. D. Suarez, G. B. Garcı́a, and R. Sukthankar, “Violence detection in
video using computer vision techniques,” in International conference on Computer

analysis of images and patterns, pp. 332–339, Springer, 2011.

[3] Y. Gao, H. Liu, X. Sun, C. Wang, and Y. Liu, “Violence detection using oriented
violent flows,” Image and vision computing, vol. 48, pp. 37–41, 2016.

[4] C. Ding, S. Fan, M. Zhu, W. Feng, and B. Jia, “Violence detection in video by using
3d convolutional neural networks,” in International Symposium on Visual Comput-

ing, pp. 551–558, Springer, 2014.

[5] B. Peixoto, B. Lavi, P. Bestagini, Z. Dias, and A. Rocha, “Multimodal violence de-
tection in videos,” in ICASSP 2020-2020 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pp. 2957–2961, IEEE, 2020.

[6] Z. Dong, J. Qin, and Y. Wang, “Multi-stream deep networks for person to person vi-
olence detection in videos,” in Chinese Conference on Pattern Recognition, pp. 517–
531, Springer, 2016.

[7] A. Hanson, K. Pnvr, S. Krishnagopal, and L. Davis, “Bidirectional convolutional
lstm for the detection of violence in videos,” in Proceedings of the European Con-

ference on Computer Vision (ECCV), 2018.

[8] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 4510–4520, 2018.

[9] H. Wang and C. Schmid, “Action recognition with improved trajectories,” in Pro-

ceedings of the IEEE international conference on computer vision, pp. 3551–3558,
2013.

41



REFERENCES 42

[10] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the
kinetics dataset,” in proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 6299–6308, 2017.

[11] C. Yang, Y. Xu, J. Shi, B. Dai, and B. Zhou, “Temporal pyramid network for action
recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 591–600, 2020.

[12] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian, “Actional-structural graph
convolutional networks for skeleton-based action recognition,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3595–
3603, 2019.

[13] A. Elkholy, M. E. Hussein, W. Gomaa, D. Damen, and E. Saba, “Efficient and ro-
bust skeleton-based quality assessment and abnormality detection in human action
performance,” IEEE journal of biomedical and health informatics, vol. 24, no. 1,
pp. 280–291, 2019.

[14] Q. Lei, H.-B. Zhang, J.-X. Du, T.-C. Hsiao, and C.-C. Chen, “Learning effective
skeletal representations on rgb video for fine-grained human action quality assess-
ment,” Electronics, vol. 9, no. 4, p. 568, 2020.

[15] T. Liu, R. Zhao, J. Xiao, and K.-M. Lam, “Progressive motion representation dis-
tillation with two-branch networks for egocentric activity recognition,” IEEE Signal

Processing Letters, vol. 27, pp. 1320–1324, 2020.

[16] T. Senst, V. Eiselein, A. Kuhn, and T. Sikora, “Crowd violence detection using global
motion-compensated lagrangian features and scale-sensitive video-level representa-
tion,” IEEE Transactions on Information Forensics and Security, vol. 12, pp. 2945–
2956, 2017.

[17] D. Chen, H. Wactlar, M.-Y. Chen, C. Gao, A. Bharucha, and A. Hauptmann, “Recog-
nition of aggressive human behavior using binary local motion descriptors,” Confer-

ence proceedings : ... Annual International Conference of the IEEE Engineering in

Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society.

Conference, vol. 2008, pp. 5238–41, 02 2008.

[18] T. Deb, A. Arman, and A. Firoze, “Machine cognition of violence in videos using
novel outlier-resistant vlad,” in 2018 17th IEEE International Conference on Ma-

chine Learning and Applications (ICMLA), pp. 989–994, 2018.



REFERENCES 43

[19] J. Li, X. Jiang, T. Sun, and K. Xu, “Efficient violence detection using 3d convolu-
tional neural networks,” in 2019 16th IEEE International Conference on Advanced

Video and Signal Based Surveillance (AVSS), pp. 1–8, IEEE, 2019.

[20] S. Sudhakaran and O. Lanz, “Learning to detect violent videos using convolutional
long short-term memory,” in 2017 14th IEEE International Conference on Advanced

Video and Signal Based Surveillance (AVSS), pp. 1–6, IEEE, 2017.

[21] T. Hassner, Y. Itcher, and O. Kliper-Gross, “Violent flows: Real-time detection of
violent crowd behavior,” in 2012 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition Workshops, pp. 1–6, IEEE, 2012.

[22] O. Deniz, I. Serrano, G. Bueno, and T.-K. Kim, “Fast violence detection in video,”
in 2014 international conference on computer vision theory and applications (VIS-

APP), vol. 2, pp. 478–485, IEEE, 2014.

[23] I. Serrano, O. Deniz, J. L. Espinosa-Aranda, and G. Bueno, “Fight recognition in
video using hough forests and 2d convolutional neural network,” IEEE Transactions

on Image Processing, vol. 27, no. 10, pp. 4787–4797, 2018.

[24] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action
recognition in videos,” in Advances in neural information processing systems,
pp. 568–576, 2014.

[25] Q. Dai, R.-W. Zhao, Z. Wu, X. Wang, Z. Gu, W. Wu, and Y.-G. Jiang, “Fudan-
huawei at mediaeval 2015: Detecting violent scenes and affective impact in movies
with deep learning.,” in MediaEval, 2015.

[26] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convo-
lutional lstm network: A machine learning approach for precipitation nowcasting,”
in Advances in neural information processing systems, pp. 802–810, 2015.

[27] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected
convolutional networks. arxiv 2016,” arXiv preprint arXiv:1608.06993, vol. 1608,
2018.

[28] P. Wu, J. Liu, Y. Shi, Y. Sun, F. Shao, Z. Wu, and Z. Yang, “Not only look, but
also listen: Learning multimodal violence detection under weak supervision,” in
European Conference on Computer Vision, pp. 322–339, Springer, 2020.

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.



REFERENCES 44

[30] A. Pfeuffer and K. Dietmayer, “Separable convolutional lstms for faster video seg-
mentation,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
pp. 1072–1078, IEEE, 2019.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-

tems, pp. 1097–1105, 2012.

[32] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations
in convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[33] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convolu-
tional lstm network: A machine learning approach for precipitation nowcasting,”
arXiv preprint arXiv:1506.04214, 2015.

[34] L. Perez and J. Wang, “The effectiveness of data augmentation in image classifica-
tion using deep learning,” arXiv preprint arXiv:1712.04621, 2017.

[35] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
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