Improving Hyperledger Fabric

Authors:
Ebtesam Al Haque (160041077)
Fabiha Iffat (160041072)
Novera Tasnuba Aura (160041041)

Supervised by:
Prof. Muhammad Mahbub Alam, PhD
Professor
Department of Computer Science and Engineering (CSE)

Islamic University of Technology (IUT)

A thesis submitted to the Department of CSE
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering

Department of Computer Science and Engineering (CSE)
Islamic University of Technology (IUT)

Gazipur, Bangladesh
March 2021

Declaration of Authorship

This 15 to certify that the work presented in this thesis is the outcome of the anal-
vsis and simulations carried out by Ebtesam Al Haque. Fabiha [ffat and Novera
Tasnuba Aura under the supervision of Prof. Muhammad Mahbub Alam PhD, Pro-
fessor. Department of Computer Science and Engineering (CSE). Islamic University
of Technology (IUT). Gazipur, Bangladesh. It is also declared that neither of this
thesis nor any part of this thesis has been submitted anvwhere else for any degree

or diploma. Information derived from the published and unpublished work of others

has been acknowledged in the text and a list of references is given.

Authors:

_@ Fabda ﬁ({éﬂt" 1
Ebtesam Al Haque Fabiha Iffat
160041077 160041072

Supr*n-!'s or:

Prof. Muhammad Mahbub Alam. PhD

Professor
Department of Computer Science and Engineering

Islamic University of Technology (IUT)

N veros

Novera Tasnuba Aura

160041041

Acknowledgement

We would like to express our grateful appreciation to Prof. Muhhamad Mahbub Alam,
PhD, Professor, Department of Computer Science Engineering, IUT for being our
advisor and mentor. His suggestions and insights for this thesis have been invaluable.
Without his support and mentorship this research would not have been possible.
His valuable opinion, time, constructive criticism and input provided throughout the

thesis work made this research possible. We are truly grateful to him.

Abstract

Hyperledger Fabric is a popular open-source blockchain platform used
by several projects around the world. However, several bottlenecks ex-
ist in the current system which limit its performance. One of the best
attempts to improve Hyperledger Fabric was FasftFabric, which modi-
fies the existing architecture to improve the throughput of Hyperledger
Fabric.However, it does not provide an insight into the bottlenecks that
could potentially exist in the orderer algorithm itself. In our work, we
compared the existing ordering algorithms with Hashgraph to poten-
tially improve Hyperledger Fabric’s throughput. Our proposed solution
does not require a lot of system resources and also provides Byzantine

Fault Tolerance with higher throughput.

Contents

1 Introduction 5
1:1 Backgrommd Bfudy: : coov v s s v s s s vt aa d e d & 8 0 8 58 4 458 %% BieE &8 s D
Ll Bloglehain covs e v oo o o 5 2 5 05 Souis e @ 6 8 8 0 8 8 3 5 8 5 5080 S i D

112 Disnbaeki o BIGEKCHRTTT « o & o 5 o 5 3 wonvmiis o o ow % 0 & 5 0 5 5 Semews s & 6

1.1.3 Hyperledger e T

L1l.4d Hyperledger FabriC . .. o o o o 4 @5 4 0 0 viamini o 6o 61 & & ® 8 8 18 03 iniam ar e 4 5

115 UhainOode « soem v o v v i o 0 6 v G % Sm e v 8 @ 8 8 0% % 5 % % S5 e e 9

1.5 Tompoieils coovew o v v v w o o 5 x5 6 8 i s @ 6 £ 8 8 % & % & & 5 Suras & 3 10

1.1.7 Asgigned Roles of Hyperledger Fabric 10

1.1.8 Architecture L e e e e 12

LN Onderers: = @ e @ 2 5 s e 3N S 2 S 3 S R E 2 S S R N S R E B G B E T 14

12 Problem Btatement . won v v vs o n o ann S b v 8 8 % 8 9 % % 58 5 S5 s o 15

L, 20. EOELIONE « cvvvvm o w0 2 8 % 5 % 5% 5 o & % SUTeE 0 B N B E K 8k 3 E 5 OUNIES S 8 15

1.2.2 Improvement SCOPES i e e e e e e e e e e e e e e e 16

1.3 Thesis Objectives and Contributions it i
Lok THeRIB NITOCERITE = 5 Gisie 4 S 5 s s 3 E S S S R B DO E s P S S B R w2 5 % % WA EE 17

2 Literature Review 18
2.1 FastFabric L e e e e e e 18
2.1.1 Performance analysis of Ordering and Peer Improvements 25

AL2: TONTRIOR: ¢ v @ 8 £ R B % M ¥ % B R OGRS W R R R R R E ¥ B B B SRS W 26

gl JONDIRIIE -« o s ot 0 5 2 5 2 H B R E EERCESESG BB S E SR E GBS S § 26

3 Proposed solution 27
301 Haghgfapl « comme oo e oo 2 5 v 5 8 5 s & @ @ 8 8 8 % 8 % & 8 % i & & 27

4 Experimental Analysis 28
4.1 Experimental Setup oo v o s s 2 5 5 8 o e € 8 8 v 5 2 v 9 5 5 % % B E 8 28
42 Experimetital BESHHE «vw v v v v v o % 5 5 % 8 6 o & 0 6 8 5 8w 8 5 5 B G e & a 28

5 Conclusion 29
Bl PUMMAIY 5 55 68 e d EE P E N R R E e s P E I EE B R BT EE 29
Dl Ffre WEHIE = 5 s s oovens e @ 6 2 2 0 & % % 5 5 5 SOWaE & @ 6 ¥ 5 8 0 S % 5 5 5 SO s s 29

1 Introduction

1.1 Background Study

Hyperledger Fabric [1] is a project of Hyperledger which has similar
drawbacks of limited number of transactions/second like Blockchain.
This was improved by the proposal of FastFabric. Our main focus is
to work on the improvement of throughput of FastFabric furthermore

and reintroduce byzantine fault tolerance without affecting scalability.

1.1.1 Blockchain

A blockchain is a distributed network of software that acts as both a
digital ledger and a system that enables assets without an intermediary
to be transferred securely. Blockchain is a technology that facilitates the
digital exchange of units of value, much like the Internet is a technology
that facilitates the digital flow of information. On a blockchain network.
everything from currencies to land titles to votes can be tokenized.
stored, and traded. Blockchain technology holds tremendous promise to
transform centuries-old business structures, paving the way for higher
levels of government legitimacy and generating new opportunities for
ordinary people to thrive, regardless of the type of blockchain protocol

that is implemented.

Participant
B's records

Pﬂftiﬁipﬂnt -

A's records
f Sk ‘
|

i

Bank
records

Regulator
records

Figure 1: A scenario of a Public Blockchain

1.1.2 Drawbacks of Blockchain

Though blockchain has brought a revolutionary change in cases of se-

cure transactions, there are some major drawbacks in blockchain. The

drawbacks [2| are discussed below:

eViolation of Privacy : In blockchain, every member of a network
shares the same ledger which means every transaction that takes place
in a blockchain is known to every node in the network (Fig: 1). This

protocol violates the privacy and confidentiality of the nodes.

e Scalability: The bitcoin scalability issue is the restricted pace at
which transactions can be processed by the bitcoin network. It is linked
to the fact that records in the bitcoin blockchain are limited in size and
frequency (known as blocks). The blocks of Bitcoin include transac-

tions on the bitcoin network.

In order to get rid of these problems, many proposals have been made.
Amongst them, hyperledger works the best in the case of maintaining

privacy of the nodes.

1.1.3 Hyperledger

Hyperledger [3| is an open source project under Linux Foundation
mainly for businesses. As we know we have Ethereum which runs on
a generalized protocol for everything that comes on the network. But
we know every business i1s unique and applications should be personal-
ized. Keeping this thing in mind, the goal of the project was to make
blockchain more accessible to the world as a technology. In short, we
can say that hyperledger is a software that can be used by anyone to
create or maintain one’s personalized blockchain service.

As mentioned earlier, in blockchain every node in the network will have
the same ledger having the same records. This is the point where the
activities of Hyperledger mainly differ.

In hyperledger, nodes can create their own channels and only permit-
ted nodes or peers can join that network. All the nodes present in the
channel will have the same ledger which won’t be shared with anyone
else outside the channel. This ensures the confidentiality of transac-
tions within the permitted nodes only. Since not all the ledgers need
to be updated for a single transaction, the rate of throughput increases

efficiently.

Under the domain of hyperledger, there are many projects- Hyperledger
Sawtooth, Iroha. Hyperledger Fabric and Hyperledger INDY. Our fo-

cus point 1s Hyper ledger Fabric.

1.1.4 Hyperledger Fabric

Hyperledger Fabric is basically a Private /Permissioned Blockchain which
has a feature of getting subnets, known as Channels.
There are some special additions or terms associated with Hyperledger

Fabric. Those are described below:

e Assets: Assets are defined as things with monetary values (food or
car or anything else). In Blockchain. we needed to transfer cryptocur-
rencies. But here we can use any sort of assets to meet the purpose of

the transaction.

¢ Members: Members can define asset types consensus protocol
needed for their network. Existing members of a network can also

set permissions on who can join the network.

e Modular Design: Hyperledger Fabric has a special design called
Modular Design which means that businesses can plug into different
functionalities. Also they have the privilege to set their assets by them-

selves.

In Hyperledger Fabric, one peer can be a part of many channels which
means they can have several ledgers. The number of ledgers indicates
how many channel one peer is attached to.

The initiation of transaction needs to be determined. Though an ap-
plication is there with the network it does not have any power. So pro-
cramming is needed in this case. This is where smart contracts come
into play. Using Smart Contracts, applications can send a request of
transaction or initiate the transaction of assets. In Hyperledger Fabric,

Smart Contracts are written with the help of Chain Code.

1.1.5 ChainCode

ChainCode is a piece of software that describes assets and Transaction
Logic, specifically in the sense of asset modification. ChainCode is used
to update. add, and move all of these properties. Chaincode is used by
representatives of each permissioned network to communicate with the
ledger.

There’s also the Member Identity Program, which keeps track of user
ids and authenticates them. An ’'Access Control List’ is used as an

additional layer of authorization once again.

1.1.6 Components

In blockchain, we have seen one kind of ledger only but in Hyperledger.

there are two kinds of ledgers used.

e Transaction Log/Business Log: This ledger stores immutable se-
quenced records of transactions in blocks. In this ledger, all the records

from its creation are being stored.

e State Database/World State: This ledger maintains Blockchain’s
current state. When a transaction takes place, it erases the previous
record from its memory and writes the recent state.

It is proved that the addition of a State Database in Hyperledger im-
proves the speed of transaction. In the Bitcoin Blockchain, current
state is calculated by going through all the transactions in the ledger

which 1s quite time consuming.

1.1.7 Assigned Roles of Hyperledger Fabric

In Hyperledger Fabric, the nodes are assigned with some responsibili-
ties to do their respective jobs. At first, all the nodes are divided into
two categories- Peer Nodes and Ordering Nodes. Peer Nodes are again
divided into Commiters and Endorsers. In most cases, all the Peer
nodes play the roles of commiters which means that Endorsers need to
play both of the roles as commiters and endorsers.

The roles of the nodes are shown in Fig 2:

10

ASSIGNMENT OF ROLES

NODES
!

Peer Nodes QOrdering Nodes

Commiter Endorser

Figure 2: Assigned Roles of Hyperledger Fabric

¢ Orderer Nodes: Orderer Nodes are given the responsibility to or-
der propagate correct history of events. The orderers first come to a
consensus about the order of incoming transactions and then segment

the message queue into blocks.

eCommiters: Blocks are delivered to peers by Orderer Nodes, who

then validate and commit them.

ekndorsers: Each endorser uses various business rules to validate the
correctness of the transaction. The client waits for a sufficient number
of endorsements and then sends these responses to the orderers, which

implement the ordering service.

11

1.1.8 Architecture

The Hyperledger Fabric used to work with the BFT consensus algo-
rithm earlier. Due to the slow throughput rate, it started using Kafka
as a Consensus Algorithm. Hyperledger Fabric works with the help of
above mentioned nodes and Kafka.

Let’s have a look at the architectural diagram of Hyperledger Fabric

step by step:

oA participant form the network firstInvokes a transaction request

through the client application

eClient application then broadcasts transaction invocation request to

the Endorser peer

eEndorser peer checks the certificate details and others to validate the
transaction. Then it executes the Chaincode which is the Smart Con-

tract. After these tasks are done, Endorser Peer returns the Endorse-

ment responses to the Client

eAfter client receives the response from Endorser, he sends the ap-

proved transaction to the Orderer peer

12

)
;
S e || Geun
T
. Q) | § p
| Peer -
; :

b
g - Peer

Figure 3: Architecture of Hyperledger Fabric

eOrderer node then includes the transaction into a block and forwards

the block to the Anchor nodes

e Anchor nodes broadcast the block to the other peers inside their own

organization

e These individual peers update their local ledger with the latest block.
Thus all the network gets the ledger synced

The architecture of Hyperledger Fabric is shown in Figure 3:

13

1.1.9 Orderers

The application of the two existing ordering service node (Kafka, Raft)
implementations varies substantially, despite the fact that they use the
same consensus mechanism. First, Katka was built for smaller networks.
Even though the Blockchain network has many peers and nodes, the
mechanism behaves as if it were one. It varies from Raft., which uses
ordering service nodes directly as a replication state machine (Raft Con-
senter) so that each entity can have its own ordering service node and
make the Blockchain network more decentralized, Consenter uses or-
dering service nodes indirectly as a replication state machine. Another
key difference lies in their dependencies. Katka requires Zookeeper to
function which makes the set up process more complex than Raft, which

is relatively straightforward.

14

1.2 Problem Statement

1.2.1 Limitations

Though Hyperledger Fabric 1.2 has been known as the fastest available
open-source permissioned blockchain there are some limitations which
can be focussed to work on for further improvements. The limitations

of Hyperledger Fabric are described below :

e The consensus layer in Fabric receives whole transactions as input.
but only the transaction IDs can be used to decide the transaction or-

der. This results in a decreased throughput.

e All the tasks of endorsers and commiters are done in a separate time
base whereas if some of the tasks could have been parallelized then it

would take much less time than it is taking now.

e In Fabric 1.2, block committing blocks are also the responsibility of
endorser peers. Endorsement is quite an expensive operation. Although
concurrent transaction processing on a cluster of endorsers can boost
application efficiency, the extra work needed to duplicate commitments

on each new node effectively negates the benefits.

1.2.2 Improvement Scopes

We can increase the throughput in Hyperledger Fabric in 3 ways mainly:

eBetter Consensus Algorithm: Existing Byzantine-Fault-Tolerant
(BFT) consensus algorithms have extensive overheads resulting in per-
formance bottleneck. Our goal is to find a better consensus algorithm

with lesser overhead.

eImprovement to ordering service: Improving the performance in
the orderer peer will result in increased throughput as the ordered per-

form a bunch of operations like ordering and propagating the correct

history of events

eImprovement to peering service: Peers perform tasks like com-
mitting. certifying and permitting a transaction or event. So finding

better ways to complete these tasks gives us a better throughput

16

1.3 Thesis Objectives and Contributions

The objective of this thesis is to overcome the existing limitations of Hy-
perledger Fabric in order to further optimize it. We explored different
consensus mechanisms and found Hashgraph to offer a higher through-
put under constrained system resources and also offers a Byzantine

Fault Tolerant solution with minimal overhead in contrast to enhanced

Raft.

1.4 Thesis Structure

In this section we discussed our background study on Blockchain and
elaborated on Hyperledger Fabric and its limitations. We also stated
the limiations we identified and our hypothesis to improve the per-
formance of Hyperledger Fabric. In the next section we discuss the
existing published works that have been done to improve Hyperledger
Fabric. In Section 3 we discuss our proposed method. Section 4 shows
the results and comparative analysis of successtul implementation of
our proposed method. The final segment of this study contains all the
references and credits used. We then conclude our thesis and discuss

future prospects of our work.

17

2 Literature Review

2.1 FastFabric

FastFabric [4] is basically an improved version of Hyperledger Fabric.
It increases the throughput of Hyperledger Fabric by two improvements
in the ordering service and 5 improvements in the peer services. Let us
discuss those improvements in details

Improvements are done on the services of orderers and peers.

There are mainly two improvements in the ordering services:
eOrderer Improvement I: Separate transaction header from payload

eOrderer Improvement II: Message Pipelining Detailed discussion on

the improvements are discussed next.

eOrderer improvement I: Separate transaction header from
payload

In Fabric 1.2, the entire transaction is sent to Katka for ordering by the
orderers. 'Transactions can be many kilobytes in length, resulting in
high overhead contact affecting overall efficiency. This impacts overall
performance and throughput.

Only transaction IDs are needed to achieve agreement on the trans-
action order, so sending only transaction IDs to the Kafka cluster will
result in a substantial increase in orderer throughput. As the consensus
on the transaction requires only the TrIDs. so if we send only the IDs
to the Katka, we obtain a significant improvement in the throughput.

Orderer extracts the transaction ID from the header and publishes this

18

ID to the Kafka cluster on receiving a transaction from a client.

eOrderer improvement II: Message pipelining: One transaction
couldn’t be processed before the previous transaction’s channel is iden-
tified, validity checked against a set of rules and forwarded to the
consensus system. Which was time consuming and gave very small
throughput.

So a pipelined mechanism is proposed that can process multiple incom-
ing transactions concurrently, even if they originated from the same
client. They maintain a pool of threads that process incoming requests
in parallel, with one thread per incoming request. A thread calls the
Kafka API to publish the transaction ID and sends a response to the
client when successful.

Pipelined mechanism:

eProcess multiple incoming transactions concurrently

eMaintain a pool of threads that process incoming requests in parallel.
with one thread per incoming request

New orderer architecture:
eIncoming transactions are processed concurrently
o' I'xID is extracted from header

eThe TransactionID is sent to the Kafka cluster for ordering

19

-

TxID

ordered TxID

Fo Orderer

[Clients J bl s L e XS | Assemble |j—(Block

Figure 4: Architecture of the new Orderer

e When receiving ordered TransactionIDs back, the orderer reassembles
them with their payload and collects them into blocks

The whole architecturer of the new orderer is shown on the Figure 4.

Improvement in the peering service: The peer does a number of

tasks like:

e Verify that the received message is valid.

eFor each transaction in the block, validate the block header and each

endorsement signature.
e Validate collections of transactions to read and write

eln either LevelDB or CouchDB, change the world state

eStore the blockchain log, with the corresponding indices, in the Lev-

elDB file system.

20

Multiple improvements are made to these peer nodes to increase the

throughputs. Like:

ePeer Improvement I: Replacing the world state database with a hash

table

ePeer Improvement II: Store blocks using a peer cluster

ePeer Improvement III: Separate commitment and endorsement
ePeer Improvement 1V: Parallelize validation

ePeer Improvement V: Cache unmarshalled blocks

Detailed discussion on the improvements are discussed below:

ePeer Improvement I: Replacing the world state database with
a hash table

For each transaction, the world state database must be looked up
and checked sequentially to ensure continuity across all peers. 1t is also
important for changes to this data store to occur at the highest possible
transaction rate. The world state is basically small relative to the large
amount of data. We need a solution so that billions of data can be

stored in memory. So. an in-memory hash table is proposed instead of

Level DB /CouchDB to store world state. The hash table:

eEliminates hard drive access when updating world state

21

eEliminates cost of unnecessary database redundancy itemePeer Im-
provement II: Store blocks using a peer cluster

Blocks are permanent. So they are ideally suited for stores of append-
only data.
We can imagine several types of data stores for blocks and world state
backups by decoupling data storage from the remainder of a peer’s
tasks, including a single server storing blocks and world state backups
in its file system, as Fabric currently does.
They suggest the use of a distributed storage cluster for optimal scal-
ing. Notice that with this approach, only a fraction of the chain is
included in each storage server, which motivates the use of distributed

data processing tools such as Hadoop MapReduce or Sparkb.

ecer Improvement III: Separate commitment and endorsement
Endorser peers also act as committing blocks. Endorsement and com-
mitment are both expensive operations. Although parallel transaction
processing on a cluster of endorsers may theoretically boost applica-
tion performance, additional work to replicate commitments on each
new node effectively nullifies the benefits.

To improve this, they propose to split the roles, where a committer peer
executes the validation pipeline and then sends validated blocks to a
cluster of endorsers who only apply the changes to their world state
without further validation. This step allows us to free up resources on

the peer. Here it is important that an endorser cluster, which can scale

22

out to meet demand, only splits off the endorsement role of a peer to

dedicated hardware.

ePeer Improvement 1V: Parallelize validation Both block and
transaction header validation are highly parallelizable, including veri-
fying sender permissions, implementing endorsement policies, and syn-
tactic verification.

They expand Fabric 1.2’s concurrency efforts by adding a full valida-
tion pipeline. Specifically, for each incoming block, one go-routine is
assigned to the shepherd via the block validation process. Each of these
cgo-routines subsequently allows use of the go routine pool that already
exists for transaction validation in Fabric 1.2. Therefore several blocks
and their transactions are tested for validity in parallel at any given

time.

ePeer Improvement V: Cache unmarshalled blocks Fabric 1.2
does not store previously unmarshalled data in a cache, so this work
has to be redone whenever the data i1s needed. To solve this problem,
a temporary cache of unmarshalled data is proposed.

Blocks are stored in the cache when in the validation pipeline and
whenever necessary, retrieved by block number. When every portion of
the block has been unmarshaled, it is processed for reuse with the block.
We implement this as a cyclic buffer that is as wide as the pipeline of
validation.

A new block may be admitted to the pipeline once a block is committed

and immediately overwrites the current cache location of the committed

23

Endorser

Fast Peer

Analytics

Figure 5: Architecture of New Peer

block. Since the cache is not needed after commitment and a fresh block

1s guaranteed to arrive only al

ter an old block leaves the pipeline, this is

a safe process. Remember that unmarshaling only adds, never mutates.

information to the cache.

New peer architecture:

e The fast peer uses an in-memory hash table to store the world state

e The validation pipeline is completely concurrent, validating multiple

blocks and their transactions

in parallel

e The endorser role and the persistent storage are separated into scalable

clusters and given validated blocks by the fast peer

e All parts of the pipeline make use of unmarshaled blocks in a cache

24

2.1.1 Performance analysis of Ordering and Peer Improvements

Orderer Improvement:

eWhen we send only the TrID to Kafka, it triples the average through-
put (2.8x) for a payload size of 4096 KB.

e Adding optimization O-2 leads to an average throughput of 4x which
increases orderer performance from 6,215 transactions/s to 21,719 trans-
actions/s, a ratio of nearly 3.5x.

Peer Improvement:

eBy using a hash table for state storage (Opt P-I), they doubled the
throughput of a Fabric 1.2 peer from about 3200 to more than 7500

transactions /s

eParallelizing validation (Opt P-II) adds an improvement of roughly

2,000 transactions/s

olf we consider all the peer optimizations together, the increase in a
peer’s commit performance is 7x from about 3200 transactions/s to
over 21,000 transactions/s

End-to-end throughput: This is the overall improvement in through-

put combining all the improvements and the results show:
eFabric 1.2 used to have about 3185 transactions/s

eFastFabric gives about 19112 transactions/s

2.1.2 Tangaroa

A team at Stanford developed a byzantine fault tolerant Raft [5]| algo-
rithm by making significant changes to the existing algorithm. Nodes
in Tangaroa send a hash value rather than the real data chunk before
the transaction is committed, reducing message overhead for aborted
transactions significantly. Hashing ensured that the local states of two
distinct nodes remained consistent, which in turn ensured that trans-

actions were handled in the same order.

2.1.3 Limitations

Existing methods that offer higher throughput are not Byzantine Fault
Tolerant and require extensive system resources. The Tangaroa has a

rather nonoptimal amount of overhead that make it unideal for Hyper-

ledger Fabric.

20

3 Proposed solution
3.0.1 Hashgraph

Hashgraph [6] is an asynchronrous Byzantine Fault Tolerant consensus
algorithm that uses google about gossip and virtual voting to achieve
consensus. This means that attackers will not be able to alter the or-
der in their favor as long as they do not have over 33.33% of the
stake.Hashgraph containarizes data in forms of events. Each event
contains timestamp, two hashes of two events below itself, self-parent.
other-parent, transactions, and digital signature. Haahgraph uses gos-
sip about gossip to reach consensus. A gossip sync is the synchroniza-
tion of information between two participants using the gossip protocol.
The data collected at the end of each gossip sync is stored in events
which 1s essentially a data structure containing, a timestamp, an array
of zero or more transactions, two parent hashes, and a cryptographic
signature. It then uses virtual voting to reach consensus. In this step.
it sorts the timestamps for each transaction and selects the median

timestamp as the consensus timestamp.

27

4 Experimental Analysis

4.1 Experimental Setup

We used Hyperledger Caliper on a virtual machine running Ubuntu
Linux with Intel Core 17 10th Gen CPU, 4GB RAM and 50 GB stor-
age. We conducted the experiment for querying transactions on a small
network consisting of two organizations and a peer node. We obtained
a set of five values for various performance metrics for each orderer
mechanism by running the experiment over a period of thirty seconds

each round.

4.2 Experimental Results

Our results show that there is an 80% increase in the throughput of
Hashgraph in contrast to Katka. There is also a slight decrease in

maximum latency. FastFabric requires more extensive system resources

to run. | |
407 .4 L5
S 1.6
E“ 400 =
5 = » 1.4
E 247 .8 =
; i | o
200 1515 : L
= 13
| | | |
Ralft Kafka Hashgraph Raft Kafka Hashgraph
Orderer Orderer

28

5 Conclusion

5.1 Summary

Our proposed solution is ideal for small scale blockchain networks on
Hyperledger Fabric as it does not require a lot of system resources. It
also provides Byzantine Fault Tolerance with minimal overhead and a

higher throughput.

5.2 Future Work

In the future we will explore the existing overheads in the authentica-
tion phase of Hyperledger Fabric to further optimize it. We will also
expand our experiment by testing it under various system configura-

tions and networks to derive more insights.

29

References

1]

4]

5]

6]

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin.
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christo-
pher Ferris, Gennady Laventman, Yacov Manevich, et al. Hy-
perledger fabric: a distributed operating system for permissioned

blockchains. In Proceedings of the thirteenth EuroSys conference,

pages 1-15, 2018.

Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and
Huaimin Wang. Blockchain challenges and opportunities: A sur-
vey. International Journal of Web and Grid Services, 14(4):352-375,
2018.

Vikram Dhillon, David Metcalf, and Max Hooper. The hyper-

ledger project. In Blockchain enabled applications. pages 139-149.
Springer, 2017.

Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Ke-
shav. Fastfabric: Scaling hyperledger fabric to 20 000 transac-

tions per second. International Journal of Network Management,

30(5):€2099, 2020.

Christopher Copeland and Hongxia Zhong. Tangaroa: a byzantine

fault tolerant raft, 2016.

Leemon Baird, Mance Harmon, and Paul Madsen. Hedera: A public

hashgraph network & governing council. White Paper, 1, 2019.

30

