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Object Tracking using End-to-End Detection

and Deep Association Metric

Abstract

Object Tracking has multiple major applications such as video surveillance for se-

curity, traffic control, contact tracing, human computer interaction, gesture recog-

nition, augmented reality, video editing, robotics etc. Often, to perform real-time

tracking, video surveillance applications forgo detection accuracy in favour of de-

tection speed. This paper proposes a combination of object detection and object

tracking algorithms that gives an improvement on both detection accuracy and

speed compared to existing video surveillance solutions. It also includes a method

to trace the movement of a target from video surveillance footage and visualise

the target’s path on a 2D map.

Keywords: Object Detection, Object Tracking, End-to-End Detection, Deep

Association Metric, Mapping movement
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1 Introduction

1.1 Overview

Object Tracking is often used as an umbrella term for both Object Detection

and Object Tracking itself. We detect before we track. Using Object detection

algorithms, the different instances of a particular class, e.g. people, cats, dogs,

cars, building etc., can be detected. Object tracking hereafter, estimates where the

detected object would be present in the next scene by using previous information

collected from earlier frames.

A visual surveillance system extracts information from a large scale dataset. The

large scale dataset is usually taken from multiple cameras spanning the area under

surveillance. There are various technologies such as CCD cameras, night vision

devices like goggles and thermal imaging cameras. In this paper, we use the COCO

dataset which is the industry standard. COCO is a large-scale object detection,

segmentation, and captioning dataset which has 1.5 million object instances, 80

object categories/classes and 250,000 people with keypoints.

Given a video surveillance footage of an area, the aim is to effectively track a

specified target and to highlight the target’s movement and create a path trace on

a 2D map. To achieve this goal we need to build a surveillance system that offers

3 things - object detection, object tracking and mapping.

The system visualisation would look as follows:
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(a) Video (b) Map

Figure 1: Position 1

(a) Video (b) Map

Figure 2: Position 2

(a) Video (b) Map

Figure 3: Position 3
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(a) Video (b) Map

Figure 4: Position 4

1.2 Problem Statement

Using Object Detection for tracking is possible but it is extremely computationally

expensive. This is because doing so means having to perform a detection per frame.

Imagine having a 20 second 60fps (frame per second) video, if it takes roughly 1

second to perform a detection then it would take 20 minutes to compute a track

for those 20s. Thus, it is quite obvious this is not a feasible choice for real-time

tracking. Object tracking, however, is not class-dependent. In fact, it can track

any object that has been marked via the detection algorithm. This is done by

only looking for the detected object’s distinctive features in the frames that come

after. In existing video surveillance systems, the speed-accuracy trade-off usually

leans towards speed to reduce the computational load and also because speed is an

important metric to consider when performing tracking in real-time. Therefore,

to develop an efficient object tracking system, there needs to be a combination of

detection and tracking algorithms that will optimise the trade-off between speed

and accuracy and also include a comprehensive way to visualise the movement of

a target.

1.3 Motivation and scope of research

The current standard for object tracking systems prioritizes speed over accuracy.

The systems allow some mis-identifications to maximise the overall inference speed.

While speed is certainly important in real-time applications, this trade-off also
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leads to serious consequences when applied to real-life scenarios. There have been

multiple cases of wrongful arrests because of surveillance systems incorrectly iden-

tifying individuals. This problem sets the premise for our motivation behind our

research. This paper discusses how to build an object tracking system that prior-

itizes accuracy while also displaying reasonable speed. The scope of this research

not only limits itself to building a robust surveillance systems, but may also be

applied to other avenues such as contact tracing.

1.4 Research Challenges

The typical challenges of background subtraction in the context of video surveil-

lance have been listed below.

• Illumination Challenges : The models need to be robust and adapt to grad-

ual changes in the environment. Abrupt changes in lighting conditions can

occur both in outdoor and indoor environments. In outdoor cases such a

scenario occurs when there is a fast transition from the sky being cloudy to

it becoming completely clear. The position of the sun and the way sunlight,

in general, illuminates the object of interest compared to the appearance of

the background is what gives rise to this challenge. In an indoor setting, a

similar situation is caused by the light source of the room e.g. turning it

on/off.

• Dynamic Background : Handling background dynamics is extremely difficult

due to its irregularity. Object tracking usually uses velocity to predict where

the object is going to be next, so in the case where the background has

significant movement it becomes difficult to deduce which movement should

be classified as background movement and as target movement.

• Occlusion: Occlusion (partial/full) effects to process of discerning which is

the background and which is the object of interest. This is an unpredictable

phenomenon because at any time the object can be obstructed from the view

of the camera - a person can pass by, the object itself might move out of the
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camera frame etc.

• Clutter : Having clutter in the background makes segmenting out the moving

objects in the foreground an even more difficult task.

• Camouflage: Tracking considers the distinguishable features of the object

to predict its next position. However, if the object itself looks very similar

to the background then it becomes even more difficult to not only make a

prediction but also to correctly detect the object in the first place. It is

important for surveillance systems to be especially robust in such a case so

that criminals cannot take advantage of such a flaw.

• Presence of Shadows : The steps which come after background subtraction,

such as shadow separation and classification, are often adversely affected due

to the shadows of foreground objects overlapping with each other.

• Video Noise: In real life scenarios, and especially in the case of surveillance,

it is common to find the superimposition of noise and the main video signal.

The phenomena might occur due to a number of reasons such as sensor noise

or compression artifacts etc. This causes video quality degradation and adds

to another challenge during background subtraction.

1.5 Thesis Outline

In Chapter 1, a brief outline of the topic in hand was discussed. Chapter 2

deals with a more in-depth study of the research area and is primarily focused on

two parts - Object Detection Algorithms and Object Tracking Algorithms. It also

includes a study on the state of the art algorithms used in video surveillance and a

detailed study on the algorithms used in the proposed solution. Chapter 3 delves

into the overall system of the proposed solution and provides a more detailed

outlook. In Chapter 4, the current progress stage of the proposal is discussed.

Chapter 5 wraps up the proposal and includes all the references used.
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2 Background study

2.1 Object Detection

Object detection is the task of identifying and locating objects of a certain class

in digital images. On a high-level overview, all object detection algorithms can be

classified into two types - One-stage methods and Two-stage methods.

One-Stage Methods: (prioritises speed over accuracy)

• These methods use a single deep neural network for detection.

• Ex: SSD, YOLO and RetinaNet.

Two-stage Methods: (prioritises accuracy over speed)

• In the first stage, ROIs (Regions of Interest) are proposed

• In the second stage, the previously proposed ROIs are processed by a clas-

sifier to look for targets.

• Ex: Mask R-CNN, Faster R-CNN and Cascade R-CNN.

2.1.1 Single Shot MultiBox Detector (SSD)

SSD[4], proposes a set of default boxes over different aspect ratios and scales for

every feature map location. These default boxes are then searched for the presence

of any target objects and assigned scores during prediction time. SSD, then adjusts

these default boxes to accommodate the object shape. Multiple features maps of

various resolutions are combined by the network to deal with objects of various

sizes.
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Figure 5: SSD Framework

The SSD framework follows the steps below:

• During training, SSD needs to be provided with the input images annotated

with the ground truth boxes.

• As noticeable in (b) and (c), the default boxes are of different size and

aspect ratios and are evaluated using convolutions in several feature maps

of different scale (can be 8x8 or 4x4 etc).

• The shape offsets and scores for all target objects are predicted for each

default box as ((c1, c2,...,cp)).

• During training, default boxes are matched with the ground truth boxes

and if it’s a match then they are classified as positives and the remaining

are negative.

• The loss function in this model is a weighted sum between localization loss

(e.g. Smooth L1) and confidence loss (e.g. Softmax).
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The pros of SSD:

1. Simple.

2. Easy to train.

3. Straightforward to integrate into systems.

4. Provides a unified framework for both training and testing.

5. Gives a better accuracy for input images which are of smaller size

The cons of SSD:

1. Faster R-CNN would be a better choice than SSD in the case of objects of

a small-scale.

2. Accuracy and the number of default boundary boxes proposed are directly

proportional however this greatly reduces speed due to increased computa-

tions.

3. SSD has lower localization error compared with R-CNN but more classifica-

tion error when target objects are of similar classes.

2.1.2 You Only Look Once (YOLO) [5]

The YOLO framework follows the steps below:

1. Bounding Box Prediction

2. Class Prediction

3. Predictions Across Scales

4. Feature Extractor: Darknet-53
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Bounding Box Prediction

Figure 6: YOLO

• The principle is exactly same as YOLOv2.

• Predictions of tx, ty, tw, th are made.

• The loss function used during training is sum of squared error loss.

• Objectness score is a logistic regression prediction. 1 if the intersection

between the bounding box prior and ground truth object is far greater than

any other bounding box prior. Only one bounding box prior is assigned for

each ground truth object.

Class Prediction

• Softmax is not the choice for classification.

• Independent logistic classifiers are used and binary cross-entropy loss is the

loss function that is used. This is mainly to account for cases of overlapping

labels for multi-label classffication. Example: YOLOv3 moved to a more

complex domain such as Open Images Dataset.
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Predictions Across Scales

• 3 different scales are used to extract features

• Multiple convolutional layers are added to the base feature extractor Darknet-

53 (discussed more elaborately in the next section).

• The last layer then predicts the bounding box, objectness and class predic-

tions.

3 boxes at each scale are used [4] for running on the COCO dataset. As a re-

sult, the output tensor is N×N×[3×(4+1+80)], where the number correspond to

4 bounding box offsets, 1 objectness prediction, and 80 class predictions. The

encoder-decoder architecture consists of a feature map extracted from 2 layers

prior which is then upsampled by times 2. A feature map is also extracted from

earlier in the network and combined with the upsampled features via concatena-

tion. Thus, more meaningful semantic information is obtained from the upsampled

features and more detailed information from the previous feature map. Additional

convolutional layers then process this concatenated feature map, and eventually

predict a similar tensor, but now it will be twice the size. A better bounding

box prior is then computed using K-means clustering. Lastly, on COCO dataset,

(10×13), (16×30), (33×23), (30×61), (62×45), (59×119), (116×90), (156×198),

and (373×326) are used.

Feature Extractor: Darknet-53

• In YOLOv3, a much deeper network (compared to Darknet-19 used in

Yolov2) Darknet-53 is used. It has 53 convolutional layers.

• Batch Normalization is used in both YOLOv2 and YOLOv3.

• The shortcut connections are shown in Figure 7.

• The above comparison is done on 1000-class ImageNet using a Single Crop

256x256 image. The testing was carried out using a Titan X GPU.
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Figure 7: DarkNet 53

Figure 8

• Darknet-53 is 1.5 times faster than ResNet-101 and 2 times faster than

ResNet-152.

• Performance-wise it is better than ResNet-101 and achieves a similar level

performance compared to ResNet-152.

2.1.3 RetinaNet [10]

RetinaNet is a one stage method. It generates the bounding box and the class

probabilities using one deep neural network. It uses the novel focal loss to back-

propagate and learn. The focal loss gives higher weight to hard examples and a
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smaller weight to easy examples. It uses a CNN architecture to extract important

features from the input. The CNN backbone uses a combination of ResNet 50

and FPN. The input is then passed to a feed forward network that uses a softmax

classifier for class prediction and regression to predict the bounding boxes.

There are four major components of a RetinaNet model architecture.

Figure 9: RetinaNet Architecture

1. Bottom-up Pathway - The CNN backbone is comprised of the ResNet archi-

tecture. It takes in the input and generates an activation map that extracts

important features from the input. The CNN architecture is scale invariant.

2. Top-down pathway and Lateral connections - The top down layers and the

bottom up layers are of variable sizes. Therefore it is required to merge the

connection between them such as to ensure that they are of the same size.

To do this, the top down approach upsamples the feature maps.

3. Classification subnetwork - The classification network is responsible for gen-

erating the class labels.It predicts the probability of an object being present

at each spatial location for each anchor box and object class.

4. Regression subnetwork - The regression subnetwork is used to generate the

bounding boxes. The network learns such as to increase the IOU overlap

between the predicted bounding box and the ground truth.

One stage methods suffer from a class imbalance problem. To achieve this, the

cross entropy loss is replaced with the novel focal loss. Easy examples are defined

as predictions with high confidence i.e high probabilities whereas hard examples
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are defined as predictios with low confidence i.e low probabilities. The focal loss

emphasizes on these hard examples. So the model suffers from a higher loss

when misidentifying hard examples and smaller loss when misidentifying the easier

problems. This helps relieve the class imbalance problem and the model is not

biased toward classes with greater number of examples.

2.1.4 Mask Recurrent Convolutional Neural Network (Mask R-CNN)

[6]

Mask R-CNN is a two stage method. The first network is used to generate region

proposals of where the objects may be located and the second network uses these

region proposals from the first network to generate bounding boxes and class la-

bels. The region proposal network of mask RCNN is the same as that of Faster

RCNN. It differs in its second stage. in addition to generating the class and bound-

ing box predictions, it also generates a binary mask for each region of interest.

The CNN backbone is built on the ResNet architecture.The early layer of the net-

work detects low-level features, and later layers detect higher-level features. Mask

RCNN is a image segmentation algorithm that separates the foreground from the

background. This image segmentation procedure leads to many inaccuracies. This

is because it is dependent on the specific pixel values, and hence cannot accurately

handle occlusions. To counter this problem, Mask RCNN uses the ROIAlign fea-

ture. It handles the occlusion problem by sampling the CNN feature map and

then using bilinear interpolation to fill in the missing values. This is then passed

onto a CNN architecture which takes the proposed regions and generates a binary

mask for them.

2.1.5 Faster R-CNN + Feature Pyramid Network (FPN) [7]

Feature pyramids are a fundamental element in detection methods for detecting

targets at various ranges. The pyramids comprise an integrated multi-level, pyra-

midal hierarchy of extensive convolutional layers.

In Feature Pyramid Network (FPN) a top-down architecture with lateral con-
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nections is built for building high-level semantic feature maps at all scales. FPN

showed noticeable development as a general feature extractor in numerous areas.

A deep ConvNet computes a feature hierarchy bu succeeding through many

layers, and with sub sampling layers the feature hierarchy possesses an intrinsic

multiscale, pyramidal configuration.

This feature hierarchy integrated within the network generates feature maps of

varying spatial resolutions but adds considerable semantic gaps made by varying

depths.

The aim is to easily leverage the pyramidal configuration of the feature hierar-

chy of a ConvNet while building a feature pyramid that holds powerful semantics

at all levels.

2.1.6 Cascade R-CNN [8]

Cascade R-CNN is a multi-stage method of object detection. It has a series of de-

tectors trained step by step with increasing Intersection over Union (IoU) thresh-

olds, to be progressively more particular against close false positives. At each

stage, it ensures that the output of a detector is a useful distribution for training

the succeeding higher level detector. This method of training assures that all de-

tectors have a positive set of cases of comparable size, decreasing the overfitting

problem.

As the name suggests, Mask RCNN is a multi-stage continuation of the R-CNN,

where detection steps are more profound into the cascade. The detection stages

are sequentially more selective against close false positives.

The regression task is broken down into a sequence of shorter steps. In Cascade,

R-CNN is a cascaded regression problem. It depends on a cascade of specialized

regressors. Cascaded regression is a resampling procedure that changes the dis-

tribution of hypotheses to be processed by different stages. Because it is used at

both training and inference, there is an insignificant difference between training

and inference patterns. The multiple specialized regressors {fT , fT-1, · · · , f1}are

optimized for the resampled distributions of the different stages.
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The main areas of improvements of Cascade R-CNN are that it diminishes overfit-

ting issues. Next, the detectors of the deeper stages are optimized for larger IoU

thresholds.

2.1.7 Comparison of Detection Algorithms

The following table shows the comparison of different one stage and two stage

methods. The MS COCO dataset was used to generate these results. We can

quantitatively prove what we had mentioned before. Two stage methods perform

significantly better than one stage methods when it comes to accuracy. However,

due to their bulky architecture, two stage methods perform poorly when it comes

to speed.

Figure 10: Accuracy Comparison of Detection Algorithms

Figure 11: Speed Comparison of Detection Algorithms

2.1.8 End-to-End Object Detection with Transformers (DETR) [9]

The DETR architecture comprises of three basic blocks - a CNN backbone, a

transformer encoder-decoder architecture and a feed forward network. It uses

a bipartite matching loss function to back-propagate and update parameters. It
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generates bounding box coordinates for the detected objects and also returns class

probabilities.

CNN Backbone

The CNN backbone takes a RGB image as input, performs a series of convolution

operations and generates a compact feature representation of the image i.e the

width and height of the output is smaller than the input, however, the number of

channels increase.

Transformer encoder

The specialty of the transformer architecture is its attention mechanism. It is able

to refer or tend to previous inputs similar to RNN and LSTM. However, while

the latter models have short reference windows, transformers have significantly

longer windows. Also, to reduce computation speed, unlike RNN and LSTM

which process input sequentially, transformers process inputs parallelly. They

achieve this by adding positional encoding to the input. The encoder architecture

consists of multi-headed attention layers, linear and normalisation layers. They

generate attention weights which are then added to the input. This output is then

passed onto the decoder architecture.

Transformer decoder

The decoder takes the output from the encoder module as well output embeddings

known as objects queries as input. The objects queries are learned parameters.

They are randomly initialised and are updated as the model learns. The decoder

architecture is auto regressive and takes previous output as input. Similar to

the encoder architecture, it consists of multi-headed attention layer, linear and

normalisation layers. The outputs from the decoder architecture is then passed

on to a feed forward network for prediction.

Feed forward network
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The output from the decoder is passed to a feed forward network which generates

two outputs- bounding box coordinates and class probabilities. The output is

passed to a FFN with ReLU activation function and a final linear prediction

layer. The object queries define the number of outputs. If N object queries are fed

into the deocoder, it predicts N bounding boxes. The FFN generates the width

and height of the box along with its normalised center coordinates. A softmax

classifier is used to generate the class probabilities. In our model, we used the MS

COCO dataset which consists of 80 classes, hence the softmax classifier predicts

the probability for 80 different classes. If N objects are not present in the image,

the other predictions are defined as null.

Loss Function

A bipartite matching function is used as the loss function. It creates a one to one

association between the predicted outcome and ground truth such as to reduce

the total cost.

Figure 12: Bipartite Matching Loss

Lmatch() is a pair-wise matching cost between ground truth yi and a prediction

with index σ (i). The optimal assignment described above is achieved through the

Hungarian assignment algorithm. It efficiently performs a series of permutations

to generate the best match with minimal cost.

Figure 13: Hungarian Assignment
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The bounding box loss i.e the box loss shown above considers the intersection over

union of the predicted bounding box and the actual bounding box. It is defined

as,

Figure 14: Box Loss

2.1.9 Comparison with DETR

We compare DETR with the one-stage method YOLO and the two-stage method

Faster RCNN. YOLO is the existing SOtA for object tracking eventhough its

accuracy is lower than Faster RCNN. This is because Faster RCNN has a very

small FPS which makes it unsuitable for real time tracking. Hence, DETR seems

to optimize this tradeoff between speed and accuracy while being as accurate as

Faster RCNN but consuming half the computational power.

Figure 15: Comparison with DETR

2.2 Object Tracking [1]

The aim of object tracking is to trace a motion of the objects in successive video

frames. Traditional Object Tracking Algorithms include:

• Mean Shift Method

• Optical Flow Method

• Multiple Hypothesis Tracking
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• Joint Probabilistic Data Association Filter

The State of the Art Tracking Algorithms are:

• Simple Online Real-Time Tracking (SORT)

• Simple Online Real-Time Tracking with Deep Association Metric (Deep

SORT)

2.2.1 Mean Shift Method

The mean-shift algorithm is an efficient approach to tracking objects whose ap-

pearance is defined by histograms. Mean Shift Method is a tool for finding modes

in a set of data samples, manifesting an underlying probability density function

(PDF) in Rn.

Strengths:

• This tool is application independent

• Mean Shift Method is fit for data analysis

• Does not consider any former shape on information groups

• Has the ability to manage arbitrary feature spaces

• Just ONE parameter to select

• h (window size) has a physical meaning, unlike K-Means 21

Weaknesses:

• The size of the window, a.k.a bandwidth selection, is not insignificant The

size of the window is unsuitable it can prompt methods to be merged, or

produce further “shallow” methods. Use adaptive window size
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2.2.2 Optical Flow Method

Optical flow is a method applied for object tracking which observes the movement

of features due to the relative movement across frames between the clip and cam-

era. For instance, if we are detecting the motion of a vehicle travelling left, we

can determine the motion vectors in frame 2 relative to frame 1. Now if our the

vehicle is travelling at a specific speed, we can use these motion vectors to track

and even estimate the trajectory of the object in the following frame. A regularly

applied optical flow tool is called Lucas Kanade.

2.2.3 Multiple Hypothesis Tracking

MHT produces a tree of possible track hypotheses concerning each object, thus

producing a methodical solution to the information association query. We can

consolidate MHT with various filter models, for example, the ones implemented

by the IMM (interacting multiple model) methods. Weaknesses:

• No Occlusion Handling

• Uses up a lot of computational power for group tracking

2.2.4 Joint Probabilistic Data Association Filter

Human tracking in video is vital for areas like interactive multimedia, activity iden-

tification, and monitoring. Two of the principal difficulties in tracking are forming

sufficient features for tracking and fixing information uncertainties to outline tra-

jectories. Joint probabilistic data association filter is a silhouette based tracker

with decreased complexity for determination of hurdles related to measurement-

to-track.

JPDAF contributed in the following three areas. Firstly, the application of

geometric limitations in decreasing unreliability in computations to any arbitrary

degree of precision. Also, JPDAF is performed like table lookup allowing parallel

tracking of a number of objects. And lastly, to track people a crowd, several feature

clustering is employed to the silhouette region to distinguish uniform area for
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tracking. Output from four video sequences that were used for testing proves real-

time execution and great accuracy over mean shift method of tracking provided

the identical primary human positions as input.

2.2.5 Deep SORT [2]

DeepSORT is an object tracking algorithm and the characteristic that makes it

unique and superior to all tracking algorithms is that it tracks based on not only

the distance travelled by the object, or the velocity of the object but also based

on the appearance of the person. DeepSORT enables this feature to be added by

calculating deep features for all bounding boxes and uses the correlation between

deep features to factor into the tracking logic.

he first step of DeepSORT is the essential component called a Kalman Filter.

The Kalman tracking scenario is set on eight dimensions (u,v, a,h,u’,v’, a’,h’).

(u,v) represents the center of the bounding box. a represents the aspect ratio and

h is the height of the box. The additional variables namely u’,v’,a’,h’, are the

respective velocities of the variables.

The variables hold absolute position and velocity factors as we are considering

the velocity of the model is linear. The Kalman filter aids in reducing noise and

employs the previous state in outlining a suitable fit for bounding boxes.

For every detection, a ”Track” is created. The track has all the required state

knowledge. It also has a parameter to track and eliminate tracks that had their

latest successful detection quite a long ago, as those objects are supposed to have

left the scene already. To delete duplicate tracks, a threshold is set for the mini-

mum number of detection for the first few frames.

After Kalman Filter is done tracking the current bounding boxes, the following

task is to incorporate upcoming detections with the upcoming predictions. To

solve the association of a track with incoming detection, we require two elements:

a distance metric to quantify the association and an effective algorithm to associate

the data.
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The founders of Deep SORT chose the squared Mahalanobis distance which is

an effective metric when working with distributions, to include the unreliability

from the Kalman filter. Using Mahalanobis distance is more reliable than eu-

clidean distance as we are adequately calculating the gap between 2 distributions

of the Kalman filter. As the efficient algorithm, Deep SORT authors selected

the standard Hungarian algorithm, as it is is a very powerful yet uncomplicated

combinatorial optimization algorithm that deals with the assignment problem.

The appearance feature vector

So far, we had an object detector that provided us with the detections. Then the

Kalman filter tracked detections and provided us with missing tracks. Lastly, the

Hungarian algorithm does the association. Kalman Filter itself is quite powerful.

However, it is incapable of tracking effectively in numerous real-world situations

like occlusions, various perspectives, etc. To rectify this, the founders of Deep

SORT included a new metric based on how the object looks. Hence, the designers

first constructed a classifier over the dataset. Afterwards, the classifier was trained

until it attained a fairly reliable accuracy. Lastly, the fn=inal classification layer

was stripped. Considering a traditional classifier architecture, they were left with

a dense layer that generated a single feature vector, expecting to be classified.

That feature vector was the “appearance descriptor” of the subject being tracked.

Figure 16: Overview of the CNN architecture in Deep SORT

In the above diagram showing the layers of the classifier, we can see a layer labelled

“Dense 10”. The ”Dense 10” layer will be the appearance descriptor for the clip
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under consideration. Once training the classifier is complete, all the clips of the

detected bounding boxes from the image are sent to this network to achieve the

“128 X 1” dimensional feature vector.

The cost function is as follows:

D = Lambda * Dk + (1 - Lambda) * Da

Where,

Dk= Mahalanobis distance

Da = Cosine distance between the appearance descriptors

Lambda = weighting factor.
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2.3 Existing Works

The current state of the art visual surveillance technique is a combination of

YOLOv3 and DeepSORT.

In the YOLO+DeepSORT implementation, visual object tracking is performed on

videos by training a YOLOv3 detector on the COCO data set. The dataset com-

prises 800 images that contain objects of 6 distinct classes. A YOLOv3 detector

performs the object detection is done followed by a DeepSORT tracker performing

tracking of the objects that fall under the 6 specific classes. The authors used the

Python language to implement the system. The classes upon which they trained

the system were: Human, Car, Bus, Truck, Bike and Motorbike.

• The code was executed in Google Colab where the models ran through 320

epochs.

• Using the LabelImg tool, the 800 images were annotated one by one

• The Pytorch library was also used on the data set during training.

• Frames were named using the YOLO format.

• Out of the 800 images, 200 images were utilised for validation.

• Upon annotation, a .txt extension was added to the images

After finishing labelling, the next step is to place the images and annotations/labels

in a directory. The information can either be sent as parameters or hardcoded

within the main file with the help of the PyTorch library.

After training, the final output is a weights file. The YOLOv3 object detector

uses this weight file. The model accepts the input video and then produces a total

number of frames. The frames are then processed by the object detector.

YOLOv3 generates 27 bounding boxes. The bounding boxes will have a class

ID and confidence values assigned to them. The detected bounding box is later

furthered to the DeepSORT tracker. DeepSORT assigns each bounding box a

unique identification number while tracking.
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3 Proposed Solution

3.1 Skeleton of Proposed System

The skeleton of the proposed system can be divided into two parts - Detection

and Tracking. In the detection stage, we take video footage as input and generate

bounding boxes which represent the detected objects in the video frames. We then

pass these bounding boxes to the tracking module which associates a unique ID

with each detection that enables us to track objects across frames. We perform

detection using DETR and tracking is implemented using Deep SORT.

3.2 Flowchart

The diagram below describes the model flowchart. The input is a video feed,

where the frames follow an aspect ratio between 0.5 to 2, and no dimension can be

greater than 1600. The CNN backbone used is the Resnet 50 which consists of 50

convolution layers. The transformer encoder consists of 1 multi-headed attention

layer, 2 linear layers, 3 dropout layers and 2 normalization layers. The decoder

consists of 2 multi-headed attention layer, 2 linear layers, 4 dropout layers and 3

normalization layers.The output is passed to a FFN. The result is filtered to detect

only humans, and bounding boxes are generated. These bounding boxes are then

passed onto the Deep SORT architecture. This tracking module uses the Kalman

filter and a CNN model as described previously to generate bounding boxes with

unique IDs.

4 Result Analysis

In order to compare the results of our proposed solution with the existing solution,

we ran both the models on the same dataset, and we observed some significant

improvements. We classify the two category of metrics as - missed detections and

identity switches.
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Figure 17: Flowchart of Our Proposed System

4.1 Missed Detections

The first major improvement we observed is the degree of missed detections. Our

proposed solution is able to better handle occlusions and other shortcomings of

the existing solution. While the YOLO + Deep SORT model missed quite a few

objects, our proposed model is more robust. This can be observed in the figure

below.

Figure 18: Missed Detections
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4.2 Identity Switches

The next area improvement we observed is the number of identity switches. The

YOLO + Deep SORT model experiences a lot of identity switches. It assigns the

same ID to multiple people and also assigns the same person multiple IDs. This is

prominent if there are occlusions or when the person exits the frame. The DETR

+ Deep SORT model we proposed reduces the number of identity switches. An

example is given below.

Figure 19: Identity Switches

4.3 Result Overview

We classified two metrics for result analysis - Missed Detections which is defined

as the average number of missed detections per video and Identity Switches which

is defined as the average number of identity switches per video. We compared the

results on our curated dataset which consists of 50 videos, each 5 seconds long. It

comprises of 25 easy and 25 hard examples. Easy examples are defined as those

with minimal occlusions or obstructions on which both the models are expected

to perform well. Hard examples have multiple cases of occlusions, obstructions

and different viewing angles to make prediction harder. As we can see from the
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figure below, the performance of our model is better than the existing solution.

For easy examples the differences are not as drastic. The difference in performance

becomes significantly prominent when tested on the hard examples. Our model

consistently outperforms the existing solution in both metrics.

Figure 20: Result Analysis

30



5 Conclusion and Future Works

5.1 Conclusion

This 3 step system aims to provide a more visual, fast and accurate surveillance

system that incorporates the use of newer technology and has the potential for

mass use. Our contribution here is solving some of the key problems such as

occlusion handling, the need for specified target detection and different lighting

conditions by introducing DETR into the system model. It has rooms for growth

and further works and can act as a base for such endeavours.

5.2 Future Works

Improving the DETR Architecture

The system is developed around the baseline DETR architecture. Further im-

provements can be made to this architecture to improve the performance of our

system.

Predicting Paths We can further train our model to give predictions regarding

the path taken by an individual when that data is not available. This will be es-

pecially useful when considering regions outside the surveillance area or in dealing

with missing surveillance footage.

Preventing Privacy Breach The primary concern with surveillance systems is

the implications of a privacy breach. Since we are dealing with sensitive informa-

tion, it is essential that this data is protected. This may be achieved by creating a

distributed architecture. We can apply federated learning to obtain the gradients

and then upload that model to a blockchain. This ensures that the model only

has access to the gradients and not the actual data.
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