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Abstract

In this thesis, the implementation of machine learning-based object detection algorithms in
computer vision 1s discussed. The key focus 1s the detection and identification of different
types of vehicles found in Bangladesh in real-time. Vehicle detection is one of the fundamental
requirements for applications like traffic surveillance and autonomous cars. It i1s more
challenging in Bangladesh because of the irregular traffic, numerous types of vehicles, and the
lack of a healthy dataset. Different neural networks were trained using YOLOv3, YOLOv4-
tiny, and YOLOVS on the “Dhaka Traffic Detection Challenge Dataset™ for the classification.
Both YOLOv3 and v4-tiny were run on the Darknet framework, trained on a moderately
powered computer. YOLOvS ran on PyTorch and the model was trained on Google
Colaboratory, a cloud-based platform. Codes were written in Python 3.6. Roboflow, an online-
based computer vision application, was used to organize the dataset for training. For real-time
detection, an IP camera was used. The camera is capable of streaming video wirelessly without
significant lag. The results of different models are compared. YOLOvS performed the best
among the models and produced the most promising results. The model took not more than 50
milliseconds to process each frame of the video feed on our moderately powered workstation.
Which is good enough to detect vehicles in real-time. It was also able to detect more vehicles
accurately that the other two models. This research has great potential and can be considered a

step forward towards smart traffic systems and autonomous vehicles in Bangladesh.
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Chapter 1

Introduction

1.1 Vehicle Detection

With the recent developments in self-driving cars and smart traffic management systems, the
importance of vehicle detection i1s ever rising. Vehicle detection is where we make the
autonomous systems see and recognize traffic vehicles in order to take necessary decisions
regarding vehicle management, allocation of resources, traffic control etc. based on the
information obtained. Different methods have been used in this field such as using
magnetometers [1], ultrasonic sensors [2], radar sensors [3], infrared optical sensors [4],
microphone arrays [5] and such. But they can be very difficult to implement for applications
of real time traffic detection and self-driving cars. The task 1s even more difficult for
Bangladesh because of some of the unique vehicles and challenging traffic environment we
have here. For example, 1t can be quite daunting to make any autonomous system understand
the complex geometry of a Rickshaw and distinguish from that of a bicycle in a congested
traffic environment in real time using conventional methods. To make the work easy and
viable, in our research, we took the aid of machine learning based computer vision to train a
neural network to detect and identify 21 classes of typical vehicles found in Bangladesh. To
make the systems see vehicles in real time we chose the YOLO [6] architecture built on Darknet
[7] and PyTorch [8] frameworks.

1.2 Object Detection vs. Image Classification

Object detection and image classification are two of the classical problems of computer vision
and image processing. There 1s a difference between classification and object detection. In
classification, we predict just the name of the object, usually using a CNN. But in object
detection we also draw bounding boxes around the object to locate them within the image as

demonstrated in Figure 1.1 [9]. This 1s more difficult because of multiple reasons. There could
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be multiple objects within the same 1mage, so the output layer length cannot be a constant

anymore.

A crude solution this problem would be to select different regions of interest from the image at
first, and then use a CNN to classify the object within that region like R-CNN shown in Figure
1.2, But the problem 1s that the objects can appear in different locations and have different
aspect ratios. Therefore, the algorithms needs to select a huge number of regions, requiring a

lot of computational power.

Figure 1.1: Classification vs Object Detection

1.3 Real-Time Object Detection

For our problem of vehicle detections, we need our system to perform object detection fast
enough to be implemented in real time applications. The input to our detection system will not
just be a single image but a live video feed from a camera which is actually many images
captured within a small period of time. So the detection algorithm has to perform processing
of a lot of images very fast. This possesses a big challenge and requires an efficient architecture
along with machines of adequate computational power. Before YOLO, many machine learning
based object detection architectures such as R-CNN [10], Fast R-CNN [11] and Faster R-CNN
[12] tried to solve the issue of real-time processing and made improvements in their

consecutive versions.
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Figure 1.2: R-CNN Architecture: Extract Regions, then Classify

But among all of them YOLO 1s the fastest in both training time and inference time. That 1s
why for our research of detecting vehicles in real-time, we chose YOLO. YOLO 1s orders of
magnitude faster (45 FPS) than other object detection algorithms [13]. Because YOLO used
one single convolutional network that predicts the bounding boxes and the class probabilities

for these boxes as demonstrated in Figure 1.3.

Bounding boxes + confidence

S x S grid on input Final detections

Class probability map

Figure 1.3: YOLO Architecture: A Single CNN that Detects Objects
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Chapter 2

2.1 Literature Review

With the advances of deep learning and convolutional neural network, in the past decade object
detection has reached a significant progress. Computer vision have witnessed an impressive
improvement for higher accuracy, instance segmentation and object recognition. Also with the
evolution of Graphic Processing Unit (GPU), real-time object detection becomes for faster and

realizable. Here we will investigate some great works based on object detection.

1. A comparison was proposed by Bilel at el. [14] for vehicle detection between Faster R-
CNN and YOLOVv3. It was based on precision, F1 score, recall, quality and processing
time. The study shows that YOLO out performs R_CNN for most of the pictures.

2. Hou-Ning at el [15] suggest an online network architecture from a series of picture to
track and detect vehicles. Still image of different angle 1s used for this purpose which

extend the working load for detecting vehicles.

3. A bidirectional cooperation between recognition and tracking 1s analysed by Forest: at
el. [16], these assigns a semantic levels, establishing identity and pose correspondence

between objects detected at various time instants.

4. Zehang Sun atel. [17] explore multi-scale driven hypothesis generation and appearance
based hypothesis verification to present an in-vehicle real-time monocular precrash
vehicle detection system. Haar Wavelet decomposition for feature extraction and
Support Vector Machines (SVMs) for classification were used here for appearance-

based hypothesis verification.

5. In another research paper [ 18], they used same methodology to detect vehicle based on

on-road video where the camera was mounted on the vehicle itself
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6. Based on YOLOV2 Jun Sang at el. [19] proposed their research for vehicle detection
where k-means++ clustering algorithm was used to cluster the vehicle bounding boxes
with 6 anchor boxes of different sizes. Their results shows that the mean Average

Precision (mAP) could reach 94.78%.

7. Vehicle detection is performed image from UAV, based on optimal dense YOLO
method by Zh1 Xu at el. [20]. This research greatly beneficial for detection of small

targets and designed for the characteristics of vehicle targets.

8. Real-time detection 1s proposed by Shaobin Chen at el. [21] for embedded system and
Yolo v3-live was used as the algorithm which reduced the complexity of computing of

the embedded operating devices.

9. Xiangwu Ding at el [22] applied Yolo v3 to parking spaces and to detect vehicle in
parking lots. Four different scale feature maps for object detection is used to extract

deep vehicle parking space features which reduced the missed detection rate.

2.2 Research Objective

The main objective of our research work 1s to familiarize Bangladeshi vehicles with
autonomous systems related to traffic management and self-driving cars. Some of the unique
Bangladeshi vehicles are not recognized by the already existing autonomous cars and tratfic
management system. Bangladesh needs to have its own vehicle detection system where all of

the vehicles of unique characteristics are recognized. The objectives of our thesis so far are:

1. Detecting Bangladeshi Vehicles in Challenging Environments: Our primary goal 1s to

develop a system which can see some of the unique vehicles of Bangladesh.

2. Using Computer Vision for Vehicle Detection: We wanted a machine learning based

computer vision algorithm, YOLO, for detecting various classes of vehicles.

Ly
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3. Real-Time Detection: Detecting road vehicles in real-time for self-driving cars is a

prerequisite. We wanted to make a real-time detection system.

4. Using Models That Are Trainable in Cloud and Local Computer: As we are resorting
to a machine learning based detection architecture, we wanted to train our model in
both cloud platforms and in our local PCs. Cloud platforms such as Google
Colaboratory [23] offered better computational power than the hardware that were

available to us. It reduced the training time to a significant extent.

5. Comparison between Different Versions of YOLO: We ran training on the dataset in
different versions of YOLO: YOLOv3 [24] [25], YOLOv4-tiny [26] [27] and YOLOVS5
[28] and the goal was to observe and evaluate their performance in both quantitative

and qualitative parameters.
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Chapter 3

How YOLO Works

Object detection being one of the classical problems in computer vision where algorithms are
applied to recognize what and where, specifically what objects are inside a given image, means

the detection of objects and also where they are in the image.

YOLO was introduced on the computer vision scene with the seminal 2015 paper by Joseph
Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection” [29] and

immediately got a lot of popularity within fellow computer vision researchers.

YOLO 1s one of the useful and popular computer vision algorithms because 1t achieves high
accuracy while also being able to run in real-time. The algorithm “only looks once™ at the image
in the sense that it requires only one forward propagation pass through the neural network to
make predictions instead of taking huge numbers of region of interests. After non-max
suppression (which makes sure the object detection algorithm only detects each object once), it
then outputs recognized objects together with the bounding boxes. Benefits of YOLO over other

image classifiers:

» YOLO 1s extremely fast.

» YOLO sees the entire image during training and test time instead of region of interest,
so 1t implicitly encodes contextual information about the classes as well as their
appearance.

» YOLO can be used for generalizable representations of objects so that when trained on
natural images and tested on artwork, the algorithm outperforms other top detection

methods.

3.1 Function of the YOLO Framework

In this section we will describe the step-by-step function of YOLO.
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1. YOLO first takes an input image (Figure 3.1):

Figure 3.1: Input Image to YOLO

2. The algorithm then splits the image into cells, typically 19x19 grid instead of searching
for interested regions in the mput image that could contain an object. For our

understanding lets divide the image into 3x3 grid (Figure 3.2).

Figure 3.2: Bounding Boxes Drawn on the Input Image

3. Image classification and localization are applied on each grid. YOLO then predicts the
bounding boxes and their corresponding class probabilities for objects if there is any

object. The equation for certain class probability is,
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SCOrécij = Pc * G

Then we pass the labelled data to the model in order to train 1t. Suppose we have divided the
image 1nto a grid of size 3 X 3 and there are a total of 3 classes which we want the objects to
be classified into. Let’s assume classes are Pedestrian, Car, and Motorcycle respectively. So,

for each grid cell, the label y will be an eight dimensional vector shown in Table 3.1:

Table 3.1: Output Vector

pC
bx

by
. bh
y= bw
c1
c2
c3

Here:

e pc defines whether an object is present in the grid or not in probability.
e bx, by, bh, bw specify the bounding box 1if there 1s an object.
e cl,c2, c3 represent the classes. So, if the object 1s a car, ¢2 will be 1 and c1 & ¢3 will

be 0. and so on.

Let’s select the first grid from the image in Figure 3.2 (Figure 3.3):

Figure 3.3: Grid with no Object

Since there 1s no object in this grid, pc will be zero and the y label for this grid will be that of
Table 3.2

Scanned with CamScanner



Table 3.2: Output Vector for no Detection

SV AESRENEES BESRESRES M=

In Table 3.2, “?° means that 1t doesn’t matter what bx, by, bh, bw, cl, ¢2, and ¢3 contain as
there 1s no object in the grid. Let’s take another grid in which we have a car (c2 = 1) as shown

in Figure 3 4.

Figure 3.4: Grid Containing a Car

Let us first describe how YOLO decides whether there actually 1s an object in the grid. In the
above 1mage, there are two objects (two cars), so YOLO will take the mid-point of these two
objects and these objects will be assigned to the grid which contains the mid-point of these

objects. The y label for the center left grid with the car will be like shown in Table 3.3.

Table 3.3: Output Vector for Detection

c:r—-c:g

Since there 1s an object 1n this grid, pc will be equal to 1. bx, by, bh, bw will be calculated

relative to the particular grid cell we are dealing with. Since car is the second class, ¢c2 = 1 and

10
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cl and c3 =0. So, for each of the 9 grids, we will have an eight dimensional output vector. This

output will have a shape of 3 X 3 X 8.

So now we have an input image and 1ts corresponding target vector. Using the above example
(input 1mage — 100 X 100 X 3, output — 3 X 3 X 8), our model will be trained as shown 1n
Figure 3.5

3X3X8
100 X 100 X 3

Figure 3.5: YOLO Model for a 100x100 RGB Image

Practically we use higher order grid (19x19 grid) to train the model. Even if an object spans out
to more than one grid, 1t will only be assigned to a single grid in which its mid-point 1s located.
We can reduce the chances of multiple objects appearing in the same grid cell by increasing

the number of grids.

32 Encoding Bounding Boxes

bx, by, bh, and bw are calculated relative to the grid cell we are dealing with. Let us consider

the center-right grid which contains a car as shown 1n Figure 3.6.

Figure 3.6: Bounding Box around a Car

bx, by, bh, and bw will be calculated relative to this grid only. We can write the y label as,

» pc = 1 since there 1s an object in this grid
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» c2=1since1tis acar

To decide bx, by, bh and bw, YOLO assigned the coordinates to all the grids as indicated in
Figure 3.7

(0.0)

(1,1)

Figure 3.7: Setting the Midpoint of a Bounding Box

bx, by are the x and y coordinates of the midpoint of the object with respect to this grid. In this

case, 1t will be (around) bx = 0.4 and by = 0.3 as shown 1n Figure 3.8.

(0,0)

(1,1)

Figure 3.8: Determining bx and by

bh 1s the ratio of the height of the bounding box (red box in the above example) to the height
of the corresponding grid cell, which 1n our case 1s around 0.9. So, bh =0.9. bw 1s the ratio of
the width of the bounding box to the width of the grid cell. So, bw = 0.5 (approximately). The
y label for this grid will be like shown in Table 3.4.

12
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Table 3.4: Output Vector for a Successful Detection

1
0.4
0.3
B 0.9
y= 0.5

0
1
0

As the midpoint will always lie within the grid, bx and by will always range between 0 and 1.
Whereas bh and bw can be more than 1 in case the dimensions of the bounding box are more

than the dimension of the grid.

3.3 Intersection over Union and Non-Max Suppression

Intersection over Union:

For a single object in an image there can be multiple bounding boxes. These bounding
boxes are produced from the grids next to the grid that contains the mid-point of the object.
We need to know which bounding box is giving good outcome or predicting it correctly
and eliminate the other bounding boxes. To eliminate the unnecessary bounding boxes,
comes the idea Intersection over Union. Here intersection over union of the actual
bounding box and predicted bounding boxes are calculated. For example consider the

image in Figure 3.9 containing the actual and predicted boxes for a car:

Figure 3.9: Predicted Box and Ground Truth Box

13
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Here 1n Figure 3.10 the blue box 1s predicted and the red one 1s actual bounding or grand
truth box. IoU 1s calculated for this boxes to decide the whether the prediction 1s good or

not.

Figure 3.10: Area of the intersection and Area of the union

loU = Area of the intersection / Area of the union

For the image in Figure 3 10,

IoU = Area of the yellow box / Area of green box

The value of IoU 1s preset to predict the bounding box. If the IoU 1s greater than threshold
value, we can say that the prediction 1s good enough. Intuitively, the more increased

threshold value, the better the prediction become.

Apart from IoU, there are also some technique which improve the performance of YOLO

significantly, Non-max suppression 1s one of these.

Non-Max Suppression:

The most common problem for object detection 1s, a single object can be detected multiple
times rather than once. Hence there can be more than one bounding boxes. The image

below will clarify it,

14
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Figure 3.11: Multiple Boxes for the Same Object

Here an approach is taken to discard the additional bounding boxes for a single car like

shown in Figure 3.11. Let’s see how it works,

1. At first largest probability associated with the detection is taken care of For above

image 0.9 probability will be selected first.

Figure 3.12: Selecting the Box with the Highest Score

2. Now all other boxes in the image are compared with the current box. The boxes
having high IoU with the current box 1s suppressed. So, as shown 1n Figure 3.12,
0.6 and 0.7 probabilities will be eliminated.

3. After suppression, algorithm then select the next box with highest probability.

Which 1s 0.8 in our image.

15
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Figure 3.6: Selecting the Next Box with the Highest Score and Taking [oU

4 Again, IoU is compared with the remaining boxes and compress the boxes with
high IoU (Figure 3.13).

5. These steps are further repeated until all the boxes have either selected or

compressed and we get the final bounding boxes (Figure 3.14).

Figure 3.7: Result after NMS

3.4 Anchor Boxes

Practically there can be more than one object in a single grid. Till now we have seen a grid
contain one object and 1ts corresponding y-level output. The concept of anchor boxes comes
when a single grid contains multiple objects. Consider the image in Figure 3.15 which is divided

into 3x3 grid.

16
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Figure 3.15: Drawing Grids on the Input Image

As we can remember, to assign an object to a grid by taking the midpoint of the object and based
on its location. For the above image midpoint of the two object lies in the same grid. The

bounding boxes of these object will be looked like as shown in Figure 3.16.

Figure 3.16: Two Objects in the Same Grid

According to our previous concept we will be only getting one of the two boxes, either for the
car or the person. But using the idea of anchor we might get the information for both the boxes.
To do this, first we pre-define two different shapes called anchor boxes or anchor boxes shapes.
Now, for each grid we will get two outputs instead of one output. Anchor box number increase

as the number of class increase (Figure 3.17).
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Anchor box 1: Anchor box 2:

Figure 3.8: Assigning Two Anchor Boxes
The y-level without anchor box will be like as shown 1n Table 3.5.

Table 3.5: Output Vector without Anchor Box

The y-level for 2 anchor boxes will be as shown 1n Table 3.6.

Table 3.6: Output Vector with Two Anchor Boxes

pc
bx

by
bh

bw
cl
c2
c3

pc
bx

by
bh
bw
c1
c2
c3
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The first 8 rows are for anchor box 1 and the rest are for anchor box 2. The objects are assigned
to anchor boxes based on the similarity of bounding boxes and the shape of the bounding boxes.
Here the shape of the anchor box 1 1s similar to the bounding box of the person. So, it 1s assigned
to the bounding box 1 and the car will be assigned to the anchor box 2. The size of the y-level
output will be 3x3x16 (using 3x3 grid and 3 classes) instead of 3x3x8. So, the higher the number

of anchor the more object we can detect.
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Chapter 4

Research Methodology

4.1 Architecture

Modern object detectors generally have two parts- the backbone and head. The backbone uses
the pre-trained weights and the head draws bounding boxes around the objects detected and

also assigns a class probability to each box. Figure 4.1 shows YOLO architecture.

Sparse Prediction

L

Input Backbone Dense Prediction

— | —— — —

Input: | Image, Patches, Image Pyramid, ... }

Backbone: | VGG16 |64, ResNet-50 | 26, ResNeXt-101 |46/, Darknet53 |07, ... }
Neck: { FPN 44|, PANet |49, Bi-FPN |77], ... }
Head:
Dense Prediction: { RPN |64, YOLO [61. 62, 03], SSD [50], RetinaNet |<5], FCOS |74, ... }

Sparse Prediction: | Faster R-CNN |64, R-FCN |V, ... }

Figure 4.1: Architecture for YOLO

e Input: The input to any 1mage detector 1s the image or the batch of images that are

undergoing the object detection.

e Backbone: The backbone layer in addition to using the weights 1s involved 1n feature
extraction. Depending on whether the backbone layer 1s run on GPU or CPU we can
select either VGG [30], ResNet-101 [31], Darknet53, MobileNets [32] etc. For our

research work we chose Darknet53 because 1t has 53 convolutional layers and has the
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best performance as compared to the rest [33]. Table 4.1 contains a detailed breakdown

of the Darknet53 layer.

e Neck: The layer between the backbone and the head used to collect feature maps from
different stages in the detector. The neck consists of multiple bottom-up paths and
bottom-down paths. There are many layers equipped with this mechanism most
notably, FPN [34], PAN [35], Bi1-FPN [36] etc. These path aggregation blocks facilitate
the process of feature detection and speed up the mean accuracy of precision. For our
model we chose PANet [37] due to its robustness and ability to extract most features at

the shortest time.

e Head: Object detectors usually have two type of prediction layers for the outputs. For
one stage detectors only a Dense Prediction layer is used. For our purpose, we used the

YOLOvV3 as the head for YOLOv4-tiny. Anchor based heads can be used for the dense

layer.

In addition to the Dense Prediction layer, two stage detectors use a Sparse Prediction layer as
the final output layer. These are primarily used for segmentation models use as R-CNN, Mask

R-CNN [38] and other anchor free models.
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Table 4.1: Darknet53 Convolutional Layer Breakdown

Type Filters Size Output
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 1 x1

1x| Convolutional 64 3x3
Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1 x1

2x| Convolutional 128 3 x 3
Residual 64 x 64
Convolutional 256 3x3/2 32 x32
Convolutional 128 1 x 1

8x| Convolutional 256 3 x3
Residual 32 x 32
Convolutional 512 3x3/2 16x 16
Convolutional 256 1 x 1

8x| Convolutional 512 3 x3
Residual 16 x 16
Convolutional 1024 3x3/2 8x8
Convolutional 512 1 x 1

4x| Convolutional 1024 3 x 3
Residual 8x8
Avgpool Global
Connected 1000
Softmax

4.2 Bag of Freebies

Most conventional object detectors are trained offline using GPUs and other computational

resources. Thus, researchers constantly try to increase the accuracy of the detector without

increasing the cost of inference. The strategy used to best obtain this tradeoft 1s called “Bag of

Freebies” Techniques used:

. Data Augmentation: Increases the variability of images that are inputted into the

detector. This allows for greater robustness and takes into consideration the

environmental factors along with photometric and geometric distortions. Pixel-wise

adjustments such as CutOut, CutMix, MixUp, DropOut, DropConnect etc. are used that

retain all the pixel information 1n the adjusted area. For our models, we used MixUp

22

Scanned with CamScanner



which uses two images for multiplication and super imposition with distinct coefficient

ratios and then adjusts the labels according to the superimposed labels.

2. Focal loss reduction: Used to mitigate the data imbalance between different classes
within the dataset. This expresses the relationship of association between the different

classes with one-hot hard representation.

3. Label smoothing: Converts hard labels to soft labels that are used in training to make
the model more robust. The label refinement network introduces the idea of knowledge

distillation.

4. Bounding Box (BBox) regression: Traditionally, MSE used as regression model to find
the coordinates of the center, width and height of the bounding box. The estimated
coordinates of each point of the bounding box are treated as an independent variable
which compromises the integrity of the object. Thus, Intersection over Union (IoU) 1s

used which takes into account the predicted bounding box area and ground truth.

4.3 Bag of Specials

The plugin modules and post-processing methods that significantly increase the accuracy of
detection but at a small inference cost are called “bag of specials”. They enhance certain
attributes of the model that allows better reads and more accurate predictions. The modules

dare.

1. Receptive Field: These modules increase the area on the image over which the model
performs detection. Spatial Pyramid Matching (SPM) splits the feature maps into
square blocks to extract bag-of-word features. It uses max pooling and outputs one

dimensional feature vector.

2. Attention module: Has channel-wise attention and point-wise attention. The Squeeze
and Excitation (SE) and Spatial Attention Module (SAM) improve both the accuracy

and inference times.
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3. Feature Integration: Skip connection or Hyper-column integrates low level physical

features to high level semantic features.

4. Activation Function: Activation functions allow the gradient to be propagated more

efficiently without extra computational cost. We used ReL.U activation function.

5. Post-processing method: Used to filter out and eliminate bounding boxes with low
confidence scores and retain those that meet the threshold required. NMS 1s used to

optimize the process and meet the requirement criterion.

4.4 Dataset

The dataset for training was provided by Dhaka-Al [39], named “Dhaka Traffic Detection
Challenge Dataset™ [40] [41] The Dataset is composed of the most common 21 different
classes of vehicles of Dhaka city. There are total 3003 images in the dataset and 24,368

annotations. List of the class names and their number of appearance in the dataset:

e Ambulance :70 e Minibus ;95 e Scooter . 38

e Auto-rickshaw: 43 e Minivan . 935 e SUV . 860
e Bicycle - 459 e Motorbike  :2284 e Taxi . 60

e Bus - 3340 e Pickup ; 1225 e CNG »299(
e Car - 5476 e Army vehicle : 43 e Truck - 1492
e (Garbage van :3 e Police car . 32 e Van . 756
e Human hauler : 169 e Rickshaw - 3549 e Wheelbarrow : 120

The dataset 1s an imbalanced dataset. Car, rickshaw, bus and CNG are overrepresented where
except only motorbike, truck, pickup and minivan, the rest of the vehicles are underrepresented.
Figure 4.4 shows the class balance report generated by Roboflow [42]. Figure 4.2 and 4.3 show

a typical image for each of the classes of vehicles.
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Car Minibus Biis
Minivan

Suv
Saintmartin

= Hyundai

Police car

Army Vehicle

Figure 4.2: Different Classes of Vehicles of Dhaka City (1)

Garbagevan iibrias

Wheelbarrow Hauler

Ambulance

Scooter Motorbike Bicycle Rickshaw Three Auto
?gﬂ%?lers Rickshaw

Figure 4.3: Different Classes of Vehicles of Dhaka City (2)
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Class Balance

Figure 4.4: Dataset Health from Roboflow

4.5 YOLO Training Parameters
4.5.1 YOLOv3

1. Batch size, subdivisions and 4. Image augmentation:
steps: scales =.1,.1, saturation = 1.5,
batch = 64, subdivisions = 64, exposure = 1.5, hue =.1
max_batches = 500200, policy 5. YOLO specific parameters:
= steps, steps = 400000,450000 classes = 21, convolutional
2. Image dimensions in pixels: layer filters = 78
width =416, height =416, num = 9, jitter = 3
channels = 3 ignore_thresh = 7, truth_thresh
3. Hyperparameters: = 1, random =

momentum = 0.9, decay =
0.0005, angle = 0, learning_rate
=0.001, burn_in= 1000
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4.5.2 YOLOv4-tiny

1. Batch size, subdivisions and steps: scales =.1,.1, saturation= 1.5,
batch = 64, subdivisions = 64, exposure = 1.5, hue =1
max_batches = 42000, policy = YOLO specific parameters:
steps, steps = 33600, 37800 classes =21, convolutional layer

2. Image dimensions in pixels: filters = 78
width =416, height =416, num = 6, jitter = .3, scale x y=
channels =3 1.05, cls_normalizer=1.0

3. Hyperparameters: iou_normalizer = 0.07, iou_loss =
Momentum = 0.9, decay = 0.0005, ciou, ignore thresh =7,
angle = 0, learning_rate = 0.00261, truth_thresh = 1, random =1, resize
burn_in =1000 =1.5, nms_kind = greedynms,

4 Image augmentation: beta nms=0.6

4.5.3 YOLOvS

1. Batch size, subdivisions and steps:
batch = 16, epochs = 600

2. Image dimensions in pixels:
width = 640, height = 640, channels = 3

3. Image augmentation:
Random, horizontal, flip

4. YOLO specific parameters:

4.6

classes =21

Darknet Requirements and Installation

We ran YOLOV3 and v4-tiny on the Darknet53 framework as discussed before. We trained

these two models on a moderately powered workstation. The specifications will be given later.
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4.6.1 Requirements

W oA e 9

Windows or Linux 6. GPU with CC>=3.0
CMake >=3.12 7. Windows MSVC 2017/2019
CUDA >=10.0 8. Microsoft Visual Studio
OpenCV >=2 4 9. Python>=3.6

cuDNN >= 7.0 10. IP Webcam4.6.2

4.6.2 Installation

N M e W

10.
11.

12,

13.
14

L.
16.

17

Install Python and add to Path. Use Python 3.6 or 3.7.

Install numpy [43] package using pip and cmd.

Install Git [44].

Install Cmake [45].

Download and install CUDA [46] drivers on your NVIDIA GPU enabled machine
Download cuDNN [47] from Nvidia website depending on your GPU version
compatibility.

Follow the documentation on proper installation given on the Nvidia website

Add cuDNN to the necessary paths and reboot system.

Download OpenCV [48] 4.1.2 from the github repo using the git command in the
cmd

Install OpenCV using Cmake and the necessary CUDA enabled parameters.
Download the Darknet repo by AlexeyAB’s Github account [49] and extract the
contents to your desired location.

Using Microsoft Visual Studio [50] build the darknetsln file and debug
accordingly.

Then add the darknet folder location to the system variables and add to path

We used a smartphone camera as an [P webcam. Install the IP webcam app on your
smartphone.

Ensure the smartphone and workstation are both connected to the same network
Using the IP address on the webcam and the darknet cmd, run the commands to
enable access to the phone’s camera using the workstation.

Thus, we can use the phone’s camera to act as real time mput and the workstation

outputs the real time detection.
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4.7 Platforms and System Specifications

4.7.1 Workstation

YOLOv3 and v4-tiny models were trained on Acer Predator Helios 300 laptop. The

specifications do indicate that 1t 1s a quite powertful system, which are following:

e CPU: Intel 17-9750H (6 cores, 12 Threads @2.60 GHz and boosted @4.50 GHz)
e (GPU: NVIDIA RTX 2060 with 1,920 CUDA cores, 6 GB GDDR5 VRAM
e RAM: 16 GB DDR4 3200 MHz

4.7.2 Cloud

Our YOLOvVS Model was trained on Google Colaboratory, a cloud platform which can be

used for machine learning applications. Google Colaboratory lets us import an 1mage

dataset and train any model on them. Even the free version of Colab has more powerful and

impressive specifications than our workstation.

e (CPU: Ixsingle core hyper threaded Xeon Processors @2 .3Ghz (1 core, 2 threads)
e GPU: 1xTesla K80, compute 3.7, having 2496 CUDA cores, 12GB GDDR5 VRAM
e RAM: ~126 GB

Figure 4.5 shows a summary of the dataset and the training platforms.

O

Class

21 classes
Imbalanced Dataset

O

Google Colaboratory Workstation
GPU: 1xTesla KBO , compute : CPU: Intel i7-9750
3.7, having 2496 CUDA cores , & GPU: Nvidia RTX 2060
12GB GDDRS VRAM ¢ RAM: 16gb DDR4 3200 MHz

CPU: Ixsingle core hyper
threaded Xeon Processors
e2.3Ghz i.e(] core, 2 threads)
RAM: 12.46 GB Available

Figure 4.5: Summary of Dataset and workstation
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4.8 Training

In this section we’ll discuss training details for our different models in different platforms.

4.8.1 YOLOv3

The YOLOv3 model was trained on our dataset for 6034 iterations for an approximate
training time of 22 hours. The model was trained on our workstation and on a single GPU
system. The average loss of the model was about 2.2793. Figure 4.6 shows loss vs.

iterations for YOLOV3 training.

4.8.2 YOLOv4-tiny

The YOLOv4-tiny model was trained on our dataset for 126000 iterations for an
approximate training time of 36 hours. The model was trained on our workstation and on a
single GPU system. The average loss of the model was about 1.7429. Figure 4.7 shows

Figure shows loss vs. iterations for YOLOv4-tiny training.

4.8.3 YOLOvS

The YOLOvVS model was trained on our dataset for 600 epochs for an approximate training
time of 10 hours. This model was trained on Google Colaboratory, which has a more
powertul GPU than our workstation. This 1s why training time was the least for YOLOvS
and also 1ts own architecture 1s the fastest among all the previous versions of YOLO. The
dataset was imported to Colab using Roboflow. Roboflow also provided us with enough
instruction on how to train our desired model. Figure 4.9 shows different performance
matrices vs. epoch for the training. Figure 4.8 shows the confusion matrix for YOLOVS for

our dataset.
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Figure 4.6: Loss vs Iterations for YOLOv3 Training
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4.7 Research Timeline

We meticulously divided our entire research work into 4 phases to better facilitate our progress
and ensure we had a rigid timeline to follow that would help us stay in track. Instead of jumping
to the finish line and worrying about the end result, we decided to take a more structured
approach to our learning and work. For each phase, we set certain goals that we wanted to
achieve and were flexible on the time in order for us to accomplish our goals thoroughly nstead

of doing anything half done.

We had one common goal in mind: To learn and explore. Given how machine learning and
deep learning were unknowns to us, we wanted to have a strong fundamental basics on
whatever we did. We focused on the theoretical aspects of learning and implement what we
learned as we went into this quest. We did projects of various kinds to better facilitate our
learning and eventually lead to our dissertation work. A summarized timeline of our research

1s shown 1n Figure 4. 10

O O O O

PHASE 1 PHASE 2 PHASE 3 PHASE &

Paper dissection Projects on Computer Vision  Trial and error Evaluation of trained models
Deep Learning frameworks Object detection and image Unsuccessful model training  Application

Topic selection denoising Dataset selection Results and documentation

Figure 4.10: Timeline of Research Progression

4.9.1 Phase 1

The first phase took the longest. It started after the end of our 3rd year final exams. We
started doing online courses, watching YouTube videos and other MOOC:S to learn about
Python programming, machine learning and subsequently deep learning. We also started
reading research papers on the various techniques and methods used in machine and deep
learning. The entire phase took about six months and gave us enough nsight to find a
topic for our dissertation. We chose Computer Vision because the idea that machines
could see and recognize objects like humans was fascinating to us. We realized this 1s

what we wanted to explore and build on.
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4.9.2 Phase 2

The second phase was much more advanced and challenging. This was the phase we had
dived deep into Computer Vision- the theory and the execution. We learned different
techniques used for Computer Vision, the classical and the new. We explored through
Github [51] and Stack Overflow [52] to find projects that piqued our interest. We did many
small projects such as real-time attendance system and image denoising to strengthen our
grip on this area of research and try to find inspiration for our own thesis. This phase took

about 3 months.

4.9.3 Phase 3

During this phase we spent hours trying to find a consensus on what subtopic and dataset
we should be using for our thesis work. We scoured through Kaggle [53] and UCI Datasets
to find a topic that we enjoyed doing. Whilst there were many intriguing topics, we always
felt we wanted to work on something related to our own surroundings. We noticed a lack
of Bangladesh specific datasets. This prompted the idea to create our own dataset and

contribute to the Deep Learning community.

Luckily for us, we stumbled across the competition “Dhaka-AI” which was an Al based
competition organized in Bangladesh using Dhaka specific dataset. Thus, we used the
Dhaka traffic dataset to create a real time vehicle detection system using deep learning. We
used different techniques and spent a lot of time on trial and error. Finally, we landed on
YOLO framework as the basis of our thesis work given its superior performance and ease

of customizability. This phase took about 4 months.

4.9.4 Phase 4

Given, we had selected our topic, dataset and mode of action, all that was left for us, was
to put our learning into action and bring our thesis work to life. We spent the next 2 months
on making our models more efficient and trained them to obtain the best possible results.
As this was the final stretch, we documented all our findings and were preparing for our

defense. We tweaked our models and tried various techniques to get even better results. We
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wanted to ensure no stones were left unturned and that we were able to proudly and

successfully defend our thesis in front of the thesis committee.

By the grace of Almighty Allah, the guidance and support of our supervisor, Professor Dr.
Golam Sarowar sir and the love and support of our parents, we were able to overcome all

obstacles and present or thesis.
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Chapter 5

Results

After successful training sessions of our different YOLO models, we fed the models both
images and videos outside of the dataset to see how they performed in detecting vehicles, and
how fast they were doing 1it. We also made a crude comparison between different versions of

yellow on their performance. The following sections demonstrate the results:

5.1 Inference on Images

We randomly selected three images outside of the dataset on which our models were not trained

on. Then we ran inference on them using our YOLO models.

e YOLOvV3 - Figure 5.1, 5.2 and 5.3 show inference on image 1, 2 and 3.
e YOLOv4-tiny : Figure 5.4, 5.5 and 5.6 show inference on image 1, 2 and 3.
e YOLOvV3 - Figure 5.7, 5.8 and 5.9 show inference on image 1, 2 and 3.
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Figure 5.2: Yolov3 on Image 2
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Figure 5.3: Yolov3 on Image 3
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Figure 5.4: Yolov4-tiny on Image 1

Figure 5.5: Yolov4-tiny on Image 2
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Figure 5.6: Yolov4-tiny on Image 3
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Figure 5.9: Yolov5 on Image 3

0.2 Inference on Videos

We also streamed video to our model from a smartphone camera used as a car’s dash cam and
ran inference to observe how YOLO performed. Some of the clips were recorded and uploaded

on YouTube as unlisted videos. The links are given below with QR codes:

YOLOv3 YOLOv4-tiny YOLOVS5

[m] 4=[m] [s:]y FIEI Opeq0
O

[=]

hitps://youtube/ZAA05-T-PAY  https://youtu be/KdhnuzZYWOIA https://youtu be/zBo9V2kTeVo
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5.3 Comparison of Results

The following Tables (5.1, 5.2 and 5.3) and Figures (5.10 and 5.11) show the comparison
between different YOLO versions based on the three Images.

Table 5.1: Comparison between the YOLO versions on Image 1|

YOLOVA-TINY YOLOV3 YOLOVS
SPEED | 476.352000 milliseconds 546.863000 milliseconds 41 milliseconds
CLASSES a. pickup: 70% a. pickup: 78% a. bus 26%
b. bus: 61% b. truck: 56% b. bus 28%
c. bus:28% c. motorbike: c. car 30%
d. motorbike: 66% d. bus 33%
66% d. bus:97% e. bus 39%
e. bus: 100% e. bus: 76% f. h:"5 40%
f. bus: 84% f. bus: 49% g RISkUR ars
.  bus: 96% .  rickshaw: ey K3 Sl
& & i.  bus 49%
h. bus: 33% 60% . bus 520
i. bus: 68% h. bus:94% k:  Bais 579
L rickshaw: A bus: 54% I bkt 599
64% j.  rickshaw: m. rickshaw 60%
k. bus: 73% 52% n. bus 62%
.  suv:41% 0. car 63%
m. bus: 839% p. motorbike 68%
n. rickshaw: q- WX 70%
379%, r. bus 12%
s. bus 73%
t. bus 74%
u. bus 76%
v. bus 76%
w. pickup 81%
x. bus 85%
Table 5.2: Comparison between the YOLO versions on Image 3
YOLOVA-TINY YOLOV3 YOLOVS
SPEED 24.139000 milliseconds. 55.483000 milliseconds. 14 milliseconds
CLASSES a. motorbike: a. motorbike: 73% a. rickshaw25%
57% b. motorbike: 70% b. «car 37%
b. motorbike: c. car:91% ¢. human hauler| 53%
74% d. three wheelers d. motorbike 54%
c. car:96% (CNG): 99% e. car 66%
d. three e. truck: BR% f. motorbike 74%
wheelers f. car:60% g. motorbike 84%
(CNG): 98% g. motorbike: 75% h. car 85%
e. truck:81% h. car:99% i. three wheelers (CNG)
f. car:35% i. motorbike: 36% 91%
g- car:64% j.  van: 35%
h. motorbike:
86%
i. pickup: 63%
j. car:86%
k. pickup: 26%
l.

minivan: 92%
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SPEED
CLASSES

Table 5.3: Comparison between the YOLO versions on Image 2

Yolov4-tiny
24.402000 milliseconds

a.
b.

a N

i

~T@a e

bus: 50%
three
wheelers
(CNG): 87%
bus: 29%
minivan:
27%

car: 31%
bus: 68%
car: 28%
car: 41%
three
wheelers
(CNG): 38%
bus: 61%
bus: 70%
three
wheelers

(CNG): 33%

. rickshaw:

32%
rickshaw:
42%
rickshaw:
28%
rickshaw:;
26%

Yolov3

54.404000 milliseconds.

b.
C.
d

car: 26%
car: 38%
pickup: 34%
rickshaw:
74%
rickshaw:
32%
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Yolov5
14 milliseconds

a. van 26%
b. motorbike 27%
c. bus 29%
d. wheelbarrow 29%
e. car 29%
f. rickshaw 34%
B Su¥ 37%
h. minivan 39%
i. minivan 39%
j. motorbike 40%
k. motorbike 41%
l.  rickshaw 42%
m. rickshaw 44%
n. car 49%
0. rickshaw 56%
p. motorbike 57%
q. rickshaw 61%
r. motorbike 63%
5. rickshaw 66%
t. motorbike 66%
u. three wheelers (CNG) 67%
v. bus 68%
w. bus 68%
X. suv 68%
y. minivan 69%
1. cCar 70%
aa. car ?19G|
bb. minivan 72%
cc. bus 72%
dd. rickshaw 73%
&e. Ccar 73%
ff. rickshaw 73%
ge. rickshaw 74%
hh. motorbike 75%
ii. Eickua 716%
il. car 78%
kk. bus 78%
Il. rickshaw 79%
mm. rickshaw 80%
nn. rickshaw 81%

00. car 81%
pp. bus 82%
qq. suy 84%
rr. bus 87%
ss. three wheelers (CNG) 89%
tt. bus 90%
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Number of Classes detected

image 3

image 2

image 1

—
e
—

0 5 10 15 20 25 30 35 40 45 50
image 1 image 2 image 3
m Yolov5 24 A4 9
m Yolov3 10 5 10
m Yolova-tiny 14 16 12

Figure 5.10: Class detection performance between different YOLO frameworks

Speed of detection (in milliseconds)

image 3

imzge 2

imzge 1

0 100 200 300 400 500 600
imzge 1 image 2 image 3
m Yolov5 41 14 14
m Yolov3 546.83 54.404 55.483
m Yolova-tiny 476.352 24.402 24139

Figure 5.11: Speed of detection between different YOLO frameworks
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5.4 Comparison Analysis

The figures above have been obtained using the different YOLO frameworks on our
workstation and Google Colaboratory. We trained our models using the Dhaka-Al dataset
Using the trained weights, we evaluated our model for the different YOLO frameworks and
documented the results obtained. We selected three images at random and then ran our YOLO
frameworks on each and documented the results obtained. The images gave us bounding boxes
around each object detected and named the class of the object. The probability of each bounding

box was also mentioned and recorded for each class on each image.

The results clearly show the YOLOvS framework to be much superior as compared to the
YOLOv4-tiny and YOLOvV3. The qualitative hypothesis was also true for the real time videos
taken using the smartphone camera as the input. The videos can be accessed by scanning the

QR codes or using YouTube links

For the quantitative analysis, we focused on the speed of the detection process and the number
of classes each framework could detect accurately. The results were synonymous with our
qualitative hypothesis and shows a numerical representation of the results obtained. These
results were also visualized using bar charts so clearly show how the YOLO frameworks
performed in comparison to each other. YOLOVS lead the pack with YOLOv4-tiny taking the
middle position and YOLOv3 coming in behind the other two.

The results we obtained were as expected from the paper “YOLOv4: Optimal Speed and
Accuracy of Object Detection by Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark
Liao” They used the MS COCO [54] dataset and obtained similar performance metrics as
indicated 1n figure. The team at Ultralytics using YOLOvS mmproved on this paper and
incorporated YOLOVS5 into their findings.
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Chapter 6

Conclusion

6.1 Significance of the project

We believe our research to be a significant one in various aspects. In terms of scope, this project
opens the possibility of implementing an intelligent traffic surveillance system in Bangladesh.
Also autonomous cars will be able to recognize some of the unique vehicles which are still

unknown to them that are there in Bangladesh.

In terms of resources, we trained our models and executed them in a moderately powered
workstation and also in Google Colaboratory cloud, all of which are available for everyone to

usec.

In terms of time, the inferences were done pretty quickly, enabling us to produce real time

results. But with a better GPU we could train our model fasters and also produce faster results.

In terms of scopes: In terms of resources: In terms of time

Self-driving vehicles.

e Traffic management. o

Trained and executed on ®

Google Colab and a

Able to produce results

1n a matter of seconds.

Applicable for unique moderately ~ powered Possibility for detection

vehicles and congested workstation and classification 1n real
traffic in Bangladesh e A better dataset can help time.

Increase accuracy. Stronger GPUs can

significantly reduce
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6.2 Future Scopes

These section discusses the possible scopes of our project in future. We plan to improve the
existing dataset to get more accurate results and add more classes like pedestrians and traffic
signs. We also plan to use premium cloud training facilities, so that we can get unrestricted
training time, which will improve our results more. As we’ve mentioned earlier, our research
is a derivative work, but 1t 1s a fundamental block for traffic management and surveillance, and
also 1in autonomous vehicles. Intelligent Parking systems can also be a possible application of

our work.

e Real-time traffic management systems

e Autonomous vehicles

e Measurement of distance between vehicles
e C(loud-based detection and classification

e Automated parking systems

e Surveillance and monitoring
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