
 

 

 

 

Strain Estimator in Ultrasound Elastography Using Multiple 

Frames 

by 

A M K Muntasir Shamim 

 

 

 

 

 

MASTER OF SCIENCE  

IN  

ELECTRICAL AND ELECTRONIC ENGINEERING  

 

 

 

 

 

 

Department of Electrical and Electronic Engineering  

Islamic University of Technology (IUT) 

Board Bazar, Gazipur-1704, Bangladesh 

July 2021 

  



i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 A M K Muntasir Shamim 

All Rights Reserved 

  



ii 

 

CERTIFICATE OF APPROVAL 

 

The thesis titled ‘Strain Estimator in Ultrasound Elastography Using Multiple Frames.’ 

submitted by A M K Muntasir Shamim, St. No. 181021008 of academic year 2018-19 has 

been found as satisfactory and accepted as partial fulfillment of the requirements for the 

Degree of MASTER OF SCIENCE IN ELECTRICAL AND ELECTRONIC 

ENGINEERING on 30 July 2021. 

1. 

                                                                                          
Prof. Dr. Md. Ruhul Amin (Supervisor) 

Professor and Head 

Department of Electrical and Electronic Engineering 

Islamic University of Technology (IUT), Gazipur. 

 

 

                      

Chairman  

2.  

Prof. Dr. Md. Ruhul Amin (Supervisor) 

Head 

Department of Electrical and Electronic Engineering 

Islamic University of Technology (IUT), Gazipur. 

Member  

(Ex-officio) 

3.  

                                                                                               

Prof. Dr. Md. Ashraful Hoque  

Professor and Dean Faculty of Engineering 

Department of Electrical and Electronic Engineering 

Islamic University of Technology (IUT), Gazipur. 

 

 

 Member 

4.  

Prof. Dr. Mohammad Rakibul Islam  

Professor  

Department of Electrical and Electronic Engineering 

Islamic University of Technology (IUT), Gazipur. 

 

 

Member 

5.  

Prof. Dr. Md. Aynal Haque  

Professor 

Department of Electrical and Electronic Engineering 

Bangladesh University of Engineering and Technology (BUET) Dhaka 

  

 

Member  

(External) 



iii 

 

  

Declaration of Candidate 

It is hereby declared that this thesis report or any part of it has not been submitted elsewhere 

for the award of any Degree or Diploma and it has not been copied from other person’s 

work. 

 

 

 

 

 

  

 

 

 

________________________ 

Dr. Md. Ruhul Amin 

Professor and Head, 

Department of Electrical and Electronic Engineering, 

Islamic University of Technology (IUT), Gazipur. 

Date: July 28, 2021 

 

________________________ 

A M K Muntasir Shamim 

Student No.:181021008 

Academic Year: 2018-19 

Date: July 28, 2021 

 

 

 

 

 

  



iv 

 

 

 

 

 

 

 

 

 

 

 

Dedicated 
to 

my late mother 

who is always in spirit with me. 

 



v 

 

Table of Contents 

CERTIFICATE OF APPROVAL ......................................................................................... ii 

Declaration of Candidate..................................................................................................... iii 

Table of Contents .................................................................................................................. v 

List of Figures ................................................................................................................... viii 

List of Tables......................................................................................................................... x 

List of Abbreviations............................................................................................................ xi 

Acknowledgment ................................................................................................................ xii 

Abstract ............................................................................................................................. xiii 

1 INTRODUCTION ......................................................................................................... 1 

1.1 Ultrasound Imaging ................................................................................................ 1 

1.2 Elastography ........................................................................................................... 2 

1.3 Literature Review ................................................................................................... 4 

1.4 The motivation of the Thesis .................................................................................. 5 

1.5 The objective of the Thesis .................................................................................... 6 

1.6 The Organization of the Thesis .............................................................................. 6 

2 STATE OF THE ART STRAIN ESTIMATION TECHNIQUES ................................ 8 

2.1 Gradient-Based Cross-Correlation Techniques For Strain Estimation .................. 8 

2.2 Short-Term Correlation-Based Strain Estimation Techniques ............................... 9 

2.3 Two-Dimensional Strain Estimation Techniques ................................................. 10 

2.4 Adaptive Stretching Based Strain Estimation Techniques ................................... 11 

2.5 Spectral Based Strain Estimation Techniques ...................................................... 11 

2.6 Zero-Phase Detection of Complex Cross-Correlation Function-Based Strain 

Estimation Techniques .................................................................................................... 12 

2.7 Sub-Sampled Displacement Tracking Based Strain Estimation Techniques ....... 13 

2.8 Cost-Function Minimization Schemes-Based Strain Estimation Techniques ...... 13 

2.9 Direct Strain Estimation Techniques: ................................................................... 14 

2.10 Multi-Level Block Matching Algorithm-Based Strain Estimation Techniques: .. 15 

2.11 Optical Flow-Based Strain Estimation Techniques .............................................. 17 

2.12 Strain Estimation Techniques Using Multiple Frames ......................................... 18 

3 PROPOSED TECHNIQUES ....................................................................................... 20 

3.1 Frame selection ..................................................................................................... 20 

3.2 Conversion of RF to B-mode or envelope mode .................................................. 22 

3.3 Optical Flow-based Multi-Frame Strain Estimator .............................................. 22 

3.3.1 Stage 1: Motion estimation between Frame 1 and Frame 2 .......................... 23 



vi 

 

Step 1: Motion Estimation Between Frame F1 And F2 Through Block Matching 23 

Step 2: Displacement Error Correction and Strain Estimation from Displacements

 ................................................................................................................................. 25 

Step 3: Registering Strain to Pre-Compression Frame Size ................................... 26 

Step 4: Unwarping Frame 2 .................................................................................... 29 

Step 5: Optical Flow Between Unwarped Frame 2 And Frame 1: ......................... 31 

Horn-Shunck Optical Flow: .................................................................................... 32 

Step 6: Strain Estimation from Optical Flow Estimates: ........................................ 34 

Step 7: Stage 1 Strain Estimation ............................................................................ 34 

3.3.2 Stage 2: Introducing the Third Frame in The Algorithm .............................. 36 

Step 8: Choosing Frame 3 Slightly After Frame 2 .................................................. 36 

Step 9: Warping Frame 2 ........................................................................................ 36 

Step 10: Finer Displacement Estimation Between Warped Frame 2 And Frame 3 

Through Optical Flow ............................................................................................. 37 

Step 11: Strain Estimation from Optical Flow Vectors .......................................... 38 

Step 12: Final Strain Estimation: ............................................................................ 39 

3.4 Multistage Optical Flow-Based Multi-Frame Strain Estimator ........................... 41 

3.4.1 Multistage Motion Estimation ...................................................................... 41 

3.4.2 Multistage Strain Estimation and Registration ............................................. 45 

4 RESULTS .................................................................................................................... 49 

4.1 Finite Element Simulation: ................................................................................... 49 

4.1.1 Processing Parameters ................................................................................... 50 

4.1.2 Strain Images ................................................................................................. 51 

4.1.3 Performance Indices ...................................................................................... 55 

4.1.3.1 Signal to Noise Ratio ............................................................................. 56 

4.1.3.2 Contrast to Noise Ratio .......................................................................... 57 

4.1.4 Performance Analysis ................................................................................... 61 

4.2 Patient Data/In-vivo Data ..................................................................................... 62 

4.2.1 Processing Parameters ................................................................................... 62 

4.2.2 Patient 1 ......................................................................................................... 64 

4.2.3 Patient 2 ......................................................................................................... 65 

4.2.4 Patient 3 ......................................................................................................... 66 

4.2.5 Patient 4 ......................................................................................................... 67 

4.2.6 Performance Analysis ................................................................................... 68 

5 DISCUSSION and CONCLUSION ............................................................................ 69 

5.1 Discussions ........................................................................................................... 69 

5.2 Conclusion ............................................................................................................ 70 

5.3 Future Perspectives ............................................................................................... 71 



vii 

 

References ........................................................................................................................... 72 



viii 

 

List of Figures 

 1.1  Application of stress in a phantom to depict varying tissue elasticity [24]. 3 

 2.1 Echo time delay computation through the  processing of pre and post compression 

signals. [30] 9 

 2.2 Two-step optical flow method for elastography.[15] 18 

 3.1 Selection of frames after compression. 21 

 3.2  Conversion of RF to B-mode Source. [49] 22 

 3.3 Motion estimation by block matching. 24 

 3.4 Size comparison in pixels. 25 

 3.5 Strain registration with iterative extrapolation. 27 

 3.6 Bicubic interpolation grid. 28 

 3.7 Unwarping frame 2 30 

 3.8 Optical flow between unwarped Frame 2 and Frame 1. 31 

 3.9 Strain estimation at stage 1. 35 

 3.10 Warping post-compression frame F2. 37 

 3.11 Finer displacement estimation betweern warped frame 2 and frame 3. 38 

 3.12 Final strain estimation of optical flow-based multi-frame  (OFMF) strain estimator.

 39 

 3.13 Flowchart of optical flow-based multi-frame (OFMF) strain estimator. 40 

 3.14 Scaling down processing parameters before repositioning. 43 

 3.15 Motion estimation after repositioning search window - x1’ and y1’ represent 

reference lateral and axial displacements  from previous stage  respectively; X1 and 

Y1 represent lateral and axial displacement to be estimated in current stage 

respectively. 43 

 3.16 Vector summation of the multistage displacements. 44 

 3.17 Flow of the multistage motion estimation. 45 

 3.18 Registration of multistage strain matrices to frame. 47 

 3.19 Flowchart of multi-stage optical flow-based multi-frame (MSOFMF) strain 

estimator. 48 

 4.1 Ideal elastogram from finite element simulation. 50 

 4.2 Maximum NCC maps at 3rd stage and 4th stage. 51 

 4.3 Strain Images of Optical flow-based Multi-Frame (OFMF) Strain Estimator at (a) 2% 

(b)4% (c) 8% (d) 12% (e) 16% applied strain. 52 

https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714754
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714754
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714755
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714756
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714757
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714758
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714759
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714760
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714761
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714762
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714763
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714764
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714765
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714766
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714767
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714767
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714768
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714769
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714770
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714770
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714770
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714770
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714771
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714772
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714773
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714777
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714777


ix 

 

 4.4 Strain Images of Multistage Optical Flow based Multi Frame (MSOFMF) Strain 

Estimator at (a) 2% (b)4% (c) 8% (d) 12% (e) 16% applied strain. 54 

 4.5 Strain images comparison of various algorithms. 55 

 4.6 SNR comparison between various strain estimators. 56 

 4.7 CNR comparison of the top lesion. 57 

 4.8 CNR comparison of the centre inclusion. 58 

 4.9 CNR comparison of the bottom left inclusion. 59 

 4.10 CNR comparison of  the bottom right inclusion. 60 

 4.11 Patient 1-(a). Log compressed B-mode image, Elastogram using - (b) MSOFMF (c) 

OFMF (d) 2D least squares method with uniform temporal stretching, (e) 1D least 

squares method with uniform temporal stretching  (f) 1D spectral adaptive stretching  

strain estimators. 64 

 4.12 Patient 2-(a). Log compressed B-mode image, - (a). Log compressed B-mode image, 

Elastogram using - (b) MSOFMF (c) OFMF (d) 2D least squares method with 

uniform temporal stretching, (e) 1D least squares method with uniform temporal 

stretching  (f) 1D spectral adaptive stretching  strain estimators. 65 

 4.13 Patient 3-(a). Log compressed B-mode image, Elastogram using - (b) MSOFMF (c) 

OFMF (d) 2D least squares method with uniform temporal stretching, (e) 1D least 

squares method with uniform temporal stretching  (f) 1D spectral adaptive stretching  

strain estimators. 66 

 4.14 Patient 4-(a). Log compressed B-mode image, Elastogram using - (b) MSOFMF (c) 

OFMF (d) 2D least squares method with uniform temporal stretching, (e) 1D least 

squares method with uniform temporal stretching  (f) 1D spectral adaptive stretching  

strain estimators. 67 

 4.15 SNR comparison of patient data cases 68 

 

https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714778
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714778
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714779
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714780
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714781
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714782
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714783
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714784
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714785
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714785
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714785
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714785
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714786
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714786
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714786
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714786
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714787
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714787
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714787
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714787
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714788
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714788
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714788
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714788
https://uwprod-my.sharepoint.com/personal/shamim2_wisc_edu/Documents/MSC_thesis_181021008.docx#_Toc78714789


x 

 

List of Tables 

 

 4.1 Processing parameters for finite element simulation. 50 

 4.2 SNR comparison between various strain estimators. 56 

 4.3 CNR comparison of the top lesion. 57 

 4.4  CNR comparison of the centre inclusion. 58 

 4.5 CNR comparison of the bottom left inclusion. 59 

 4.6 CNR comparison of  the bottom right inclusion. 60 

 4.7 Processing parameters at different stages of multistage motion esimation 62 

 4.8 SNR comparison of patient data cases. 68 

 

  



xi 

 

List of Abbreviations 

 

1D One Dimensional 

2D Two Dimensional 

AM Analytic Minimization 

AS Adaptive Stretching 

B-mode Brightness mode 

CNR Contrast to Noise Ratio 

CT Computer Tomography 

FEM Finite Element Method 

GPU Graphical Processing Unit 

MLBM Multi-level block matching 

MRI Magnetic Resonance Imaging 

MSOFMF Multistage Optical Flow-based multi-Frame 

OF Optical Flow 

OFMF Optical Flow-based multi-Frame 

PET Positron Emission Tomography 

RF Radio Frequency 

ROI Region of Interest 

SE Strain Estimator 

SNR Signal to Noise Ratio 

TDE Time Delay Error 



xii 

 

Acknowledgment 

First and foremost, I would like to express my deepest gratitude to Allah (SWT) for 

providing me with the necessary ability and fortitude to carry out this research work. 

Without the help and encouragement of several wonderful people, I would not have been 

able to finish this thesis. Hence, I would like to take this opportunity to show my 

appreciation to those who have assisted me in a myriad of ways. 

I would like to express my sincerest gratitude to Dr. Md Ruhul Amin, my thesis advisor, for 

his steadfast support and guidance during this project. I could not have asked for a more 

supportive and considerate supervisor. He was always willing to sit and listen to my 

concerns, and he made me feel like my effort was worthwhile. The fact that he was ready to 

offer me so much of his time and expertise was a significant influence in completing this 

thesis.  I also really appreciate him for allowing me to pursue research independently and 

widen my vision in medical imaging. 

I would also like to thank Dr. Kaisar Alam for being a great mentor to me in ultrasound 

elastography and providing me access to the patient data sets. 

I also would like to thank the examination committee members for allowing me to present 

this work. I am also grateful to all the faculty members of the electrical and electronic 

engineering department, Islamic University of Technology (IUT), for their support and 

inspiration during my course and thesis work 

I want to convey my heartfelt thanks to my father, grandmother, and family for their 

unwavering moral support during this project. It would not have been feasible for me to go 

this far without their help and sacrifice.  

And finally, the one person who has made this all possible has been my beloved late mother. 

Her memories and dreams are always with me as a constant source of support and 

encouragement. She made an untold number of sacrifices working as a selfless doctor and 

inspired me to work in the medical field to serve humanity better.  

 



xiii 

 

Abstract 

 

Accuracy of the motion estimation, higher resolution, robustness to noise and decorrelation 

arising from out-of-plane motion, faster execution speeds, preciseness to be integrated into 

subsequent quantitative analysis algorithms are the desired outcomes of a well-established 

strain estimation algorithm suited for ultrasound elastography. Two strain 

estimation approaches based on multiple frames that integrate optical flow have been 

presented to address the primary limitations of existing methodologies. These two proposed 

techniques attempt to increase the accuracy of displacement estimates, increase 

spatial resolution over existing methods, and be immune to noise caused by 

signal decorrelation arising due to the rapid oscillation of RF data and error propagation. 

Both the techniques use the envelope form of RF data, i.e., B-mode data which is less 

impacted by signal decorrelation and produce axial frame-sized strain estimates. The 

proposed techniques were tested on finite element simulation data and in-vivo/patient data. 

Our techniques statistically outperformed other well-established strain estimators in terms 

of performance, i.e., SNR and CNR. Even at higher applied compressions like 8% and 16% 

our proposed methods are highly effective and usable where the other algorithms fail 

terribly. Spatial resolution was increased by a factor of ~30 than the other algorithms making 

elastograms similar in dimensions to the frame size. 
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Chapter 1  

1 INTRODUCTION 

 

Medical imaging is the harbinger to that future when diagnosing and treating patients without 

negative side effects is feasible. Medical imaging depicts what is going on inside the human 

body without the need for surgery or other invasive procedures. It can be employed for both 

diagnosis and remedial purposes. To date, various medical imaging modalities such as 

Computer Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, X-ray and 

others have been used in various medical anatomies to obtain qualitative and quantitative 

information that can be used for diagnostic purposes. 

1.1 Ultrasound Imaging 

Ultrasound imaging uses high-frequency sound waves to visualize the internal regions of the 

human body. A conducting gel is used to transfer high-frequency sound waves from an 

ultrasound probe to the body. The waves then bounce back when they strike the body's interior 

anatomical components, creating a real-time image. It is the most economical and widely 

available medical imaging modality. Ultrasound imaging captured in real time is able to show 

the movement of the interior organs of the human body as well as the flow of blood via the 

blood vessels. Ultrasound imaging, unlike X-ray or CT imaging, does not expose patients to 

ionizing radiation. This modality is now widely utilized in prenatal imaging, as well as cardiac 

imaging, breast cancer diagnosis, and the identification of benign and malignant tissues in the 

human body, owing to the low risks involved. One of the most researched aspects of Ultrasound 

Imaging is Ultrasound Elastography. 
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1.2 Elastography 

Ultrasonographic elastography is a noninvasive method for determining the relative stiffness or 

displacement (strain) of tissue in response to applied force [1]. It deals with observing and 

processing the tissue response to infer the mechanical properties of the tissue and then 

displaying the results to the operator. Elastography delineates the elastic properties and stiffness 

of investigated tissue in an illustrative pictorial map [1].  

 

Elastography is esteemed superiorly for its real-time processing, execution speed, portability, 

inexpensiveness, and ubiquitous accessibility. Being completely noninvasive, this imaging 

modality can acquire essential diagnostic information in contrast to a mere anatomical image. 

 

The use of US elastography for tissue imaging was originally reported in 1987. Since its 

inception, elastography has been adopted for the initial medical prognosis of various disease 

conditions in many organs like breasts, liver, thyroids etc. In the last two decades, the use of 

real-time commercially available clinical ultrasound machines has spurred an outburst of 

research into potential oncologic and non-oncologic clinical applications of Ultrasound 

Elastography. The hypothesis that contributed to the emergence of elastography was that there 

is a substantial difference in soft tissue modulus between normal and diseased tissues. The 

underlying concept is inferring the presence or status of disease based on the investigated tissue 

stiffness. Predominantly the diseased organs are stiffer than healthy ones based on the pieces 

of evidence of scirrhous breast carcinomas, which are found to be extremely hard nodules[2], 

and liver tissues with cirrhosis that are stiffer than the regular counterpart [3]. 

In recent years, elastography-based strain imaging methods have garnered a lot of interest for 

their noninvasive evaluation of tissue mechanical characteristics that may be utilized to 

diagnose a variety of clinical diseases. Ultrasound-based techniques are particularly appealing 

because of their many intrinsic benefits, including broad availability and cheap cost. A variety 

of ultrasonic elastography techniques have been developed, each utilizing a distinct excitation 

mechanism. Shear wave imaging uses ultrasound-generated traveling shear wave stimuli, while 

strain imaging uses internal or external compression stimuli. While ultrasound elastography has 

provided positive findings for noninvasive assessment of liver fibrosis since its inception, 
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diagnostic methods in breast [4]–[19], thyroid [20], prostate [21], kidney[22], and lymph node 

imaging [23] are also well-established and improving.  

 

Fig. 1.1  Application of stress in a phantom to depict varying tissue elasticity [24]. 

Elastography has been analogized with the century-old manual palpation method [25]. But the 

manual palpation method is inhibited due to the dependence on the physicians’ experience in 

explaining the intricate nature of the tissue and the inaccessibility to the deeper tissues in the 

body. Thus, quantifying these differences of stiffness and elastic modulus contrast between 

regular and pathological tissues in images of the tissue strain tensor or Young’s modulus has 

been the impetus for developing this imaging approach. 

 

Based on the type of force applied, the elastography can be classified broadly into two major 

groups, namely quasi-static elastography and dynamic elastography. Quasi-static elastography 

encompasses strain elastography techniques, and dynamic elastography consists of techniques 

like Acoustic Radiation Forced Impulse Imaging (ARFI), Transient elastography and, Shear 

Wave elastography. In this work, the topic for investigation is based on the quasi-static method. 

The quasi-static method is the first strain elastography technique developed by the Ophir group 

at the beginning of 1990 [1]. Strain elastography reconstructs a ‘Strain Map’ by calculating the 
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deformations caused by applying static compression using an ultrasound probe by the operator. 

Since the beginning, the quasi-static method [18] has been employed to a wide variety of 

medical issues, from identifying and differentiating atherosclerotic plaques [27] to improving 

diagnosis of breast [4]–[19] and prostate cancer [28]–[30]. Motion is induced within the tissue 

using either an external or internal quasi-static mechanical source, and the resulting tissue 

deformation is measured using a suitable displacement estimator from the pre- and post-

deformed radiofrequency (RF) echo frames; and finally, the induced tissue strains are computed 

using a finite-difference or least-squares strain estimator from the measured tissue 

deformations. 

1.3 Literature Review 

Various elastographic techniques have been employed from the inception of this ultrasound 

imaging modality to this date, and these techniques keep on evolving, aiming to overcome the 

issues faced by the previous methods. During the infancy of this modality, the strain was 

estimated from the gradient of the motion estimation of pre- and post-compression RF signals. 

The gradient-based methods [1], [5], [31] typically assume that the motion of the tissue due to 

the compression is only in the axial direction. These techniques suffer from lower resolution 

and are affected hugely by noise. Decorrelation is also a major challenge in ultrasound 

elastographic motion estimation which arises due to out-of-plane motion. Various techniques 

till today are affected by this decorrelation, and solutions like temporal stretching [32] and 

direct strain estimation [6]-[9] were proposed to improve the Signal to Noise ratio (SNR) of 

elastograms. These techniques involve finding a stretching factor based on the compression of 

the tissue.  

Determining the amount of compression mathematically from free hand compression 

techniques is complicated and often not possible. In low compression cases stretching the post-

compression signal leads to the accumulation of noise in stiff areas where the tissue 

displacement is small. Thus strain estimation techniques based on determining the stretch 

factors iteratively were introduced [33]-[34]. These are highly computationally expensive as it 

involves iteratively searching for the best stretch factor that produces the best strain 

elastograms. Owing to the varying stiffness of the examined tissue and the nature of data 

acquisition, lateral motion is also experienced by the tissue in addition to rotational, elevational, 
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axial motion due to free hand compression.  Motion estimation techniques like [35]-[36] were 

developed to include the lateral motion in strain elastography to reduce motion propagation 

error and to correctly locate the displacements.  For improving the precision of the displacement 

estimates subsample displacement layer is integrated with initial coarse displacements to 

achieve subsampled displacement accuracy in the order of micrometers [37]. The subsample 

estimation improves the accuracy of the motion estimation through reiteratively correlating pre 

and post deformation echo signals [4].  

 

Increasing the spatial resolution of strain images is another challenge that has been extensively 

researched. Short-term correlation-based techniques [38] and multi-level 

approaches[39][40][41] has been employed in the quest for increased spatial resolution. Optical 

Flow-based methods [15] [42] have also been employed in strain elastography in conjunction 

with motion tracking by block matching to improve the accuracy of the motion estimation 

process using computationally expensive RF data.  

Multiple-frames-based strain estimation techniques [11], [12] have also been utilized for 

combining several pictures in which two frames are examined at a time, and strains are 

computed sequentially to compound them. This lowers noise compared to the conventional two 

frame approach. These techniques are more computationally complex as RF data is used.  

1.4 The motivation of the Thesis 

Accuracy of the motion estimation, higher resolution, robustness to noise and decorrelation 

arising from out of plane motion, faster execution speeds, preciseness to be integrated into 

subsequent quantitative analysis algorithms are the desired outcomes of a well-established 

strain estimation algorithm suited for ultrasound elastography. 

The motivation of the thesis was to improve our proposed techniques on the above-mentioned 

fronts. We aim to increase the performance metrics while implementing the algorithm in a less 

computationally expensive data form. 
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1.5 The objective of the Thesis 

In this thesis work, first, the current techniques of ultrasound elastography and their limitations 

have been investigated. To overcome the main limitations of the current techniques, two strain 

estimation techniques based on multiple frames that incorporate optical flow have been 

proposed. These two proposed techniques aim to improve the accuracy of displacement 

estimates, improve the resolution from existing approaches and be immune to noises arising 

due to decorrelation and error propagation.     

The objectives of our thesis can be outlined as follows: 

 

1. Investigating the state of the art of strain estimation techniques and find out their 

contributions and limitations. 

2. Increasing the SNR and CNR of strain images using multiple frames.  

3. Increase the spatial resolution of the strain estimation through RF frame-sized strain 

estimation.   

4. Improve the accuracy of motion estimation through optical flow based residual motion 

estimation of the displacement layer. 

5. Reducing computational complexity of RF echo based elastographic techniques by 

using only B-mode/ envelope of pre- and post-compression echo signals. 

1.6 The Organization of the Thesis 

This thesis is organized according to the following: 

 

Chapter 1 INTRODUCTION: 

This chapter introduces strain elastography. A brief literature overview stating the current 

limitations is included. This is concluded by the objective of the thesis and thesis organization 

outlines. 

Chapter 2 STATE OF THE ART STRAIN ESTIMATION TECHNIQUES: 

Strain estimation techniques can be grouped under specific common working themes. In this 

chapter, the state-of-the-art strain estimation techniques are discussed elaborately, including 

their innovativeness and limitations. 
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Chapter 3 PROPOSED TECHNIQUES: 

Two new strain estimation techniques using multiple frames based on the optical flow method 

are presented in this chapter. A summary of the working steps is illustrated with a flow chart at 

the end of each technique.  

Chapter 4 RESULTS: 

Strain images generated by the two proposed algorithms are depicted in this chapter. The strain 

images of other well-established algorithms are also presented for comparison. Later 

quantitative justification and comparison of these techniques are portrayed. 

Chapter 5 DISCUSSION and CONCLUSION : 

A summary of the thesis work is presented. Scopes for future approaches for progress are also 

discussed.  
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Chapter 2 

2 STATE OF THE ART STRAIN ESTIMATION 

TECHNIQUES 

Motion estimation is generally the most important step in quasi-static elastography. Various 

types of motion estimation strategies have been incorporated in quasi-static elastography from 

its inception. Generally, after motion tracking, strain estimation is performed. These techniques 

can be subdivided into some major categories, which are discussed below: 

2.1 Gradient-Based Cross-Correlation Techniques For Strain 

Estimation 

 

During the initial days, the strain profile in gradient-based method was generated along the 

transducer axis, which was then computed from the one-dimensional 1D cross-correlation 

analysis of pre and post-compression frame pair [1]. This method has been a steppingstone to 

modern-day ultrasound strain estimation techniques. This technique suffers from decorrelation 

and low resolution. 

O’Donell et al. demonstrated various ultrasound speckle tracking methods with the intent of 

permitting measurement of internal displacements through the cross-correlation-based method 

and strain maps over a wide-ranging tissue motion. Experiments using gelatin-based tissue-

equivalent phantoms resulted in improved contrast resolution in strain elastograms. [13]. 

Ophir et al. showed that the finite difference computations of echo time-delay through the 

processing of pre- and post-compression echo signals can generate tissue strain elastograms 

[19].  
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Maximizing the low contrast detectability for soft biological tissues in elastography has been 

the goal of Bilgen et al. [5]. To achieve the goal, Bilgen et al. tweaked experimental settings 

and signal processing variables to obtain a sharp peak in the cross-correlation function, resulting 

in precise displacement estimations. They further claimed that stretching the post-compression 

echo can significantly increase the magnitude of the cross-correlation function, and 

preprocessing the compression echo signals can markedly reduce displacement errors [5]. 

Location of the peak of the cross-correlation function between gated pre-compression and post-

compression signals form the time delay estimates. Good quality elastograms require accurate 

estimation of the time delays.  Decorrelation of the echo signal arising due to tissue compression 

is the main source of time delay error (TDE). Kaisar et al. validates temporally stretching the 

post-compression echo signals before the TDE step( through 1D cross-correlation ) reduce the 

decorrelation noise in elastograms [32]. 

2.2 Short-Term Correlation-Based Strain Estimation Techniques 

 

In ultrasound imaging, the image resolution of elastograms is of paramount significance. 

However, the tradeoff that this imaging modality has to tolerate is of precision versus spatial 

resolution. Although a bigger correlation kernel reduces error variance, it also lowers the spatial 

Fig. 2.1 Echo time delay computation through the  processing of pre and post compression signals. [30] 
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resolution. [38]. Strain decorrelation is another crucial cause of errors in displacements 

estimated by cross-correlation techniques. Thus, increasing spatial resolution without affecting 

the error variance and lowering the strain decorrelation errors has been a topic of research from 

earlier days.  

In this aspect, Lubinski et al. introduced the concept of short term correlation where they 

demonstrated that reducing the correlation kernel can decrease the strain decorrelation error, 

and a higher SNR is attainable by filtration of the correlation functions before displacement 

estimation [38]. 

2.3 Two-Dimensional Strain Estimation Techniques 

 

Brusseau et al. devised a 2-D locally regularized strain estimate technique that not only 

computes the ROI's 2-D translation motion but also takes axial size variation into account. 

[43]This technique identifies the unreliable displacement estimates as a function of the cross-

correlation function and uses a regularization technique to correct them [43]. This method 

consists of initial motion computation of the change in the ROI position induced by the 

transducer and then ROI position refinement according to the initial motion computation. The 

axial scaling or stretching factor is estimated, and ROIs are scaled according to the sign of the 

scaling factor. Eventually, correction through regularization aids in axial strain computation. 

Finally, the combination of elastographic results culminates in a production of video frames 

depicting the tissue deformation induced by the stress. 

The lateral and elevational components arising due to free hand compression are generally 

ignored, but they distort the axial strain estimate by generating decorrelation noise. Konofagou 

et al. propose a novel weighted interpolation technique acting across adjacent RF A-lines for 

high accuracy monitoring of the lateral motion [4].  These accurate lateral-displacement 

estimates allow for a fine correction for lateral decorrelation that taints axial motion estimates. 

The authors show the distribution of Poisson's ratios in the tissue by dividing the lateral 

elastogram by the axial elastogram. 
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2.4 Adaptive Stretching Based Strain Estimation Techniques 

Adaptive stretching strain calculation methods [34] for ultrasound elasticity imaging aim to find 

out the stretch factors that maximize the correlation between the pre- and post-compressed RF 

signals by iteratively stretching the latter one. These then adopt the normal 1D cross-correlation 

method and gradient-based approach to generate the tissue strain image. This method produces 

elastograms with comparatively less noise than gradient-based approaches, but the imaging 

efficiency is low.  

The window moving is added to simplify the calculations of the cross-correlation function, and 

an adaptive stretch factor method based on moving window for ultrasound elasticity imaging is 

proposed.[11]  

Local tissue strain is calculated in ultrasound utilizing techniques like cross-correlation on local 

segments of RF data. [7]. Local data segments are chosen by multiplying RF data by a rectangle 

window in this procedure. Non-ideal spectral behavior is caused by such data truncation and 

this effect can be minimized by utilizing smooth windows. Rifat et al. found that smoothing 

windows improve the SNR and CNR of strain images [7]. 

 

2.5 Spectral Based Strain Estimation Techniques 

 

Strain causes a time delay and time scaling in the received signal, similar to velocity. In 

elastography, time delay techniques are often employed to indirectly (through the displacement 

estimate) measure tissue strain caused by applied compression. According to Konofagou et al., 

the temporal scaling factor can be computed spectrally and used as a direct measure of strain[8]. 

The strain causes a Doppler-like frequency shift as well as a change in the bandwidth of the 

bandpass power spectrum of the echo signal. Two frequency shift strain estimators are 

discussed, which have been proven to be more robust but less accurate than time delay 

estimators in simulations and testing [8]. The spectral methods are less sensitive to phase 

decorrelation noise, which results in improved robustness. 

Kaisar et al. presented a new spectral strain estimator that maximizes the correlation between 

the spectra of pre- and post-compression echo signals using iterative frequency-scaling of the 
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latter [44]; they also describe a variant of this method that is computationally more efficient but 

less accurate. In tests and 2-D finite-element simulations, the adaptive spectral strain estimator 

outperformed traditional estimators by combining the advantages of time- and frequency-

domain techniques. 

Cross-correlation methods are used in traditional spectrum elastographic techniques to measure 

strain. Despite promising outcomes, decorrelation effects restrict the precision of these 

techniques. Decorrelation effects become increasingly evident as tissue stresses increase 

because tissue compression in the time domain corresponds to upscaling in the frequency 

domain. They are a major concern in spectral cross-correlation elastography. A two-stage 

hybrid spectral elastographic method is presented by Hoyt et al. in one of his works [14]. The 

first stage is correcting for bandwidth widening (due to tissue compression) between pre- and 

post-compression power spectra pairs using an assumed spectral scaling factor (i.e., beginning 

strain estimate). Due to improper scaling factor selection in the first stage, the second phase 

uses spectral cross-correlation methods to compute any residual strain information. In 

simulation and testing, this novel hybrid spectral elastographic method was compared to both 

conventional spectral and adaptive temporal elastographic approaches. The hybrid spectral-

based technique not only outperformed the conventional spectrum elastographic methodology, 

but it also outperformed the adaptive temporal-based elastographic approach. 

2.6 Zero-Phase Detection of Complex Cross-Correlation 

Function-Based Strain Estimation Techniques 

 

The key to measuring strain in ultrasonic elastography is the precise estimate of temporal 

displacements between two signals. A method [13] that calculates these displacements using 

phase differences of the associated base-band signals was previously presented. The 

computational efficiency of this method is a significant advantage over correlation approaches. 

An extension of the method is described by Pesavento et al. in [45] that iteratively takes into 

consideration the time shifts of the signals to address aliasing and accuracy issues in phase shift 

estimation.  It was shown that the method is identical to searching for the correlation function's 

maximum. Furthermore, a robust logarithmic compression that simply compresses the signal's 

envelope was suggested as this compression introduces no systematic errors and lowers 
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decorrelation noise substantially. The resultant method is a computationally simple and quick 

replacement for traditional correlation algorithms, and strain image accuracy is enhanced. 

 

Brusseau et al. devised an adaptive approach based on the estimate of strains as local scaling 

factors in order to expand the range of reliable strain measurements [46]. Because of its 

flexibility, this technique is well suited to calculating scaling factors for greater strains or a 

broad range of strain fluctuations. In the rest and stressed state echo signals, segments belonging 

to the same region of the tissue are adaptively chosen. Local scaling factors are then calculated 

by repeatedly changing their values until the phase of the complex cross-correlation function 

reaches zero.  

2.7 Sub-Sampled Displacement Tracking Based Strain 

Estimation Techniques 

A speckle tracking method that performs both axial and lateral motion estimates at the same 

time to increase the accuracy of displacement estimation was proposed [37]. Specifically, this 

method finds an iso-contour in the region of the highest correlation between two blocks of pre- 

and post-compression ultrasonic radiofrequency echo data using conventional ultrasound echo 

data. Locating the center of the correlation function's iso-contour is claimed to be equivalent to 

the undetermined (sub-sample) motion estimate. 

 

2.8 Cost-Function Minimization Schemes-Based Strain 

Estimation Techniques 

 

Rivaz et al. present a 2D strain imaging method based on dynamic programming to minimize a 

cost function [47]. The cost function considers echo amplitude similarity and displacement 

continuity. The inclusion of smoothness within the cost function reduces decorrelation noise 

because tissue deformations are smooth. As a result, the proposed method produces high-quality 

free-hand palpation elastography strain images with up to 10% compression demonstrating that 
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it is more resistant to signal decorrelation (caused by scatterer motion in high axial compression 

and nonaxial probe motions) than standard correlation techniques.  

However, elastograms using this method show some stress concentration around the lesion 

which is not visible in the corresponding cross-correlation images. This might be an artifact, or 

high stresses are generated only around the lesion due to the nonlinear mechanical 

characteristics of the phantom. 

Two real-time elastography methods based on analytic minimization (AM) of regularized cost 

functions are described.[48] The first technique (1D AM) generates axial strain and an integer 

lateral displacement, while the second method (2D AM) generates both axial and lateral 

stresses. Both AM techniques are resistant to minor decorrelations present across the 

elastogram since the cost functions include similarity of radiofrequency (RF) data intensity and 

displacement continuity. To make the approaches resistant to large local decorrelations, Rivaz 

et al. use techniques from robust statistics and include Kalman filtering, which is used to 

calculate the strain estimates from the motion field produced by AM techniques.[48] 

2.9  Direct Strain Estimation Techniques 

 

For high-quality average strain imaging, Arafat et al. developed gradient-based and direct strain 

estimating methods that incorporate cost function maximization [6]. Stiffness usually is a 

continuous function. Since stiffness is considered to be a continuous function, the stiffness of 

proximal tissues is almost identical to the stiffness of the tissue that corresponds to a particular 

data window. A cost function is generated using exponentially weighted nearby pre- and post-

compression RF echo normalized cross-correlation peaks in the lateral (for displacement 

estimation) or axial and lateral (for direct strain measurement) directions. The average 

displacement/strain is obtained from the associated maximum cost function, ensuring a 

controlled continuity in displacement/strain. The tissue is displaced laterally as a consequence 

of axial stress. Therefore, Poisson's ratio was integrated to pick a suitable 1-D post-compression 

echo segment. Gradient-based strain computation considers two stretching factors at the same 

time, allowing for accurate imaging of lesions. 

A phase-based direct average strain estimate technique is proposed by Sharmin et al. [17]. 

Direct axial strain is estimated by integrating the phase of the zero-lag cross-correlation 
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function between the segmented pre-deformation and stretched post-deformation echo signals. 

Unlike traditional phase-based strain estimators, which calculate strain from the displacement 

field, strain in this work is estimated in a single step utilizing the secant method and the direct 

phase-strain connection. As an alternative to utilizing the interrogative window's instantaneous 

phase to ensure strain continuity, an average phase model is designed using the phases of 

adjacent windows, assuming that the strain is basically identical in close vicinity to the 

interrogative window. This technique takes the impact of lateral shift into consideration but 

does not require a previous approximation of the applied strain. 

Kamrul et al. describe a technique that takes use of the fact that the post-compression rf echo 

signal is a time-scaled and shifted copy of the pre-compression rf echo signal, like previous 

time/frequency domain methods. Unlike conventional techniques, this methodology computes 

the mean strain without explicitly utilizing any post-filter and/or prior local displacement/strain 

computations [9]. In the short-time Fourier transform domain, it is accomplished using a 

nearest-neighbor weighted least-squares-based Fourier spectrum equalization technique. Since 

the local tissue strain is expected to maintain continuity with its neighbors, the mean strain at 

the interrogative window can be calculated directly from the common stretching factor that 

aims to minimize a cost function deduced from the exponentially skewed pre- and post- 

compression RF echo signal in both the longitudinal and transverse directions. 

2.10  Multi-Level Block Matching Algorithm-Based Strain 

Estimation Techniques: 

 

Unlike single-level block matching, multi-level algorithms utilize a variable-size matching 

block and search window. Large block size is first employed to give a coarse-resolution 

approximation of the entire motion field. Each successive level utilizes a smaller block size and 

search window than the previous levels to improve spatial resolution without losing noise 

immunity. The multi-level approach is comparable to hierarchical systems employed in block 

matching algorithms for video coding [49]. These approaches vary in how they utilize various 

subsampling methods and cost function minimization. 

In one approach, Fai Yeung et al. demonstrated multi-level block matching utilizing SSD as a 

cost function in continuous tissues [41]. The multi-level block matching (MLBM) method uses 
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varying matching-block and search-window sizes in a coarse-to-fine scheme, maintaining 

motion field information while keeping the relative immunity to noise associated with large 

matching blocks. 

The ability of the 2D multi-level cross-correlation technique to calculate local displacement 

fields and stresses in discontinuous media is demonstrated by Varghese et al. [39]. Using a 

multi-level pyramid method, coarse displacement estimates are first produced using sub-

sampled B-mode data. On the lowest level of the pyramid holding the RF echo signal data, the 

coarse displacement estimations are then used to guide the high-resolution estimation. This 

technique combines the benefits of B-mode envelope tracking's resilience with the accuracy of 

RF motion tracking to produce high-resolution displacement and strain estimations. The 

method can track discontinuous displacement fields thanks to the processing scheme presented 

in this article, which uses coarse displacement estimates utilizing B-mode data and a multi-level 

approach. As a result, the assumption of a continuous displacement field is not necessary in the 

multi-level technique, unlike previous strain estimation methods. 

In this approach, the coarse displacement estimates are generated using a pyramidal processing 

method beginning with down-sampled B-mode pre- and post-compression picture pairings, 

where the cross-correlation cutoff is 0.3 in the first level resulting in poor guidance 

displacement estimates for subsequent levels. Although the method is reported to be quicker in 

terms of computing, the qualitative characteristics of elastograms in the following levels for 

breast lesion investigations suffer as a result. Errors in displacement estimations propagate in 

the early stages if they are large enough that the specified search areas do not include actual 

displacements. When tissue is squeezed, significant and irregular local deformation may occur 

owing to image collection constraints, resulting in local decorrelation and the buildup of 

spurious peaks in the calculation. 

Meshram et al. implemented an accelerated GPU-based multi-level approach that is used for 

lagrangian carotid strain imaging based on Bayesian regularization [40]. In that technique, first, 

a cumulative displacement vector map is created using the predicted inter-frame displacements. 

Second, before estimating the appropriate cumulative strain tensors, accumulated displacement 

vectors are collected. The local strain tensors are then calculated using the gradient of the 

displacement vectors. This technique is based on the initial multi-level technique [39]. The 

addition of Bayesian regularization to correct the motion field is highly computationally 
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expensive, and thus the implementation of this algorithm using GPU was a notable work to 

speed up the process.  

2.11  Optical Flow-Based Strain Estimation Techniques 

 

A two-step Optical Flow method has been proposed by Xiaochang et al. to improve the 

performance of conventional optical flow method-based strain estimation [15]. The 

conventional OF technique is used in the first phase to calculate the displacements and stresses 

between the pre- and post-deformed RF signals. In the second step, the estimated axial stresses 

and axial shear strains are utilized to warp the pre-compression RF signals. The displacements 

and stresses between the warped pre-deformed RF signals and the post-deformed RF signals 

are then estimated using the OF method. The axial strains acquired in both stages are combined 

to produce the final axial strains. Xiaochang et al. incorporate local warping to improve the 

coherence between the pre- and post-deformed signals. This local warping technique is 

analogous to the aligning and stretching methods used in correlation-based elastography 

[5][32]. Xiaochang et al. suggest that by decreasing both bias and standard deviation, the 

warping method enhances the precision and accuracy of strain estimation. 

The Optical flow algorithm [50]  considers the intensity of the material point of the tissue in a 

complete RF sequence is always invariant. This assumption can be called intensity invariant 

constraint in terms of computer vision. The presence of speckle noises and tissue deformations, 

on the other hand, typically interferes negatively with the intensity restrictions, resulting in poor 

motion estimation results. 

The two-step optical flow method incorporates both axial and shear strain parts to locally warp 

RF data. Although this technique is good for phantom simulations, these don’t work well in 

patient data cases as there are a lot of intensity variations in the RF data, which consequently 

makes the local warping inconsistent. 

The two-step optical flow method for elastography is illustrated in  Fig. 2.2 
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2.12  Strain Estimation Techniques Using Multiple Frames 

 

In order to compute a displacement field from three pictures, Rivaz et al. use material mechanics 

to establish limits on changes in the displacement field over time [12]. These restrictions are 

then utilized to create a regularized cost function that considers the amplitude similarity of three 

ultrasonic pictures and the continuity of displacement. In an expectation-maximization 

paradigm, the cost function is maximized and to reduce the impact of outliers, iteratively 

reweighted least squares is employed.  

Fig. 2.2 Two-step optical flow method for elastography.[15] 
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Rivaz et al. also describe an alternate method for combining several pictures in which two 

frames are examined at a time and strains are computed sequentially to compound them. This 

technique is shown to lower noise and removes ambiguity in displacement estimation when 

compared to utilizing two pictures or collecting strains.  
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Chapter 3  

3 PROPOSED TECHNIQUES 

In this work, to overcome the limitations of the current methods, two strain estimation 

techniques based on multiple frames have been proposed. The first method, titled “Optical flow-

based multi-frame strain estimator”, is the skeleton of our idea. The second method, titled 

“Multistage optical flow-based multi-frame strain estimator”, is an improvement of the first 

method. In this chapter, we discuss the techniques behind these two algorithms. 

3.1  Frame selection 

The first step to generate elastograms is the selection of multiple good RF echo frames from 

the ultrasound RF sequence. Because most pairings of RF frames either do not show adequate 

deformation for obtaining relevant strain pictures or are significantly impacted by decorrelation, 

choosing suitable frames for the strain estimation process is critical. In this thesis work, three 

frames are selected based on their quality of producing good quality strain elastograms. Earlier 

experiences and prior data of choosing good frames were used for validating the algorithm on 

patient data cases.  
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Fig. 3.1 demonstrates the timing of the selected frames. Pre compression echo frame F1 was 

chosen at time t before the application of stress. In quasi-static elastography, for the acquisition 

of post-compression data, stress is generally applied by the clinician perpendicular to the 

investigated tissue. After a certain interval Δt, post-compression echo frame F2 at a time (t+ Δt) 

is selected with prior knowledge. Under the application of the stress another post-compression 

frame, F3 is then selected after a smaller time interval of δt. Most of the deformation generally 

occurs before time (t+ Δt) i.e., at the onset of selecting F2 as the clinician stops implying more 

force at a certain stage. Thus, the deformation between F2 and F3 is less compared to that 

between F1 and F2. This nature of data acquisition has been exploited later in the algorithm. 

Fig. 3.1 Selection of frames after compression. 
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3.2  Conversion of RF to B-mode or envelope mode 

This step involves transforming the RF data form of the pre- and post-compression echo signal 

to the envelope or B-mode data using the Hilbert Transform, a known technique in 

asynchronous detectors that does not require center frequency. The B-mode image contains 

only the amplitude information along the axial direction when compared to the RF data and 

needs far less computational power to process. After the mapping of intensity and post-

processing filtering, these frames become usable. Therefore, the algorithm is computationally 

optimized to work only with envelope form. 

3.3 Optical Flow-based Multi-Frame Strain Estimator 

The algorithm of this multi-frame strain estimator can be divided into two stages. The steps of 

each stage are first outlined here. 

Stage 1  

1. Motion estimation between Frame 1 and Frame 2 to find out displacements. 

2. Displacement error correction and strain estimation from displacements  

3. Registering strain to pre-compression frame size. 

4. Unwarping frame 2 using displacements from step 1. 

Fig. 3.2  Conversion of RF to B-mode Source. [49] 
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5. Finding optical flow vectors between unwarped frame 2 and frame 1. 

6. Strain estimation from optical flow vectors. 

7. Adding step 3 and 5 to finalize stage1 strain estimation.  

  

Stage 2:  

 

8. Choosing frame 3 slightly after frame 2.  

9. Warping frame 2 to reconstruct a frame like frame 3 i.e., obtain warped frame 2. 

10. Finer displacement estimation between warped Frame 2 by and Frame 3 through optical 

flow. 

11. Strain estimation from optical flow vectors of step 10. 

12. Generation of final strain image by adding step 7 and step 11. 

 

The process in each step is described in detailed next.  

3.3.1 Stage 1: Motion estimation between Frame 1 and Frame 2 

 

Step 1: Motion Estimation Between Frame F1 And F2 Through Block Matching 

Motion estimation due to the tissue deformation through block matching requires matching a 

kernel (matching 2D block) with a bigger 2D block called the search window to optimize the 

cost function. Generally SAD, SSD require cost factor minimization, but we chose 2D 

normalized cross-correlation to maximize the cost function. 

Mathematically the 2D Normalized cross correlation function can be represented by equation 

3.1 

 

𝑁𝐶𝐶 (𝑖, 𝑗) =
∑ ∑ [𝑓(𝑥, 𝑦) − 𝑓][𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑡]𝑁

𝑦=1
𝑀
𝑥=1

√∑ ∑ [𝑓(𝑥, 𝑦) − 𝑓]
2

∗𝑁
𝑦=1 ∑ ∑ [𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑡]

2𝑁
𝑦=1

𝑀
𝑥=1

𝑀
𝑥=1

 

 

3.1 
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where f and t represent the pre- and post-compression data frames. 𝑖 and 𝑗 denote relative shifts 

between the 𝑓 and 𝑡 data frames, M and N are the block sizes in 

axial and lateral directions, where 𝑓 and 𝑡 denote the mean values of the intensities of the blocks 

f and used in the calculation. 

 

 Prior knowledge and empirical data were used for the choosing sizes of the processing 

parameters, i.e., axial, lateral sizes of kernels and search window and shifts. Sizes of kernel and 

search-window were carefully selected to maximize the cross-correlation function and thus 

have less impact on signal decorrelation.  The corresponding displacement to this maximum 

similarity gives the crude peak displacements. Thus, sliding the kernels and search widows at 

a certain degree of overlap with pre-defined axial and lateral shifts, the initial displacement 

matrices are obtained. These matrices account for both the axial and lateral displacements of 

the initial stage obtained from the B-mode of the pre-compression echo F1 and post-

compression F2 echo signal.  

 

Fig. 3.3 Motion estimation by block matching. 
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An approximate size comparison between the displacements and frame size for one of the cases 

of patient data can be shown according to Fig. 3.4. 

 

 

Step 2: Displacement Error Correction and Strain Estimation from Displacements 

Normalized cross-correlation coefficient was utilized as a confidence metric equivalent to the 

dependability of the displacement estimate. Displacement estimates having a low normalized 

cross-correlation coefficient (less than 0.8) were excluded and then interpolated from adjacent 

displacement estimates that contain a higher normalized cross-correlation value. There were 

very few inaccuracies in the boundary regions which were also corrected by the surrounding 

neighbors. 

 

Fig. 3.4 Size comparison in pixels. 
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Then the displacement matrices are median filtered to reduce the effect of the shot noise at the 

cost of some spatial resolution. The median filtering parameter was applied empirically 

according to the resolution of the displacement estimates. To overcome the major echo-signal 

decorrelations originating from gradient-based strain computing methods due to the existence 

of irregular random non axial motion in the case of patient data, least-square estimation was 

used to compute the strain matrix. 

Step 3: Registering Strain to Pre-Compression Frame Size 

The strain matrix loses some of its spatial resolutions as least square estimation is used for the 

computation of the strain matrix from the displacements. This loss is accounted for by 

registering the locations of the strain points corresponding to the displacement matrix and 

subsequent bicubic interpolation to fill the in-between missing values. Bi cubic method was 

used for interpolation as it is computationally faster, and the no of missing values is 

comparatively low.  Then the loss recovered strain matrix is registered to the frame size using 

spline interpolation by establishing point-to-point correspondence between the strain matrix 

and pre/post-compression data grid. The interpolation assures a smoothened upscaled strain 

matrix. On some occasions, there is a need for extrapolation. The extrapolation is implemented 

in the 2nd iteration based on the interior values after the initial interpolation is completed as 

depicted in Fig. 3.5.  
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Fig. 3.5 Strain registration with iterative extrapolation. 
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Bicubic Spline Interpolation 

In this section, the theory of bicubic spline interpolation is discussed.  

Bicubic interpolation is a two-dimensional cubic interpolation. It is made up of third-order 

polynomial pieces that are arranged in grid squares [51], [52]. Bicubic spline interpolation gives 

a third order 2D polynomial to each unit in the data set of four-unit squares patched together 

similar to Fig. 3.6. 

 

 It is in the form of the equation 3.2 for patch A. 

𝑓(𝑥, 𝑦) = ∑𝑖=0
3  ∑𝑗=0

3  𝑎𝑖𝑗𝑥𝑖𝑦𝑗 

 
3.2 

 The partial derivatives can be expressed by  

∂𝑥𝑓(𝑥, 𝑦) = ∑𝑖=1
3  ∑𝑗=0

3  𝑖𝑎𝑖𝑗𝑥𝑖−1𝑦𝑗 3.3 

∂𝑦𝑓(𝑥, 𝑦) = ∑𝑖=0
3  ∑𝑗=1

3  𝑗𝑎𝑖𝑗𝑥𝑖𝑦𝑗−1 3.4 

 
∂𝑥𝑦𝑓(𝑥, 𝑦) = ∑𝑖=1

3  ∑𝑗=1
3  𝑖𝑗𝑎𝑖𝑗𝑥𝑖−1𝑦𝑗−1 

 

3.5 

 

Fig. 3.6 Bicubic interpolation grid. 
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Suppose the function values 𝑓(𝑥, 𝑦), the first derivatives ∂𝑥𝑓(𝑥, 𝑦), ∂𝑦𝑓(𝑥, 𝑦) and, the 

cross derivatives ∂𝑥𝑦𝑓(𝑥, 𝑦) are known at corner knots (0,0), (1,0), (0,1) and 

(1,1) of the rectangular patch A. Therefore, in order to estimate the unknown coefficients of 

each polynomial, a total of 16 boundary conditions (equations produced by 3.2-3.5) must be 

satisfied. 

When just the function values, but not the first or cross derivatives, are available various 

methodologies can be used to calculate these derivatives. The finite difference approach can be 

used to approximate them according to equations 3.6, 3.7, and 3.8. 

∂𝑥𝑓(𝑥, 𝑦) = [𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥 − 1, 𝑦)]/2 3.6 

∂𝑦𝑓(𝑥, 𝑦) = [𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦 − 1)]/2 3.7 

 ∂𝑥𝑦𝑓(𝑥, 𝑦) = [𝑓(𝑥 + 1, 𝑦 + 1) − 𝑓(𝑥 − 1, 𝑦) − 𝑓(𝑥, 𝑦 − 1) + 𝑓(𝑥, 𝑦)]/4 

 
3.8 

This method creates a continuous surface patch with first and second derivatives on the unit 

square having coordinates (0,0), (1,0), (0,1), and (1,1). Thus, the cubic spline interpolation is a 

better choice of interpolation technique compared to linear or average interpolation for our 

work. 

 

 

 

Step 4: Unwarping Frame 2 

Unwarping is used for finding the residual motion that conventional motion algorithms do not 

take account of. The concept arises from untwisting or reforming after it has been initially 

twisted or deformed. The post-compression data grid is obtained after the pressure is applied 

from the transducer. Thus, it had been deformed initially. A method to compensate for the 

deformation at the pixel level through using the motion estimates from the motion estimation 

is the main idea of the unwarping procedure. 
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Considering each displacement pixel to be at the center of the kernel, the axial and lateral 

displacements are registered to the frame. The missing values in this upscaled displacement 

matrix are then interpolated using the cubic spline interpolation.  

After interpolation, the upscaled displacements were used to unwarp the post-compression RF 

signal at each pixel through transforming the displacement grid to the post data grid and 

interpolating the intermediate values through spline interpolation.  

 

 

The goal of the unwarping in this stage was to make F2 suitable for motion tracking using the 

subsequent optical flow processing layer. The post-compression data grid is obtained after the 

pressure is applied from the transducer. The blue arrow shows the actual motion that the tissue 

has experienced due to the application of force from the transducer. To reverse the experienced 

motion, F2 was warped such that F2_unwarped is coherent with F1 and meets the optical flow 

Fig. 3.7 Unwarping frame 2. 
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criteria. This warping motion is shown by the green arrow, and the orange arrow shows the 

residual motion to be estimated. 

Step 5: Optical Flow Between Unwarped Frame 2 And Frame 1: 

For estimating the residual motion between F2_unwarped and F1, the optical flow based on the 

Horn-Shunck method is utilized. The key assumptions for implementing the optical flow 

method are color constancy and small motion. This implicates that this methodology allows for 

pixel-to-pixel comparison on a small scale. The Horn-Shunck Optical Flow: method is a global 

search method that allows smooth flow, i.e., flow can vary from to pixel. Thus, it is suitable for 

our thesis work as the motion we expect is small, and overall good brightness constancy is 

maintained. The optical flow method yields a motion vector across both axial and lateral 

directions. We use the resultant motion field vector combining both the axial and lateral flow 

fields. 

 

Fig. 3.8 Optical flow between unwarped Frame 2 and Frame 1. 
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In this step, the optical flow vectors between F2_unwarped and F1 is represented by the 

purple arrow in Fig. 3.8. The purple arrow is a close approximation of the residual motion that 

was intended to be estimated at the end of step 4.  

Horn-Shunck Optical Flow: 

The Horn-Shunck optical flow method [53]  is a global minimization problem to compute the 

motion vectors from the flow field. In this approach, the motion field of images 𝐼(𝑥, 𝑦, 𝑡)  .and 

 𝐼(𝑥, 𝑦, 𝑡′) is estimated. 

For ensuring brightness constancy between the two frames, one can write,  

𝑰(𝒙 + 𝒖𝜹𝒕, 𝒚 + 𝒗𝜹𝒕, 𝒕 + 𝜹𝒕) = 𝑰(𝒙, 𝒚, 𝒕) 3.9 

 

𝐼(𝑥, y, 𝑡) +
∂𝐼

∂𝑥
𝛿𝑥 +

∂𝐼

∂𝑦
𝛿𝑦 +

∂𝐼

∂𝑡
𝛿𝑡 = 𝐼(𝑥, 𝑦, 𝑡) 

 

3.10 

 
𝝏𝑰

𝝏𝒙
𝜹𝒙 +

𝝏𝑰

𝝏𝒚
𝜹𝒚 +

𝝏𝑰

𝝏𝒕
𝜹𝒕 = 𝟎 3.11 

  𝑰𝒙𝒖 + 𝑰𝒚𝒗 + 𝑰𝒕 = 𝟎 3.12 

  

where 𝑡 + 𝛿𝑡 = 𝑡′;  𝑢, 𝑣 are flow fields along the x and y-directions.

  

 For every pixel, the brightness constancy, 𝐸𝑑  can be expressed by    

𝑬𝒅(𝒊, 𝒋) =   [𝑰𝒙𝒖𝒊𝒋 + 𝑰𝒚𝒗𝒊𝒋 + 𝑰𝒕]
𝟐
 

 
3.13 

  

The smoothness term can be expressed by 

𝑬𝒔(𝒊, 𝒋) =
𝟏

𝟒
[(𝒖𝒊𝒋 − 𝒖𝒊+𝟏,𝒋)

𝟐
+ (𝒖𝒊𝒋 − 𝒖𝒊,𝒋+𝟏)

𝟐
+ (𝒗𝒊𝒋 − 𝒗𝒊+𝟏,𝒋)

𝟐
+ (𝒗𝒊𝒋 − 𝒗𝒊,𝒋+𝟏)

𝟐
] 

 

3.14 
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The Horn Shunck optical flow method considers both brightness constancy and smoothness of 

the flow field. Thus, the overall objective function for minimization in this algorithm can be 

expressed as   

𝒎𝒊𝒏
𝒖,𝒗

 ∑  𝒊,𝒋 {𝑬(𝒊, 𝒋)}=𝒎𝒊𝒏
𝒖,𝒗

 ∑  𝒊,𝒋 {𝑬𝒔(𝒊, 𝒋) + 𝝀𝑬𝒅(𝒊, 𝒋)} 3.15 

   

 

Combining equations 3.13 and 3.14 the objective function can be expressed as, 

𝑬(𝒊, 𝒋) = {
𝟏

𝟒
[(𝒖𝒊𝒋 − 𝒖𝒊+𝟏,𝒋)

𝟐
+ (𝒖𝒊𝒋 − 𝒖𝒊,𝒋+𝟏)

𝟐
+ (𝒗𝒊𝒋 − 𝒗𝒊+𝟏,𝒋)

𝟐
+ (𝒗𝒊𝒋 − 𝒗𝒊,𝒋+𝟏)

𝟐
]

+ 𝝀[𝑰𝒙𝒖𝒊𝒋 + 𝑰𝒚𝒗𝒊𝒋 + 𝑰𝒕]
𝟐

} 

3.16 

   

 

Computing the partial derivatives of the objective function of equation 3.16, the flow field 

equations for each pixel can be derived. While not converged, updates to the flow fields are 

computed for each pixel according to equations 3.17 and 3.18.   

�̂�𝒌𝒍 = �̅�𝒌𝒍 −
𝑰𝒙�̅�𝒌𝒍 + 𝑰𝒚�̅�𝒌𝒍 + 𝑰𝒕

𝝀−𝟏 + 𝑰𝒙
𝟐 + 𝑰𝒚

𝟐
𝑰𝒙 

 

3.17 

 �̂�𝒌𝒍 = �̅�𝒌𝒍 −
𝑰𝒙�̅�𝒌𝒍 + 𝑰𝒚�̅�𝒌𝒍 + 𝑰𝒕

𝝀−𝟏 + 𝑰𝒙
𝟐 + 𝑰𝒚

𝟐
𝑰𝒚 3.18 

      

where 𝑢, 𝑣 are flow field, 𝐼𝑥, 𝐼𝑦 are the precomputed image gradients, 𝐼𝑡 is the precomputed 

temporal gradient.  

Finally, the resultant optical flow field is expressed in equation 3.19 

𝒓 = √𝒖𝟐 + 𝒗𝟐 3.19 
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Step 6: Strain Estimation from Optical Flow Estimates:  

In this step, the strain contribution from the residual displacements is taken into account. To 

overcome the noise associated with a lot of sparse data arising from the conventional gradient-

based strain estimation approach, we apply the gradient of the smoothing spline applied initially 

on the optical flow vectors. Mathematically the smoothing function can be represented by 

equation 3.20. 

𝒔 ∑  

𝒊

[𝒚(𝒙𝒊) − �̂�(𝒙𝒊)]𝟐 + (𝟏 − 𝒔)∫ (
𝒅𝟐�̂�

𝒅𝒙𝟐
)

𝟐

𝒅𝒙 

 

3.20 

  

where s= ( 0 ≤ s ≤ 1) represents smoothing parameter and. �̂� is a piecewise cubic polynomial 

that can be differentiated three times. The gradient of the smoothing-spline �̂�  is used to 

calculate strain. 

This assures smoothening of the optical flow strain field and makes it usable for addition with 

the strain map from block matching. 

Step 7: Stage 1 Strain Estimation 

In this stage, the strain from optical flow and motion estimation are added together. A 

gaussian smoothening filter is then applied to remove shot noises and reduce the jaggy effect 

inherent to optical flow strain vectors. 

The gaussian smoothening filter can be mathematically expressed as   

𝐺(𝑥, 𝑦) =
1

2π𝜎2 
 𝑒

−
𝑥2+𝒚𝟐

2𝜎2  3.21 

  Where 𝜎 is the standard deviation. 
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Fig. 3.9 Strain estimation at stage 1. 
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3.3.2 Stage 2: Introducing the Third Frame in The Algorithm 

This is stage 2 of the algorithm, where the third frame in the algorithm is introduced. The 

addition of this stage is to increase the accuracy and precision of the strain estimation from 

stage 1. This stage finalizes and improves the accuracy of the displacement estimation of stage 

1 by trying to estimate residual flows that stage 1 does not take account of.  

Step 8: Choosing Frame 3 Slightly After Frame 2 

Under the application of the stress, another post-compression frame, F3, is then selected after a 

smaller time interval of δt, i.e., after the selection of F2. Most of the deformation generally 

occurs before time (t+ Δt), i.e., at the onset of selecting F2 as the clinician stops implying more 

force at a certain stage. Thus, the deformation between F2 and F3 is less compared to that 

between F1 and F2. The nature of this data acquisition is exploited in this stage of the algorithm. 

Step 9: Warping Frame 2 

This concept of warping is like unwarping, which can be defined as untwisting or reforming 

after it has been initially twisted or deformed. For warping, the motion anticipated is added 

instead of untwisting. The post-compression data grid is obtained after the force is applied from 

the transducer. A method to estimate the deformation after a certain interval from the previous 

post-compression data to reconstruct a new post-compression data at the pixel level like post- 

compression frame 3 through using the motion estimates from the motion estimation is the main 

idea of the warping procedure. 

Considering each displacement pixel to be at the center of the kernel, the axial and lateral 

displacements are registered to the frame. The missing values in this upscaled displacement 

matrix are then interpolated using the cubic spline interpolation.  
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After interpolation, the upscaled displacements are used to warp the post-compression B-mode 

signal F2 at each pixel through transforming the displacement grid to the post-data grid and 

interpolating the intermediate values through spline interpolation. After this operation, we get 

warped frame F2. 

Step 10: Finer Displacement Estimation Between Warped Frame 2 And Frame 3 

Through Optical Flow 

The warping in the previous step allows for finer displacement estimation. The warping 

reconstructs a new post-compression data, which is a closer approximation to the post-

compression frame F3. For estimating motion between F2_warped and F3, the optical flow 

based on the Horn-Shunck method is applied. The preconditions for implementing Horn-

Shunck based optical flow method are color constancy and small motion. These conditions are 

met by implementing the previous step. Thus, pixel-to-pixel comparison between the 

Fig. 3.10 Warping post-compression frame F2. 
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reconstructed frame and F3 is possible on a small scale. Thus, we estimate the finer motion 

between F2_warped and F3 by the Horn-Shunck method illustrated in Fig. 3.11.  

 

Step 11: Strain Estimation from Optical Flow Vectors 

In this step, the strain contribution from the optical flow between Warped F2 and F3 are 

estimated. To estimate the strain contribution, we take gradients after applying the smoothening 

similar to stage 1, i.e., equation 3.20. This assures smoothening of the optical flow strain field. 

This strain field contains some noise. A gaussian smoothening filter like equation 3.21  is 

applied in addition to median filtering to eliminate the jaggy nature of noise arising from pixel-

based motion estimation of optical flow. 

 

 

 

 

Fig. 3.11 Finer displacement estimation betweern warped frame 2 and 

frame 3. 
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Step 12: Final Strain Estimation: 

In this stage, the strains from all the strains of different stages are added after registering them 

to the frame dimensions to create the final strain image. After the generation of the final strain 

image, post-processing filters like median filters and gaussian smoothening windows are 

applied in small patches. This marks the end of the optical flow based multi-frame (OFMF) 

strain estimator. 

 

 

The workflow of this algorithm can be summarized in the flowchart of Fig. 3.13. 

Fig. 3.12 Final strain estimation of optical flow-based multi-frame  

(OFMF) strain estimator. 
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Fig. 3.13 Flowchart of optical flow-based multi-frame (OFMF) strain estimator. 
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3.4 Multistage Optical Flow-Based Multi-Frame Strain 

Estimator 

 

The optical flow-based multi-frame (OFMF) strain estimator can be improved even further if 

the motion estimation of stage 1 step 1 can be performed even more precisely. For the 

improvement of this algorithm, the multistage motion estimation and subsequent multistage 

strain registration were integrated into the previous algorithm.  

 

3.4.1  Multistage Motion Estimation 

Like the earlier algorithm, we chose 2D normalized cross-correlation to maximize the cost 

function. Sizes of kernel and search-window were carefully selected to maximize the cross-

correlation function and thus have less impact on signal decorrelation. The corresponding 

displacement to this maximum similarity gives the crude peak displacements. Thus, sliding the 

kernels and search widows at a certain degree of overlap with pre-defined axial and lateral 

shifts, the initial displacement matrices are obtained. These matrices account for both the axial 

and lateral displacements of the initial stage obtained from the B-mode of the pre- and post-

compression echo signal. 

 

Mathematically the cross-correlation function in this stage can be represented by equation 3.1    

 

Typical multilevel hierarchical block-matching algorithms estimate motion in a coarse 

resolution down-sampled image pair initially, then refine the initial response in finer resolutions 

within a limited search range. The downsampling leads to the loss of intricate information that 

cannot be retrieved in the final stages as the motion is not coherent in a larger ROI. This might 

lead to erroneous displacement estimation if the coarse level displacements are qualitatively 

bad. 

 

Scaling down the size of the kernel and the search window without altering the image pair 

reduces the decorrelation noise. However, in order to detect the finer displacements, the block 

matching is initiated after the search window is repositioned utilizing the initial stage coarse 



42 

 

displacements to ensure the confinement of the tracked tissue within the search window with a 

restricted range to minimize false peak error as far as possible. This can be analogized to 

zooming into the solution. 

  

This is implemented according to the steps below: 

•               Initial stage coarse displacements are mapped into a grid that replicates the dimensions 

of the next stage displacement matrices(larger) utilizing cubic-spline interpolation. This 

interpolated grid is the reference displacement or initial condition for the subsequent stage. 

•                The search window is then repositioned using the reference displacement matrices, 

and then block matching is reiterated with the scaled-down kernel, search window, and window 

shift sizes. 

 

During reiteration of block matching, the cross-correlation function can be denoted by the 

following 

𝑁𝐶𝐶 (𝑖, 𝑗)

=
∑ ∑ [𝑓(𝑥, 𝑦) − 𝑓][𝑡(𝑥 + 𝑖 + 𝑖0, 𝑦 + 𝑗 + 𝑗0) − 𝑡]𝑁

𝑦=1
𝑀
𝑥=1

√∑ ∑ [𝑓(𝑥, 𝑦) − 𝑓]
2

∗𝑁
𝑦=1 ∑ ∑ [𝑡(𝑥 + 𝑖 + 𝑖0, 𝑦 + 𝑗 + 𝑗0) − 𝑡]

2𝑁
𝑦=1

𝑀
𝑥=1

𝑀
𝑥=1

 

 

3.22 

 

where f and t represent the pre- and post-compression data frames. 𝑖 and 𝑗 denote relative shifts 

between the 𝑓 and 𝑡 data frames, 𝑖0 and 𝑗0 represent the shift between f and t in the reference 

displacement grid in the x and y directions respectively, M and N are the block sizes in 

axial and lateral directions, where 𝑓 and 𝑡 denote the mean values of the intensities of the blocks 

f and 𝑡 used in the calculation. 

 

This repositioned iteration of block matching steps not only ensures the data is tracked precisely 

but also makes the algorithm suitable for multiresolution strain mapping at the end by 

generating higher resolution displacement maps. 
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Fig. 3.14 Scaling down processing parameters before repositioning. 

Fig. 3.15 Motion estimation after repositioning search window - x1’ and y1’ 

represent reference lateral and axial displacements  from previous stage  

respectively; X1 and Y1 represent lateral and axial displacement to be estimated 

in current stage respectively. 
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In all the stages, the normalized cross-correlation coefficient was utilized as a confidence metric 

equivalent to the dependability of the displacement estimate. Displacement estimates having a 

low normalized cross-correlation coefficient (less than 0.8) were excluded and then interpolated 

from adjacent displacement estimates that contain a higher normalized cross-correlation value. 

There were very few inaccuracies in the boundary regions, which were also corrected by the 

surrounding neighbors. 

 

Subpixel displacement estimation was incorporated in the last stage of the multistage estimation 

to improve the precision of the displacement estimates considering the displacements have 

irregular time shifts due to imprecision or inaccuracies in the transducer. This estimates the 

peak of the sampled crude displacements using   2-D parabolic interpolation. 

  

 The vector summation of the multistage procedure in a grid equivalent to dimensions of the 

last stage displacements gives the true final stage displacements. This can be represented by  

Fig. 3.16.  

  

Fig. 3.16 Vector summation of the multistage displacements 
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Then the displacement matrices are median filtered to reduce the effect of the shot noise at the 

cost of some spatial resolution. The median filtering parameter was applied empirically 

according to the resolution of the displacement estimates corresponding to the different stages 

in the method. 

 

This final displacement is then used in the earlier algorithm for better results. The flow chart 

multistage motion estimation is shown in Fig. 3.17.  

 

3.4.2 Multistage Strain Estimation and Registration 

To overcome the major echo-signal decorrelations originating from gradient based strain 

computing methods due to the existence of irregular random non axial motion in case of patient 

data, least square estimation was used to compute the strain matrices corresponding to the 

displacements at each stage. 

 

Image registration is widely used for transforming different sets of data into one coordinate 

system. A high-resolution image is generated by combining the indispensable information 

contained in multiple low-resolution images. Thus, image registration techniques involve 

spatially transforming the source image(s), i.e., low-resolution ones, to align with the target 

image high resolution one. In our algorithm, the source data are the gradual resolution 

Fig. 3.17 Flow of the multistage motion estimation 
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increasing strain images of the processing stages, i.e., the strain images of the 1st to 4th stage. 

The selection of the target image or the final image is generally based on the known 

correspondences between source and target image. In this algorithm, the processing parameters 

(the kernel, search window and shift sizes) are used as the correspondence parameter between 

the source and initial pre-compression grid. Since a relationship between the strain matrices and 

the initial pre-compression data can be established, the pre-compression grid was selected as 

the target image in our case. 

  

 

The strain images of all the stages, i.e., source images, are mapped in a pre-compression data 

equivalent grid, i.e., target image, through the known correspondences. The data in between 

each corresponding point was bicubically interpolated. It may be claimed that bicubic 

interpolation has a jaggy or blurred effect on the registered strain images. This effect is nullified 

by the different spatial positions of the real data points from each stage at the target grid. This 

can be explained by Fig. 3.18.  

 

Gradually increasing weighted average parameters of the corresponding registered strain 

images were chosen to emphasize the clarity of edges of the ROI and reduction of noise outside 

ROI due to the processing. The averaging of the registered strain images ensures that all the 

prominent features of each corresponding stage are considered. 
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This registered strain image is used with our earlier algorithm to improve the quality of 

elastograms at the cost of more complexity. The flowchart depicted in Fig. 3.19 is a summary 

of the multistage optical flow-based multi-frame (MSOFMF) strain estimator algorithm.

Fig. 3.18 Registration of multistage strain matrices to frame. 
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Fig. 3.19 Flowchart of multi-stage optical flow-based multi-frame (MSOFMF) strain estimator 
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Chapter 4 

4 RESULTS 

In this thesis, the results obtained for simulation and in-vivo data (patient data) for both the 

proposed techniques are first presented. Then the results of the proposed techniques are 

compared with some well-known algorithms like adaptive stretching, 1D Least square 

estimator,2D least square estimator with temporal stretching. Besides subjective evaluation by 

visual inspection, performances of the above-mentioned techniques in terms of SNR and CNR 

are compared and analyzed. 

 

4.1 Finite Element Simulation 

The performance of the proposed algorithms is tested by using two data sets, one generated 

artificially using a phantom and the other is patient data sets. Using the analytical program 

Algor, a rectangular 40 x 40 mm FEM phantom with a total of 30,372 nodes was simulated 

(Algor Inc). Because the simulation was done using a 2-D Finite Element Method (FEM) 

model, the out-of-plane motion was not taken into consideration. 

This phantom had a uniform backdrop of 60 kPa stiffness with four distinctly stiff circular 

inclusions of 7.5 mm diameter. The bottom left inclusion was 10 decibels stiffer than the 

backdrop; the top inclusion was 20 decibels stiffer; the bottom right inclusion was 30 decibels 

stiffer, and the center inclusion was 40 decibels stiffer. Ensuring free-slip condition at top and 

bottom surfaces the phantom was compressed from the top using a larger-width planar 

compressor after being put on a level surface. An ultrasonic transducer with a central frequency 

of 5 MHz and a bandwidth of 60% was used to scan the phantom from the top with a non-

diffracting beam of width of 1.5 mm. In this instance, there were a total of 128 A-lines. The 

data was up sampled 1.5 times to get 4000 pixels axially and to 196 A-lines laterally  With the 

addition of zero-mean white noise, the phantom was reproduced beginning at 2% applied strain 

and increasing to 16% applied strain. Fig. 4.1 depicts the stiffness of the inclusions in the FEM 

simulation. 
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Fig. 4.1 Ideal elastogram from finite element simulation. 

4.1.1 Processing Parameters 

The processing parameters in case of the simulation data can be summarized in  Table 4.1.  

Table 4.1 Processing parameters for finite element simulation. 

 

1
st
 stage 2

nd
 stage  3

rd
 stage 

Kernel 256 x16 128 x 16 64 x 8 

Search Window 384 x 24  192 x 24 86 x 16 

Shift 32 x 2 24 x 2 20 x 2 

Lag restriction  _ ±10 x ±2 ±4 x ±2 
 

Three stages of motion tracking were used as it provided optimal range of search. Involving 

more stages worsen the normalized cross-correlation maximums since the kernel does not 

encompass sizeable amount of data to be tracked with confidence. This can be illustrated with 

the surf plots of maximum NCC maps of 3rd stage and 4th stage in the Fig. 4.2. As the processing 

parameters reduce in the higher stage, the maximum NCC coefficients suffer. For instance, if 

4th stage with kernel size 32*6, search window of 44*8 and shift of 12*1 are used after the 3rd 

stage, in the case of the simulation data the mean of the NCC coefficient reduce from 0.94 to 
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0.82. Thus, in order to mitigate bad motion tracking, motion estimation is stopped at stage 3 to 

achieve an optimal performance without adding more computation. 

 
Fig. 4.2 Maximum NCC maps at 3rd stage and 4th stage. 

4.1.2  Strain Images 

In this simulation, the phantom was produced beginning at 2% applied strain and increasing to 

16% applied strain. We implemented both our techniques on these varied applied compressions. 

In Fig. 4.3, we show the strain images generated by our first proposed technique, “Optical flow-

based multi-frame (OFMF)” strain estimator. 
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 Fig. 4.3 Strain Images of Optical flow-

based Multi-Frame (OFMF) Strain 

Estimator at (a) 2% (b)4% (c) 8% (d) 12% 

(e) 16% applied strain. 
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Fig. 4.4 depicts the strain image generated by our second proposed technique, Multistage 

Optical flow-based multi-frame (MSOFMF) strain estimator.   
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Fig. 4.4 Strain Images of Multistage Optical Flow based 

Multi Frame (MSOFMF) Strain Estimator at (a) 2% 

(b)4% (c) 8% (d) 12% (e) 16% applied strain. 
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Fig. 4.5 gives a visual comparison of our 2nd technique (MSOFMF) strain estimator to other 

well-established strain estimators like adaptive stretching estimator (1D AS), 1D Least square 

estimator with uniform stretching (1D LSUS), 2D least square estimator with temporal 

stretching (2D LSUS). 

 

4.1.3  Performance Indices 

In this work, two performance parameters i.e., SNR and CNR are measured.  These 

quantitatively compare the performance of different strain estimators. 

 

Fig. 4.5 Strain images comparison of various algorithms 
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4.1.3.1 Signal to Noise Ratio 

The noise level in a strain picture is measured by the SNR, which is specified as [54]. 

𝐒𝐍𝐑 =
𝛍

𝛔
 

 

4.1 

 

  

 

where the statistical mean and standard deviation of the strain calculated in a homogeneous 

region are denoted by 𝜇 and 𝜎, respectively. 

The SNR comparison of the strain estimators discussed above are illustrated in Fig. 4.6 and 

Table 4.2.  

Table 4.2 SNR comparison between various strain estimators. 

 

2% applied 

strain 

4% applied 

strain 

8% applied 

strain 

12% applied 

strain 

16% applied 

strain 

MSOFMF 35.67 27.35 21.7 20.71 9.7 

OFMF 31.32 21.76 19.5 16.71 8.2 

1D LSUS 13.89 4.4 3.44 3.18 3.26 

2D LSUS 22.73 20.53 17.2 8.91 4.92 

1D AS 15.98 14.29 7.8708 7.8574 5.87 

Fig. 4.6 SNR comparison between various strain estimators. 
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4.1.3.2 Contrast to Noise Ratio  

The CNR assesses the contrast attributes of a strain picture and is characterized by   

𝐂𝐍𝐑 =
𝟐(𝛍𝐥 − 𝛍𝐛)𝟐

𝛔𝐥
𝟐 + 𝛔𝐛

𝟐
 

  

4.2 

 

where  𝜇 is the mean strain of the image and  𝜎 denotes the standard deviation of the strain in a 

homogeneous area, and the sub subscripts l and b refer to the lesion and the background, 

respectively. 

CNR of the four lesions found by previous algorithms can be presented in the following. 

4.1.3.2.1 Top Inclusion 

shows the different values of the CNR found out by the aforementioned algorithms for the top 

lesion  

Table 4.3 CNR comparison of the top lesion. 

 

2% applied 

strain 

4% applied 

strain 

8% applied 

strain 

12% applied 

strain 

16% applied 

strain 

MSOFMF 87.38 85.48 85.43 28.83 7.2 

OFMF 64.36 61.25 60.14 29.34 7.17 

1D LSUS 13.89 4.4 3.44 3.18 3.26 

2D LSUS 22.73 20.53 17.2 8.91 4.92 

1D AS 15.98 14.29 7.8708 7.8574 5.87 

Fig. 4.7 CNR comparison of the top lesion. 
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4.1.3.2.2 Centre Inclusion 

 

The table below displays the various CNR values determined by the aforementioned algorithms 

for the centre inclusion. 

 

Table 4.4  CNR comparison of the centre inclusion. 

 

2% applied 

strain 

4% applied 

strain 

8% applied 

strain 

12% applied 

strain 

16% applied 

strain 

MSOFMF 98.34 100.61 53.7 34.14 32.34 

OFMF 78.32 77.21 46.67 38.21 40.27 

1D LSUS 13.89 4.4 3.44 3.18 3.26 

2D LSUS 22.73 20.53 17.2 8.91 4.92 

1D AS 101.23 101.2507 28.55 17.58 3.098 

  

Fig. 4.8 CNR comparison of the centre inclusion. 
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4.1.3.2.3 Bottom Left Inclusion 

 

 

Table 4.5 depicts the various CNR values determined by the algorithms for the bottom left 

inclusion. 

 

Table 4.5 CNR comparison of the bottom left inclusion. 

 2% applied 

strain 

4% applied 

strain 

8% applied 

strain 

12% applied 

strain 

16% applied 

strain 

MSOFMF 88.34 84.32 72.7 54.14 47.34 

OFMF 78.4901 80.6016 72.1811 60.1811 45.16 

1D LSUS 126 0.0591 0.065 0.003 0.0204 

2D LSUS 49.4316 45.6449 44.6727 41.1435 34.3166 

1D AS 36.8763 60.6511 1.9417 1.5808 1.0093 

 

 

 

 

 

Fig. 4.9 CNR comparison of the bottom left inclusion. 
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4.1.3.2.4 Bottom Right Inclusion 

 

Table 4.6 summarizes the various CNR values obtained by the different algorithms for the 

bottom right inclusion. 

 

Table 4.6 CNR comparison of  the bottom right inclusion. 

 2% applied 

strain 

4% applied 

strain 

8% applied 

strain 

12% applied 

strain 

16% applied 

strain 

MSOFMF 78.34 47.32 69.7 6.14 6.34 

OFMF 69.1304 45.3511 64.3962 6.7809 6.0613 

1D LSUS 21.0638 0.0039 0.3757 0.0038 0.5086 

2D LSUS 34.1547 36.1532 32.4395 4.712 1.3396 

1D AS 174.6556 191.7166 4.8949 2.6306 1.3084 

 

 

 

 

 

 

 

Fig. 4.10 CNR comparison of  the bottom right inclusion. 
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4.1.4 Performance Analysis 

The 2nd proposed technique, i.e., MSOFMF strain estimator outperforms all other strain 

estimators in the SNR Comparison while OFMF is a close second. In terms of CNR, MSOFMF 

technique performs similarly apart from the bottom right lesion. In the bottom right boundaries, 

our estimator performs slightly bad. This is not a major concern as lesion generally appears in 

the middle of the screen in cases of patient data.  
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4.2 Patient Data/In-vivo Data 

In this section, we present ultrasound elastograms of in-vivo breast data using our algorithm 

and well-known algorithms. A database of 33 cases which were acquired by using a Sonix 

SP500 (Ultrasonix Medical Corporation, Richmond, BC, Canada) scanner integrated with an 

L14–5/38 probe operating at 10 MHz (nominal) at the University of Vermont Medical Center 

is used for this study. Free-hand compression was used for the acquisition of data. In this 

database, the age of the patients varied from 20 to 75 years. The database consists of cases that 

are both benign, i.e., fibroadenomas, and malignant, i.e., adenocarcinomas. 

4.2.1  Processing Parameters 

 

The frame size after the conversion of RF echo signal to B-mode is 2392 pixels *128 A-lines. 

Axially the pixel separation equals 37 micrometers. The processing parameters are selected 

empirically according to our prior experiences to maximize the cross-correlation function. The 

processing parameters used in our 2nd proposed technique MSOFMF strain estimator are 

summarized in the Table 4.7. 

 

Table 4.7 Processing parameters at different stages of multistage motion esimation. 

 

1
st
 stage 2

nd
 stage  3

rd
 stage 

Kernel 128 x16 64 x 8 32 x 6 

Search Window 192 x 24  86 x 12 44 x 8 

Shift 32 x 2 32 x 2 16 x 2 

Lag restriction  _ ±10 x ±2 ±4 x ±2 
    

For the first proposed technique OFMF strain estimator, first-stage processing parameters of 

table 4.1 were used for motion estimation. A detailed comparison between the proposed 

methods and other well-established strain estimators for the 4 cases out of the 33 cases of the 

patient database algorithms is presented below.  Fig. 4.11-Fig. 4.14 illustrate the log compressed 

B-mode image along with the elastograms of various known algorithms for comparison for 

patient 1-patient 4 respectively. 
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4.2.2  Patient 1 

Patient 1 is a 34 years-old lady. She had a 14x10x14mm lesion in her left breast. 

Histopathological reports indicate this case is a fibroadenoma.  

 

Fig. 4.11 Patient 1-(a). Log compressed B-mode image, Elastogram using - (b) MSOFMF (c) OFMF (d) 

2D least squares method with uniform temporal stretching, (e) 1D least squares method with uniform 

temporal stretching  (f) 1D spectral adaptive stretching  strain estimators. 
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4.2.3  Patient 2 

Patient 2 is a 53-year-old lady. She had a recurrence of breast cancer in her right breast after 

dense hyalinized interlobular fibrosis. The lesion was 10x8x5mm, and histopathological reports 

confirm that this case was also adenocarcinoma, i.e., malignant. 

Fig. 4.12 Patient 2-(a). Log compressed B-mode image, - (a). Log compressed B-mode image, 

Elastogram using - (b) MSOFMF (c) OFMF (d) 2D least squares method with uniform temporal 

stretching, (e) 1D least squares method with uniform temporal stretching  (f) 1D spectral adaptive 

stretching  strain estimators. 
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4.2.4 Patient 3 

Patient 3 is a 70-year-old lady with a malignant lesion of 10x7x11mm in her left breast. 

Histopathological reports approve that this is a case of adenocarcinoma. 

Fig. 4.13 Patient 3-(a). Log compressed B-mode image, Elastogram using - (b) MSOFMF (c) OFMF (d) 

2D least squares method with uniform temporal stretching, (e) 1D least squares method with uniform 

temporal stretching  (f) 1D spectral adaptive stretching  strain estimators. 
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4.2.5  Patient 4 

Patient 4 was a 64-year-old lady at the time of data acquisition. She had a 3x4x3mm invasive 

ductal adenocarcinoma according to the histopathological reports. 

 

Fig. 4.14 Patient 4-(a). Log compressed B-mode image, Elastogram using - (b) MSOFMF (c) 

OFMF (d) 2D least squares method with uniform temporal stretching, (e) 1D least squares 

method with uniform temporal stretching  (f) 1D spectral adaptive stretching  strain 

estimators. 
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4.2.6  Performance Analysis 

The SNR of the elastograms of 4 patient cases implemented by MSOFMF strain estimator, 

OFMF strain estimator, 2D least-squares strain estimator with uniform temporal stretching, 1D 

least-squares strain estimator with uniform temporal stretching, 1D spectral adaptive stretching 

strain estimator is documented in the chart of Fig. 4.15. It is evident that both of our proposed 

techniques outperform the other techniques by a good margin. 

 

 

 

The chart can be summarized in the Table 4.8. 

Table 4.8 SNR comparison of patient data cases 

 Patient 1 Patient 2 Patient 3 Patient 4 

MSOFMF 32.27 42.13 54.52 30.71 

OFMF 30.12 40.71 52.71 24.12 

1D LSUS 8.32 9.67 4.4 14.18 

2D LSUS 18.92 12.3 28.93 12.91 

1D AS 21.34 15.81 36.71 19.8574 

 

  

Fig. 4.15 SNR comparison of patient data cases. 
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Chapter 5 

5 DISCUSSION and CONCLUSION  

5.1 Discussions  

We have introduced two methods of generating stain elastograms using multiple frames from 

data acquisition. Our first technique, “Optical flow-based multi-frame strain estimator,” is 

based on optical flow and multiple frames. This algorithm was further improved by the addition 

of multistage displacement estimation before the implementation of the multi-frame optical 

flow layer. Both algorithms produce better quality elastograms using only B-mode data. In 

contrast, conventional algorithms use RF data that is more computationally expensive due to 

the rapid fluctuation nature of the acquisition of data and is prone to signal decorrelation. 

In both the proposed techniques motion estimation through block matching is only performed 

once between frames 1 and frame 2 and that initial motion is used later to obtain finer motion 

between frame 2 and frame 3. These finer motions are then used to obtain frame sized strain 

estimates using registration techniques. The conventional multi frame algorithms typically 

compound the strain between frame pairs and average them which requires motion estimation 

twice and is more time consuming. It was shown that good performance can be achieved by 

estimating motion once using our algorithms. 

The second technique MSOFMF strain estimator uses multistage motion tracking to improve 

the quality of strain elastograms even further. This algorithm takes more time to execute than 

OFMF strain estimator due to the multi-stage motion estimation. 3 stages of guided block 

matching were executed with smaller processing parameters at higher stages to estimate the 

motion finely. The displacements to be tracked at the end of the multistage estimation are very 

small and trying to estimate that motion through higher stage in the multistage hierarchy leads 

to decorrelation. As a result, to achieve optimal performance the residual finer motion is 

estimated through Horn Shunck optical flow. Consequent unwarping and warping of frame 2 

with the motion estimates from last stage of the multistage displacement estimation aids in 

mapping the finer motion in the strain map resulting in better performance metrics. 
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In chapter 4, it has been established that the proposed methods perform better than the other 

well-established methods like adaptive stretching, 1D Least square estimator,2D least square 

estimator with temporal extension, etc.  

5.2 Conclusion 

The desired outcomes of a strain estimation algorithm suited for ultrasound elastography are 

accuracy of motion estimation, higher resolution, robustness to noise and decorrelation arising 

from out of plane motion, faster execution speeds, and precision to be integrated into subsequent 

quantitative analysis algorithms. The techniques were proposed to work on these 

aforementioned aspects.  

The strain images generated with proposed algorithms provide a better visual depiction of the 

presence of lesions. In comparison to other algorithms, the strain pictures demarcate lesion 

borders with reduced background noise. Even at higher applied strains, such as 12 and 16 

percent in simulations, the suggested strain estimators clearly demarcate all the lesion without 

knowing or estimation of the applied strain.  This not only demonstrates that our algorithms are 

resilient to increasing noise, but it also demonstrates that they are more suited to subsequent 

segmentation and quantitative approaches. 

Increasing resolution has always been a challenge in ultrasound elastography. The increased 

spatial resolution makes strain elastograms suitable for modern display technologies and makes 

sequential computer-aided diagnosis through segmentation and quantitative analysis 

computationally easier. The proposed techniques are capable of increasing the spatial resolution 

by a factor of ~30 than the other algorithms making elastograms similar to frame size. 

Higher performance parameters like increased SNR and CNR are good indications of the 

efficacy of the algorithm. Higher SNR and CNR have been achieved with the added benefit of 

increased resolution and less computational expense through using only B-mode data.  
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5.3 Future Perspectives 

The techniques proposed in this thesis work are based on CPU utilization. Although we were 

able to set benchmarks in terms of the quality of strain images, our algorithm can be 

implemented with GPU coding in the future to make it even computationally less time-

consuming and real-time.  

This work has been based on an empirical selection of good frames from a known patient 

database. For newer data sets, the prior knowledge of selecting good knowledge may not yield 

good output. Thus, a machine learning algorithm can be incorporated to know the good frames 

for implementing the multiple frame-based algorithms. Modern machine learning algorithms 

need high volumes of labeled data to perform well. Due to our limitation of the infrastructure 

to collect real-time patient data in Bangladesh, training machine learning-based neural networks 

will be very hard. But in the future, the availability of the training data labeled by expert 

radiologists, would help to progress the research in this area. 
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