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Abstract 

 

Ultrasound imaging is one of the medical imaging modalities that has become popular 

among the researchers for breast cancer diagnosis because of its radiation free and non-invasive 

nature compared to other screening procedures like X-ray Mammography, CT-scan etc. In 

ultrasound studies, various quantitative analysis has been shown to be capable of breast cancer 

diagnosis. This research utilizes the statistical parameters from the well-known Nakagami 

distribution and investigates their potential in improvement of noninvasive semi-automated 

identification of breast cancer. The dataset used in the study has 130 biopsy-proven patients 

consisting of 104 benign and 26 malignant cases with traced lesion boundaries. In this study, 

seven types of Nakagami and derived Nakagami images have been generated for each patient 

from the basic and derived parameters of Nakagami distribution. To determine the suitable 

window size for image generation, an empirical analysis has been conducted using three 

window sizes of width 0.2 mm and lengths 0.1875 mm, 0.45 mm and 0.75mm. The images 

were analyzed quantitatively for feature extraction, followed by feature selection using the 

machine learning algorithm- Recursive Feature Elimination with Cross Validation. A 

combination of six features was found for window size 0.75mm which gives a classification 

accuracy of 92.3% and area under the ROC curve score of 0.95 using Linear Support Vector 

Machine classifier.
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Chapter 1 

Introduction: 

1.1 Introduction 

Breast cancer has been the most common of all cancers in women. It has become a global issue 

affecting both men and women all over the world. Approximately 30% of all new cancer 

diagnoses in women is estimated to be breast cancer. 15% of total cancer deaths is due to breast 

cancer making it the leading cause of cancer death next to lung cancer. In the future years, with 

an approximation of 1 in 8 women (13%) will be diagnosed breast cancer that is invasive in 

nature and 1 in 39 women (3%) may die from only breast cancer [1]. 

 

 

Figure 1.1: Estimated age-standardized cancer incidence rates in 2020 [2] 

 

It is a disease where cells in the breast tissue grow in an uncontrolled amount forming a lump 

or a mass. It doesn’t typically show any symptoms in the early stages and can be easily treated 

if properly screened. Early detection and increased awareness of breast cancer accounted for 

an estimated 375,900 fewer deaths. As a result, several screening technologies have been 

developed for an early detection of breast cancer. 
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1.2 Breast cancer detection technologies in development 

 

1. Mammography: It is the process of taking X-Ray images of breast for diagnosis. 

Detection is done by measuring characteristic of breast masses or calcification from the 

images. An abnormal mammogram is not the definite indicator of cancer, additional 

tests are required for confirmation. 

2. Magnetic Resonance Imaging: It is a process that uses a magnetic field and computer-

generated radio waves to create detailed images of the organs and tissues in your body. 

The resolution of  a MRI image is 10 to 100 times better than a mammogram. But, cost 

of an MRI is multiple times higher than taking a mammography. 

3. Ultrasound Imaging: Sound waves are produced form a transducer and by pulse echo 

system a patient’s breast image pattern is produced. Although ultrasound images are 

not detailed as mammogram or MRI but with proper processing and quantitative 

analysis ultrasound images can be used as a screening process for breast cancers. 

 

1.3 Significance of the research 

Our research focuses on using ultrasound imaging in detection of breast cancer. Even though 

mammography being the most common of all the screening processes, it’s an expensive 

procedure that exposes the patient to X-Ray and can’t be repeated multiple times. MRI is 

even more powerful tool in this regard but that is also of limited use due to both health and 

monetary reasons. Ultrasound is a much cheaper alternative compared to these and can be 

used as a primary approach to differentiate between a cancerous and non-cancerous breast 

mass. The purpose of ultrasound imaging is not to identify the cancerous lesion but to 

differentiate between malignant and benign classes. 

Women in Bangladesh general are reluctant to use any of existing screening technologies either 

due to harmful effect or the cost, but if ultrasound imaging is made a viable option it will be 

indeed a popular one and can cease much of the cancer in the early stage, when it’s easily 

curable. 
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1.4 Objectives of the Research: 

The primary objectives of the research can be stated as following: 

I. To generate a new image from Nakagami and derived nakagami parameters by fitting 

the RF echo signal using Nakagami distribution. 

II. To extract morphometric and acoustic parameters from the generated Nakagami 

images. 

III. To use Machine Learning algorithm and find out a combination of features for best 

classification performance through feature selection algorithm 

IV. To classify benign and malignant tumor masses by using a supervised trained model 

V. To use performance metrics to analyze the validity of the features and classification 

model. 

1.5 Main Contributions: 

In comparison to different scholarly works of quantitative analysis from ultrasound images 

this thesis provides the following contributions: 

 

1. 7 different types of Nakagami images are generated which can be used for further 

research work. 

2. Several new features are extracted from Nakagami images that can be used in 

classification techniques. 

3. An empirical analysis is made by taking different window sizes and a linear 

relationship between accuracy and window size is established. 

4. A way of combining a group of features via usage of machine learning to generate the 

best possible outcome is discussed and a perfect combination of features is proposed. 

5. A better classification score than any recent published work has been achieved. 
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1.6 Thesis Outline: 

Our thesis is outlined as follows: 

 

Chapter-1 gives idea about the foundation and inspiration behind this study. It also 

includes the significance, main contributions as well as aims and objectives of this research. At 

the end of this chapter the thesis outline has also been mentioned. 

 

Chapter-2 presents the relevant research and studies that helped us to get an overall idea 

about ultrasound imaging, modelling backscattered echo and different machine learning 

algorithms before developing this thesis. 

 

Chapter-3 focuses on the workflow of our research. It contains the details of the procedures 

that were followed for image formation, feature extraction, machine learning algorithms used 

for feature selection and tumor classification. 

 

Chapter-4 introduces the machine learning algorithm called recursive feature elimination 

technique and different other machine learning models. 

 

Chapter-5 contains in depth information about different performance metrics and scores 

and their calculation procedures. 

 

Chapter-6 concentrates on the simulation and classification results obtained from the 

thesis. Also, it contains the performance scores of the individual parametric features that were 

selected through feature selection.  

 

      Chapter -7 summarizes and concludes the work with discussion about future research 

scopes in this area. 
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Chapter 2 

Literature Review 

 

2.1 Introduction: 

Conventional ultrasound imaging procedures mainly utilize qualitative features of the breast 

tumors such as size, shape, border etc. for classifying the tumors into benign and malignant 

cases. Through recent studies it has been seen that in conventional ultrasound images, almost 

all types of breast cancers, including invasive ductal carcinomas (more than 90% ) are visible. 

American College of Radiology (ACR) has developed the Breast Imaging Reporting and Data 

System (BI-RADS) which provides a glossary of features providing description of the 

ultrasound properties of breast tumors that plays an effective role in the breast cancer 

classification [1,2,9]. BI-RADS outlined six different types of possible findings, ranging from 

Category 0, which states incompetence of the assessment, and necessity of additional imaging 

evaluation to classify the required tumor, up to Category 5, which suggests that the tumor is 

highly suggestive of malignancy. 

 

Despite the advantages offered by BI-RADS, the successful application using BI-RADS 

characteristics is largely dependent on the skills and knowledge of the clinician. Also the 

classification system through BI-RADS depends on the qualitative features of the tumor,  that 

may be subjective. Hence, quantitative ultrasound (QUS) techniques have received a lot of 

attention in the recent years, especially various machine learning algorithms along with QUS 

techniques tend to make the breast cancer evaluation procedure more precise, quantitative, 

reproducible and less operator dependent. 

Usually, three aspects of QUS have been used from the past years till now for breast cancer 

classification with high accuracy and these are: 

 

1. Classification using physical properties of tissue. 

2. Classification using parameters developed from the spectrum of ultrasound echoes. 

3. Classification using envelope of backscattered ultrasound with help of statistical 

analysis. 
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Though our study has mainly focused on the last two aspects of the above-mentioned aspects 

of QUS, the relevant research went far beyond. Some of the significant findings and proposed 

ideas related to these aspects are mentioned below: 

 

2.2 Analysis of Physical Properties of Tissue: 

Mamou, et al. [3] showed a new perspective in the field of ultrasound imaging by introducing 

a new methodology called 3D Impedance map(3DZM), along with quantitative ultrasound 

imaging to classify three kinds of cancer tumors of rats, fibroadenoma, carcinoma and sarcoma 

based on the parameters, acoustic concentration and average scatterer size [3]. In their work, 

using Gaussian FF they could identify significant differences between fibroadenoma and the 

other two types of cancer [3].  

 

Analysis of physical properties of tissue, which includes backscatter coefficient (BSC) and 

attenuation coefficient, was first proposed by D’Astous and Foster [4]. In a later study, Nam, 

et al. [5] attempted to differentiate between tumor types using the attenuation coefficient and 

BSC parameters, and reported attenuation coefficients that were 20% higher for carcinoma than 

for fibroadenoma. They also discovered that most carcinomas had lower frequency-average 

BSC values than fibroadenomas, as well as greater variability in Effective Scatterer Diameter 

in fibroadenomas (ESD) [5]. 

 

Also, Michael L.Oelze [6] in one of his studies, observed spectral based and envelope statistics 

based techniques consisting of the estimators like, backscatter coefficient, attenuation 

coefficient, effective acoustic concentration and some other statistical parameters at high 

ultrasonic frequencies for improved diagnostic QUS imaging. He found, QUS techniques over 

the frequency range of 5 to 25 MHz based on spectral features and envelope statistics to be 

capable of differentiating benign from malignant tumors in rodent models of breast cancer and 

can be used for the quantitative analysis of cancer as the attenuation compensation problem has 

been overcome [6]. 
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2.3 Spectral and Statistical Analysis of Ultrasound Echo: 

Among the many groups who have studied the automated methods of breast-lesion 

classification through spectral analysis of ultrasound echoes, Lizzi, et al. is one of the first to 

develop spectral parameters like-midband fit, spectral intercept and spectral slope [7,8]. In 

different studies it has been found that the capacity of a single parameter to distinguish benign 

and malignant lesions is not that much reliable. So later, Alam, et al. [9] in one of their studies 

implemented a multi-feature analysis procedure (semi-automated as the tracing of the boundary 

of the lesion was done manually) with the aim of non -invasive identification of malignant 

breast lesions. Alam, et al. [9] processed RF data of 130 biopsy-proven patients collected from 

three clinical sites, using sliding-window Fourier analysis and extracted acoustic features from 

the spectral parameters proposed by Lizzi, et al., like, echogenicity, heterogeneity, shadowing 

etc., as well as morphometric features related to the shape and size of the lesion like, area, 

aspect ratio and boundary roughness and some hybrid features (consist of both acoustic and 

morphometric information). Among all the extracted features Alam, et al. found in total four 

quantitative features, including lesion-margin definition, spiculation and border irregularity to 

be the most useful ones for breast lesion classification, and reported an area under the receiver-

operating-characteristics (ROC)curve of 0.947±0.045. 

 

Different mathematical statistical distributions are used to model the backscattered envelope 

for the statistical analysis of ultrasound signals. These statistical distributions are applied to the 

probability density function of the backscattered echoes based on the randomness of ultrasonic 

backscattering for evaluating properties of tissue scatterers. Nakagami, K and Homodyned K 

distributions are some of the most notable statistical distributions used for breast cancer 

classification. 

 

The Nakagami distribution, a two-parameter distribution proposed by Shankar received the 

attention of the researchers for statistical analysis of ultrasound backscattered signals due to its 

less computational complexity and the ability to describe all scattering conditions in medical 

ultrasound including pre-Rayleigh, Rayleigh, and post-Rayleigh distributions [10-12]. Also 

some Nakagami distributions in compounding form such as, the Nakagami-Gamma [13,14], 

Nakagami-lognormal [15], Nakagami-inverse Gausssian [15], Nakagami generalized inverse 

Gaussian [16], and Nakagami Markov random field models [17], also have the potential to 
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model backscattered envelope of ultrasound signal. From the table below it is clearly visible 

that nakagami distribution is able to encompass all scattering conditions which is necessary to 

classify breast lesions accurately [12]: 

 

Table 2.1: Relationship Between Nakagami and Rayleigh/Rician 

Distributions and the Phase   Characteristics [12] 

 

 

 

Envelope Designation 

 

       

 

   Range of m 

 

       

 

 Phase Statistics 

 

 

 

Nakagami designation 

 

 

        Rayleigh 

 

        

       m=1 

 

       

   Uniform 

 

  Nakagami 

 

 

      Pre-Rayleigh 

 

 

0.5 < 𝑚 < 1 

 

 

   Uniform 

 

 

  Nakagami 

 

 

      Pre-Rayleigh 

 

 

  0< 𝑚 < 0.5 

 

 

   Uniform 

 

 

Nakagami-Gamma 

 

 

Pre-Rayleigh (Rician) 

 

 

        m> 1 

 

 

  Nonuniform 

 

 

Nakagami-Rice 

 

 

  Generalized Rician 

 

 

0.5 < 𝑚 < 1 

 

 

  Nonuniform 

 

 

  Nakagami 

 

 

It has been observed in a study [12] that, different values of the shape parameter m represents 

different statistical distributions. When m=1, the Nakagami density function becomes like 

Rayleigh distribution [12]. If the scatterers are randomly located but have random scattering 

cross sections, the distribution becomes like a pre-Rayleigh distribution with uniform phase 

statistics and the value of m ranges from 0.5 to 1[12]. In addition to randomly located scatters,if 

there are periodic scatterers in the range cell separated by a spacing of integral multiple of 
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wavelength corresponding to the frequency of demodulation, the distribution becomes like 

post-Rayleigh or Rician distribution with nonuniform phase statistics and the value of m is 

greater than [12]. Lastly, in addition to randomly located scatterers, if there are periodic 

scatterers in the range cell separated by a spacing of integral multiple of a quarter wavelength 

corresponding to the frequency of demodulation, the distribution becomes like generalized 

Rician distribution with nonuniform phase statistics and the value of m ranges from 0.5 to 1 

[12].  

Shankar, et al. [12] proved the potential of Nakagami parameters, using the two parameters, m 

(effective number) and α (effective cross section) to classify the breast masses of total 52 

patients (14 malignant, 38 benign). In this study, they reported areas under the receiver-

operating-characteristics (ROC) curve to be 0.79±0.11 and 0.828±0.10 for the two parameters 

individually respectively. They also reported that, after using multiple images for the same 

patients, that is by increasing the total number of patients to 75(37 malignant, 38 benign), ROC 

curve area increased to 0.838±0.065 and 0.85±0.06. 

In another study, to enhance the classification performance Shankar, et al. [18] proposed the 

concept of compounding Nakagami parameters. For this study, they collected two images for 

each of the 85 patients (24 malignant, 61 benign) and observed that the discrimination of lesion 

after combining the normalized Nakagami parameters from two images for each patient was 

comparatively better than using the parameter from a single image. They found the area under 

the ROC curve to be 0.8316 after compounding the Nakagami parameter m for each patient. 

Shankar, et al. [19] proposed to use K distribution along with Nakagami distribution to model 

the backscattered ultrasound echo for better classification. They did a five-parameter analysis 

for in total 99 patients (29 malignant, 70 benign) based on these two distributions at the site, 

boundary, spiculated region and shadow of the mass. Combination of these features lead to an 

increased area under the ROC curve which is 0.96±0.02. Addition of the level of suspicion 

values of the radiologist with these parameters increased the area of the ROC curve to 0.97 ± 

0.014. 

For ultrasonic tissue characterization, Tsui, et al. [20] proposed an improved form of the 

Nakagami parameter m called mlog calculated using ultrasonic backscattered envelopes 

compressed by logarithmic computation. According to their study, this logarithmic transform 

is simple and less computation is needed to estimate the m parameter, whose sensitivity is 
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better than the one estimated from the uncompressed envelope for both non-focused and 

focused transducers [20]. They found the dynamic range between lowest and highest scatterer 

concentration for non-focused and focused transducer of the m parameter to be 0.14 and 0.45 

respectively and for mlog to be 3.7 and 5.14 [20]. This proves mlog to have higher sensitivity, 

leading it to be a better parameter for differentiating and classifying various scatterer properties 

[20]. 

Tsui and Chang [21] developed ultrasonic parametric image based on the Nakagami parameter 

map and compared its performance with B-mode image for tissue characterization and 

differentiating scatterer properties. They found Nakagami image constructed with an optimal 

window size, has the ability to impart both the global and local backscattered statistics of the 

ultrasonic signals in a tissue leading it to be a very efficient local scatterer concentration 

detector [21]. They mentioned this optimal window size for constructing the Nakagami image 

to be square with the side length equal to three times the pulse length of the incident ultrasound 

[21]. They also concluded that Nakagami image can effectively assist B-mode image in 

medical diagnosis for the following reasons: 

1. The system and operator influence the creation of B-mode images, while the Nakagami 

image shows reliable results that are independent of dynamic ranges and system gains 

since it is shaped by the shape of the envelope rather than the magnitude of the 

backscattered signal [21].  

2. Local scatterer concentrations can be quantified using Nakagami images, and 

backscattering information can be collected from weaker echoes that may be lost in the 

B-mode image [21]. 

Further, Tsui, et al. [22] observed the potential of Nakagami image to differentiate different 

scatterer structures at different signal-to-noise ratios (SNRs) and concluded the following: 

1. By quantifying the statistical distribution of backscattered envelope Nakagami images 

can distinguish different scattering concentrations for single, hypoechoic and 

hyperechoic structures [22]. 

2. Nakagami images may be able to produce artifacts when the region of interest contains 

anechoic tissues [22]. 



11 

 

3. When both the scatterer concentration and SNR are low, the Nakagami image does not 

perform well in distinguishing regions with high scatterer concentrations [22]. 

4. Nakagami image is more sensitive than conventional B-scan and can complement B-

scan image to identify the region of interest for having larger CNR than B-scan image 

[22].  

5. Nakagami images may have the potential for assessment of treatment of tissues [22]. 

 

Tsui, et al. [23] also explored the ability of Nakagami parametric image to distinguish benign 

and malignant breast tumors. They used the backscattered signals to form Nakagami parametric 

image (m parameter) of breast tumor to classify breast cancer. In their study, they collected 

data for in total 100 patients (50 malignant,50 benign) and obtained an area under the curve of 

0.81 ± 0.04, accuracy of 82 percent, sensitivity of 92 percent and specificity of 72 percent [23]. 

They added malignant tumors to have backscattered signals with more complex composition 

leading to be more pre-Rayleigh distributed than those from benign tumors [23]. They also 

concluded that Nakagami image is relatively independent of signal and image processing built 

in ultrasound systems which may assist B -mode image for texture analysis of the tumor [23]. 

Larrue and Noble [24] in one of their studies, suggested ways for error factor correction for 

calculation of Nakagami parameters. 

Dutt and Greenleaf [25] proposed the Homodyned K distribution for modelling ultrasound echo 

envelope and later it was modified by Hruska [26] and Hruska and Oelze [27]. Hruska and 

Oelze [27] proposed an improved estimation algorithm based on SNR, skewness and kurtosis 

of fractional order moments, to estimate the parameters, μ (number of scatterers per resolution 

cell) and K (the ratio of coherent to incoherent backscatter signal energy) obtained from 

Homodyned K model and used angular compounding (120 angles of view) for reducing the 

variance within the estimates, and thus tried to classify two types of tumors. The Homodyned 

K parameter along with BI-RADS classifiers was later applied by Trop et al. [28], who 

demonstrated their ability to reduce the number of biopsies performed on breast cancer patients 

by 25%, whilst maintaining 100% sensitivity. 
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2.4 Computer Aided Diagnosis (CAD): 

Cheng, et al. [29] in their survey, introduced the four stages of the CAD system and their 

advantages and disadvantages for breast cancer detection and classification. They discussed 

different filtering techniques for image enhancement and segmentation algorithms like, Active 

Contour Model, Markov Random field etc. [29]. They also discussed different feature 

extraction algorithms like Principal Component Analysis (PCA), Independent Component 

Analysis (ICA) and feature selection algorithms for dimensionality reduction of datasets with 

a large number of features [29]. They also suggested machine learning classifiers for 

distinguishing lesion from non-lesion like, Linear classifiers, Bayesian Neural network (BNN), 

and also for distinguishing malignant from benign lesions like, LDA, LOGREG, ANN, BNN, 

decision tree, SVM [29]. 

 

From the above discussion, it is evident that Nakagami statistical parameters, parametric 

images and different machine learning classifiers have high capability to make breast lesion 

analysis and classification procedure fully automated. This thesis utilizes this ability of 

Nakagami distribution, Nakagami parametric images to be specific to classify malignant and 

benign breast lesions. 
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Chapter 3 

Methodology 

3.1 Introduction 

Ultrasound imaging process starts with collection of RF data from the patients with tumors 

(biopsy-proven) followed by tracing of the boundary of the lesions by knowledgeable non-

clinicians. The demarcation of the regions of analysis was done through a semi-automated 

procedure. Based on the tracings and demarcations made on the boundary of the lesion, the 

regions-of-interest were analyzed in this study. This study utilizes the features extracted 

through the analysis of almost nine regions-of-interest for different window sizes and were 

used for breast lesion classification through linear SVM. Figure 3.1 represents the flowchart of 

the algorithm followed in this study. 

 

Figure 3.1: Overview of methodology 

 

3.2 Ultrasound Imaging 

Diagnostic ultrasound usually uses frequencies ranging from 2MHz to 20 MHz (million 

cycles per second). Since ultrasound can be concentrated into tiny, well-defined beams that 

can probe the human body and interact with tissue structures to create images, it is commonly 

used as a diagnostic tool. When electrical pulses are applied to the transducer (one of the 

main parts of ultrasound imaging system), it produces ultrasound pulses as its first feature. 

When RF echo pulses return to the body surface after a very short period of time, the 

transducer picks them up and converts them back into electrical pulses, which are then 

processed by the device and shaped into a B-mode image. 
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Most part of the ultrasound energy is absorbed and some part of the signal is attenuated as an 

ultrasound pulse beam is passed through the body. Internal body structures reflect some of the 

pulses, sending echoes back to the surface, where they are captured by the transducer and used 

to shape the image. As a result, the general ultrasound picture is a representation of the body's 

structures or reflecting surfaces. In our study also the RF-echo signal data was acquired in this 

process. 

The general grey and white background seen in the ultrasound picture is produced by a mixture 

of various tissue types and several surfaces of anatomical parts. The picture is dark since there 

are no reflective surfaces inside a fluid, such as a cyst. As a consequence, the general ultrasound 

picture is a reflection of the anatomical area's echo producing sites. 

 

Figure 3.2: Basic Ultrasound Image Processing [31] 

 

3.3 Data Acquisition 

The dataset used for our research has been collected from ATL’s PMA study approved by IRB 

(IRB: institutional review board) undertaken in 1994. The type of the data in the dataset is RF 

data and comprises biopsy proven analysis results of 130 patients of which 104 are benign and 

26 are malignant. The data were collected from three clinical sites (Thomas Jefferson 

University, University of Cincinnati and Yale University). The exclusion criteria of our dataset 

included patients under age 18 for consent restrictions, breast implant, previous breast 
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carcinoma biopsy, simple cyst, pregnant women, males, transsexuals, micro calcifications not 

associated with a mass on sonography. The masses were imaged using a Philips Ultrasound 

(Bothell, WA) UM-9 HDI scanner with an L10-5 (7.5 MHz) linear-array transducer. RF echo-

signal data was digitally acquired by interfacing a Spectrasonics Inc. (King of Prussia, PA) 

acquisition module with the scanner. For every lesion at least one radial and one anti-radial 

view were obtained. The operator chose a single transmit focal length and a default power level 

for the L10-5 transducer. The RF data was sampled at a rate of 20 MHz with a 14-bit effective 

dynamic range. For TGC (time-gain-control) obtained for every scan and the collected data 

were corrected before processing [9]. 

 

3.4 Introduction to Backscattered Echo Envelope 

All conventional medical ultrasonic imaging systems are based on a simple pulse-echo 

technique utilizing the backscattered echo waveform. In ultrasonic imaging system, the 

transducer generates a short and relatively broad-band pulse that travels into the tissue for 

perhaps about a microsecond with a velocity of about 1.5 mm/μsec and as the pulse propagates 

in tissue, it will be attenuated due to absorption and scattering. The backscattered waveform 

(backscatter is the reflection of waves, particles, or signals back to the direction from which 

they came) whose amplitude will be considerably reduced from the incident pulse, then 

recorded by the same transducer.  

 

The transducer is a phase sensitive device, so the output of the transducer (produced by the 

pressure of the backscattered signal on the face of the transducer) will be an RF trace 

(representational of the backscattered signal) recorded as a function of depth within the tissue. 

Since the backscattered signals span a wide dynamic range (100 to 130dB), some compression 

techniques are required if the signals are to be viewed. At least some of the compression is 

done under front panel control known as TGC (or time gain compensation) which increases the 

gain as some function of depth so that signals from greater depth (which are more attenuated) 

will be amplified more than signals near the transducer. The envelope of the received signal is 

then detected at some point of this compression process 

 

3.4.1 A-mode and B-mode Display/Image 

The RF data or detected envelope can be displayed on an oscilloscope or an appropriate 

monitor. This trace, which is an amplitude-modulated display of the backscattered signal, is 
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known as an A-mode display or scan. To make an image, first the A scan is taken and the 

amplitude mode display is converted into a brightness mode display along a vertical axis that 

converts a horizontal axis with waveform spikes into a vertical axis with a series of bright dots. 

Since the image is formed from a display of bright dots, it is known as B-mode image. 

 

3.4.2 Theoretical Model of Backscattered Echo Envelope 

In ultrasonic imaging, when an acoustic pulse travels through tissue, the backscattered echo 

received at the transducer may be modeled as the algebraic sum of the contributions from the 

individual scatterers [12]. If there are N scatterers in the range cell, and an and θn represent the 

amplitude and the phase of the nth scatterer respectively, the backscattered echo may be written 

as [12]: 

                                                     𝑠(𝑡) = ∑𝑁
𝑛=1 𝑎ncos(wot-𝜃n)                  (1)   

where wo= 2πfo, fo is the center frequency of insonation [12]. In terms of the inphase and 

quadrature elements, X and Y, the backscattered echo s(t) can be written as: 

 

                                             𝑠(𝑡) = 𝑋𝑐𝑜𝑠(𝑤ot) + Ysin(𝑤ot)                  (2) 

where, 

                

𝑋=∑𝑁
𝑛=1 𝑎ncos(𝜃n) 

 

Y=∑𝑁
𝑛=1 𝑎nsin(𝜃n) 

 

The envelope of the backscattered echo, R is given by, 

                                       

     𝑅 = √(𝑋2 + Y2)                                        (3) 
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The backscattered echo signal may have two types of components based on scatterer positions; 

if there exists a periodicity pattern in the position of the scatterers or if there exists strong 

specular reflections, then a coherent (or deterministic) component appears in the received 

signal, because of a long-range organization (relative to the wavelength) and usually it is 

represented by ϵ [12,30]. The power of the coherent signal component is called coherent signal 

power. The remaining power (from the total signal power) is called the diffuse signal power 

and corresponds to the diffuse (or random) component, made of a diffuse collection of 

scatterers [12,30]. The diffuse signal component is usually represented by σ [12,30].                                                                                                  

 

Throughout the past years, to model the first order statistics of the amplitude of the envelope 

of backscattered echo, various statistical distributions have been suggested. In many cases, 

parameters of these statistical distributions have been used to discriminate between benign and 

malignant breast masses. This thesis studies the use of Nakagami Distribution to model the 

backscattered echo envelope and formation of Nakagami image from the parameters we get 

from Nakagami Distribution. These parametric images assisted us in visualizing and analyzing 

the scatterer properties of breast tumors, as well as examining clinical success in identifying 

benign and malignant tumors. 

 

3.5 Introduction to Nakagami Distribution 

The Nakagami distribution is one of the simplest models for modelling backscatter envelope. 

It is a two-parameter distribution first introduced in Nakagami (1943, 1960) in the context of 

wave propagation. It can be viewed as an approximation of Homodyned K-distribution. 

 

3.5.1 Nakagami Distribution as an Approximation of Homodyned K-Distribution: 

The compound representation of two-dimensional Homodyned K-distribution is given below: 

 PHK (A|ϵ, σ2, α) = 0PRi (A| ϵ, σ2w) G (w| α,1) dw            (4) 

 

where, PRi denotes the Rice distribution which has been modulated by the Gamma distribution 

G (w| α,1) with mean and variance equal to α and σ2>0,  

 

The Nakagami probability density function is given by [12],     
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                           𝑁 (𝑚, 𝛺) =
2𝑚𝑚

𝛤𝑚𝛺𝑚
𝐴2𝑚−1𝑒−

𝑚𝐴2

𝛺                              (5) 

 

Here, Γ represents the Euler gamma function. The real numbers: 

m> 0 𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑛𝑑 𝛺 > 0  are the scaling parameter. 

The cumulative distribution of the Nakagami distributed envelope F(r) is given by [12], 

 

    𝐹(𝑟) = ∫
2𝑚𝑚

𝛤𝑚𝛺𝑚
𝐴2𝑚−1𝑒−

𝑚𝐴2

𝛺 𝑑𝐴
𝑟

0
                               (6) 

  

The following expressions are for the mean intensity of the Nakagami distribution and its SNR 

[30]:   

E[I]= 𝛺; 

 

SNR2=m 

 

This intensity SNR parameter should not be confused with the amplitude SNR.        

These two parameters can also be expressed by, 

  

𝑚 =
[𝐸(𝑅2)]2

𝐸[𝑅2 − 𝐸(𝑅2)]2
 

 

Ω=E (𝑅2) 
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Figure 3.3: Nakagami probability density function f(r) and cumulative 

distribution function F(r) [12] 

3.6 Generation of Nakagami and Derived Nakagami Images 

Nakagami Image is the local map of Nakagami parameters generated from B-mode image 

where the local backscattered envelopes are fed into Nakagami distribution to get 

corresponding m and values. The following steps describes the procedure to generate 

Nakagami images: 

1) Local backscattered envelopes are collected using a column window within the envelope 

image for estimating local Nakagami parameters, m and omega, which are allocated as new 

pixels in the corresponding m and omega matrices. 

2) Step 1 is repeated with the window moving in one-pixel increments around the entire 

envelope image, yielding the Nakagami images, m image, and image as the map of local m and 

omega values. 
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Figure 3.4: Windowing process 

Derived Nakagami images namely Pre-alpha, Real alpha, Imaginary alpha, Phase alpha and 

Absolute alpha are generated from the mu and omega images as the local map of derived 

Nakagami parameters from the corresponding pixel locations of the mu and omega images.  

 

Figure 3.5: Parametric image generation flowchart 
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In order to conduct empirical analysis, three different datasets are generated using three 

different sizes of column windows: window size 5 pixels (0.1875 mm), window size 12 pixels 

(0.45 mm) and window size 20 pixels (0.75 mm). Empirical analysis is conducted to determine 

the best size of column window for classification by observing accuracy and area under curve 

(AUC) for varying window sizes.  

3.7 Description of Nakagami Images 

  

The parameters that have been used in this study for analysis through parametric image 

formation can be divided into two types: 

 

1) Nakagami Basic Images 

 

2) Nakagami Derived Images 

 

3.7.1 Nakagami Basic Images:  

A description of the parameters is provided below:  

1. Mu Image: local map of the parameter m is known as Shape parameter and gives information 

about envelope statistics. Its value is such that, 

𝑚 ≥ 0.5 

It is also a measure of the degree of heterogeneity or lack of homogeneity in the range cell. 

The more degree of homogeneity in the tissue, the closer the value of m to 1[12]. 

2. Omega Image: local map of the parameter Ω is known as Scaling parameter.[12] 

 

3.7.2 Nakagami Derived Images: 

We determined the Nakagami parameters by fitting the backscattered envelope in Nakagami 

distribution and derived some parameters from these Nakagami parameters, m and Ω. Alpha 

parameter, α is known as Alpha parameter or the effective cross section of scatterers in the 

range cell and is given by, 

α=
1

2
√

𝛺(1−𝑚)

2𝑚
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It provides information about the degree of variation in the amplitude of cross sections and on 

the level of attenuation in the range cell. [12] It is a complex value. The derived Nakagami 

images are generated calculating the local values of the derived Nakagami parameters:  

1. Pre-alpha Image: local map of the parameter pre-alpha which is a derived parameter and is 

given by, 

pre-α= 
𝛺(1−𝑚)

2𝑚
 

 

2. Alpha-absolute Image: local map of the absolute value of the Alpha parameter. 

3. Alpha-phase Image: local map of the phase value of the Alpha parameter. 

4. Alpha-real Image: local map of the real part of the Alpha parameter. 

5. Alpha-imaginary Image: local map of the imaginary part of the Alpha parameter. 

 

Nakagami images and derived Nakagami images 

(a) 
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(b) 

      

(c) 

        

(d) 
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(e) 

           

(f) 

        

(g) 
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(h) 

      

Figure 3.6: Visualization of all Nakagami images: (a) envelope. (b) mu. (c) omega, (d) pre 

alpha. (e) alpha real. (f) alpha imaginary. (g) alpha phase. (h) alpha absolute.  

 

3.8 Feature Extraction from Region of Analysis 

All feature processing software have been built in MATLABTM  (The Mathworks, Inc., Natick, 

MA). The first step of the whole procedure was to obtain the frequency response of the RF data 

for each tumor. Then Nakagami images were generated through windowing throughout the 

envelope image and a multi-feature-analysis procedure was applied on the images. This 

procedure uses the same BI-RADS criteria (the Breast Imaging Reporting and Data system-A 

system developed to improve the accuracy of breast ultrasound diagnosis) followed by the 

clinicians. 

 

3 types of features have been generated from the Nakagami basic and derived parameters and 

they are: 

1) Morphometric Features 

2) Acoustic Features 

3) Hybrid Features 
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3.8.1 Morphometric Features 

These features represent the shape or boundaries of the lesion. These features have been 

calculated based on the lesion boundaries traced on the Nakagami images. These features are 

described below: 

a) Aspect Ratio: It is the ratio of maximum vertical lesion dimension to maximum 

horizontal lesion dimension.  In breast carcinomas with small lesions, the aspect ratio 

typically reaches 0.8 [9]. It is derived from the region of the lesion as, 

                                Aspect ratio= 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑠𝑖𝑜𝑛 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑙𝑒𝑠𝑖𝑜𝑛 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
 

 

b) Compactness: It is the ratio of square root of lesion area and its maximum diameter. It                  

represents the compactness of the shape of the traced boundary. It is derived from the 

lesion area as, 

                                 

Compactness =  
√𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 

 

c) Roundness: It is the ratio of the lesion area and its maximum diameter squared. It 

represents the roundness of the shape of the traced boundary. It is derived as, 

Roundness= 
𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟)2 

 

d) Border Irregularity: It is the ratio between border perimeter and actual lesion perimeter 

which quantifies the border property. This parameter is very sensitive to lesion 

spiculation and thus it is adept at quantifying border property. With the increase of 

spiculation, this parameter usually decreases and becomes very low for borders with 

high irregularity and spikes. It is derived as, 

 

Border Irregularity= 
𝐵𝑜𝑟𝑑𝑒𝑟  𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
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Figure 3.7: Illustration of border irregularity [9] 

 

e) Form Factor: It is the ratio of the lesion area and perimeter squared. It is derived a 

Form Factor= 
𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

(𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)2 

 

f) Solidity: It is the ratio between lesion area and convex area. It is derived as, 

Solidity=
𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

𝐶𝑜𝑛𝑣𝑒𝑥 𝐴𝑟𝑒𝑎
 

 

g) Kolmogrov Fractal Dimension: Computes the slope of the line that plots the number of 

grid squares through which the lesion boundary passes versus the grid size on log-log 

axes. 

 

h) Minkowski Fractal Dimension: It computes slope of the line that plots the area swept 

out by circles vs. their diameter on log-log axes. 

 

i) Hausdorf Fractal Dimension: It is used to compute lesion border irregularity and   

roughness. Usually, as spiculation increases fractal dimension increases and vice versa. 
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3.8.2 Acoustic Features 

Acoustic features are related to the quantitative measures of the region of interest. These 

features have been calculated using the pixel values in the region of interest (ROI) of parametric 

images. Each image is analyzed extracting various regions such as the left-anterior, left-lateral, 

left-posterior, tumor-anterior, tumor, tumor-posterior, right-anterior, right-laterals and right-

posterior, and their pixel values are fed into various mathematical equations.  

 

Figure 3.8: Nakagami mu image with analysis region traces superimposed: ROI(1): left-

anterior, ROI(2): left-lateral, ROI(3): left-posterior, ROI(4): tumor-anterior, ROI(5): tumor, 

ROI(6): tumor-posterior, ROI(7): right-anterior, ROI(8): right-laterals, ROI(9): right-

posterior and  ROI(10): surface. 

 Analyzed acoustic features are described below: 

a) MLP: It is the mean of the pixel intensity values within the lesion and it is represented 

by μL. For this feature no attenuation correction is necessary. 

 

b) SLP: It is the standard deviation of pixel intensity values within the lesion and it is 

represented by σL. 

 

c) CNC: Computation of the contrast for the co-occurrence matrix of an image. 
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d) FNPA: It is the abbreviation of the feature four-neighborhood pixel algorithm that 

computes 4-neighborhood-pixels texture of any parameter within the lesion area [9]. 

FNPA for an image of size 𝑚 × 𝑛 with pixel values x(k,l) is given by, 

 

𝐹𝑃2 = 𝐹𝑃1 /𝜇 

             

where, 

𝐹𝑃1 = ∑

𝑛

𝑙=1

∑

𝑚

𝑘=1

1

4
[|𝑥(𝑘, 𝑙) − 𝑥(𝑘 − 1, 𝑙)| + |𝑥(𝑘, 𝑙) − 𝑥(𝑘 + 1, 𝑙)|

+ |𝑥(𝑘, 𝑙) − 𝑥(𝑘 + 1, 𝑙)|] 

And, 𝜇 is the mean value of FP1 . 

 

e) HTC: It computes the fractal dimension coefficient that characterizes surface roughness 

in an image. It uses 7x7 sub-images for the computation. 

 

f) Shadow: It's the difference between mean nakagami parameter values in comparable 

shadowed and unshadowed regions posterior to the lesion (normalized by lesion 

thickness). The average of the variations between left-lateral and left-posterior and 

right-lateral and right-posterior is compared to the difference between tumor and tumor-

posterior. It is defined as follows: 

                                       SN=𝑀𝑝𝑙 - 1/2(Mpn+Mpl) 

where, Mpl is the mean Nakagami parameter posterior to lesion, Mpnr and Mpnl are 

the mean Nakagami parameters in normal tissue right and left lateral posterior to lesion 

respectively [9]. 

 

g) Relative-Absorption: It is a compounded feature and given by, 

     

RA= 
1

𝑑1
 (Mpn-Man) - 

1

𝑑2
(Mpl-Mal) 
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where, Mal is the mean Nakagami parameter inside the lesion, Mpl is the mean Nakagami 

parameter posterior to the lesion, Man is the mean Nakagami parameter normal tissue next to 

the lesion, Mpn is the mean Nakagami parameter in normal tissue lateral posterior to the lesion, 

d2 is the distance between Mpl and Mal centroids, and d1 is the distance between Mpn and 

Man centroids [9]. 

 

 

 

Figure 3.9: Relative absorption 

 

 

3.8.3 Hybrid Features 

These features are a combination of both morphometric and acoustic features. They are 

calculated utilizing both the lesion contour and acoustic features.To eliminate dependence on 

contour length and Nakagami parameter values, normalization is necessary. These features are 

described below: 

 

a) MG Area: It is the ratio of the gradient around the lesion boundary of one pixel width 

to the area of the boundary region. 
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b) MG Gradient: It is the sum of the magnitudes of the lesion contour's gradients 

normalized by the sum of the magnitudes of the lesion contour's gradients. 

 

c) OB: It is the ratio of the square root of the difference to the sum of the   omega parameter 

around the lesion boundary and inside the lesion boundary. 

 

For each patient seven Nakagami parametric images have been generated, nine morphometric 

features and for each image seven acoustic and three hybrid features have been calculated 

yielding to in total seventy-nine features, i.e., 7 Nakagami Images*(7 acoustic features + 3 

hybrid features) + 9 morphometric features which totals up to 79 features. 
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Chapter 4 

Feature Selection and Classification 

 

4.1 Introduction 

For making classification in a dataset that consists of lower number of training data and 

higher number of features, feature selection is an essential tool. The advantage of using 

feature selection algorithms on small sample set is to overcome the obstacle of overfitting 

data which invariably increases classifier prediction capability [44]. Feature selection refers 

to the technique where from a large number of features, a subset of features is selected that 

yield the most optimum classification [45]. It works by eliminating features that provide little 

to no improvement in classification and goes on excluding the weak features until the 

performance score falls. Fewer numbers of features not only make a dataset viable for 

practical use but it also allows machine learning algorithms to run in an efficient manner with 

less time and space complexity. A perfect example for use of feature selection is in the 

microarray-based cancer classification that contains several thousand features [46-47]. For 

this research from all the acoustic and Nakagami parameters a set of features has been found 

by help of feature selection algorithm that provides a very good performance score and the 

number of features are optimum for practical implementation of further classification of new 

patient data. 

 

4.2 Feature selection methods 

For using classification techniques on a supervised dataset, there are 3 types of feature 

selection methods: filter based, wrapper type and embedded methods [47]. 

1. Filter based method: This method does not work using any learning algorithm. In 

filter-based models, the general characteristics of data and statistical methods are used 

to evaluate the performance of the feature. Correlation between a set of features and 

the target feature and the correlation value is used to determine the ranking of the 

target variable and a decision is made based on whether to eliminate the feature or not 

[5,6]. Filter based approaches are independent of classifiers and due to low 

computational complexity, they are much faster than other types of feature selection 

algorithms [50].  

2. Wrapper based method: The wrapper wraps around a learning algorithm and evaluates 

and selects based on primarily the accuracy of the target algorithm, but it can be also 
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modified to take other performance metrics as selection criteria. It excludes a subset 

of features from the total number of features and analyzes the impact of those feature 

exclusion on performance metrics using the particular learning algorithm. The 

features that bring significant change due to elimination are considered high quality 

features and on the other hand the features with less impact are eliminated. 

3. Embedded method: Unlike the previous methods, embedded method is different in 

terms of feature selection and learning interaction. Embedded method combines the 

principle of feature and wrapper-based model by integrating the learning part with the 

feature selection part. 

 

4.3 Basic principles of feature selection 

As defined before feature selection is basically the process of selecting a subset from the 

original set by reduction of features. What would be the optimal number of features is 

calculated by certain evaluation criteria. A feature selection process contains four basic steps 

(as shown in figure 4.1) such as [51]: 

1. Subset generation  

2. Subset evaluation  

3. Stopping criteria  

4. Result validation 

 

The most important step is the first one, subset generation and it consists of two basic part: 

1.    The search starting point can be done using one of the three ways:  

(i) Forward selection 

(ii) Backward selection 

(iii) Stepwise selection 

 

In forward selection the process is started with no features and each feature are added one by 

one until the addition of new features does not change the improvement factor significantly 

In case of backward selection, the process starts with all the features and each feature are 

removed one by one. Until the reduction of any feature decreases the performance metric 

drastically this process is repeated. 

In stepwise selection, the process is started from both of the ends and features are added and 

removed at the same time. 
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2.  The search strategy also follows 3 different routes: 

(i) The complete search: Tries out all the possible combinations, guarantees to find out the 

most optimum subset of features. Takes longer computational time 

(ii) The sequential search: Finishes searching whenever the performance criteria is met. 

Lacks completeness and not suitable for finding optimum subset of features. 

(iii) Random search: Starts randomly with a subset of features and proceeds in two different 

paths. 

 

 

 

 

Figure 4.1 Feature Selection Process 

 

4.4 Recursive Feature Elimination (RFE) 

Among different kinds of feature selection method RFE is one the most recent ones suitable 

for classification of dataset with small sample size [52]. It is an ideal tool for the dataset for 

this research consisting of 130 patient data. 

RFE is a feature selection algorithm that works by eliminating the least important features 

whose exclusion would have the least effect on performance metrics. It can compute the 

redundancy of a feature and retains only the important features for classification. It is closely 

related to SVM (support vector machine) which are recognized for their performance in 

classifying small sample dataset.  

RFE is a wrapper type feature selection algorithm that uses filter-type feature selection 

processes at its core. It starts by searching for a subset of features taking the whole training 

dataset as input and discards less important features until a desired number of features remain. 

To do this, RFE uses the machine learning algorithm given in the wrapper model and ranks 

features by importance. With each iteration the model is refitted with fewer and fewer number 
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of features and performance is evaluated. The main advantage of RFE is flexibility by proper 

tuning of its hyperparameters. RFE hyperparameters that can be tuned to desired model 

performance: 

1. Number of features: An arbitrary number of features may give good classification but 

is not practical. So, the desired number of features can be set as a hyperparameter of 

RFE and RFE will find the perfect combination of that many features with best 

classification. But it’s not possible to know exact number of features that yield the 

best classification so it’s better to test the algorithm by setting different number of 

features 

2. Automated selection of features: The number of selected features can also be made to 

choose automatically by RFE algorithm. But for that we need RFE_CV which is a 

better improved version of RFE that performs cross validation evaluation of different 

numbers of features and selects the features with the best classification score. 

3. Selected features: It is possible to know which features were selected and which were 

rejected by RFE after the feature selection process is done. From the support attribute 

of the algorithm the feature names can be obtained and from the ranking attribute 

ranking scores of each feature can be known. This ranking score calculation and 

elimination process are done inside the algorithm. 

4.5 Recursive Feature Elimination with Cross-validation (RFE_CV) 

The drawback of RFE is that it needs a specific number of features as input but it is not 

possible to know beforehand how many features would result in an optimum subset. 

RFE_CV uses cross-validation to score different features of subsets. From these subsets of 

different size, the one with the best one is chosen for classification. The mean value of 

different cross-validated test sets is taken as the overall score of that collection of features. As 

a result, RFE_CV does not require any kind of input for number of feature selection, it makes 

the process automatic and tries every possible combination of features. RFE_CV is more 

accurate than RFE in terms of feature selection as it leaves no subset untested, but it requires 

a greater computation time and it is much slower than the regular RFE algorithm. 

 

4.6 Classification 

A classification issue is separating the lesion into benign and malignant groups. Classification 

in machine learning is a two-step process, with the first step being learning and the second 
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being prediction. The model is built based on given training data in the learning stage, and it is 

used to predict the output for given data in the prediction step. 

There are many popular machine learning models which are used for feature selection and 

classification. Some of them which we have used for our study and analysis are described in 

the next section. 

 

4.7 Different Classification Algorithms 

4.7.1 Logistic Regression: 

Logistic regression has been named after the logistic function which is used at the core of the 

system. A logistic function is used to model a binary dependent variable in this statistical 

model. Sigmoid function, the other name for logistic function, was created by statisticians to 

explain the properties of population growth in ecology, such as how it rises rapidly and 

eventually reaches the environment's carrying capacity. It's an S-shaped curve that can map 

any real-valued number to a value between 0 and 1, but never exactly between those two points. 

 

1 / (1 + e^-X) 

Here, the base of natural logarithms (Euler's number or the EXP () function) is e, and the actual 

numerical value to be transformed is X. The following is a plot of numbers between -6 and 6 

transmuted into the range 0 to 1 using the logistic function: 
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Figure 4.2: Logistic Function [32] 

Similar to linear regression, logistic regression uses an equation as a representation. 

To anticipate an output (y), linear combination of inputs(X) is done using weights or coefficient 

values (referred to as the Greek capital letter Beta) (y). The output value being modeled is a 

binary value (0 or 1) instead of a numeric value, which is a crucial distinction from linear 

regression. 

 

An example of a logistic regression equation is shown below: 

                                        y = e^ (b0 + b1*x) / (1 + e^ (b0 + b1*x)) 

Here the predicted output is y, the bias or intercept term is b0, and the coefficient for a single 

input value is b1 (x). The b coefficient (a constant real value) for each column in the input data 

must be learned from the training data. The coefficients in the equation (the beta value or b's) 

are the actual representation of the model that will be stored in memory or in a register. 
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Logistic Regression as Predictor of Probabilities: 

If we want to model the likelihood that an input (X) belongs to the default class (Y=1), we can 

write it like this: 

 

P(X) = P(Y=1|X) 

 Though logistic regression is a linear procedure, the logistic function is used to transform the 

predictions. As a consequence, the predictions can no longer be understood as a linear 

combination of the inputs. Continuing from the previous example, the model can be stated as: 

                                        p(X) = e^ (b0 + b1*X) / (1 + e^ (b0 + b1*X)) 

From this equation it can be concluded that logistic regression is basically a linear combination 

of the inputs. 

 

The following assumptions can be made on logistic regression: 

● For two-class classification problems, logistic regression is used. It forecasts the 

possibility of an instance belonging to the default class, which can be noted as 0 or 1. 

●  The output variable in logistic regression is supposed to be error-free, so outliers or 

misclassified instances from training data should be removed. 

● Logistic regression establishes a linear relationship between input and output variables. 

● If there are several strongly correlated inputs, the model will overfit, much like linear 

regression. 

● If the dataset contains several highly correlated inputs or the data is scattered, the 

probability estimation process can fail to converge. 

 

4.7.2 Decision Tree 

Decision tree is one of the most popular non-parametric supervised learning classification 

algorithms that can be used for both classification and regression. The goal of a decision tree 

is to learn basic decision rules from data features to construct a model that predicts the value 

of a target variable. The decision rules become more complicated as the tree grows deeper, and 

the model becomes more accurate. 
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A decision tree is a tree structure that looks like a flowchart, with an internal node representing 

a feature, a branch representing a decision law, and each leaf node representing the output.The 

topmost node in a decision tree is known as the root node. The tree is divided on the basis of 

attribute value in a recursive manner.  Its representation, such as a flowchart structure, closely 

resembles human thought, which is why decision trees are simple to comprehend and perceive. 

  

Decision Tree shares internal decision-making logic, which is not available in the black box 

type of algorithms such as Neural Network and its training time is also faster compared to the 

neural network algorithm. It is a non-parametric or distribution-free approach and can also 

accurately deal with high-dimensional data.

 

Figure 4.3: Flowchart of Decision Tree [33] 
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Decision Tree Algorithm: 

The following is the basic concept behind every decision tree algorithm: 

1. Attribute Selection Measures (ASM) is used to break the records and select the best 

attribute. 

2. The dataset is divided into smaller subsets using that attribute as a decision node. 

3. The tree is built by recursively repeating this process for each child until one of the 

conditions is met: 

● The tuples are all associated with the same attribute value. 

● There are no more attributes available. 

● There aren't any more instances. 

 

 

Figure 4.4: Decision Tree Algorithm [34] 
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The most popular attribute selection measures of decision tree algorithms are Information Gain, 

Gain Ratio, and Gini Index. 

 

Advantages: 

● Easily understandable 

● Very less amount of data preparation required 

● Capable of dealing with both numerical and categorical data. 

● Capable of dealing with problems with multiple outputs. 

● Easily explainable by Boolean algebra logic 

● For model evaluation statistical tests can be done. 

● Even if the true model from which the data were produced slightly contradicts its 

assumptions, it still performs well. 

 

 

Disadvantages: 

● Overly complex trees can be generated by decision-tree learners, who do not generalize 

the data well. This is referred to as overfitting. 

● Since minor changes in the data can result in a completely different tree being created, 

decision trees can be unstable. 

● Under many aspects of optimality and even for simple concepts, the problem of learning 

an optimal decision tree is considered to be NP-complete. Some principles, such as 

XOR, parity, and multiplexer problems, are difficult to understand because decision 

trees can not easily articulate them. 

● If certain classes dominate, decision tree learners build biased trees and so the dataset 

should be balanced before using the decision tree to suit it. 
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4.7.3 Random Forest 

Random forest is the most flexible and easy to use supervised learning algorithm used for 

classification and regression both. A forest is made up of trees, and it is said that the more trees 

there are in a forest, the more robust it is. Like this random forest is an ensemble method 

composed of decision tree classifiers. Random forests generate decision trees from randomly 

chosen data samples using attribute selectors like, information gain, gain ratio, and Gini index, 

extract predictions from each tree, and vote on the best solution. 

 

 

Figure 4.5: Flowchart of Random Forest [35] 

 

Random Forest Algorithm: 

The following is the basic concept behind random forest algorithm: 

1. Random samples from a dataset are chosen. 

2. For each sample, a decision tree is built, and a prediction result is obtained from each 

and every decision tree. 

3. For each expected outcome, a vote is taken. 
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4. The prediction with the most votes is chosen as the final prediction. 

 

 

                                                         Figure 4.6: Random Forest Algorithm [36] 

 

    Advantages: 

● Because of the large number of decision trees involved in the procedure, random forests 

are considered a highly accurate and robust system. 

● It is not affected by the issue of overfitting as it averages all of the forecasts, canceling 

out any biases. 

● Applicable for both classification and regression problems. 

● Capable of dealing with missing values. 

● The relative feature importance can be calculated.   
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Disadvantages: 

● Time consuming as to generate outcome every tree has to give prediction and voting 

has to be performed on it. 

● In comparison to a decision tree, where a decision can be taken simply by following the 

path in the tree, the model is difficult to explain. 

 

4.7.4 Perceptron: 

The Perceptron is a linear machine learning algorithm for two-class classification tasks. It is 

considered as the building block of artificial neural networks or deep learning to be specific. 

For binary classification tasks, it can easily learn a linear separation in feature space. It uses 

the stochastic gradient descent optimization algorithm to learn but does not predict calibrated 

probabilities. 

 

PR Algorithm: 

A single neuron in a perceptron takes a row of data as input and predicts a class label. The 

weighted summation of the inputs and a bias (set to 1) are used to obtain this. The activation is 

defined as the weighted sum of the model's input. 

Activation = Weights * Inputs + Bias 

The model will output 1 if the activation is greater than 0; otherwise, it will output 0. 

Predict 1: If Activation > 0 

Predict 0: If Activation <= 0 

In models like linear regression and logistic regression, where the inputs are multiplied by 

model coefficients, it's a good idea to normalize or standardize data before using the model. 

Since Perceptron is a linear classification algorithm, it learns a decision boundary that divides 

two classes using a line in the feature space called a hyperplane. The stochastic gradient descent 

optimization algorithm is used to train the model's coefficients, which are called as input 

weights. 
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The model is fed one example from the training dataset at a time, the model makes a prediction, 

and the error is calculated. According to the Perceptron update rule, weights are updated to 

reduce the error for each of all the examples of the training set and the process is known as an 

epoch. To prevent premature convergence the hyperparameter called learning rate is kept small 

while updating weights. Following is the equation followed to update the weights: 

 

weights (t + 1) = weights(t) + learning_rate * (expected_i – predicted_) * input_i 

 

When the model's error falls to a low level or no longer improves, or when the maximum 

number of epochs is reached, training is terminated. Initial random weights are also kept small. 

Higher learning rates helps the model to learn fast but may cross the converging point while 

low learning rate gives better performance but the learning time can be lengthy. 

 

Figure 4.7: Perceptron Algorithm [37] 
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Advantages: 

 

●  There is no requirement for a learning rate. 

●  It is not regularized. 

● It only updates its model when there is error. This property implies that the Perceptron              

is slightly faster in training, resulting in sparser models. 

 

4.7.5 Gradient Tree Boosting 

Gradient boosting-one of the most powerful techniques for creating predictive models is  a 

variant of boosting that applies to any differentiable loss function. AdaBoost and related 

algorithms were recast in a statistical framework known as ARCing algorithms, and later 

developed as Gradient Boosting Machines, and later simply known as gradient boosting. The 

goal of this algorithm is to add weak learners to reduce model loss using gradient descent. 

 

 

 

Figure 4.8: Gradient Tree Boosting Model [38] 
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Gradient Tree Boosting Algorithm: 

The basic idea behind any gradient tree boosting algorithm is given below: 

1. A differentiable loss function is to be optimized. Usually, gradient descent algorithm is 

used to minimize the loss function. 

2. Weak learners, usually decision trees, are needed and used to make predictions. Regression 

trees are used specifically as they generate real values for splits and their outcomes can be 

added together, allowing subsequent model outcomes to be added and the predicted 

residuals to be corrected. 

3.  To add the weak learners or trees one at a time an additive model is used. 

     

                   Figure 4.9: Sequential Ensemble Approach [39] 

Advantages: 

● Frequently provides unrivaled predictive accuracy. 

● Capable of optimizing different loss functions and provides flexibility in 

hyperparameter tuning. 

● Data preprocessing not needed. 

● Often capable of dealing with numerical and categorical data. 

● Capable of dealing with missing data. 
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Disadvantages: 

● GBMs can be prone to overfitting due to its nature of improving for error minimization. 

To prevent this cross-validation is needed.  

● Often necessitates a large number of trees, which can take a long time and consume a 

lot of memory. 

● Tuning requires a large grid. 

● Less comprehensible 

4.8 Support Vector Machine (SVM) 

A support vector machine (SVM) is a supervised machine learning classification algorithm that 

performs exceptionally well with a small amount of data to analyze. It can be used to solve 

both classification and regression type problems and can handle both continuous and 

categorical variables with ease. 

  

To distinguish different classes, SVM creates a hyper-plane in multidimensional space. It 

iteratively produces the best hyper-plane, which is then used to optimize an error. The aim of 

SVM is to find a maximum marginal hyperplane (MMH) that divides a dataset into classes as 

evenly as possible. 

 

4.8.1 Support Vectors 

The data points nearest to the hyperplane are called support vectors. These points, which are 

more applicable to the classifier's construction, describe the separating line by measuring 

margins. 

Hyper-plane: A hyper-plane is a decision plane that distinguishes between a group of objects 

that belong to different classes. 

Margin: The distance between the two lines on the closest class points is known as a margin. 

The perpendicular distance from the line to the support vectors or closest points is determined 

to find the margin. A greater margin between the groups is considered a decent margin, whereas 

a smaller margin is considered a poor margin. 
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                                             Figure 4.10: SVM Model [40] 

4.8.2 SVM kernels 

Kernel is used to implement the SVM algorithm. An input data space is transformed into the 

appropriate form by a kernel. The SVM kernel converts a low-dimensional input space into a 

higher-dimensional space that transforms non-separable problems into separable problems by 

adding more dimensions, making it particularly useful in non-linear separation problems. 

SVM mainly uses three kinds of kernel:  

● Linear Kernel 

● Polynomial Kernel 

● Radial Basis Function Kernel 

As ours is a binary classification type problem, linear kernel SVM or linear SVM has been 

used to classify data by finding the best hyper-plane that separates all the data points of the two 
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classes from each other. For any two observations, a linear kernel can be used as a standard dot 

product. The sum of the multiplication of each pair of input values is the product of two vectors. 

 

                                               Figure 4.11: SVM Kernel Method [40] 

4.8.3 SVM Algorithm 

SVM's main goal is to segregate a given dataset as effectively as possible. SVM searches for 

the maximum marginal hyper-plane to separate the support vectors in the given dataset in the 

following steps: 

1. It creates hyper-planes that effectively divide the groups. Figure on the left-hand side 

depicting three hyper-planes: black, blue, and orange. The blue and orange classes have 

higher classification errors, but the black class correctly separates the two classes. 

2. As shown in the right-hand diagram, it chooses the right hyper-plane with the highest 

segregation from the nearest data points. 
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                                                     Figure 4.12: SVM Algorithm [41] 

 

Advantages: 

• Works efficiently in high dimensional spaces. 

• When the number of dimensions exceeds the number of samples, the method is still 

accurate. 

• It is memory effective since it uses a subset of training points (called support vectors) 

in the decision function. 

• Kernels are as adaptable as they are customizable. 

• Can deal with both separable and non-separable data. 
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Disadvantages: 

● When the number of features exceeds the number of samples, it's crucial to prevent 

over-fitting when selecting kernel functions and regularization terms. 

● Probability estimates are calculated using an expensive five-fold cross-validation 

method, which is not explicitly provided by SVMs. 
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Chapter 5 

Performance Metrics 

5.1 Introduction 

In classification problems a classifier is evaluated based on some performance metrics after 

the model has been trained with some training dataset. There exists numerous performance 

metrics on which a classifier’s performance can be evaluated and there is set rule to use any 

specific one [54,55]. It is very common for a classifier to perform well in some performance 

metrics while showing poorer results when tested on some other performance metrics [53]. A 

classifier has to be tested on multiple performance metrics where each depicts a unique side 

of the classifier’s performance capability. So, to validate our result a classifier performance 

should be done on several different performance metrics and several datasets rather than 

choosing only a handful with desired outcomes. 

 

5.2 Performance metrics for binary classifier 

In a binary classification problem like this cancer stage detection in this research, four 

outcomes are possible: 

 

1. True positive: The classification model declared a sample as positive class and it’s 

verified as positive by the ground truth data 

2. True negative: The classification model declared a sample as negative class and it’s 

verified as negative by the ground truth data 

3. False positive: The classification model declared a sample as positive class and it’s 

verified as negative by the ground truth data 

4. False negative: The classification model declared a sample as negative class and it’s 

verified as positive by the ground truth data 

Every classification algorithm works using a parameter called threshold t (where 0 < t < 1), 

and this threshold is used decide class of any sample. Any test case with threshold value 

greater than a specific value is classified as certain class and any value below that is classified 

as the other class (in case of binary classification). The decision threshold is changed to make 

classification in favor of any either positive class or the negative class depending upon which 

class is more important should be classified with less error margin. Lowering decision 

threshold usually increases the FP while reducing the number of FN errors. Several kinds of 
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performance metrics exist in case of binary classification and the ones used in this research 

are discussed in details. 

 

5.3 Accuracy measurement of prediction values 

Accuracy is defined by the ratio of number of correct prediction instances by overall number 

of samples present in the training dataset. If the total number of test samples in a training 

dataset is N, then accuracy for a specific threshold t is formulated by: 

Accuracy =  
𝑇𝑃(𝑡)+𝑇𝑁(𝑡)

𝑁
 

For the dataset of this research N = 130 as the dataset consists of 130 patients among them 

104 are with benign cancer which are treated as positive classes and 26 are with malignant 

cancer, treated as the negative class. 

Although accuracy gives an overall measure for a classifier and it’s the simplest one to 

understand, but it might not be viable in case of biomedical classification due to some class 

being more important than other and error margin for all the classes are not treated as same. 

 

5.4 Confusion Matrix 

Confusion matrix is a table showing TP, TN, FP and FN values and used to depict the 

performance of a classification model on the set of data of which the ground truth values are 

known. From a confusion table, all other important performance parameters can be easily 

calculated including accuracy. For binary classification a typical confusion matrix looks like 

below: 

 

Figure 5.1: Confusion matrix 
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5.5 ROC curve 

An ROC curve (receiver operating characteristic curve) is used to evaluate the performance 

of a classifier on different threshold levels. By changing the decision threshold, the true 

positive rate and false positive rate of a classification model changes. ROC curve is a graph 

of TPR vs FPR at various levels of classification values with different thresholds. The related 

terms can be defined as: 

 

● TPR (True Positive Rate) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

● 𝐹𝑃𝑅 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 ) =
𝐹𝑃

𝑇𝑃+𝐹𝑁
 

 

 

Figure 5.2: ROC curve 

 

A typical ROC curve has N+1 distinct value for a training set of N unique samples. Because a 

classifier finds out N+1 threshold values and changes the threshold level between these 

values and plots the ROC curve. Any point on the ROC curve can be chosen and that would 

yield a result that the classifier is able to produce. At different point on an ROC accuracy can 

change. 
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5.6 AUC score 

The measurement of an ROC curve is done by AUC (Area under curve) score. It is the entire 

area underneath the ROC curve and is a very important measurement for a classifier that 

provides an accumulated performance measure across all different classification thresholds. 

The better the AUC score, the better the classification is without taking the cost of error or 

class distribution into consideration. A higher value of AUC score indicates that even with 

the change in threshold value, the classification stays accurate, the TPR and FPR rate doesn’t 

change drastically. For biomedical purposes, this AUC score is very important and for cancer 

cell classification typical AUC score should be higher than .95. 

 

5.7 Cross validation 

Cross validation is a resampling procedure used to justify the skill of a machine learning 

model on a dataset with limited data. It is a statistical method for evaluating machine learning 

model. It is used to estimate how well the classification algorithm will perform for an unseen 

data. It justifies whether a model is practically useful for new patient data which will be 

tested with the model and how well can it be expected to perform. 

 

K-fold cross validation: 

K is the parameter that refers to in how many numbers of individual groups the dataset is split 

into. The total number of samples must be divisible by K, otherwise it will result in an 

uneven distribution of data in each of the groups. A specific value for K is chosen, like for 

K=5 it is termed as 5-fold cross validation and dataset is divided into 5 sections with equal 

samples. This K value must be chosen carefully because a poorly chosen K value will not 

represent the correct cross validation result. If K value is much larger compared to a dataset 

or very small, it will either result in a bias or overfitting problem and the results cannot be 

justified. 

    

Process of cross validation 

Cross validation process follows these following steps: 

1. Random shuffling of the dataset 

2. Splitting the dataset into number of K sub-groups 

3. For each of the subgroup, target subgroup is taken as test dataset 

4. Rest of the subgroups are taken as test dataset 
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5. The model is trained on selected training datasets and evaluated on selected test 

dataset 

6. The score is obtained by evaluation and the particular trained model is discarded 

7. The overall score is taken as mean or average of K different runs 

For this research the dataset consists of 130 patient data and 5-fold cross validation was used. 

So, the whole dataset was divided into five sets of 104 sample training dataset and 26 sample 

test datasets. 

 

5.8 Summary 

Classification results based on a single performance metric is not acceptable. To justify the 

results, scores of multiple performance metrics are adopted in this research and in the result 

section we can see the application of this performance metrics for a given model. To further 

justify the performance metric scores, cross validation has been used to ensure that future 

data can be also predicted by the model with significant assurance. 
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Chapter 6 

Result 

 
6.1 Introduction 

Result analysis consists of two major sections, first part is feature selection using the RFE 

algorithm and second part is classification using a suitable classifier. Our dataset consists of 

features calculated with 3 different window sizes. After making classification among the 

same set of features an empirical analysis can also be made to know which window size is 

best for classification purpose. For each classification, accuracy, confusion matrix with TPR 

(True positive rate) and FPR (False positive rate) and the ROC curve with AUC score was 

observed.  

 

6.2 Classification method 

Each dataset was prepared as an excel file where 130 patient data was labeled as M for 

malignant cases and B for benign cases. For classification, Matlab’s Classification learner 

application was used and the excel file was imported. The classifier app can read the label 

column and distinguish both of the classes, Benign classes were taken as positive classes and 

the Malignant classes were taken as negative classes. 5-fold cross validation was chosen and 

each fold the whole dataset was divided into 104 sample training set and 26 sample test set. 

For feature selection in RFE the logistic regression algorithm was used and for classification 

in Matlab the SVM algorithm was used. Every classification has 3 same steps repeated for 

window size: 5, 12 and 20. 

 

6.3 Classification result without feature exclusion 

The first attempt was made on the entire dataset with all the features. In this case no feature 

was eliminated. Even though this may result in a good classification score due to the potency 

of the classifier, this is not practically implementable because a total number of 79 features is 

not feasible to generate every time for a new patient nor it’s computationally fast enough to 

run a real time detection algorithm. But this classification score provides an overall idea 

about the consistency of the whole dataset. 
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Window size = 5 

Accuracy = 85.4% 

AUC score = .79 

 

 
 

Figure 6.1: Confusion matrix with all features selected and window size = 5 

 

 

 
 

Figure 6.2: ROC curve with all features selected and window size = 5 
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Figure 6.3: TPR and FPR with all features selected and window size = 5 

 

Window size = 12 

Accuracy = 90% 

AUC score = .82 

 

 
 

Figure 6.4: Confusion matrix with all features selected and window size = 12 
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Figure 6.5: ROC curve with all features selected and window size = 12 

 

 
 

Figure 6.6: TPR and FPR with all features selected and window size = 12 
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Window size = 20 

Accuracy = 88.5 % 

AUC score = .91 

 

 
 

Figure 6.7: Confusion matrix with all features selected and window size = 20 

 

 

 
 

Figure 6.8: ROC curve with all features selected and window size = 20 
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Figure 6.9: TPR and FPR with all features selected and window size = 20 

 

 

Although from these results we can obtain a good classification accuracy and AUC score, but 

from the FPR and FNR rate we can see that a lot of malignant classes has been misclassified 

as benign which is very sensitive and it’s even better to get lower accuracy where a classifier 

misclassifies a benign as malignant. 

 

6.4 Classification result using RFE 

To get an improved result and fewer features we now use the RFE algorithm. For RFE 

algorithms the total number of features has been set to 11. These selected features are: i) 

compactness, ii) border irregularity, iii)img_htc_nd, iv)img_gradient, v)ph_gradient, 

vi)real_gradient,vii)mu_cnc, viii)mu_htc, ix)mu_htc_nd, x)pre_fnpa, xi)solidity. For feature 

selection in the RFE algorithm, logistic regression was used. 

Like before the same analysis has been done on these datasets of 11 features from 3 different 

window sizes. 
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Window size = 5 

Accuracy = 83.8 % 

AUC score = .89 

 

 
 

Figure 6.10: Confusion matrix with 11 features selected using RFE and window size = 5 

 

 

 
 

Figure 6.11: ROC curve with 11 features selected using RFE and window size = 5 
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Figure 6.12: TPR and FPR with 11 features selected using RFE and window size = 5 

 

 

 

Window size = 12 

Accuracy = 90.8 % 

AUC score = .89 

 

 
 

Figure 6.13: Confusion matrix with 11 features selected using RFE and window size = 12 
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Figure 6.14: ROC curve with 11 features selected using RFE and window size = 12 

 

 

 

 
 

 

Figure 6.15: TPR and FPR with 11 features selected using RFE and window size = 12 
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Window size = 20 

Accuracy = 90.8 % 

AUC score = .94 

 

 
 

Figure 6.16: Confusion matrix with 11 features selected using RFE and window size = 20 

 

 

 
 

Figure 6.17: ROC curve with 11 features selected using RFE and window size = 20 
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Figure 6.18: TPR and FPR with 11 features selected using RFE and window size = 20 

 

 

6.5 Classification result using RFE_CV 

RFE_CV is an advanced algorithm that doesn’t need a number of features to be selected, but 

it does require a scoring criterion, based on which the group of features are selected. The 

scoring criteria was set to accuracy. RFE_CV run on the dataset of 20 window size selected a 

subset of 6 features for optimum performance and are as follows:  

1. Aspect Ratio 

2. Border Irregularity 

3. Absolute MG Area 

4. Imaginary MG Gradient 

5. Phase MLP 

6. Mu HTC 

 

After finding out the set of features, classification was made on Matlab Classifier Learner 

using the SVM algorithm. The same set of features was also selected from the dataset of 

window size 5 and window size 12 and was classified using SVM. Not only these results 

yield the best performance scores from all the previous subset of features but an empirical 

analysis show that with the increase in window size the performance metrics are better with 

the best results for window size 20. 
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Window size = 5 
Accuracy = 87.7 % 

AUC score = .88 

 

 
 

Figure 6.19: Confusion matrix with 6 features selected using RFE_CV and window size = 5 

 

 

 
 

Figure 6.20: ROC curve with 6 features selected using RFE_CV and window size = 5 
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Figure 6.21: TPR and FPR with 6 features selected using RFE_CV and window size = 5 

 

Window size = 12 

Accuracy = 90% 

AUC score = .93 

 

 
 

Figure 6.22: Confusion matrix with 6 features selected using RFE_CV and window size = 12 
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Figure 6.23: ROC curve with 6 features selected using RFE_CV and window size = 12 

 

 

 

 
 

Figure 6.24: TPR and FPR with 6 features selected using RFE_CV and window size = 12 
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Window size = 20 

Accuracy = 92.3% 

AUC score = .95 

 

 

Figure 6.25: Confusion matrix with 6 features selected using RFE_CV and window size = 20 

 

 

Figure 6.26: ROC curve with 6 features selected using RFE_CV and window size = 20 
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Figure 6.27: TPR and FPR with 6 features selected using RFE_CV and window size = 20 

 

6.6 Individual performance of the six selected features 

 

These 6 features collectively provide the best classification performance but it has to be made 

sure that these features are individually acceptable and no redundancy exists in them. 

Otherwise, the whole subset of features can be regarded as inaccurate. 

SVM was used taking each individual feature from the dataset of window size 20 and 

performance scores were evaluated. Some of the features may not show great results on its 

own but it is the combination of these features that works as a better classification tool.  

 

Aspect Ratio: 

Accuracy: 80% 

 

Figure 6.28: ROC curve for Aspect Ratio 
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Border Irregularity: 

Accuracy: 87.7% 

 

 

Figure 6.29: ROC curve for Border Irregularity 

 

Absolute MG Area: 

Accuracy: 80% 

 

 

Figure 6.30: ROC curve for Absolute MG Area 
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Imaginary MG Gradient: 

Accuracy: 80% 

 

 

Figure 6.31: ROC curve for Imaginary MG Gradient 

 

Phase MLP: 

Accuracy: 80% 

 

 

Figure 6.32: ROC curve for Phase MLP 
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Mu HTC: 

Accuracy: 80% 

 

 

Figure 6.33: ROC curve for Mu HTC 
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6.7 Result summary 

Performance summary of the individual features is tabulated below: 

Table 6.1: Summary of the Performance Parameter Scores of the Selected Features 

        

           Features  

 

Percentage of Accuracy 

 

Area under the curve 

       

          Aspect Ratio 

 

                  80% 

 

                 0.47 

 

       Border Irregularity 

                

                 87% 

 

                0.85 

       

       Absolute MG Area 

 

                80% 

 

                0.48 

        

       Imaginary Gradient 

              

                80% 

 

                0.48 

         

        Phase MLP 

 

                80% 

 

                0.51 

 

         Mu HTC 

 

                80% 

 

                0.47 

 

From the above table it is clear that a feature alone cannot be a good classifier, rather the 

combination of all the six features gives a far better classification result. 
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Performance summary of the combination of six features is tabulated below: 

 

Table 6.2: Comparison of performance parameter scores for three window sizes 

 

          

         

        Window Size 

 

          

         Accuracy 

 

 

 Area under the 

curve 

                  

         5 (0.1875 mm) 

  

             87.7% 

 

               0.88 

 

         12 (0.4500 mm) 

 

             90.0% 

 

               0.93 

 

         20 (0.7500 mm) 

 

             92.3% 

 

              0.95 

 

 

6.8 Empirical Analysis 

An empirical analysis between different window sizes depicts an improvement of performance 

with increase in window size. 

 
Figure 6.34: Empirical analysis of Accuracy and AUC trend vs window size 
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6.9 Conclusion: 

 

All these results are obtained through a cross validation process, which is never the same with 

every run. So, the result of one run is not something constant and may change in another run, 

as cross validation sets are chosen at random. But with fixed initial seeds, this randomization 

can be stopped. A general analysis of this result depicts the viability of the generated features 

and due to the performance metrics being up to the mark these models along with these 

features can be applicable for classification of any new dataset. 

 

 

  



80 

 

Chapter 7 

Conclusion 

7.1 Introduction 

The scope for using ultrasound image in cancer classification is although a very necessary 

demand but due to the image properties it is a real challenge. Our research finds an way of 

using statistical model to find a better way to process the RF signal of an ultrasound image and 

this process has been validated throughout several the performance metrics. Our research not 

only provides the way of image processing but also incorporate works of using advanced 

machine learning algorithm to for classification and feature selection. Combining the statistical 

methods with modern machine learning techniques this research provides a practical 

implementation of automated classification techniques in the field of cancer detection. 

  

7.2 Future Work 

Though the results of this thesis are quite convincing to be used for further research in the 

field of medical diagnosis, still there are numerous areas where much more enhancements can 

be brought. The scopes of our research can be divided into short term and long-term 

prospects. 

7.2.1 Short Term Goals 

The next attempt for research in the foreseeable future would be to increase the window size 

and generate the selected six parametric features for the increased window size. The 

performance parameters like, accuracy, area under the ROC curve would be observed again 

for these six features for increased window sizes. Another attempt would be to include other 

distributions like, K distribution, Homodyne K distribution for the statistical analysis of the 

backscattered envelope, as these statistical distributions exhibited high potential for breast 

lesion classification in the previous research works. An attempt would be to take nonlinear 

approaches like neural networks into account as classifier and observe the difference with 

linear approaches through observing performance parameters scores. A research scope would 

be to consider the error factors in studies for accurate estimation of Nakagami parameters. 

7.2.2 Long Term Goals 

An obvious attempt for research in the distant future would be to increase the number of 

samples by collecting new datasets. This would help us to verify the results we obtained from 

our study and determine whether similar results are obtained for the new patients’ 
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datasets. Another major attempt would be to make the segmentation procedure of the region 

of interest fully automated. Till now the segmentation procedure used in our analysis is semi-

automated as the tracing of the ROI was done manually. We can try to detect the boundary 

using more sophisticated image segmentation techniques. Another attempt would be to 

develop a better algorithm to compute parametric images, including the structures and the 

context around the lesion. There is also scope for applying convolutional neural networks to 

classify the parametric images we generated for classifying malignant and benign lesions. 

7.3 A comparative analysis  

A comparative analysis of significant findings in the field of ultrasound imaging in cancer 

classification has been listed in Table 7.1 below. From this table, we can observe that  

          Comparison Number of Patients Parameter Types 

 

ROC Area 

 

Ultrasonic Multi-Feature Analysis 

Procedure for Computer-Aided Diagnosis 

of Solid Breast Lesions 

130 (26 malignant,104 

benign) 

 

Spectral and 

morphometric 

 

 

0.947 

 

Classification of Ultrasonic B-Mode 

Images of Breast Masses Using Nakagami 

Distribution 

52 (14 malignant,38 benign) 

 

M (effective number) 

and α (effective cross 

section) 

 

0.79 

0.828 

 

Classification of breast masses in 

ultrasonic B scans using Nakagami and K 

distributions 

99 (29 malignant,70 benign) 

 

Nakagami and K 

distribution parameters 

 

0.94 

 

Ultrasonic Nakagami Imaging: a strategy 

to visualize the scatterer properties of 

benign and malignant breast tumors 

100 (50 malignant,50 

benign) 

 

Nakagami image (m 

parameter) 

 

 

0.81 

 

Our research 

 

130 (26 malignant,104 

benign) 

 

Nakagami and derived 

Nakagami parameters 

 

0.95 

 

Table 7.1: Comparison of result with other papers 
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Nakagami parameters and derived Nakagami parameters along with morphometric features 

which gives an AUC of 0.95. Comparatively, the achieved AUC is highest among all the 

studies using Nakagami distribution only. Therefore, we can conclude that Nakagami 

parameters and derived Nakagami parameters improves classification between benign and 

malignant breast tumors.  
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