
IMPROVING LESION SEGMENTATION FOR 

BREAST CANCER DETECTION 

 

 

 

 

 

 

 

Submitted By 

 

Md. Monjurul Islam (112441) 

Mobasshir Hossain Akash (112443) 

Shah Md. Injamamul Islam (112457) 

 

 

 

 

 
 
 

Supervised By 

 

Md. Taslim Reza 

Assistant Professor, 

Department of Electrical and Electronic Engineering, 

Islamic University of Technology (IUT), Bangladesh. 

 

 

 

 

1 



2 

 

IMPROVING LESION SEGMENTATION FOR 

BREAST CANCER DETECTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved By 

 

 

 

Md. Taslim Reza 

Assistant Professor, 

Department of Electrical and Electronic Engineering, 

Islamic University of Technology (IUT), Bangladesh. 

 

 

 

 

 

 

 



3 

 

Project Members 

 

 

 

1. Md. Monjurul Islam 

Student Id: 112441 

 

 

 

 

 

 

2. Mobasshir Hossain Akash 

Student Id: 112443 

 

 

 

 

 

 

3. Shah Md. Injamamul Islam 

Student Id: 112457 

 

 

 

 
 

  

 

 

 



4 

 

Abstract 

 
Breast cancer is the most common cause of death among 

patients and one of the main reasons is that the lesion is not 

identified properly. Ultrasound images are very difficult to 

segment due to presence of speckle noise and the boundaries 

of abnormal regions are too difficult to recognize due to 

similarity. For this reason, proper medical facility or treatment 

cannot be provided in time. The situation in Bangladesh is 

alarming as there is a huge female population in the rural areas 

who don’t have proper medical access to detect the early stage 

of breast cancer. 

 

We have implemented a Computer Aided Diagnosis (CAD) 

system that will detect the cancerous lesion in the BUS (breast 

ultrasound) images effectively. We implemented a region 

growing algorithm which can segment the object of interests 

(lesion). We place the seed on the ultrasound image (original 

image), check homogeneity and merge the homogeneous 

regions. After that we use horizontal cut based entropy 

filtering and at last by canny edge detection we subtract the 

object of interests (lesion) from the desired ultrasound image. 

We also implemented developed watershed algorithm and 

assimilated it with region growing algorithm.   

 

 

 
Keywords: Entropy, SRAD Filtering, Watershed Segmentation, Binary 

Thresholding, Canny Edge Detection. 
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Chapter 1 
 

Introduction 
 

 

1.1 Basic 

Cancer is the name given to a collection of related diseases. In all types of cancer, 

some of the body’s cells begin to divide without stopping and spread into 

surrounding tissues. 

Cancer can start almost anywhere in the human body, which is made up of trillions 

of cells. Normally, human cells grow and divide to form new cells as the body needs 

them. When cells grow old or become damaged, they die, and new cells take their 

place. 

When cancer develops, however, this orderly process breaks down. As cells become 

more and more abnormal, old or damaged cells survive when they should die, and 

new cells form when they are not needed. These extra cells can divide without 

stopping and may form growths called tumors. 

 

Many cancers form solid tumors, which are masses of tissue. Cancers of the blood, 

such as leukemia’s, generally do not form solid tumors. Cancerous tumors are 

malignant, which means they can spread into, or invade, nearby tissues. In addition, 

as these tumors grow, some cancer cells can break off and travel to distant places in 

the body through the blood or the lymph system and form new tumors far from the 

original tumor. Unlike malignant tumors, benign tumors do not spread into, or 

invade, nearby tissues. Benign tumors can sometimes be quite large, however. When 

removed, they usually don’t grow back, whereas malignant tumors sometimes do.  

 

Breast cancer is a malignant cell growth in the breast. If left untreated, the cancer 

spreads to other areas of the body. Excluding skin cancer, breast cancer is the most 

common type of cancer in women in the present world, accounting for one of every 

three cancer diagnoses. 
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Breast cancer begins in the breast tissue that is made up of glands for milk 

production, called lobules, and the ducts that connect the lobules to the nipple. The 

remainder of the breast is made up of fatty, connective, and lymphatic tissues. Breast 

cancer typically produces no symptoms when the tumor is small and most easily 

cured. Therefore, it is very important for women to follow recommended screening 

guidelines for detecting breast cancer at an early stage. When breast cancer has 

grown to a size that can be felt, the most common physical sign is a painless lump. 

Sometimes breast cancer can spread to underarm lymph nodes and cause a lump or 

swelling, even before the original breast tumor is large enough to be felt. 

 

 

 

1.1 Present scenario 
 

 
One in eight deaths worldwide is due to cancer [1]. Cancer is the second leading 

cause of death in developed countries and the third leading cause of death in 

developing countries. In 2009, about 562,340 Americans died of cancer, more 

than 1,500 people a day. Approximately 1,479,350 new cancer cases were 

diagnosed in 2009. In the United Sates, cancer is the second most common cause of 

death, and accounts for nearly 1 of every 4 deaths [2]. Breast cancer is 

the most common, life-threatening cancer among American women [3]. Although 

breast cancer has very high incidence and death rate, the cause of breast cancer is 

still unknown [4]. No effective way to prevent the occurrence of breast cancer exists. 

Therefore, early detection is the first crucial step towards treating breast cancer. It 

plays a key role in breast cancer diagnosis and treatment. The technological boom 

in every aspect has made researchers to ponder over a screening tool that can be used 

to detect tumor in its developing stage, which can be used by the surgeons for further 

diagnosis. 

 

There were an estimated 14.1 million cancer cases around the world in 2012, of these 

7.4 million cases were in men and 6.7 million in women. This number is expected 

to increase to 24 million by 2035. cause of death, and accounts for nearly 1 of every 

4 deaths [5]. Breast cancer is the most common, life-threatening cancer among 

American women [6]. 
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This growing cancer burden, within the overall context of non-communicable 

diseases (NCDs), was a key focus of the September 2011 UN High Level Meeting 

on NCDs. 

 

Breast cancer was the most common cancer worldwide in women contributing more 

than 25% of the total number of new cases diagnosed in 2012. [7] 

 

The top three, breast, colorectal and lung cancers, contributed more than 43% of all 

cancers (excluding non-melanoma skin cancer). [7] 

 

Cervical cancer also contributed nearly 8% of all cancers (excluding non-melanoma 

skin cancer).[7] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Average Number of death per year and Age-Specific Incidence Rates per 

100,000 Population, Females, UK (Cancer Research UK) [59] 



14 

 

1.2 Imaging Tests 
 

 
Breast cancer screening is vital to detecting breast cancer. The most common 

screening methods are mammography and sonography. Ultrasound imaging 

has proved to be a valuable addition to mammography in the detection and 

classification of breast lesions [8]. Due to low specificity Mammography can 

detect false positives resulting in unnecessary biopsy operations. Also 

Mammography is ineffective in detecting breast cancer in adolescent women 

because of ongoing breast tissue formation in that age period. 

 

Imaging tests use x-rays, magnetic fields, sound waves, or radioactive substances to 

create pictures of the inside of your body. Imaging tests may be done for a number 

of reasons, including to help find out whether a suspicious area might be cancerous, 

to learn how far cancer may have spread, and to help determine if treatment is 

working. 

 

 

Mammograms 

 

 

A mammogram is an x-ray of the breast [9]. Screening mammograms are used to 

look for breast disease in women who have no signs or symptoms of a breast 

problem. Screening mammograms usually take 2 views (x-ray pictures taken from 

different angles) of each breast. 

 

For a mammogram, the breast is pressed between 2 plates to flatten and spread the 

tissue. This may be uncomfortable for a moment, but it is necessary to produce a 

good, readable mammogram. The compression only lasts a few seconds. If you have 

breast symptoms (like a lump or nipple discharge) or an abnormal result on a 

screening mammogram, you will have a diagnostic mammogram. This will include 

more images of the area of concern. If your diagnostic mammogram shows that the 

abnormal area is more suspicious for cancer, a biopsy will be being needed to tell if 

it is cancer. 

  

Even if the mammograms show no tumor, if you or your doctor can feel a lump, a 

biopsy is usually needed to make sure it isn't cancer. One exception would be if an 
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ultrasound exam finds that the lump is a simple cyst (a fluid-filled sac), which is 

very unlikely to be cancerous. 

 

If cancer is found, a diagnostic mammogram is often done to get more thorough 

views of both breasts. This is to check for any other abnormal areas that could be 

cancer as well. 

 

 

Breast Ultrasound 

 

 
Ultrasound, also known as sonography, uses sound waves to outline a part of the 

body [9]. For this test, a small, microphone-like instrument called a transducer is 

placed on the skin (which is often first lubricated with ultrasound gel). It emits sound 

waves and picks up the echoes as they bounce off body tissues. The echoes are 

converted by a computer into a black and white image that is displayed on a 

computer screen. This test is painless and does not expose you to radiation. 

 

Ultrasound has become a valuable tool to use along with mammography because it 

is widely available and less expensive than other options, such as MRI. Usually, 

breast ultrasound is used to target a specific area of concern found on the 

mammogram. Ultrasound helps distinguish between cysts (fluid-filled sacs) and 

solid masses and sometimes can help tell the difference between benign and 

cancerous tumors. In someone with a breast tumor, it can also be used to look for 

enlarged lymph nodes under the arm. 

 

The use of ultrasound instead of mammograms for breast cancer screening is not 

recommended. However, clinical trials are now looking at the benefits and risks of 

adding breast ultrasound to screening mammograms in women with dense breasts 

and a higher risk of breast cancer. 

 

 

Magnetic Resonance Imaging (MRI) of the breast 
 

 

MRI scans use radio waves and strong magnets instead of x-rays [9]. The energy 

from the radio waves is absorbed and then released in a pattern formed by the type 

of body tissue and by certain diseases. A computer translates the pattern into a very 
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detailed image. For breast MRI to look for cancer, a contrast liquid called gadolinium 

is injected into a vein before or during the scan to show details better.  

 

MRI scans can take a long time − often up to an hour. For a breast MRI, you have 

to lie inside a narrow tube, face down on a platform specially designed for the 

procedure. The platform has openings for each breast that allow them to be imaged 

without compression. The platform contains the sensors needed to capture the MRI 

image. It is important to remain very still throughout the exam. 

 

MRI can be used along with mammograms for screening women who have a high 

risk of developing breast cancer, or it can be used to better examine suspicious areas 

found by a mammogram. MRI is also sometimes used for women who have been 

diagnosed with breast cancer to better determine the actual size of the cancer and to 

look for any other cancers in the breast. It is not yet clear how helpful this is in 

planning surgery in someone known to have breast cancer. In someone known to 

have breast cancer, it is sometimes used to look at the opposite breast, to be sure that 

it does not contain any tumors.  

 

If an abnormal area in the breast is found, it can often be biopsied using an MRI for 

guidance. This is discussed in more detail in the "Biopsy" section. 

 

 

Biopsy 

 
 

A biopsy is done when mammograms, other imaging tests, or the physical exam 

finds a breast change (or abnormality) that is possibly cancer [10]. A biopsy is the 

only way to tell if cancer is really present.  

 

During a biopsy, a sample of the suspicious area is removed to be looked at under a 

microscope, by a specialized doctor with many years of training called a pathologist. 

The pathologist sends your doctor a report that gives a diagnosis for each sample 

taken. Information in this report will be used to help manage your care. 

 

There are several types of biopsies, such as fine needle aspiration biopsy, core (large 

needle) biopsy, and surgical biopsy. Each has its pros and cons. The choice of which 

to use depends on your specific situation. Some of the factors your doctor will 

consider include how suspicious the lesion appears, how large it is, where in the 

breast it is located, how many lesions are present, other medical problems you might 
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have, and your personal preferences. You might want to discuss the pros and cons 

of different biopsy types with your doctor. 

 

Often, after the tissue sample is removed, the doctor will place a tiny metal clip or 

marker inside the breast at the biopsy site. The clip cannot be felt and should not 

cause any problems, but it is helpful in finding the area again on future mammograms 

and for surgery. Some patients who have cancer are given chemotherapy or other 

treatments before surgery that can shrink the tumor so much that it can’t be felt or 

seen on mammogram. The clip can be used to direct the surgeon to the area where 

the tumor was so the correct area of the breast can be removed. 

 

 

1.3 Thesis Objective 
 

 
The main objective of the thesis is to focus on devising an automatic computer aided 

system by combining region growing and watershed algorithms which will be 

capable of processing input ultrasound image accurately and precisely. For this, 

successful implementation of region growing (both manual and automated) and 

watershed algorithms is mandatory. We use the manually outlined lesions by an 

experienced radiologist as the golden standard and evaluated the performance by 

both area error metrics and boundary error metrics. Therefore, our goal is to devise 

a reliable, efficient and cost-effective segmentation method for early detection of 

Breast Cancer.  
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Chapter 2 
 

Ultrasound Imaging 
 

 

2.1 Introduction 
 
Ultrasound imaging (sonography) uses high-frequency sound waves to view inside 

the body. Because ultrasound images are captured in real-time, they can also show 

movement of the body's internal organs as well as blood flowing through the blood 

vessels. Unlike X-ray imaging, there is no ionizing radiation exposure associated 

with ultrasound imaging. 

 

The ultrasound image is produced based on the reflection of the waves off of the 

body structures. The strength (amplitude) of the sound signal and the time it takes 

for the wave to travel through the body provide the information necessary to produce 

an image. 

 

Ultrasound is used in the clinical applications extensively these days. It is 

noninvasive, portable and more over the cost of clinical treatments with 

ultrasound technology is less expensive and affordable. It is not only possible 

to visualize the anatomy or morphology with ultrasound imaging but can also 

measure or predict the almost all kind of function by means of blood. Nowadays it 

is extensively used in fetal imaging, carding imaging, breast cancer detection, and 

detection of benign and malignant tissue in the human body. 

 

Though the ultrasound frequency range starts from 20 kHz, in clinical applications 

we use typically a range from 1MHz to 15MHz. The typical velocity of ultrasound 

in the human tissue is 1540 m/s. 

 

Today, ultrasound (US) is one of the most widely used imaging technologies in 

medicine. It is portable, free of radiation risk, and relatively inexpensive when 

compared with other imaging modalities, such as magnetic resonance and computed 

tomography. Furthermore, US images are tomographic, i.e., offering a “cross-

sectional” view of anatomical structures. The images can be acquired in “real time,” 
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thus providing instantaneous visual guidance for many interventional procedures 

including those for regional anesthesia and pain management. 

 

2.2 Basic Principles of B-Mode US 

 
Modern medical US is performed primarily using a pulse-echo approach with a 

brightness-mode (B-mode) display. The basic principles of B-mode imaging are 

much the same today as they were several decades ago. This involves transmitting 

small pulses of ultrasound echo from a transducer into the body. As the ultrasound 

waves penetrate body tissues of different acoustic impedances along the path of 

transmission, some are reflected back to the transducer (echo signals) and some 

continue to penetrate deeper. The echo signals returned from many sequential 

coplanar pulses are processed and combined to generate an image. Thus, an 

ultrasound transducer works both as a speaker (generating sound waves) and a 

microphone (receiving sound waves). The ultrasound pulse is in fact quite short, but 

since it traverses in a straight path, it is often referred to as an ultrasound beam. The 

direction of ultrasound propagation along the beam line is called the axial direction, 

and the direction in the image plane perpendicular to axial is called the lateral 

direction. [66] Usually only a small fraction of the ultrasound pulse returns as a 

reflected echo after reaching a body tissue interface, while the remainder of the pulse 

continues along the beam line to greater tissue depths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: B-Mode Image of Liver [67] 
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2.3 Generation of Ultrasound Pulses 

 
The ultrasound is generated by a piezoelectric crystal. This piezoelectric crystal is 

embedded in the transducer which acts both as transmitter and receiver in the 

ultrasound imaging process. The crystal deforms under the influence of an electric 

field and vice versa. 

 

In an ultrasound exam, a transducer (probe) is placed directly on the skin or inside a 

body opening. A thin layer of gel is applied to the skin so that the ultrasound waves 

are transmitted from the transducer through the gel into the body.  

 

 

 

are transmitted from the transducer through the gel into the body. 

 

 

 
 

 

 

 

 

 

 
 

Ultrasound imaging is based on the same principles involved in the sonar used by 

bats, ships and fishermen. When a sound wave strikes an object, it bounces back, or 

echoes. By measuring these echo waves, it is possible to determine how far away the 

object is as well as the object's size, shape and consistency (whether the object is 

solid or filled with fluid). 

 

In medicine, ultrasound is used to detect changes in appearance, size or contour of 

organs, tissues, and vessels or detect abnormal masses, such as tumors. 

 

To use ultrasound to find things, we first need to have a way of generating them. We 

need something to create vibrations that will travel in the tissues in a patient. 

 

Figure 2.2: Picture of a transducer (probe) used during an ultrasound exam [62] 
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There is a special material called a “piezo electric crystal”. This material has a very 

special property. When a voltage is applied to a piezo electric crystal (shown in red 

below), it expands. When the voltage is removed, it contracts back into its original 

thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In an ultrasound examination, a transducer both sends the sound waves and receives 

the echoing waves. When the transducer is pressed against the skin, it directs small 

pulses of inaudible, high-frequency sound waves into the body. As the sound waves 

bounce off internal organs, fluids and tissues, the sensitive microphone in the 

 

Figure 2.3: Generating Wave [63] 

 

Figure 2.4: Piezo Electric Crystal [63] 
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transducer records tiny changes in the sound's pitch and direction. These signature 

waves are instantly measured and displayed by a computer, which in turn creates a 

real-time picture on the monitor. One or more frames of the moving pictures are 

typically captured as still images. Small loops of the moving real-time images may 

also be saved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Doppler ultrasound, a special application of ultrasound, measures the direction and 

speed of blood cells as they move through vessels. The movement of blood cells 

causes a change in pitch of the reflected sound waves (called the Doppler effect). A 

computer collects and processes the sounds and creates graphs or color pictures that 

represent the flow of blood through the blood vessels. 

 

 

 

 

Figure 2.5: Working Method of Ultrasound Examination (Part-1) [63] 

Figure 2.6: Working Method of Ultrasound Examination (Part-2) [63] 
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2.3 Ultrasound Wavelength and Frequency 
 

The wavelength and frequency of US are inversely related, i.e., ultrasound of high 

frequency has a short wavelength and vice versa. US waves have frequencies that 

exceed the upper limit for audible human hearing, i.e., greater than 20 kHz.3 Medical 

ultrasound devices use sound waves in the range of 1–20 MHz. Proper selection of 

transducer frequency is an important concept for providing optimal image resolution 

in diagnostic and procedural US. High-frequency ultrasound waves (short 

wavelength) generate images of high axial resolution. Increasing the number of 

waves of compression and rarefaction for a given distance can more accurately 

discriminate between two separate structures along the axial plane of wave 

propagation. However, high-frequency waves are more attenuated than lower 

frequency waves for a given distance; thus, they are suitable for imaging mainly 

superficial structures.5 Conversely, low-frequency waves (long wavelength) offer 

images of lower resolution but can penetrate to deeper structures due to a lower 

degree of attenuation (Figure 2.6). For this reason, it is best to use high-frequency 

transducers (up to 10–15 MHz range) to image superficial structures (such as for 

stellate ganglion blocks) and low-frequency transducers (typically 2–5 MHz) for 

imaging the lumbar neuraxial structures that are deep in most adults (Figure 2.7). 

Ultrasound waves are generated in pulses (intermittent trains of pressure) that 

commonly consist of two or three sound cycles of the same frequency (Figure 2.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.7: Attenuation of ultrasound waves and its relationship to wave frequency. Note that 

higher frequency waves are more highly attenuated than lower frequency waves for a given 

distance. Reproduced with permission from ref. [64] 
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Figure 2.8: A comparison of the resolution and penetration of different 

ultrasound transducer frequencies. This figure was published in ref. [64] 

Copyright Elsevier (2000). 

Figure 2.9: Schematic representation of ultrasound pulse generation. Reproduced with 

permission from ref [64] 
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The pulse repetition frequency (PRF) is the number of pulses emitted by the 

transducer per unit of time. Ultrasound waves must be emitted in pulses with 

sufficient time in between to allow the signal to reach the target of interest and be 

reflected back to the transducer as echo before the next pulse is generated. The PRF 

for medical imaging devices ranges from 1 to 10 kHz.  

 

 

Resolution is the ability to see two things as two things. If the resolution is good, the 

picture will be clear and the two objects will look like two objects. If the resolution 

is poor, the picture will be blurred and the two objects will look like one. Our aim is 

to get the best possible resolution from our ultrasound machine. Higher the 

resolution, higher will be the quality of the image we see. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Ultrasound Wavelength and Frequency [63]  
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2.4 Ultrasound–Tissue Interaction 
 

As US waves travel through tissues, they are partly transmitted to deeper structures, 

partly reflected back to the transducer as echoes, partly scattered, and partly 

transformed to heat. For imaging purposes, we are mostly interested in the echoes 

reflected back to the transducer. The amount of echo returned after hitting a tissue 

interface is determined by a tissue property called acoustic impedance. This is an 

intrinsic physical property of a medium defined as the density of the medium times 

the velocity of US wave propagation in the medium. 

  

 

Table 2.1:  Acoustic impedances of different body tissues and organs.  

 

Body Tissue Acoustic impedance (106 Rayls) 

Air 0.0004 

Lung 0.18 

Fat 1.34 

Liver 1.65 

Blood 1.65 

Kidney 1.63 

Muscle 1.71 

Bone 7.8 

Reproduced with permission from ref [64] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Different types of ultrasound wave–tissue interactions. Reproduced with 

permission [64] 

from ref.6 
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Air-containing organs (such as the lung) have the lowest acoustic impedance, 

while dense organs such as bone have very high-acoustic impedance (Table 2.1). 

The intensity of a reflected echo is proportional to the difference (or mismatch) in 

acoustic impedances between two mediums. If two tissues have identical acoustic 

impedance, no echo is generated. Interfaces between soft tissues of similar acoustic 

impedances usually generate low-intensity echoes. Conversely interfaces between 

soft tissue and bone or the lung generate very strong echoes due to a large acoustic 

impedance gradient.7 When an incident ultrasound pulse encounters a large, smooth 

interface of two body tissues with different acoustic impedances, the sound energy 

is reflected back to the transducer. This type of reflection is called specular 

reflection, and the echo intensity generated is proportional to the acoustic impedance 

gradient between the two mediums (Figure 2.10). A soft-tissue–needle interface 

when a needle is inserted “in-plane” is a good example of specular reflection. If the 

incident US beam reaches the linear interface at 90°, almost all of the generated echo 

will travel back to the transducer. However, if the angle of incidence with the 

specular boundary is less than 90°, the echo will not return to the transducer, but 

rather be reflected at an angle equal to the angle of incidence (just like visible light 

reflecting in a mirror). The returning echo will potentially miss the transducer and 

not be detected. This is of practical importance for the pain physician, and explains 

why it may be difficult to image a needle that is inserted at a very steep direction to 

reach deeply located structures. Refraction refers to a change in the direction of 

sound transmission after hitting an interface of two tissues with different speeds of 

sound transmission. In this instance, because the sound frequency is constant, the 

wavelength has to change to accommodate the difference in the speed of sound 

transmission in the two tissues. This results in a redirection of the sound pulse as it 

passes through the interface. Refraction is one of the important causes of incorrect 

localization of a structure on an ultrasound image. Because the speed of sound is low 

in fat (approximately 1,450 m/s) and high in soft tissues (approximately 1,540 m/s), 

refraction artifacts are most prominent at fat/soft tissue interfaces. 
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Figure 2.12: Refraction artifact. Diagram (a) shows how sound beam refraction results in 

duplication artifact. (b) is a transverse midline view of the upper abdomen showing 

duplication of the aorta (A) secondary to rectus muscle refraction. This figure was published 

in ref. [65] Copyright Elsevier (2004). 

 

Figure 2.13: Degrees of attenuation of ultrasound beams as a function of the wave frequency 

in different body tissues. Reproduced with permission from ref. [64] 
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The most widely recognized refraction artifact occurs at the junction of the rectus 

abdominis muscle and abdominal wall fat. The end result is duplication of deep 

abdominal and pelvic structures seen when scanning through the abdominal midline 

(Figure 2.11). Duplication artifacts can also arise when scanning the kidney due to 

refraction of sound at the interface between the spleen (or liver) and adjacent fat. 

[65] If the ultrasound pulse encounters reflectors whose dimensions are smaller than 

the ultrasound wavelength, or when the pulse encounters a rough, irregular tissue 

interface, scattering occurs. In this case, echoes reflected through a wide range of 

angles result in reduction in echo intensity. However, the positive result of scattering 

is the return of some echo to the transducer regardless of the angle of the incident 

pulse. Most biologic tissues appear in US images as though they are filled with tiny 

scattering structures. The speckle signal that provides the visible texture in organs 

like the liver or muscle is a result of interface between multiple scattered echoes 

produced within the volume of the incident ultrasound pulse. [66] 

 

 

As US pulses travel through tissue, their intensity is reduced or attenuated. This 

attenuation is the result of reflection and scattering and also of friction-like losses. 

These losses result from the induced oscillatory tissue motion produced by the pulse, 

which causes conversion of energy from the original mechanical form into heat. This 

energy loss to localized heating is referred to as absorption and is the most important 

contributor to US attenuation. Longer path length and higher frequency waves result 

in greater attenuation. Attenuation also varies among body tissues, with the highest 

degree in bone, less in muscle and solid organs, and lowest in blood for any given 

frequency (Figure 2.12) 
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Chapter 3 
 

Current State of Art 

 

3.1 Introduction 
 

 
Ultrasound (US) images have been widely used in the diagnosis of breast cancer in 

particular. While experienced doctors may locate the tumor regions in a US image 

manually, it is highly desirable to develop algorithms that automatically detect the 

tumor regions in order to assist medical diagnosis. 

 

Ultrasound images are difficult to segment due to presence of speckle noise and the 

boundaries of abnormal regions are also difficult to recognize due to similarity. It is 

important to segment the image for correct and effective diagnosis. Manual method 

of segmentation is good but not effective for segmentation of large data sets, due to 

this an automatic or computerized segmentation is motivated. 

 

So, early detection and diagnosis is very important for breast cancer. Currently, 

breast ultrasound (BUS) imaging is a valuable method in early detection and 

classification of breast lesions [11]. 

 

In present world, researcher working on different types of segmentation for breast 

ultrasound (BUS) image processing. 

 

3.2 Segmentation 
 

 

Segmentation is one of the-bottlenecks of many image analysis and computer vision 

tasks ranging from medical image processing to robot navigation. Most of the further 

analysis relies on the results of the segmentation procedure, and accurate extraction 

of clinical information from medical images promises reliability for clinical 

applications and it is the basis of 3-D model reconstruction. But image segmentation 
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is a very difficult problem in practice. Standard image processing techniques fail to 

deliver satisfying results for most medical applications. So far no one algorithm can 

robustly segment a variety of relevant structure in medical images over a range of 

datasets [l2]. 

 

The principal segmentation challenges pertain to characterizing the textured 

appearance and geometry of a cancer relative to normal tissue, and accommodating 

artifacts such as the possibly strong attenuation across an image and shadowing, as 

well as the “fuzziness” of cancerous mass boundaries which makes border 

delineation difficult. Importantly, the studies of Stavos [13] - [15] have greatly 

influenced the design of algorithms for breast mass detection. Interestingly, no 

significant work has looked at the screening case, i.e., most work has assumed the 

presence of a, typically single, suspicious mass. Many techniques have been 

developed for BUS segmentation. They are categorized into histogram thresholding, 

region growing, model-based (active contour, level set, Markov random field) and 

machine learning. Simple histogram thresholding [16, 17] or region-growing 

algorithms [18, 19] can find the preliminary lesion boundary. In a histogram 

thresholding method, an intensity threshold is chosen at the valley of the image 

histogram to separate the image into background and foreground. For a region 

growing method, a region is grown from the seed point (start point) by adding similar 

neighboring pixels. 

 

Although efficient, these methods cannot generate a precise boundary because 

their over-simplified concepts and the high sensitivity to noise. However, they 

can serve as an intermediate step to provide a rough contour [20] or can be 

combined with post-processing procedures such as morphological operations 

[21, 22, 23], disk expansion [24], Bayesian neural network [25], function 

optimization [44] etc. Horsch et al. [26] presented a method involving thresholding 

a preprocessed image that has enhanced mass structures. Comparison is made of a 

partially automatic and fully automatic version of the method with manual 

delineation on 400 cases/757 images (124 “complex” cysts, 182 benign masses, and 

94 malignant masses). They compute four image based features (shape, 

echogenicity, margin, and posterior acoustic behavior) defined respectively in terms 

of the depth-to-width ratio, autocorrelation , “normalized radial gradient,” and 

comparison of gray levels, to test their effectiveness at distinguishing malignant and 

benign masses. This method was further evaluated in [27] and [28] to assess the 

advantages of different features using linear discriminant analysis where the best 

two features were found to be the depth-to-width ratio (shape) and normalized radial 

gradient (margin). In later work aimed at further automating the method Drukker et 

al. [29] extended this work to include mass detection by proposing to first filter the 
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images with a radial gradient index filtering technique. The method was tested on 

the same database as in [27] and [28]. They showed that 75% of lesions were 

correctly identified. 

 

Neural network (NN) based methods have proved to be popular in this area. 

These aim to make a classification decision based on a set of input features. For 

instance, Chen et al. [30] presented a NN approach where input features were 

variance contrast, autocorrelation contrast, and the distribution distortion in 

the (Daubechies) wavelet coefficients and a multilayered perceptron (MLP) 

neural network with one hidden layer was trained by error back propagation. 

The method was applied to a database of 242 cases (161 benign, 81 carcinoma) 

giving a sensitivity of 98.77% and specificity of 81.77%. They strongly argued 

that image texture was an important component that made their method 

successful. 

 

Huang and Chen [31] proposed an approach that integrates the advantages of 

NN classification and a watershed segmentation methods to extract contours of 

a breast tumor from ultrasound images. The main novelty of this work is in the 

preprocessing step which helps effectively the watershed algorithm by means 

of a reasonably good selection of markers. The authors proposed to use a self-

organizing map (SOM) texture based NN in order to select adaptively (i.e., 

locally) from a set of nine pre-defined filters the appropriate preprocessing filer 

to use. Their method was tested on a database of 60 images (21 benign, 39 

carcinomas), 40 used for training, 20 for testing. Measures of contour difference 

and area difference between the method and manual delineation were 

evaluated although strong conclusions cannot be drawn from this evaluation. 

 

Xiao et al. [32] presented an expectation maximization method that 

simultaneously estimates the attenuation field at the same time as classification of 

regions into different (intensity based) regions. The number of regions 

(classes) needs to be specified, which in the intended application is not a strong 

limitation. That method was tested on experimental data with different time 

gain compensation (TGC) settings to show that their approach gave consistent 

segmentations under different TGC settings but has not undergone a large 

clinical assessment. This method is compared to that of Boukerroui in [33]. 

 

Madabhushi and Metaxas [34] combined intensity, texture information, and 

empirical domain knowledge used by radiologists with a deformable shape 

model in an attempt to limit the effects of shadowing and false positives. Their 

method requires training but in the small database. Using manual de-lineation 
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of the mass by a radiologist as a reference, and the Hausdorff distance and 

average distance as boundary error metrics, they showed that their method is 

independent of the number of training samples, shows good reproducibility 

with respect to parameters, and gives a true positive area of 74.7%. They also 

argued that it has automation advantages over the work of Horsch et al. [27]. 

 

Boukerroui et al. [35] used a Markov random field to model the region process 

and to focus on the adaptive characteristics of the algorithm. Their method 

introduced a function to control the adaptive properties of the segmentation 

process, and took into account both local and global statistics during the 

segmentation process. A new formulation of the segmentation problem was utilized 

to control the effective contribution of each statistical component. The merit of MRF 

modeling is that it provides a strong exploitation of the pixel correlations. The 

segmentation results can be further enhanced via the application of maximum a 

posteriori segmentation estimation scheme based on the Bayesian learning 

paradigm. 

 

Watershed based approaches have shown promising performances for 

ultrasound image segmentation. The methods consider image as topographic 

surface wherein the grey level of a pixel is interpreted as its altitude. Water 

flows along a path to finally reach a local minimum. The biggest challenge for 

such methods is over segmentation; to address the problem; many approaches 

have been proposed and can be categorized into two types: marker controlled 

and cell competition. 

 

Marker controlled methods inundate the gradient landscape of image and 

define watersheds when the flooding of distinct markers rendezvous with each 

other. Hence, the identification of makers is very crucial in solving the over 

segmentation problem. The method proposed in [36] was a texture-based approach 

that selected the marker candidates as seeds for the water level immersion. A self-

organization map was trained to identify the texture of lesions as the flooding 

markers. Distinctively, the method in [37] adopted a thresholding and morphological 

operation scheme to seek flooding markers. It required a heuristic estimation of the 

best thresholding of markers to achieve the task of lesion delineation. Cell 

competition approaches, on the other hand, alleviate the over segmentation problem 

in a different way. A two-pass watershed transformation [38] was performed to 

generate the cell tessellation on the original ultrasound image or ROI. In this method, 

a competition scheme based on the cell tessellation was carried out by allowing 

merge and split operations of cells. The cost function was devised to characterize 

boundary saliency and regional homogeneity of an image partition, and it drove the 
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competition process to converge to a prominent component structure. However, 

neither marker controlled nor cell competition approaches guarantee to solve the 

over segmentation problem completely [39]. 

 

Although some of the previous methods can be applied in 3-D, the literature on 

3-D is less extensive. For instance, Chen et al. [40], Chang et al.[41]–[43], and 

Sahiner et al.[44] take a deformable active contour approach. Chang et al. [45] 

applied an active contour which uses intensity and intensity variance information. 

The method was tested on eight tumors (four benign, four malignant) with volume 

estimates compared with estimates by manual delineations. Using the match rate as 

a performance metric, the average match rate was about 95%. Sahiner et al. [46] 

compared 2-D and 3-D intensity gradient active contour segmentation based 

methods, the active contour initialized by hand, and with algorithm parameters 

determined empirically. Having found the segmentation solution, depth-to-width 

ratio, a posterior shadowing feature measure, and 72 texture features based on co-

occurrence matrix analysis were computed around the boundary for each 2-D slice 

and linear discriminant analysis used to classify volumes. Four radiologists graded 

the volumes in terms of perceived malignancy on a scale 1–10. They showed that 

the radiologist and computer based methods were not statistically different in 

classification (versus average for radiologists). However, they did not look at the 

accuracy of segmentation in depth and recognized that this was an area of possible 

improvement. 
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Chapter 4 
 

Segmentation Methods 
 

 

4.1 Introduction 
 

 
There are many types of segmentation methods for ultrasound image processing. 

From those few are popular. Popular segmentations methods are- 

 

 Watershed segmentation. 

 Region Based segmentation (region growing, level set). 

 Histogram thresholding (global, local thresholding). 

 Model-based (active contour, marker random field). 

 Machine Learning. 

 Segmentation based on clustering (Hard, K-means, fuzzy clustering). 

 

 

4.2 Explanation of different kinds of 

segmentation 
 
 

4.2.1 Watershed segmentation 
 
In the study of image processing a watershed of a grayscale image is analogous to 

the notion of a catchment basin of a height map. In short, a drop of water following 

the gradient of an image flows along a path to finally reach a local minimum. 

Intuitively, the watershed of a relief corresponds to the limits of the adjacent 

catchment basins of the drops of water. 
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There are different technical definitions of a watershed. In graphs, watershed lines 

may be defined on the nodes, on the edges, or hybrid lines on both nodes and edges. 

Watersheds may also be defined in the continuous domain [47].There are also many 

different algorithms to compute watersheds. Watershed algorithm is used in image 

processing primarily for segmentation purposes. 

 

 

4.2.2 Region Based Segmentation 
 

 

Region based segmentation [48] is based on partitioning an image into regions. 

Homogeneous regions are found based on the intensity value or texture feature. Its 

aim is to characterize the detected objects by parameter analysis (shape, size, 

position etc.). The best known region based category is split and merge algorithm. 

Boundary based method [49] overcome the pitfalls of region based segmentation. 

This method is used for searching implicit and explicit boundaries between regions 

which are correlated with different types of tissues.  

 

Edge detection is the standard category of boundary based method. The hybrid 

technique [50] is a combination of both boundaries based method and region based 

segmentation method. In active contour method [51] of segmentation technique, 

objects are detected using techniques of curve growth. This method is used to detect 

the edges of regions in image in which gray scale intensities are different with 

respect to surrounding region. 

 

 

 

4.2.3 Histogram Thresholding 
 

 

In thresholding based method of segmentation [52], no spatial information of pixels 

is examined. Gray-level image is converted into a binary image in thresholding. In 

ultrasound images, noise and boundaries of abnormal regions are not handled well 

in this segmentation technique. 
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4.2.4 Model-based (active contour, marker 

random field) 

 

 

Active contour models have been extensively applied to image segmentation for the 

past years. It was introduced by Kass for segmenting objects in images using 

dynamic curves [53]. Active contour models are also called snakes. Generally 

speaking, snakes can achieve a smooth and closed contour as well as sub-pixel 

accuracy. But it also has disadvantages, for example, it cannot change topology and 

the initial contour must be close to the object boundary. In 1988, Osher and 

Sethian proposed level set method which can solve the problems caused by snakes 

[54]. The curve evolution combining active contour models with level set method is 

widely applied in the segmentation. However, during the evolution of level set, it is 

numerically necessary to keep the evolving level set function close to a signed 

distance function. 

 

 

4.2.5 Machine Learning 
 

 

 

Imaging technologies have influenced biology and neuro-science profoundly, 

starting from the cell theory and the neuron doctrine. Today’s golden age of 

fluorescent probes has renewed the belief that innovations in microscopy lead to new 

discoveries. But much of the excitement over imaging overlooks an important 

technological gap: scientists not only need machines for making images, but also 

machines for seeing them. 

 

With today’s automated imaging systems, it is common to generate and archive 

torrents of data. For some experiments, the greatest barrier is no longer acquiring the 

images, but rather the labor required to analyze them. Ideally, computers would be 

made smart enough to analyze images with little or no human assistance. This is 

easier said than done — it involves fundamental problems that have eluded solution 

by researchers in artificial intelligence for half a century. 

 



38 

 

One of these problems is image segmentation, the partitioning of an image into sets 

of pixels (segments) corresponding to distinct objects. For example, a digital camera 

user might like to segment an image of a room into people, pieces of furniture, and 

other household objects. A radiologist may need the shapes and sizes of organs in 

an MRI or CT scan. A biologist may want to find the cells in a fluorescence image 

from a microscope. Engineers have tried to make computers perform all of these 

tasks, but computers still make many more errors than humans. 

 

 

4.2.6 Segmentation based on clustering 

(Hard, K-means, fuzzy clustering) 
 

 
One natural view of segmentation is that we are attempting to determine which 

components of a data set naturally “belong together”. This is a problem known as 

clustering; there is a wide literature. Generally, we can cluster in two ways: 

 

Partitioning: here we have a large data set, and carve it up according to 

some notion of the association between items inside the set. We would like 

to decompose it into pieces that are “good” according to our model. For 

example, we might: 

 

 

 decompose an image into regions which have coherent colour and texture 

inside them; 

 

  take a video sequence and decompose it into shots — segments of video 

showing about the same stuff from about the same viewpoint; 

 

 decompose a video sequence into motion blobs, consisting of regions that 

have coherent colour, texture and motion. 

 

 

Grouping: here we have a set of distinct data items, and wish to collect sets 

of data items that “make sense” together according to our model. Effects like 
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occlusion mean that image components that belong to the same object are often 

separated. Examples of grouping include: 

 

 

 collecting together tokens that, taken together, forming an interesting object  

 

 collecting together tokens that seem to be moving together. 
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Chapter 5 
 

Watershed Segmentation 
 

 

5.1 Introduction 
 

The watershed transform is the method of choice for image segmentation in the field 

of mathematical morphology. In gray scale mathematical morphology, the 

watershed transform, originally proposed by Digabel and Lantuejoul [55], is the 

method of choice for image segmentation. The intuitive idea underlying this method 

comes from geography: It regards the gradient magnitude image as a landscape 

where the intensity values correspond to the elevation. 

 

Morphological segmentation is an image plugin that combines morphological 

operations, such as extended minima and morphological gradient, with watershed 

flooding algorithms to segment grayscale images of any type in 2D and 3D. 

 

In geography, a watershed is the ridge line that divides areas drained by different 

river systems. A catchment basin is the geographical area draining into a river or 

reservoir. To understand watershed, transform basically we have to view it as a 

topological surface. 

 

 

 
 

 

 

Figure 5.1: Topographic Relief Image [60] 
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It is especially useful for segmenting object that are touching one another. Otherwise 

the reference image comes to as a single foreground.  

 

 

5.2 Basic Algorithm 
 

 

 Suppose, a hole is punched at each regional local minimum and the entire 

topography is flooded from below by letting the water rise through the holes 

at uniform rate. 

 

 Pixels below the water level at a given time are managed as flooded. 

 

 When we raise the water level incrementally, the flooded regions will grow in 

size. 

 

 Eventually, the water will rise to a level where two flooded regions from 

separate catchment basins will merge. 

 

 When this occurs, the algorithm constructs a one-pixel thick dam that 

separates the two regions. 

 

  The flooding continues until the entire image is segmented into catchment 

basins divided by watershed ridge line. 

 

5.3 Implementation 
 

 

Different kinds of approach are being needed to implement the watershed transform. 

The watershed segmentation can be done by- 

 

 Using the distance transform 

 

 Using gradients 

 

 Marker-controlled 
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5.3.1 The Distance Transform 
 

 

The distance transform is the common tool in conjunction with the watershed 

transform. Actually, it is the distance from every pixel to the nearest nonzero-valued 

pixel. 

 

 

It can be calculated in different way. Such as- 

 

i) Euclidian Distance: 

 

In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" (i.e. 

straight-line) distance between two points in Euclidean space. With this distance, 

Euclidean space becomes a metric space. The associated norm is called the 

Euclidean norm. Older literature refers to the metric as Pythagorean metric. A 

generalized term for the Euclidean norm is the L2 norm or L2 distance. 

 

The distance between two points defined as the square root of the sum of the squares 

of the differences between the corresponding coordinates of the points; for example, 

in two-dimensional Euclidean geometry, the Euclidean distance between two points 

a = (ax, ay) and b = (bx, by) is defined as: 

 

 

 -------------------5.1 

 

 

ii) City Block Distance 

 

 

It is also known as Manhattan distance, boxcar distance, absolute value distance. 

It represents distance between points in a city road grid. It examines the absolute 

differences between coordinates of pair of objects. 

 

 

dij  =  



x

k
jkij XX

1

  -------------------------------------------5.2   

 

https://en.wiktionary.org/wiki/square_root
https://en.wiktionary.org/wiki/square
https://en.wiktionary.org/wiki/difference
https://en.wiktionary.org/wiki/coordinate
https://en.wiktionary.org/wiki/two-dimensional
https://en.wiktionary.org/wiki/Euclidean_geometry
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iii) Chessboard Distance 

 

 

In mathematics, Chebyshev distance (or Tchebychev distance), maximum metric, or 

L∞ metric [56] is a metric defined on a vector space where the distance between two 

vectors is the greatest of their differences along any coordinate dimension [57]. It is 

named after Pafnuty Chebyshev. 

 

It is also known as chessboard distance, since in the game of chess the minimum 

number of moves needed by a king to go from one square on a chessboard to another 

equals the Chebyshev distance between the centers of the squares, if the squares have 

side length one, as represented in 2-D spatial coordinates with axes aligned to the 

edges of the board [58]. 

 

The Chebyshev distance between two vectors or points p and q, with standard 

coordinates and , respectively, is 

 

 

 -------------------------------5.3 

 

 

5.3.2 Gradients 
 

 

For watershed segmentation gradient magnitude is often used. The gradient 

magnitude has high pixel values along object edges, and low pixel values 

everywhere else. It has problems. Due to this over segmentation occurred. Another 

thing is too many ridge lines that do not correspond to the object boundaries of 

interest. 

 

5.3.3 Marker-Controlled 
 

 

A marker is a connected component belonging to an image. A set of internal markers 

that are inside each of the objects of interest. And a set of external markers that are 
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contained in the background. Various kind of methods such as linear filtering, 

nonlinear filtering and morphological processing. It has also problems. Severely 

segmented, due in part to the large number of regional minima. 

 
Algorithm by using Marker-Controlled Watershed Segmentation 

 

Segmentation using the watershed transform works better if you can identify, or 

"mark," foreground objects and background locations.  

 

 

Marker-controlled watershed segmentation follows this basic procedure: 

 

 Compute a segmentation function. This is an image whose dark regions are 

the objects you are trying to segment. 

 

 Compute foreground markers. These are connected blobs of pixels within 

each of the objects. 

 

 Compute background markers. These are pixels that are not part of any object. 

 

 Modify the segmentation function so that it only has minima at the foreground 

and background marker locations. 

 

 Compute the watershed transform of the modified segmentation function. 
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Figure 5.2: Original Image [61] 

 

Figure 5.3: Colored watershed label matrix 

(Lrgb) [61] 

Figure 5.4: Lrgb superimposed transparently on 

original image [61] 
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Here, we used a technique for watershed segmentation which is described below. 

 

Step 1: 

We took a ROI image as our reference image. 

 

  

 

 

 

 

 

 

 

 

Step 02: 

 

Then we transformed the ROI image into watershed RGB image. 

 

 

 

 

 

 

\ 

Step 03: 

 

Step 03: 

 

Binary Thresholding 

 

 

Figure 5.5: Ultrasound Image (Originial Image) 

Figure 5.6: Watershed RGB Image 
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Forming binary image by preserving the largest connected area in the watershed 

image. We observed the large connected component of watershed image is our 

desired lesion. Therefore, we followed the following principle to form the binary 

image: 

 

 Ranked all the segmented region of the watershed image based on area 

 

 Formed binary image by preserving the largest connected area in the 

watershed image. 

 

Thus we get a binary image having only our lesion. Fig 5.7 shows the binary 

image. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 04: 

 

Sobel Edge Detection 

 

The Sobel operator, sometimes called the Sobel-Feldman operator or Sobel filter, is 

used in image processing and computer vision, particularly within edge detection 

algorithms where it creates an image emphasizing edges.  

 

The gradient of the image is calculated for each pixel position in the image. 

 

The steps of SOBEL edge detection are: 

 Figure 5.7: Binary Thresholding Image 

https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Edge_detection


48 

 

 It uses a 3x3 filter mask to calculate gradient in every pixel location of the 

input image. 

 

 

 

X1 X2 X3 

X4 X5 X6 

X7 X8 X9 

 

 

 

 

The Magnitude of the vector ∆f is denoted as, 

 

∆f = max (∆f) =  GG yx
22 2

1

  ------------------------------5.4 

 

Where Gx is for x direction and Gy for y direction. 

 

The sobel masks (3×3): 

 

For x-Direction: 

 
−1 −2 −1
0 0 0
1 2 1

 

 

 

 

For y-Direction: 

 
−1 0 1
−2 0 2
−1 0 1

 

Figure 5.8: 3×3 Image Neighborhood 
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Find the x-direction derivative: Subtract the first row from the third row using the 

mask. 

 

Gx = (X7+2X8+X9) - (X1+2X2+X3) ----------------------------------5.5 

 

Find the y-direction derivative: Subtract the first row from the third row using the 

mask. 

 

Gx = (X3+2X6+X9) - (X1+2X4+X7) ----------------------------------5.6 

 

Find the gradient: 

 

Gx2 & Gy2 

 

Then find ∆f using above law. 

 

The procedure is done for the whole image matrix.  

 

 

 

 

 

 

 

 

 

 

 

Step 06: 

 

Segmented Image 

 
 

 

 

 

 

 

 Figure 5.9: After Sobel Edge Detection 

Figure 5.10: Segmented Image (Superimposed into original image) 
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We applied the above technique in different kinds of ultrasound images which is 

given below: 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

Figure 5.11: Segmented Image (Type 

1) 

Figure 5.12: Segmented Image (Type 2) 

Figure 5.13: Segmented Image (Type 3) 
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Chapter 6 
 

Region Growing Segmentation 
 

 

6.1 Introduction 
 

 

Region growing is a procedure that group’s pixels in whole image into sub regions 

or larger regions based on predefined Criterion. It has many advantage. These are: 

 

 

 It is easy to construct regions from their borders and it is easy to detect borders 

of existing regions. 

  

 Combination of results may often be a good idea.  

 

 Homogeneity of regions is used as the main segmentation criterion in region 

growing.  

 

 Region growing methods can provide the original images which have clear 

edges with good segmentation results. 

 

Region growing segmentation is two types. Those are: 

 

Edge-based segmentation: borders between regions  

Region-based segmentation: direct construction of regions  

 

It is easy to construct regions from their borders and it is easy to detect borders of 

existing regions. Segmentations resulting from edge-based methods and region 

growing methods are not usually exactly the same. Combination of results may often 

be a good idea. Region growing techniques are generally better in noisy images 

where edges are extremely difficult to detect. Homogeneity of regions is used as the 

main segmentation criterion in region growing.  
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The criteria for homogeneity:  

 

o gray level  

o color, texture  

o shape  

o model  

etc. 

 

Resulting regions of the segmented image must be both homogeneous and 

maximal. 

 

Algorithm for region growing method:  

 

 
 

 

Read the 
original image

Select Initial 
seed point

Grow region by appending 
neighbor pixels and choose 

pixels that have similar 
property

Obtained seed 
value

If (original image-seed 
value)<=Threshold, then 

add pixel to region.

If similarity to region 
pixels are found then 
apply same condition.

Reconstruct 
the image and 

display it.

Figure 6.1: Flowchart of region growing algorithm 
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Process: 

 

Step 01: 

 

Original Image 

 

 

 

 

 
 

 

 

 

 

 

 

 

Step 02: 

 

Seed Selection 

 

Here we represent seed by 3×3 matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

Step 03: 

 

 

Figure 6.2: BUS Image 

Figure 6.3: Seed selection 
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Separations of regions by region growing 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Step 04: 

 

Segmented Image 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Applying region growing algorithm 

Figure 6.5: Segmented Image 
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Step 05: 

 

Horizontal cut based entropy filtering 

 

We first applied entropy filtering on BUS image. Entropy is a textural feature 
and can be defined as a measure of randomness: 
 

Entropy = )()(
1

0
2

log xx i

L

i
i

pp




  -------------------------6.1 

 

In above equation 

  

x is a random variable  

p(x)is the histogram of the intensity levels  

L is the number of possible intensity levels. 

 

From the entropy filtered images, we observed that the entropy values are 

different for different regions. We categorized entropy values based on 

these regions. These values are tabulated in Table 6.1. 

 

 

Regions (in terms of 

location) 

Regions (in terms 

of echogenicity) 

Entropy 

Value 
Comments 

Boundary of the 

lesion 
Hyperechoic >6.5 

This is general for 

all 

test images 

Inside the lesion Anechoic 5~6 

Varies with 

images 

but mostly the 

entropy value is 

lesser than the 

values 

around the lesion 

Rest of the image 
Mostly 

hypoechoic 
5~6.5 

With some 

anechoic 

regions 
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The entropy values in the dark (anechoic) region inside the lesion vary from 3 

to 5. The white (hyperechoic) region found near the boundary of the lesion has 

very high entropy values ranging from 6 to 7.5. The rest of the image with 

mostly gray regions (hypoechoic) has values from 5 to 6.5. The regions can 

be seen in the original BUS image shown in Fig. 6.1. Corresponding entropy 

image in Fig. 6.2. Low entropy values indicate that randomness is small inside 

the lesion, i.e. the grayscale-intensity values within the lesion do not vary much 

compared to that of the region near boundary. Due to high variation of 

grayscale-intensity values, entropy is higher near boundary. These echogenic 

regions are depicted in Fig 6.6 and Fig 6.7. We used this information for our 

horizontal cut. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Original BUS image showing echogenicity 
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This method we applied in our segmented image 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Step 06: 

 

Binary Image Formation 

 
 

 

Figure 6.7: Segmented Image (Horizontal cut based Entropy 

Filtering 

Figure 6.8: Binary Segmented Image 
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Step 07:  

 

Deleting Boundary & Corner connected regions 

 

 
 

 

Step 08: 

 

Ranking the left regions 

 

It means that the larger area should stay and other small area compare to larger area 

will be eliminated. 

 
 

 

Figure 6.9: Deleting Boundary & Corner connected regions 

 

Figure 6.10: Ranking the binary image 
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Step 09: 

 

Canny edge detection 

 

The Canny edge detector is an edge detection operator that uses a multi-stage 

algorithm to detect a wide range of edges in images.  

 

Edge detection, especially step edge detection has been widely applied in various 

computer vision systems, which is an important technique to extract useful structural 

information from different vision objects and dramatically reduce the amount of data 

to be processed. Canny has found that, the requirements for the application of edge 

detection on diverse vision systems are relatively the same. Thus, a development of 

an edge detection solution to address these requirements can be implemented in a 

wide range of situations.  

 

 

The general criteria for edge detection includes 

 

 

 Detection of edge with low error rate, which means that the detection should 

accurately catch as many edges shown in the image as possible 

 

 The edge point detected from the operator should accurately localize on the 

center of the edge. 

 

 A given edge in the image should only be marked once, and where possible, 

image noise should not create false edges. 

 

 

The Process of Canny edge detection algorithm can be broken down to 5 different 

steps: 

 

 Apply Gaussian filter to smooth the image in order to remove the noise 

 

 Find the intensity gradients of the image 

 

 Apply non-maximum suppression to get rid of spurious response to edge 

detection 

 

 Apply double threshold to determine potential edges 
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 Track edge by hysteresis: Finalize the detection of edges by suppressing all 

the other edges that are weak and not connected to strong edges. 

 

 

 

 
 

 

Step 10: 

 

Superimpose detected edge output into main image  

 
 

 

Figure 6.11: Applied canny edge detection 

 

Figure 6.12: Edge detection image superimposed into BUS image 
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Results of different types of ultrasound image by applying region growing 

segmentation method:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.15: Our segmented image (Type-3) 

 

Figure 6.13: Our segmented image (Type-1) 

 

Figure 6.16: Our segmented image (Type-4) 

 

Figure 6.14: Our segmented image (Type-2) 
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Chapter 07 
 

Conclusion 
 

 

In this thesis, we came up a segmentation algorithm which is capable of detect lesion 

manually. Though our system successfully detect lesion but here human interaction 

needed because of manual seed selection. 

 

Problems of manual seed selection 

 

o Manual method of segmentation is good but not effective for segmentation 

of large data sets. 

o It is time consuming. 

o Need of human interaction. 

 

Problems We faced 

 

o Segmentation result is poor for the overshadowed ultrasound images. 

o Edge detection is quite good for a particular data sets; not for all image data 

sets. 

o Seed selection is manual. 

o The result from Watershed method is not pretty good. 

 

By researching over the different methods of segmentation we found out Region 

Growing Method more convenient and easier to detect the desired lesion. We 

approached by selecting the seed manually  

  

 

Potential Future works may have listed as follows: 

 

 Automatic seed selection 

 Solving the problems in ROI detection phase 

 Modelling of Shadowing Artifact of BUS image 

 Improving Automatic Segmentation of detected ROI image 
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