
 

 

 

A  COMPARATIVE STUDY OF DIELECTRIC 

MATERIALS AND METALS AS 

NANOPLASMONIC WAVEGUIDES 

By: 

FERDOUS S. AZAD 
MD. SAHABUL HOSSAIN 

MOHAMMED TANVIR AHMED 
 

 
 
 
 
 
 
 
 

BACHELOR OF SCIENCE 
IN 

ELECTRICAL AND ELECTRONIC ENGINEERING 
 
 

 

 

 

 

 

 

 

 

 

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) 
A Subsidiary Organ of Organization of Islamic Cooperation (OIC) 

Dhaka, Bangladesh. 

November, 2015 
 

 



i 
 

 

 

 

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) 
 

 

A  COMPARATIVE STUDY OF DIELECTRIC 

MATERIALS AND METALS AS NANOPLASMONIC 

WAVEGUIDES 

 

By: 

Ferdous S. Azad (112442) 

Md. Sahabul Hossain (112405) 

Mohammed Tanvir Ahmed (112406) 

 

 
 

 

 

 

Supervised by: 

Rakibul Hasan Sagor 

Assistant Professor, 

Department of Electrical and Electronic Engineering, 

Islamic University of Technology. 
 

 

 

 

 

 



ii 
 

Declaration of Authorship 

 

 

We, Ferdous S. Azad (112442), Md. Sahabul Hossain (112405) and 

Mohammed Tanvir Ahmed (112406), declare that this thesis titled ‘A 

comparative study of dielectric materials and metals as nanoplasmonic 

waveguides’ has been done for the partial fulfillment of the degree of 

Bachelor of Science in Electrical and Electronic Engineering at Islamic 

University of Technology. Where we have consulted the published work 

of others, we have always clearly attributed the sources. 

 

 

Submitted by: 

 

 

 

 

Ferdous S. Azad (112442) 

 

 

 

 

 

Md. Sahabul Hossain (112405) 

 

 

 

 

 

Mohammed Tanvir Ahmed (112406) 

 

 

 

 

 

 

 



iii 
 

 

A  COMPARATIVE STUDY OF DIELECTRIC MATERIALS 

AND METALS AS NANOPLASMONIC WAVEGUIDES 

 

Approved By: 

 

 

 

 

 

 
Rakibul Hasan Sagor 

Thesis Supervisor, 

Assistant Professor, 

Department of Electrical and Electronic Engineering, 

Islamic University of Technology. 

 

 

 

 

 

 

 

 

Prof. Dr. Md. Shahid Ullah 

Head of the Department, 

Department of Electrical and Electronic Engineering, 

Islamic University of Technology. 

 

 

  



iv 
 

 

 

Acknowledgement 

 

 
First and foremost, we offer deepest gratitude to the Almighty Allah 

(SWT) for giving us the capability to do this work with good health. 

 

We are grateful to our research supervisor, Rakibul Hasan Sagor, for the 

support and guidance throughout our research at Islamic University of 

Technology (IUT) since August 2014. He created a research environment 

for which we were able to explore many ideas without constraint. We 

have gained a wealth of knowledge and experience in science and 

engineering through his direction that is beyond value to our future 

endeavor. 

 

We would like to thank all the faculty members of the department of 

EEE, IUT for their inspiration and support. 

 

We are also thankful to our family, friends and well-wishers for their 

support and inspiration. Without them it would never have been possible 

for us to make it this far. 

 



v 
 

Abstract 

The ability of Surface Plasmon Polaritons (SPPs) to overcome the diffraction limit 

has made it a field of great research interest. It is being predicted that next 

generation microchips will be produced using plasmonics-electronics hybrid 

technology. This will solve the RC delay issue of current electronic microchips 

and scaling issue of conventional integrated photonic devices. However, there are 

some shortcomings of SPP which are higher losses in the metallic layer and less 

propagation distance. Using current technology, propagation distance of SPP 

cannot exceed the benchmark of micrometers. The objective of this thesis is 

study the power transmission characteristics of different kinds of waveguides 

for several materials and analyze their performance using the FDTD method. 

SPP propagation characteristics through different optical nanostructures having 

different geometries have been investigated to analyze the performance of the 

materials. Waveguides with different kinds of bends have been investigated and 

compared with each other to see the effects of these bends on the efficiency of 

power transmission. All of the simulations have been done for a range of signal 

wavelength extending beyond the visible light spectrum. 

  



vi 
 

Contents 

Declaration of Authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  viii 

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x 

 

1  Introduction and Background                                            1 

 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

 1.2  Overview of Surface Plasmon Polariton . . . . . . . . . . . . . . . 3 

 1.3  Literature Review  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

 1.4  Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

 

2   SPP Propagation Theory                                                  6 

 2.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

 2.2  Electromagnetic Wave Equation . . . . . . . . . . . . . . . . . . . . . 7 

 2.3  SPP at Single Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

 2.4  SPP at Double Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

 

3    Material Modeling Within Optical Range                        16 

 3.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

 3.2  Different Material Models . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

  3.2.1  The Drude Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

  3.2.2  The Lorentz Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

  3.2.3  The Lorentz-Drude Model . . . . . . . . . . . . . . . . . . . . . . . 21 

  3.2.4  The Debye Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 



vii 
 

 3.3  Material Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

 

4    Overview Finite-Difference Time-Domain Method         25 

 4.1  The Yee Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

 4.2  Absorbing Boundary Condition (ABC) . . . . . . . . . . . . . . . . 30 

 4.3  Material Dispersion in FDTD  . . . . . . . . . . . . . . . . . . . . . . . 30

  4.3.1  The Auxiliary Differential Equation (ADE) . . . . . . . . . .  31 

4.3.2 The Z-transform Methods . . . . . . . . . . . . . . . . . . . . . . . .  32 

  4.3.3  Piecewise Linear Recursive Convolution Method . . . . .  33 

 4.4 The General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

 

5   Comparison of waveguides using different materials 35 

5.1 Simulation model developing . . . . . . . . . . . . . . . . . . . . . . . 35 

5.2 Verification of the developed model . . . . . . . . . . . . . . . . . . 36 

5.3 SPP propagation through different nanowaveguides . . . . . .  38 

 5.3.1 Material properties used for simulations  . . . . . . . . . . . . 38 

5.3.2 Dielectric Metal Dielectric (DMD) waveguide  . . . . . . .  38 

5.3.3 Metal Dielectric Metal (MDM) waveguide  . . . . . . . . . .  42 

  5.3.4 Power transmission characteristics of simple MDM 

waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

  5.3.5 Efficiency of simple MDM waveguides for varying 

wavelengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

  5.3.6 Efficiency of MDM waveguides sharply bent at 90° . . .  52 

  5.3.7 Efficiency of MDM waveguides for circular bend . . . . . 55 

 

6 Conclusion and Future Works 61 

 6.1 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

 6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

Bibliography  64 



viii 
 

List of figures 
2.1  Typical planar waveguide geometry. The waves propagate along the x direction 

in a Cartesian coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

2.2 SPP at the Single interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

2.3 SPP at the double interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

 

3.1 Drude model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

3.2 Lorentz model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

 

4.1 Yee’s spatial grid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

4.2 The temporal scheme of FDTD method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

 

5.1 Simulated result using parameters given in the book of Taflove . . . . . . . . . 37 

5.2 Result given in the book of Taflove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

5.3 Diagram of the DMD waveguide used for simulation  . . . . . . . . . . . . . . . . . 39  

5.4 Input signal in time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

5.5 Propagation of SPP through the DMD Air/Ag waveguide after 11.196 
femtoseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

5.6 Generated SPP profile of DMD Air/Ag waveguide . . . . . . . . . . . . . . . . . . . 41 

5.7 Diagram of the MDM waveguide used for simulation . . . . . . . . . . . . . . . . . 42 

5.8 Propagation of SPP through the MDM Air/Ag waveguide after 11.196 
femtoseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

5.9 Generated SPP profile of MDM Air/Ag waveguide . . . . . . . . . . . . . . . . . . . 43 

5.10 Power vs. Propagation distance graph for MDM Air/Ag waveguide . . . . . . 44 

5.11 Power vs. Propagation distance graph for MDM GLS/Ag waveguide . . . . . 45 

5.12 Power vs. Propagation distance graph for MDM AlAs/Ag waveguide . . . . . 45 

5.13 Power vs. Propagation distance graph for MDM Al2O3/Ag waveguide . . . . 46 

5.14 Power vs. Propagation distance graph for MDM Cu2O/Ag waveguide . . . . 46 

5.15 Power vs. Propagation distance graph for MDM SiGe/Ag waveguide . . . . . 47 

5.16 Efficiency vs. wavelength graph for MDM Air/Ag waveguide . . . . . . . . . . 48 



ix 
 

5.17 Efficiency vs. wavelength graph for MDM GLS/Ag waveguide . . . . . . . . . 48 

5.18 Efficiency vs. wavelength graph for MDM AlAs/Ag waveguide . . . . . . . . . 49 

5.19 Efficiency vs. wavelength graph for MDM Al2O3/Ag waveguide . . . . . . . . . 49 

5.20 Efficiency vs. wavelength graph for MDM Cu2O/Ag waveguide . . . . . . . . . 50 

5.21 Efficiency vs. wavelength graph for MDM SiGe/Ag waveguide . . . . . . . . . 50 

5.22 Efficiency vs. wavelength graph for different materials . . . . . . . . . . . . . . . . 51 

5.23 MDM waveguide with a 90° bent at the middle . . . . . . . . . . . . . . . . . . . . . . 52 

5.24 Efficiency vs. wavelength graph for no bend and 90° bend (Air/Ag) . . . . . . 53 

5.25 Efficiency vs. wavelength graph for no bend and 90° bend (GLS/Ag) . . . . . 53 

5.26 Efficiency vs. wavelength graph for no bend and 90° bend (AlAs/Ag) . . . . . 54 

5.27 Efficiency vs. wavelength graph for no bend and 90° bend (Al2O3/Ag) . . . . 54 

5.28 Efficiency vs. wavelength graph for no bend and 90° bend (Cu2O/Ag) . . . . 55 

5.29 Efficiency vs. wavelength graph for no bend and 90° bend (SiGe/Ag) . . . . 55 

5.30 MDM waveguide with a circular bend at the middle . . . . . . . . . . . . . . . . . . 56 

5.31 Efficiency vs. wavelength graph for circular bend and sharp bend (Air/Ag) 57 

5.32 Efficiency vs. wavelength graph for circular bend and sharp bend (GLS/Ag) . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

5.33 Efficiency vs. wavelength graph for circular bend and sharp bend (AlAs/Ag) . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

5.34 Efficiency vs. wavelength graph for circular bend and sharp bend (Al2O3/Ag) . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

5.35 Efficiency vs. wavelength graph for circular bend and sharp bend (Cu2O/Ag) . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

5.36 Efficiency vs. wavelength graph for circular bend and sharp bend (SiGe/Ag) . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

 

 

 

 

 

 



x 
 

Abbreviations 

ABC                  Absorbing Boundary Condition 

ADE                 Auxiliary Differential Equation 

AlAs                 Aluminum Arsenide 

DMD               Dielectric-Metal-Dielectric 

FDTD               Finite Difference Time Domain 

GLS                  Gallium Lanthanum Sulfide 

IR                      Infra-Red 

LD                     Lorentz-Drude 

MDM                Metal-Dielectric-Metal 

PLRC             Piecewise Linear Recursive Convolution 

PML                  Perfectly Matched Layer 

SPP                  Surface Plasmon Polariton 

TE                     Transverse Electric 

TM                   Transverse Magnetic 

 

  

 

 

 

 

 



 

 1 

    

 

 

 

Chapter 1 

 

Introduction and Background 

 

1.1  Introduction 

The interaction between light and matter being a subject of study for hundreds of 

years has become an interest of research in recent times. Since the  inception  of  

modern science,  research  on  light  had  been extended  to  beyond  the  visible 

spectra (400nm to 750 nm) [1]. Exploring the interaction between light and matter has 

enabled us to explore a vast variety of natural phenomena, from the nanoparticle 

interactions to the birth of giant stars. Now it is possible to exploit light matter 

interaction at nanoscale due to recent advances in fabrication technology.  

With shrinkage of device size, the classical electronic devices face problems like heat 

dissipation and slower speed. Many demerits and constraints of existing technologies 

can be overcome using light as the information carrier. Classically, fundamental limit 

of using light is set by the wavelength of light. Any type of propagating waves cannot 

be focused to smaller dimension than half of wavelength[2]. This limit of wavelength 

is diffraction limit. The optical chips will not require any insulation since photons do 

not interact with each other, making the system lighter[3] [4]. As Plasmonics has the 

ability  to  overcome  the  diffraction  limit,  it has attractive research areas [5-7].  The 

diffraction limit can be overcome by making the use of ‘light-matter interaction’ at 

metal surface [5] [7].  
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A plasmon is a quasiparticle which arises from the quantization of plasma 

oscillations. Plasmons can couple with a photon to create another quasiparticle called 

a plasmon polariton. Surface plasmons (SPs) are coherent delocalized electron 

oscillations that exist at the interface between any two materials. Surface plasmon 

polaritons (SPPs), are infrared or visible-frequency electromagnetic waves, which 

travel along a metal-dielectric or metal-air interface. SPP can overcome diffraction 

limit which has widened the area of new applications[8] [9].  

 

Plasmonic devices work as bridge between optical devices and sub-wavelength 

electronics devices. Plasmonic devices can operate very fast. On the other hand, it 

minimizes the size of integrated devices. Limitation of plasmonic devices is the decay 

rate of plasmons which is very fast [6].  

The computation power of computer chips will increase drastically if plasmonic based 

integrated circuits can be designed. Functional plasmonic  nanocircuits are already 

demonstrated experimentally [10] . 

Researchers have achieved enormous improvement of performance and higher 

efficiency in solar cell technology using plasmonics. The problems of silicon based 

solar cells can be solved by this technology. Metal nanoparticles can be used on the 

surface of thin film silicon cells[11].  Plasmon enhanced solar cells has increased the 

absorption efficiency significantly [12] [13] [14]. 

The other applications of plasmonics are biosensing [15] , sub-wavelength imaging 

[16] [17]  [18], metamaterials [19] and Bragg’s reflector [20]. 
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1.2 Overview of Surface-Plasmon-Polariton 

Surface plasmon polaritons are electromagnetic excitations propagating at the 

interface between a dielectric and a conductor, evanescently confined in the 

perpendicular direction [6]. When a metal is exposed to light in a certain way, the 

incident light excites the electrons on the surface of the metal which causes electron 

oscillation. Plasmon, the unit of plasma oscillation, can be excited inside the metal by 

incident light outside the metal. When plasmons and photon are coupled together, the 

resulting hybridized excitation is known as Surface Plasmon-Polariton (SPP).  

The surface excitations can be characterized in terms of their dispersion and spatial 

profile. The  SPPs  propagation  along  the  surface  of  a  metal  continues  until  the  

energy  is  lost  by absorption in the metal or by radiation. Considering a flat interface 

between a dielectric and metal having dielectric constants εd and εm and respectively, 

SPPs are TM plane wave solution of Maxwell’s equations which propagate along the 

metal-dielectric interface. Therefore, SPPs exist  only  in  the  vicinity  of  the  

interface  that  results  in  a  nanoscale  confinement  of  the optical waves. If the 

interface is normal to z axis  and the propagation direction of SPPs is along the x 

direction, the SPP wave vector  kx can be related to the optical frequency through the 

dispersion relation [21]. 

�� = ���
����

�����
                                                          (1.1) 

Where, k0= 
�

�
 is the free-space wave vector. We take ω to be real and allow kx  to be 

complex, since our main interest is in stationary monochromatic SPP fields in a finite 

area [22]. The details of SPP have been discussed in Chapter 2. 
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1.3    Literature Review 

The research in plasmonics started as early as 1950. But it has gained considerable 

acceleration in recent years. Surface-Plasmon-Polariton (SPP) has been a field of 

great research interest for the past few years. Several research works have been done 

on this topic. Researchers are also working on Material modeling. Our main focus of 

the literature review will be on the published works that are related to material 

modeling parameter extraction and SPP propagation analysis through different 

structures. 

The parameters of several metals have been known through published works in this 

field. Jin et al. [23] determined the modified Debye model parameters for gold which 

are applicable in the wavelength range of 550-950 nm. Krug et al. [24] reported the 

gold parameters that are applicable in the wavelength range of 700-1000 nm. W.H.P. 

Pernice et al. [25] extracted the parameters for Nickel using Lorentz-Drude model. 

A.D. Rakic et al. [26] reported the parameters for Nickel, Palladium, Titanium and 8 

other metals using Lorentz-Drude and Brendel-Bormann Model. M.A. Ordal et al. 

[27]  extracted the parameters for fourteen metals in the infrared and far-infrared 

range. 

The propagation loss of SPP is very high in MDM configuration of plasmonic 

waveguide that limits propagation length. Even the fabrication related disorders have 

far less impact on the propagation loss than the losses that occur in metallic layers of 

the Metal Dielectric Metal waveguide. This problem can be addressed by using both 

plasmonic and dielectric waveguide on the same chip [28]. The dielectric waveguide 

will carry the fundamental optical mode and the plasmonic waveguide will address 

the sub-wavelength scale issue. For this reason, efficient coupling of optical modes 

from the dielectric waveguide to the plasmonic waveguide is necessary. Therefore, 

designing efficient nanoplasmonic couplers with different materials and structures can 

be a stepping step in miniaturization of the integrated photonic devices. In the recent 

past, several plasmonic couplers have been proposed by different researchers. G. 

Veronis et. al. [29] proposed a coupler with multi-section tapers. P. Ginzburg et al. 

[30] reported a one-fourth of wavelength  coupler to couple optical modes from a 
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0.5m to 50nm wide plasmonic waveguide. R. Washleh et al. [31] reported an analysis 

on nanoplasmonic air-slot coupler and its fabrication steps.  

 

1.4 Thesis Organization 

The thesis has been arranged in the following way- 

 In Chapter 2, the basic theory of SPP propagation has been described. This 

chapter introduces the fundamental knowledge and necessary mathematical 

formulations of SPP propagation at the single and double interface. 

 In Chapter 3, the widely used models for modeling metals have been 

described in detail with necessary derivations. Since SPPs are created due to 

the coupling of photon energy to the free electrons of metal, modeling metals 

is one of the key steps for the simulation of SPP propagation. 

 Chapter 4 introduces the fundamentals of the FDTD algorithm for 1D and 

2D simulations. The original formulations of Yee do not include the 

frequency dependent dispersion properties of materials. We have used the 

ADE based general algorithm for our simulation model which is discussed in 

Chapter 4. This chapter also discusses about the absorbing boundary 

condition. 

 Chapter 5 discusses the analysis of SPP propagations through various 

nanoplasmonic waveguides. The waveguides are simulated for different 

signal frequencies and different materials. Three types of waveguides are 

simulated for transmission efficiency calculation. The first one is a simple 

straight waveguide, the second one is with a 90° sharp bend and the last one is 

with a circular bend. The results are compared with each other to see the 

effects of these bends. 

 In Chapter 6, we have provided the summary and discussed about future 

plans. 
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Chapter 2 

SPP Propagation Theory 

 

2.1  Introduction 

Surface Plasmon polariton is a quasiparticle, which propagates like an 

electromagnetic wave along the interface between two materials, metal and dielectric 

medium. The wave undergoes exponential decay as it propagates into the material 

from the metal-dielectric interface. The wave electromagnetic wave propagation is 

obtained from the solution of Maxwell’s equation into each medium. Maxwell’s 

equations of macroscopic electromagnetism can be written as follows: 

From Gauss’s law for the electric field: 

.� = r
���

 (2.1) 

From Gauss’s law, for the magnetic field: 

.� =  0 (2.2) 

From Faraday’s Law: 

 ×  E = −  
��

��
  (2.3) 

From Ampere’s Law: 

 ×  H = J���  +  
��

��
 (2.4) 

Here, 

E is the electric field vector (V/m) 

D is the electric flux density vector (C/m2) 

H is the magnetic field vector (A/m) 

B is the magnetic flux density vector (Wb/m2) 
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r
���

 is the charge density 

J��� is the current density 

The four macroscopic fields can be also linked further via the polarization (P) and 

magnetization (M) by: 

� = ��� +  � (2.5) 

H =
�

��
B – M  (2.6) 

Simplifying these equations for linear, isotropic and nonmagnetic media as: 

� = ����� (2.7) 

� = �����  (2.8) 

where, 

�� is electric permittivity of vacuum (F/m) 

�� is the magnetic permeability of vacuum  (H/m) 

�� is the relative permittivity 

�� is the relative permeability 

 

2.2  Electromagnetic Wave Equation: 

Deriving from Maxwell’s equation we can obtain the field amplitude in time and 

space of the EM wave equation. This is done by taking curl of Faraday’s law. 

 ×   ×  E = −  
��

��
 (2.9) 

or, 

 ×   ×  E =  ×  (−μ
��

��
) (2.10) 

Using  the identities  ×  × E = (.E)−2E  and   × H = ε
��

��
  , we can simplify 

the above equation as 
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                                 (.E) −2E =−µε
���

���
                                      (2.11) 

From Gauss’s law we can conclude that the divergence of electric field E in a constant 

permittivity over space is zero. i,e .E = 0. 

 

Therefore, the final wave equation will be (for electric field): 

 

2E − µε
���

���
 = 0                                           (2.12) 

 

The wave equation of magnetic field is derived as 

                                                            2H − µε
���

���
 = 0                                         (2.13) 

 

Therefore, the general form of wave equation is written as: 

 

                         2U − 
�

u�
�  (

���

���
) = 0                                        (2.14) 

 

If the variation of the dielectric profile ε is negligible over distance, then we can 

write: 

                        2E − 
�

��
 (
���

���
) = 0                                         (2.15) 

 

Where c = 
�

�����
 , velocity of light. 

 

The solution of wave equation is a harmonic function in time and space. Now 

assuming as a harmonic time dependence of the electric field, 

 

                          E(r, t) = E(r)e����                                             (2.16) 

So, the Helmholtz equation is: 

 

2E + k�
�εE = 0                                            (2.17) 

  

Where the vector of propagation k0 = 
�

�
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Fig 2.1: Typical planar waveguide geometry. The waves propagate along the x-   

direction in a Cartesian coordinate system 

 

 

To avoid complexity we assume the propagation of wave is in x-direction of the 

Cartesian system and zero spatial variation in y-direction. 

 

     E (x,y,z) = E(z )e���                                         (2.18) 

 

Where, β = kx which is propagation constant. 

 

Now inserting the value of E the wave equation will be: 

 

                                                    
 ���(�)

���
 + (k�

�ε – β2) E = 0                                     (2.19) 

 

Similarly we can derive the equation for the magnetic field H. The field E and H can 

be decomposed in Cartesian coordinate system as: 

 

E = Ex.a����⃗ + Ey.a�����⃗ + Ez.a����⃗                                                          (2.20) 

 

 

                                      H = Hx.a����⃗ + Hy.a�����⃗ + Hz.a����⃗                                     (2.21) 

 

Dielectric (ε1) 

Metal (ε2) 

x 

y 

z 
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For harmonic dependence 
�

��
 = −jω  and by solving the Ampere’s law and Faraday’s 

law we get: 

���

��
 −  

���

��
 = jωµ0Hx                                                             (2.22) 

 

 

���

��
 −  

���

��
 = jωµ0Hy                                                              (2.23) 

 

 

 

���

��
 −  

���

��
 = jωµ0Hz                                                             (2.24) 

 

 

�� �

��
 −  

�� �

��
 =  −jωε0εEx                                                          (2.25) 

 

 

�� �

��
 −  

�� �

��
 =  −jωε0εEy                                                         (2.26) 

 

 

�� �

��
 −  

�� �

��
 =  −jωε0εEz                                                        (2.27) 

 

As the propagation is in x-direction in the form of e��� which follows that 
�

��
 = −jβ. 

The homogeneity in y-direction makes 
�

��
=0. So the equations will be simplified as: 

 

 

−  
���

��
 = jωµ0Hx                                                                 (2.28) 

 

 

���

��
 – jβEz = jωµ0Hy                                                            (2.30) 
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jβEy = jωµ0Hz                                                                    (2.31) 

 

 

�� �

��
 = jωε0εEx                                                                        (2.32) 

 

 

�� �

��
 –jβHz = jωε0εEy                                                             (2.33) 

 

 

jβHy =− jωε0εEz                                            (2.34) 

 

The above equation solutions can be categorized depending on the polarization as, 

Transverse Magnetic (TM) mode and Transverse Electric (TE) mode. The equations 

for TM mode are: 

 

 

Ex = −j 
�

�� ��
 
�� �

��
                                            (2.35) 

 

 

Ez = −
�

�� ��
 Hy                                                                    (2.36) 

 

Therefore the wave equation for TM polarized wave is: 

 

��� �

���
 + (k�

� – β2) Hy = 0                                       (2.37) 

 

Similarly, TE polarized equation: 

 

Hx = j  
�

� ��

���

��
                                              (2.38) 
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Hz = 
�

� ��
Ey                                                                         (2.39) 

 

Hence, the TE wave equation will be: 

 

����

���
 + (k�

�ε – β2) Ey = 0                                      (2.40) 

 

 

 

2.3  SPP at single interface: 

The simplest form of SPP propagation is at single interface, between dielectric and 

metal with ε1 as positive dielectric constant for the dielectric and ε2 as negative 

dielectric constant for metal. For metal the bulk Plasmon frequency will be ωp and the 

amplitude decays perpendicular to the z-direction. 

For the TM solutions in both spaces: metal and dielectric will be for z > 0 

Hz(z)= A2e��� e����                                          (2.41) 

 

 

Figure 2.2: SPP at the Single interface. 
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Ex(z) = jA2
�

�� ���
 k2 e

��� e����                                  (2.42) 

 

Ez(z) = −A1
�

�� ���
 e��� e����                                      (2.43) 

 

And for z < 0, 

Hy(z) = A1 e
��� e���                                               (2.44) 

 

Ex (z) = −jA1  
�

�� ���
 k1 e��� e���                                 (2.45) 

 

Ex (z)= −A1 
�

�� ���
 e��� e���                                         (2.46) 

 

The continuity of Hy and εiEz at the metal dielectric interface gives A1= A2 and  

��

��
 = − 

��

��
                                                     (2.47) 

 

The surface wave exists at the metal dielectric interface with opposite sign of their 

real dielectric  permittivities. So, we can write 

k�
�ε = β2 + k�

�ε1                                                                      (2.48) 

 

K�
�ε = β2 + k�

�ε2                                                                     (2.49) 

 

The dispersion relation of SPPs propagation is 
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Β = k0 �
����

�� � ��
                                            (2.50) 

 

The TE surface modes can be expressed as: 

 

Ey (z) = A2 e
��� e����                                               (2.51) 

Hx (z) = −jA2 
�

� ��
 k2 e

��� e����                                       (2.52) 

Hz (z)=−A2 
�

� ��
 e��� e����                                           (2.53) 

 

For z > 0, and 

Ey (z)=A1 e��� e���                                                (2.54) 

Hx (z) = jA1 
�

�� ���
 k1 e��� e���                                        (2.55) 

 

Hz (z) = A1 
�

�� ���
 e��� e���                                          (2.56) 

 

 

For,  z < 0. The continuity of  Ey  and Hx requires: 

 

A1 (k1 + k2) = 0                                                     (2.57) 
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The surface requires the real part of k1 and k2 should be greater than zero for 

confinement. This will be satisfied if A1 = A2 = 0. Therefore no surface modes for TE 

polarization. SPP only exist for TM polarization. 

 

2.4 SPP at double interface: 

Two mostly used double interface configurations of SPP waveguides are: Metal-

Dielectric-Metal (MDM) and Dielectric-Metal-Dielectric (DMD). In these cases SPPs 

are formed on both interfaces. When the distance is shorter than decay distance, it 

forms coupled mode of SPP. This coupled mode of propagation can also be sub-

divided into even and odd modes, as shown in the figure: 

 

Figure 2.3: SPP at the double interface 
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Chapter 3 

Material Modeling Within Optical Range 

 

3.1  Introduction: 

Metals act as perfect conductors for low frequencies, owing to their lack of dispersive 

behavior for long wavelengths. But for higher frequencies for example, the optical 

range, the behavior is quite the opposite, since there is field inside the metal, it 

behaves as dispersive material. And for frequencies higher than optical range metal 

acts as dielectric material. Properties of SPPs depend highly on the material response 

to light. In this chapter we will be studying about the material supporting SPP, 

descriptions and derivations of different models for describing the behavior of metal 

in the presence of light. 

Now in presence of an external oscillating electromagnetic field, three vectors can 

determine the behavior of any material. Such as: D (electrical flux density), E (electric 

field intensity) and P (polarization density). In frequency domain the corresponding 

equation will be: 

D (ω) = ε (ω) E (ω)                                            (3.1) 

P (ω) = ε0 χ(ω) E (ω)                                          (3.2) 

D (ω) = ε0 E (ω) + P (ω)                                        (3.3) 

 

Combining these equations we get: 

D (ω) = ε0 E (ω) (1 + χ(ω))                                      (3.4) 

where  χ is the electric susceptibility which measures how easily it is polarized in 

response to an applied electric field, and it is a dimensionless quantity. 
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 Finally the relation between the permittivity and susceptibility is: 

Ε (ω) = ε0(1 + χ(ω))                                                 (3.5) 

So the relative permittivity will be: 

Εr = 1 + χ(ω)                                                     (3.6) 

For linear isotropic materials such as glass this above values become simple. But for a 

dispersive material, the frequency dependent permittivity and susceptibility should be 

modeled perfectly for getting the perfect response of the material for certain 

electromagnetic excitation. Some widely used material models are Drude model, 

Lorentz model, Debye model and Lorentz-Drude model. 

 

3.2  Different Material Models: 

3.2.1 The Drude model: 

The Drude model of electrical conduction was first developed by Paul Drude. In his 

model he described the metal as a volume filled with stationary positive ions, 

immersed in a gas of electrons following the kinetic theory of gases. These electrons 

are free to move inside the metal without any interaction with each other. The 

electrons in a metal are subjected to two forces, such as, 

1. Driving force Fd 

2. Damping force Fg 

 

Figure 3.1: Drude model 
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The driving force and the damping force can be expressed as: 

Fd = qE= −eE                                                 (3.7) 

Fg = −Гυ                                                    (3.8) 

As the two forces are opposite of each other, the resultant force will be 

F = Fd – Fg                                                                            (3.9) 

From Newton’s first law of motion we can write: 

mr′′ = −eE + Гr′                                            (3.10) 

where, 

m = the mass of an electron 

Γ =is the damping constant in Newton second per meter 

r = the displacement in meter 

v = the velocity of the electron 

q = the electrons charge 

the prime indicates differentiation order with respect to time 

 

For time harmonic electric field and time harmonic displacement the equation will be: 

E(t) = E0e
-jωt     E(ω)                                          (3.11) 

r(t) = R0e
-jωt     R(ω)                                          (3.12) 

From equaion 3.10 the frequency domain form will be: 

mR′′(ω) – ГmR′ (ω) + eE(ω) = 0                            (3.13) 

 

The derivatives of frequency domain will give: 

−mω2R′′(ω) – jωГmR′ (ω) + eE(ω) = 0                          (3.14) 
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Simplifying the above equation, the displacement R will give 

R(ω) = 
��

� (�Г� �� �)
E(ω)                                          (3.15) 

The polarization for n number of electrons will be: 

P(ω) = −neR(ω)                                              (3.16) 

or, 

P(ω) = 
����

� (�Г� �� �)
E(ω)                                        (3.17) 

An expression for the susceptibility can also be obtained from the above equation and 

that will be: 

�(� )

���(� )
 = 

����

��� (�Г� �� �)
 = χ(ω)                                    (3.18) 

Now substituting this value in equation 3.6 we get 

Εr(ω) = 1 + 
����

��� (�Г� �� �)
                                        (3.19) 

if we consider ωp as the plasma frequency that will provide: 

ωp
2 = 

���

���
                                                    (3.20) 

So, the frequency dependent flux density will be 

D(ω) = ε0(1 + 
� �
�

�Г� �� �)E(ω)                                    (3.21) 

For low frequency, the term Γω << 1, therefore, the dispersive relation can be reduced 

to: 

D(ω) = ε0(1 – 
� �
�

� �) E(ω)                                       (3.22) 

 

 



 

 20 

3.2.2 The Lorentz Model: 

The Lorentz model can be useful in studying the atom field interaction. In this model, 

Lorentz modeled atom as a mass (nucleus) interacting with another mass (electron). In 

Lorentz model the electrons are assumed to be bound to the nucleus and not free. So 

there is a restoring force acting between them which is denoted by Fr. 

 

Figure 3.2: Lorentz model 

 

The restoring force can be written as: 

Fr = −kr                                                                               (3.23) 

Where, k is the spring constant in Newtons per meter. 

From the law of motion we can see that: 

 

mr′′ + mГr′ + mkr + eE = 0                                 (3.24) 

In frequency domain the above equation becomes: 

R (ω) (mω �
� + jωmΓ – mω2) – eE (ω)                      (3.25) 

Considering the natural frequency ω0 = �
�

�
 we get 
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R(ω) = 
��

� (� �
���Г� �� �)

E(ω)                                      (3.26) 

So the susceptibility can be found as: 

 

�(� )

����
 = 

����

��� (� �
���Г� �� �)

 = χ(ω)                                    (3.27) 

So from the equation 3.4 the expression for D can be expressed in frequency domain 

as: 

D(ω) = ε0(1 + 
� �
�

(� �
���Г� �� �)

) E(ω)                                 (3.28) 

 

3.2.3 The Lorentz Drude model: 

In the Lorentz Drude model the electrons of two types oscillate inside metal and they 

contribute to permittivity. The free electrons contribute a permittivity of the Drude 

model, and the bound electrons contribute a permittivity of the Lorentz model. The 

permittivity in the LD model is given by: 

ε = εfree + εbound                                                                           (3.29) 

where 

εfree = 1 + 
� �

�Г� �� �                                                 (3.30) 

εbound = 
� �

(� ���Г� �� �)
                                             (3.31) 

Therefore combining both the model together the electric field density D in frequency 

domain will be: 

D(ω) = ε0(1 + 
� �

�Г� �� � + 
� �

(� ���Г� �� �)
)E(ω)                         (3.32) 
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3.2.4 The Debye Model: 

According to Debye model materials are made of electric dipoles therefore when the 

material is put into field the dipoles rearrange themselves according to the applied 

field with some relaxation time. The strength of polarization depends on the 

frequency of the electric field. For slow frequency there will be strong polarization 

and for fast frequency weak polarization. It can also be said that materials with short 

relaxation time have strong polarization and materials with long relaxation time has 

low or no polarization. Metals have very short relaxation time, hence polarization in 

metals is strong. If a DC electric field is applied to a dielectric, the polarization takes 

some time to follow the electric field. At steady state, it will be: 

P(t) = P∞(1 − e
��

� )                                          (3.33) 

Where P(t) is instantaneous polarization, 

P∞ is the polarization in the steady state τ is the time constant. 

The derivation of the above equation will be 

��(�)

��
 = 

�

�
 P∞e

��

�                                              (3.34) 

Now combining both the equations we get: 

 

P(t) = P∞ − τ
��(�)

��
                                         (3.35) 

 

As P∞ = ε0 (ε − 1) E (t) so the equation will be reduced to 

P(t) = ε0 (ε − 1) E (t) − τ
��(�)

��
                               (3.36) 

In frequency domain the equation will be: 

ε0 (ε − 1) E (ω) = P(ω) + jωt P(ω)                           (3.37) 

or, 
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P(ω) = 
��(���)

�����
 E(ω)                                             (3.38) 

The susceptibility can be expressed as: 

���

�����
 = 

�(� )

���(� )
 = χ(ω)                                            (3.39) 

 

The relative permittivity will be: 

Εr(ω) = χ(ω) + 1 = 
���

�����
 + 1                                     (3.40) 

For the permittivity function to fit in the range from 0 frequency to infinity frequency, 

the boundary conditions are εr (0) = εs and εr (∞) = ε∞ 

Therefore, the relation can be modified to: 

Ε(ω) = ε∞ + 
�����

�����
                                              (3.41) 

To take into account the material losses that SPPs encounter, another term is added 

with the permittivity of metal. So the above equation can be expanded to: 

 

ε(ω) = ε∞ + 
�����

�����
 − j

�

�� �
                                         (3.42) 

The Debye model can also be expressed in real and imaginary terms: 

εr (ω) = ε′ (ω) − jε′′ (ω)                                         (3.43) 

where 

ε′ (ω) = = ε∞ + 
�����

��� ���
                                           (3.44) 

and 

ε′′ (ω)= ε∞ + 
(����� )��

��� ���
+

�

�� �
                                      (3.45) 
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3.3 Material Dispersion: 

Dispersion can be defined as the variation of the propagating waves wavelength with 

frequency. It is also sometimes defined as the variation of propagating waves wave 

number k = 
��

�
 with angular frequency, ω = 2πf. So the one dimensional wave 

equation will be: 

���

���
 = υ2�

��

���
                                                   (3.46) 

Where, 

υ2 = 
�

��
 The solution of the above wave equation can be written in phasor form as 

u (x, t) = ej(ωt−kx)                                                                      (3.47) 

Now putting this value in the wave equation we get 

(jω)2ej(ωt−kx) = v2(−jk)2ej(ωt−kx)                                                      (3.48) 

Finally from this equation we get: 

K=±
�

�
                                                       (3.49) 

The + sign is for -x directed wave propagation and - sign is for +x directed wave 

propagation. The magnetic flux density and electric flux density for dispersive 

medium are: 

D (ω) = ε (ω) E                                               (3.50) 

B (ω) = µ (ω) H                                               (3.51) 

Here both ε (ω) and µ (ω) are frequency dependent functions. 
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Chapter 4 

Finite-Difference-Time-Domain method 

 

4.1 The Yee algorithm: 

Yee algorithm is used in FDTD simulations. 

The original proposal was intended for homogeneous, isotropic and lossless media 

based on discretizing the volume into cells in Cartesian coordinates. The Yee 

algorithm solves for both electric and magnetic fields using the coupled Maxwell’s 

time dependent curl equations, rather than solving for the electric field alone (or the 

magnetic field alone) with a wave equation. 

The method begins with two of Maxwell’s equations: 

�
����⃗

��
=

�

�
∇ × E��⃗                                                          (4.1) 

 

 D
����⃗

��
 = 

�

�
∇ × H��⃗                                                          (4.2) 

 

The electric and magnetic fields are three dimensional vectors. Each equation can be 

converted into three coupled scalar first order differential equations. The derivatives 

are both in space and time. The curl operations of equations 4.1 and equation 4.2 

yields the following six equations in Cartesian coordinates: 

 

���

��
 − 

���

��
 =µ 

�� �

��
                                                       (4.3) 
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���

��
 − 

���

��
 =µ 

�� �

��
                                                        (4.4) 

 

���

��
 − 

���

��
 =µ 

�� �

��
                                                        (4.5) 

 

�� �

��
 − 

�� �

��
 =ε 

���

��
                                                         (4.6) 

 

�� �

��
 − 

�� �

��
 =ε 

���

��
                                                        (4.7) 

 

�� �

��
 − 

�� �

��
 =ε 

���

��
                                                        (4.8) 

 

Then the scalar differential equations are converted into difference equations. In order 

to do that, discretization is required for both space and time. For space discretization, 

Yee visualized the field components arranged within a unit cell (voxel). The electric 

field components are stored on the corresponding cell edges, while the magnetic field 

components are stored on the corresponding face centers. 

The fields are located in a way where each E component is surrounded by four H 

components and vice versa, which leads to a spatially coupled system of field 

circulations corresponding to the law of Faraday and Ampere. The figure 4.1 shows 

the Yee’s spatial grid. 

 

 

Considering a two dimensional TM (Transverse Magnetic) polarized field case, 

���

��
 = 

�

�
 
�� �

��
                                                         (4.9) 
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���

��
 = 

�

�
 
�� �

��
                                                      (4.10) 

 

�� �

��
 =  

�

�
(
���

��
 − 

�� �

��
)                                               (4.11) 

Central difference approximation is applied in each of the equations 4.9, 4.10 and 

4.11 which finally conclude in a spatial scalar difference equations in 4.12, 4.13 and 

4.14. 

 

Figure 4.1: Yee’s spatial grid 

 

 

���

��
 = 

�

�
 
� �(�,�)�� �(�,���)

∆�
                                              (4.12) 
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���

��
 = 

�

�
 
� �(�,�)�� �(���,�)

∆�
                                              (4.13) 

 

�� �

��
 =  

�

�
(
��(�,���)���(�,�)

∆�
 − 

��(���,�)���(�,�)

∆�
)                             (4.14) 

 

In order to consider the time derivatives, the time axis is to be considered as shown in 

the figure. The Electric and Magnetic field are mapped half a step apart along the time 

axis. Again applying the central difference approximation the equations 4.12, 4.13 

and 4.14 become: 

 

��
�� �(�� 

�

�
,�)���

�(��
�

�
,�)

∆�
 =  

�

�
 
� �

��
�
�(�� 

�

�
,�)�� �

��
�
�(��

�

�
,��

�

�
)

∆�
 

��
�� �(�,�� 

�

�
,)���

�(�,��
�

�
)

∆�
 = −

�

�
 
� �

��
�
�(�� 

�

�
,��

�

�
)�� �

��
�
�(��

�

�
,��

�

�
)

∆�
 

� �

��
�
�(�� 

�

�
,��

�

�
)�� �

��
�
�(��

�

�
,��

�

�
)

∆�
 = −

�

�
 (
��
���(��

�

�
,���,)���

�(��
�

�
,�)

∆�
 − 

��
�(���,��

�

�
,)���

�(�,��
�

�
)

∆�
) 

 

Each field component depends on the field of previous time step itself and the 

surrounding component in Yee’s algorithm. 
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Figure 4.2: The temporal scheme of FDTD method. 

 

Numerical stability of the Yee algorithm is required to be ensured. In an unstable 

algorithm the computed magnitude of electric and magnetic field components will 

gradually increase without limit with the progression of simulation. To guarantee 

numerical stability, the EM field’s propagation should not be faster than the allowed 

limit which is imposed by the phase velocity within the material. This is done by 

limiting time step ∆t using the Courant-Friedrichs-Lewy criterion for the general Yee 

FDTD grid as follows: 

∆t≤ �
�

���
�

∆��
� 

�

∆��
� 

�

∆��

�                                               (4.15) 

where ∆x, ∆y and ∆z indicate the spatial Cartesian grid increments. 
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4.2 Absorbing Boundary Condition (ABC) 

In FDTD method, a space of theoretically infinite extent with a finite computational 

cell is simulated due to limited computer resources. The boundary is said to be ideally 

absorbing, without any non-physical reflection back to the region. To accomplish this, 

a number of boundary conditions such as Berenger’s perfectly matched layer (PML), 

have been proposed. An artificial layer surrounds the computational domain so that 

most of the outgoing waves are absorbed. The electromagnetic fields are made to 

attenuate rapidly until they become equal to zero, so that they do not produce any 

reflections. 

   

4.3 Material Dispersion in FDTD: 

The material is said to be dispersive when the permittivity and permeability of a 

material are functions of frequency. In reality the assumption of constant relative 

permittivity is not absolutely correct. Because by doing so, instantaneous polarization 

of charge within a material is being assumed.  

In order to exploit the realistic wave propagation, dispersive FDTD techniques 

become necessary. 

The existing FDTD based algorithms for the analysis of material dispersion can be 

categorized into three types:  

 

1) the auxiliary differential equation (ADE), 

2) the Z-transform methods, and 

3) methods base on discrete convolution of the dispersion relation or the recursive 

convolution (RC) method. 

 

We will highlight on the ADE dispersive FDTD method as we have applied in 

material modeling. The other methods will also be briefly discussed. 
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4.3.1 The Auxiliary Differential Equation (ADE): 

Taflove introduced the auxiliary differential equation to the FDTD modeling in order 

to integrate the dispersion relation into the model. The dispersion relation is converted 

from frequency domain to time domain through Fourier transform in the basic step of 

the procedure. The Fourier transform results in a relationship between the new E field 

value and the previous E and D values, which can be added to the algorithm to update 

the E fields. The new algorithm with ADE becomes  

 

�

��
Hz = −

�

�
�
���

��
 −  

���

��
 �                                        (4.16) 

 

�

��
Dx = 

�� �

��
                                                    (4.17) 

In order to get the function relating D to E in a dispersive medium, we start with 

D(ω) = ε0
�

��
 E(ω)                                             (4.18) 

Multiplying by jω 

jωD(ω)= ε0σE(ω)                                             (4.19) 

Applying the Fourier transform in equation 4.19 

�

��
D(t) = ε0σE(t)                                               (4.20) 

Discretizing equation 4.20 equation using forward difference method 

�������

∆�
= ε0σE(t)                                               (4.21) 

Finally solving for E, we find the update equation 
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En = 
�������

���∆�
                                                   (4.22) 

 

4.3.2 The Z-transform Model: 

 

The Z-transform is a faster method compared to ADE method. Sullivan used the Z-

transform method for the first time in order to introduce the dispersion relation into 

the FDTD algorithm. 

The Z-transform of the equation 

D (ω) = ε (ω) E (ω)                                            (4.23) 

is 

D (z) = ε (z) ∆tE (z)                                           (4.24) 

Multiplying by (1 − z−1), we find 

D (z) (1 − z−1) = εoσE (z)                                       (4.25) 

or, 

D (z) – z−1D (z) = εoσE (z)                                     (4.26) 

 

Performing inverse z-transform 

Dn – Dn−1 = εoσ∆tEn                                                              (4.27) 

 

Finally, for solving E from equation 4.28, we find 

En = 
�������

���∆�
                                                 (4.28) 

which is same as the final update equation derived by ADE method. 
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4.3.3 Piecewise Linear Recursive Convolution Method: 

Luebbers et al. formulated the first frequency dispersive FDTD algorithm using the 

recursive convolution (RC) scheme. Later it became piecewise linear recursive 

convolution(PLRC) method [32]. Initially developed for Debye media [33], the 

approach was later extended for the study of wave propagation in a Drude material 

[34], N-th order dispersive media [35], an anisotropic magneto-active plasma [36], 

ferrite material [37]and the bi-isotropic/chiral media [38] [39].  

The RC approach, typically being faster and having required fewer computer memory 

resources than other approaches, is usually less accurate. But in case of multiple pole 

mediums, it is easier to follow the RC approach. In the initial derivation of PLRC 

method for a linear dispersive medium, the relation between electric flux density and 

electric field intensity is expressed as: 

D (t) = εoε∞E (t) + ε0∫ E(t− τ)χ(τ)dτ
�

�                                               (4.29) 

which can be discretized as: 

Dn = εoε∞En + ε0∫ E(n∆t− τ)χ(τ)dτ
�∆�

�                                               (4.30) 

The PRC method is further preceded from this basing discrete equation. 

 

4.4 The General Algorithm: 

The derivation of equations for multi-pole dispersion relation is more difficult 

compared to the single pole-pair dispersion relation. For example, for six-pole 

Lorentz-Drude dispersion the required derivation process is lengthy. Additionally, the 

memory required for computation is also vast. There are various methods proposed by 

researchers regarding this topic such as Taflove’s matrix inversion method, Multi-

term dispersion by Okoniewski, etc. However Alsunaidi and Al-Jabr proposed a 

general algorithm technique which solves various problems regarding previous 
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methods. The major advantage of this technique is that it requires only one algorithm 

for any dispersion relation. The dispersive relation has the general form as: 

� (�) =  � (�) � (�)                                             (4.31) 

which can be expressed in terms of summation of poles 

D (ω) = εoε∞E(ω) + ∑ P�(ω )
�
�                                        (4.32) 

where N is the number of poles. Applying Fourier transform, this equation becomes 

D n+1 = εoε∞En+1 + ∑ P�
����

�                                           (4.33) 

or, 

����  = 
�����∑ ��

�� ��
�

����
                                              (4.34) 

This term Pi can be any form of dispersion relation such as the Debye, the Drude or 

just the conductivity term. This is the final solved equation for E. 
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Chapter 5 
 

Comparison of waveguides using different 
materials 

 

 

5.1 Simulation model developing 

The simulation model we have developed is based on the FDTD method [40]. 

We have used the general auxiliary differential equation (ADE) based FDTD 

[41] approach in order to incorporate the frequency dependent dispersion 

property of the constituent materials. This algorithm is useful for the simulation 

of materials with different dispersive properties. The perfectly matched layer [42] 

has been implemented at all the boundaries in order to prevent back reflections 

and artificially creating a substrate of infinite dimension. 

Considering the material dispersion, the frequency-dependent electric flux 

density can be given as 

�(�)= ���� �(�)+ �(�) (5.1) 

The general Lorentz model is given by 

�(�)= 
�

��������� (5.2) 

which can be written in time-domain through inverse Fourier transform as 

��(�)+ ���(�)+ ����(�)= ��(�) (5.3) 

The FDTD solution for the first order polarization of Eq. (3) can be expressed as 

 ���� = ���
� +  ���

��� +  ���
�  (5.4) 

where, �� = 
�����∆��

����∆�
, �� = 

�����∆�

����∆�
 and �� = 

��∆��

����∆�
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The values of ��, �� and �� depend on the material under consideration. Finally 

the electric field intensity becomes, 

���� = 
�����∑ ��

����
���

����
 (5.5) 

where, N is the number of poles and ���� is the update value of the electric flux 

density calculated using FDTD algorithm. 

 

5.2 Verification of the developed model 

In order to verify our developed simulation model we have simulated one 

dimensional dispersive material using the parameters given by Taflove [43]. The 

obtained result has been compared with the result provided by Taflove [43]and 

we have found an excellent agreement. The parameters given in the book of 

Taflove [43] are as follows, 

�� = 5.25,�� = 2.25,�� = 4 × 10��(���/���) and � = 2 × 10�(���/���).
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Figure 5.1: Simulated result using parameters given in the book of Taflove 

 

 

Figure 5.2: Result given in the book of Taflove 
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5.3   SPP propagation through different Nano-

waveguides 

 

5.3.1 Material properties used for simulations 

The modeling parameters used for simulations are taken from different resources.  

The modeling parameters for Ag that we have used, have been determined by 

Rakic et al. [26]. The dispersion properties for AlGaAs and GLS, have been 

determined by M. Alsunaidi et al. [44] and R H Sagor [45] respectively. The 

dispersion properties for Cu2O, SiGe [46] and AlAs, Al2O3 [47] have been 

determined by Md. Ghulam Saber and R H Sagor. 

Table 5.1: Optimized parameters for AlGaAs, AlAs, SiGe alloy, Cu2O, Al2O3 

and GLS for single pole pair Lorentz model. 

Materials ��  �� � (���/���) � � (���/���) 

AlGaAs 1.5376 8.2944 0.65× 10�� 6.0 × 10�� 

AlAs 2.642392 5.5635 1.885× 10�� 6.243× 10�� 

SiGe 1.4641 12.8881 7.1 × 10�� 0.53× 10�� 

Cu2O 1.9881 6.2001 6.1 × 10�� 0.53× 10�� 

Al2O3 1.001 2.057793 2.7 × 10�� 1.9678× 10�� 

GLS 2.7 5.094049 8 × 10�� 0.7 × 10�� 

 

      5.3.2 Simulating Dielectric Metal Dielectric (DMD) waveguide 

We present the propagation characteristics of Surface Plasmon Polariton (SPP) in 

the nanoscale dielectric-metal-dielectric waveguides. The propagation losses due 

to absorption by constituent materials are analyzed numerically. We have 

investigated the structures with Silver (Ag) as metal and different dielectric 

materials (air, Aluminium Arsenide, Gallium Lanthanum Sulphide, Aluminium 
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Oxide, Silicon Germanium alloy and Cuprous Oxide) and for different 

wavelengths of the input signal. 

The schematic diagram of the structure used for simulation is given in figure 5.3. 

The structure is 1000 nm in length and 1000 nm in width. The waveguide itself is 

50 nm in width. 

 

Figure 5.3: Diagram of the DMD waveguide used for simulation. 

 

In order to model the metal we have used the six-pole Lorentz-Drude model. The 

frequency dependent permittivity function of Lorentz-Drude 6 (six) pole model 

is given by, 

��(�)= 1 −
����

�

�������
+ ∑

����
�

��
��������

�
�
���  (5.6) 

where, �� is the plasma frequency, �� is the damping frequency, �� is the 

oscillator strength, � is the imaginary unit and �� is the resonant frequency of the 

��� pole. 
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At the beginning, we simulated the DMD waveguide with the input pulse given 

in figure 5.4 in order to generate the SPP modes. Then we pumped the mode 

given in figure 5.6 into the structure modulated by a Gaussian pulse having 

characteristic pulse width of 3 femtoseconds and different wavelengths. 

 

 

Figure 5.4:  Input signal in time domain. 

 

We simulated the system for 4000 time steps (44.784 femtoseconds).  A 2D plot of 

surface plasmon polariton propagation in Air/Ag DMD waveguide is shown here in 

figure 5.5, 
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Figure 5.5: Propagation of SPP through the DMD Air/Ag waveguide after 

11.196 femtoseconds 

Now we generate the profile of the SPP from this simulation result. After 

extracting the profile we can use it to simulate any kind of Air/Ag DMD 

structures. The generated profile is shown in figure 5.6, 

 

Figure 5.6: Generated SPP profile of DMD Air/Ag waveguide 
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5.3.3 Simulating Metal Dielectric Metal (MDM) waveguide 

We present the propagation characteristics of Surface Plasmon Polariton (SPP) in 

the nanoscale metal-dielectric-metal waveguides. The propagation losses due to 

absorption by constituent materials are analyzed numerically. We have 

investigated the structures with Silver (Ag) as metal and different dielectric 

materials (air, Aluminium Arsenide, Gallium Lanthanum Sulphide, Aluminium 

Oxide, Silicon Germanium alloy and Cuprous Oxide) and for different 

wavelengths of the input signal. 

The schematic diagram of the structure used for simulation is given in figure 5.7. 

The structure is 1000 nm in length and 1000 nm in width. The waveguide itself is 

50 nm in width. 

 

Figure 5.7: Schematic Diagram of the MDM waveguide with used for 

simulation. 

 

At the beginning, we simulated the MDM waveguide with the input pulse given 

in figure 5.4 in order to generate the SPP modes. Then we pumped the mode 

given in figure 5.9 into the structure modulated by a Gaussian pulse having 

characteristic pulse width of 3 femtoseconds and different wavelengths. 

 



 

 43 

A 2D plot of surface plasmon polariton propagation in Air/Ag MDM waveguide 

is shown here in figure 5.8, 

 

Figure 5.8: Propagation of SPP through the MDM Air/Ag waveguide after 

11.196 femtoseconds 

Now we generate the profile of the SPP from this simulation result. After 

extracting the profile we can use it to simulate any kind of Air/Ag MDM 

structures. The generated profile is shown in figure 5.9, 

 

Figure 5.9: Generated SPP profile of MDM Air/Ag waveguide 
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5.3.4 Power transmission characteristics of simple MDM 

waveguides 

To analyze the power transmission characteristics we’ve used the simple straight 

MDM waveguide shown in figure 5.7. We’ve simulated the substrate for 2000 

time steps (22.392 femtoseconds) and for signals with wavelength 500 nm, 750 

nm, 1000 nm and 1250 nm. We’ve also analyzed the waveguides using different 

dielectric materials. 

We have used the dispersion parameters of the dielectric materials shown in the 

table 5.1. The parameters are based on single pole Lorentz model. 

We have calculated the power and plotted it against propagation distance. The 

results of our analysis are shown in the following figures: 

 

Figure 5.10: Power vs. Propagation distance graph for MDM Air/Ag waveguide 
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Figure 5.11: Power vs. Propagation distance graph for MDM GLS/Ag waveguide 

 

 

Figure 5.12: Power vs. Propagation distance graph for MDM AlAs/Ag 

waveguide 
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Figure 5.13: Power vs. Propagation distance graph for MDM Al2O3/Ag 

waveguide 

 

 

Figure 5.14: Power vs. Propagation distance graph for MDM Cu2O/Ag 

waveguide 
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Figure 5.15: Power vs. Propagation distance graph for MDM SiGe/Ag 

waveguide 

 

From our analysis we see that normally efficiency of power transmission 

increases if the wavelength is increased or the frequency is decreased. But there 

are lot of exceptions. The relationship between efficiency and wavelength is 

discussed in detail in the next section. 

 

5.3.5 Efficiency of simple MDM waveguides for varying 

wavelengths 

We’ve seen that the transmission efficiency depends on the wavelength of the 

signal. So, we’ve also investigated the relationship between the efficiency and 

the wavelength. 

To do this we’ve used the simple MDM waveguide shown in figure 5.7. We’ve 

simulated the substrate for 2000 time steps (22.392 femtoseconds) and for 

signals with wavelength starting from 300 nm to 1000 nm. 
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Input power is calculated at 50 nm from source and output is calculated at 950 

nm from source. 

 

Figure 5.16: Efficiency vs. wavelength graph for MDM Air/Ag waveguide 

 

 

Figure 5.17: Efficiency vs. wavelength graph for MDM GLS/Ag waveguide 
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Figure 5.18: Efficiency vs. wavelength graph for MDM AlAs/Ag waveguide 

 

 

Figure 5.19: Efficiency vs. wavelength graph for MDM Al2O3/Ag waveguide 
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Figure 5.20: Efficiency vs. wavelength graph for MDM Cu2O/Ag waveguide 

 

 

Figure 5.21: Efficiency vs. wavelength graph for MDM SiGe/Ag waveguide 
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We can see that the relation between transmission efficiency and wavelength is 

neither linear nor it can be expressed as a function. Transmission efficiency and 

wavelength have a complex relationship. 

This relation is different for different materials. The comparison of efficiency vs. 

wavelength graphs for all analyzed materials is shown in figure 5.22. 

 

 

Figure 5.22: Efficiency vs. wavelength graph for different materials 

 

So, different materials are efficient at different frequencies. From our study we 

are able to find the following information: 

1. Air is the most efficient medium as waveguide for most of the case 

except for wavelength from 320 nm to 335 nm. 

2. Al2O3 is the second most efficient material except for wavelength from 

320 nm to 335 nm and from 370 nm to 395 nm. For the first case, Al2O3 

is more efficient then air and is the most efficient material in this region. 
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For the second case, Al2O3 is less efficient than GLS and is the second 

most efficient material in this region. 

3. GLS (Gallium Lanthanum Sulphide) is the third most efficient material 

for wavelength 350 nm to 370 nm, 395 nm to 390 nm and 500 nm to 

1000 nm. 

4. AlAs is the third most efficient material for wavelength 300 nm to 315 

nm and 410 nm to 430 nm. 

5. Cu2O is the third most efficient material for wavelength 315 nm to 350 

nm and 430 nm to 490 nm. 

6. SiGe alloy is the third most efficient material for wavelength 490 nm to 

500 nm. 

 

5.3.6 Efficiency of MDM waveguides sharply bent at 90° 

In the previous sections we’ve discussed our study on simple straight MDM 

waveguides. Now we’ll talk about study on waveguides sharply bent at 90°. The 

dimension of the substrate is same as previous cases. The bent is located at the 

middle of the waveguide. The shape of the waveguide can be understood clearly 

from the figure 5.23. 

 

 

Figure 5.23: MDM waveguide with a 90° bent at the middle 
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We’ve calculated the power and compared with the previous results (for the 

cases with no bends). 

The results are shown in the following figures: 

 

Figure 5.24: Efficiency vs. wavelength graph for no bend and 90° bend (Air/Ag) 

 

 

Figure 5.25: Efficiency vs. wavelength graph for no bend and 90° bend 

(GLS/Ag) 
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Figure 5.26: Efficiency vs. wavelength graph for no bend and 90° bend 

(AlAs/Ag) 

 

 

Figure 5.27: Efficiency vs. wavelength graph for no bend and 90° bend 

(Al2O3/Ag) 
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Figure 5.28: Efficiency vs. wavelength graph for no bend and 90° bend 

(Cu2O/Ag) 

 

 

Figure 5.29: Efficiency vs. wavelength graph for no bend and 90° bend 

(SiGe/Ag) 
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5.3.7 Efficiency of MDM waveguides for circular bend 

In the previous section we’ve investigated waveguides sharply bent at 90°. Now, 

we have to analyze waveguides with circular bends to find out how the efficiency 

varies for both cases. The dimension of the substrate is same as previous cases. 

The bent is located at the middle of the waveguide. 

The diameter of the bend is 255 nm. The shape of the waveguide can be 

understood clearly from the figure 5.30. 

 

 

Figure 5.30: MDM waveguide with a circular bend at the middle 

 

We’ve calculated the power and compared with the previous results (for the 

cases with sharp 90° bend).  

The results are shown in the following figures: 
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Fig 5.31: Efficiency vs. wavelength graph for circular bend and sharp bend 

(Air/Ag) 

 

 

Fig 5.32: Efficiency vs. wavelength graph for circular bend and sharp bend 

(GLS/Ag) 
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Fig 5.33: Efficiency vs. wavelength graph for circular bend and sharp bend 

(AlAs/Ag) 

 

 

Fig 5.34: Efficiency vs. wavelength graph for circular bend and sharp bend 

(Al2O3/Ag) 
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Figure 5.35: Efficiency vs. wavelength graph for circular bend and sharp bend 

(Cu2O/Ag) 

 

Fig 5.36: Efficiency vs. wavelength graph for circular bend and sharp bend 

(SiGe/Ag) 

 



 

 60 

We can see that the circular bend offers much less power loss than the sharp 90° 

bend. Because for the sharp bend, the incident SPP perpendicularly hits the 

metal-dielectric surface so some portion of the SPP crosses the interface and gets 

absorbed. So at the output port less power is obtained. Another reason is the 

distance between the input and output port is less in case of the waveguide with 

circular bend than the waveguide with sharp 90° bend. 
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Chapter 6 

 

Conclusion and Future Works 

 

6.1 Summary and Conclusion 

In this thesis, SPP propagation through different nanowaveguides has been 

investigated. The main contribution of this thesis is the calculation of efficiency 

of waveguides with different kinds of bends. Our thesis works can be 

summarized as follows: 

 A two dimensional simulation model based on the ADE-FDTD algorithm has 

been developed in order to simulate different optical nanostructures. The 

correctness of the simulation model has been checked by simulating with the 

parameters given by Taflove and comparing the results with the results 

provided by Taflove. 

 SPP propagation characteristics in dielectric-metal-dielectric (DMD) and 

metal-dielectric-metal (MDM) waveguide have been analyzed. Source 

profiles have been created for further use as source in different 

nanostructures. 

 SPP propagation characteristics in metal-dielectric-metal (MDM) 

waveguides have been analyzed for different dielectric materials and for 

different signal wavelengths. Power vs. propagation distance graphs have 

been drawn for various materials and wavelengths. From these graphs it can 

be understood that how and at which rate the power is absorbed by the 

materials and what is the effect of varying wavelength on the power 

absorption. 
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 The efficiency vs. wavelength graphs have been drawn for different 

materials. From these graphs we understand that the efficiency and the 

wavelength have a complex relationship. For different materials the 

relationships are different. Comparing these graphs for various materials we 

learned that for different wavelength or frequencies different materials are 

efficient. 

 Waveguides having a sharp 90° bend at the middle have been analyzed for 

several materials. The efficiency vs. wavelength graphs were drawn and were 

compared with that of the waveguides with no bends. It is found that because 

of the sharp bend the power loss has been increased which makes sense. 

 Waveguides having a circular bend at the middle have also been studied. By 

comparing the results with the results of sharp 90° bend we are able to 

determine which type of bend is better. It is found that the waveguide with 

circular bend offers less power loss compared to that of the waveguide with 

sharp bend. 

 

6.2 Future works 

With the current progress of our work, we have several future goals that we want 

to achieve. 

 We want to make a numerical simulator which will be able to simulate any 

types of nanostructures and devices. 

 We will embed the currently known dispersive parameters of different 

materials to the simulator so that structures can be simulated using those 

materials easily. 

 We will work with nonlinear materials and try to extract their modeling 

parameters in order to include them in our simulator. 

 Easy power calculation and representation for any propagation direction will 

also be implemented. 
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 Common nanostructures like couplers, resonators, waveguides and different 

devices will be embedded to the simulator so that the user has to spend less 

effort making and designing those. 

 The current numerical simulator can be extended to 3D to observe the linear 

dispersion of different nanostructures. 

 We will try to arrange some experimental setups and implement our work 

practically. 
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