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Abstract

Currently, there is an increasing trend of utilizing composite materials in various sectors
of engineering and technology, particularly aerospace and industrial application, for
their exceptional mechanical and thermal properties, lightweight, and lower cost. In a
composite, the constituent materials collectively work to create a new substance whose
properties are superior to those of the original components. A number of factors affect
the properties of the composite material. This paper addresses the effects of the stacking
sequence on the tensile and flexural behavior of Jute/Carbon Epoxy hybrid composites.
Five specimens of unidirectional Jute/Carbon fiber reinforced composite were fabricated
for each of the five stacking sequences of a test to investigate the mechanical properties
of the composite. The distinct stacking sequences consisted of equal quantity of fiber
components. Specimens were fabricated using vacuum assisted resin infusion process
under the ASTM guidelines. Experiment results revealed that similar amount of load or
force generated varying responses on specimens with varying stack up sequences.
Further, identical stacking sequences had different effects on different tests.
Sandwiching four Carbon plies between six Jute plies proved beneficial for the
composite’s tensile behavior, but derogatory for its flexural one. The experimental
results were validated using ACP in ANSYS by recreating the composite laminate,
taking into account the distinct stacking sequences and exact experimental conditions.
The FE Analysis of the tensile and flexural tests consisted outcomes similar to those of

the experimental results, with acceptable errors ranging from 3%-5%.
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Chapter 1.  Introduction

Over the past few decades, polymer composites have been used widely in various
applications like automobiles, airships, fleet, fishing equipment etc. for having numerous
advantages over their conventional metal counterparts. To give a few examples, depending
on the reinforcements used, tensile strength of composites has the potential to be up to four
to six times greater than that of steel or aluminium. They have higher fatigue strength, which
values up to 60% of the ultimate tensile strength sometimes. Using composites results in
30% - 40% lighter structure compared to metallic structures designed to the same functional
requirements. Composite parts can eliminate the need of joints or fasteners, providing
simpler design, and can be tailored to meet complex design requirements as well, making
them more versatile than metals. These materials exhibit excellent corrosion resistance and
fire retardancy. They are less noisy while in operation and provide lower vibration
transmission than metals.

In a nutshell, composites offer high specific strength, stiffness, better fatigue performances,
corrosion resistance and have the ability to meet diverse design requirements with
significant weight savings as well as strength-to-weight ratio, at a convenient cost [1].
Superior qualities like enhanced physical properties, higher elasticity, lower material
quantity per unit volume, and brilliant heat resistance make carbon fibre a widely used
reinforcement material [2], [3]. However, carbon fibres are costly, and tend to be more
influenced by the stress-riser in practical operations due to their brittleness [4]. Replacing
some layers of carbon fibres by ductile fibres can aid in increasing the strength and reducing
the cost of Carbon Fibre Reinforced Polymers (CFRPS). For this hybridization, this paper

uses jute. Apart from being notably ductile, natural fibres like jute are abundant and cheap

[1]



in the South Asian regions. Owing to the damping properties of jute fibres and the high
tensile strength of carbon fibres, such hybrid composites of carbon and jute can replace

carbon fibre reinforced composites in structures exposed to vibrations [5].

1.1 Research Aims and Objectives

This paper investigates the tensile and flexural properties of carbon-jute epoxy composites
by varying the stacking sequences. The experimental results were validated by finite
element analysis using ANSYS R20. This software is an important tool to validate
experimental data as well as analyse any complex design. It is a comprehensive general-
purpose finite element programme, which is being used in many engineering fields that
include aerospace, automobile, electronics and nuclear sectors. In this work, the following
objectives were met.

e Fabricating a composite material consisting of optimum mechanical properties using
minimum amount of synthetic fiber and maximum amount of natural fiber to get the
benefit of the abundancy and low cost of natural fiber. Here, a composite with 27%
carbon fiber and 73% jute fiber by weight was fabricated.

e Fabricating the composite using the Vacuum Assisted Resin Infusion process as this
creates composites with the best mechanical properties, compared to other
manufacturing processes.

e Determining the optimum stacking sequence achieved using four plies of

unidirectional carbon fibers and six plies of unidirectional jute fibers.

[2]



1.2 Composite Materials

A composite material is a new material fabricated from the combination of two or more
materials (different in terms of physical or chemical properties) to produce a material with
better physical and chemical properties and a more robust structure [6]. The newly created

composite tends to have features that are unique and absent in the individual materials [7].

This improvement in properties is usually achieved by embedding reinforcement in the
matrix, using natural fibers or synthetic fibers, or a combination of both. Such composite
materials are being used in various applications, like aerospace, automotive, marine,
infrastructure, military, aircraft, sports equipment, and construction [6]. Their superior
properties and numerous applications in various fields have made them a better alternative

to metals or alloys.

1.3 Categories of Composite Materials
Composite materials are generally of two kinds.

1. Natural composite

2. Artificial or synthetic composite

Wood is an example of a natural composite material. It is abundantly found in the
environmet. It comprises of lignin and cellulose. Artificial composite materials, on the other
hand, are artificially fabricated with the combination of two or more material together. In
the recent years, numerous composite materials have been produced with the advancement

of technology.

(3]
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1.4 Types of Fiber

It is seen from the chart that fibers are mainly of two kinds, natural and synthetic or artificial.
Natural fibers again can be classified into three different kinds, animal, cellulose and
mineral, jute being an example of bast type cellulose fibers. Among synthetic fibers, there
are the organic fibers like Kevlar, Polythylene and the inorganic ones like glass and carbon.
A fine composite material can be created with the combination of natural and synthetic

fiber.

1.5 Thesis Outline

The fabrication, experimental and numerical analysis of a composite material created with

four plies of carbon and six plies of jute has been presented in this thesis work. The elevated

[4]



mechanical properties of the newly created composite of various stacking sequence have
been determined. The thesis work has been divided into 5 chapters. In the first chapter, a
brief introduction to the subject was provided along with the different categories and types
of fibers. Our research aims and objectives were speculated. In the second chapter, a
detailed review of previous literary works related to the use of natural and synthetic fibers
was provided. The detailed experimental procedure and numerical methodologies were
provided in chapter 3. Chapter 3 also talks about the materials used in the fabrication, the
stacking sequences followed and the fabrication method of the composite laminates,
including the VARI process. A general introduction to the finite element analysis along with
the detailed simulation steps for both the flexural and tensile tests were also provided in this
chapter. Chapter 4 comprises of the results of the experimental tests and numerical
simulation and provides relevant discussions. Finally, an overall conclusion of the research

work was provided in chapter 5.

[5]



Chapter 2.  Literature Review

A number of different studies were conducted on a wide variety of composite materials over
the past few years, which describe the change in the mechanical properties of composites

depending on varying parameters.

Ramesh et al. conducted tensile and flexural tests on composites he produced with sisal,
jute, and glass fibre [8]. Results revealed that sisal fibre composite has a higher ultimate
tensile strength than jute fibre composite. However, neither of them have a higher tensile
strength than glass fibre composite. Results of Morton et al. also revealed that glass fibre
composites has the highest tensile strength. Among the natural fibres, they found out that
flax fibre had better properties compared to hemp and jute [9]. Dhakal evaluated some other
mechanical properties of composite materials formed of flax fibre, carbon fibre, and a
conjunction of both. From the results of the tests, a development in fractural strain is noticed
in the flax/carbon fibre hybrid composite when compared to carbon fiber composites [10].
The naturally poorer strength of flax fibers causes a reduction in the flexural strength of

carbon composites.

A number of researchers carried out experiments on the effect of stacking sequence of
individual laminas on the tensile and flexural strength of hybrid composites [11]-[13].
Outcomes of the experiments revealed that the flexural strength is elevated by stacking the
comparatively stronger fibre on the outer side. Results also exhibited an increase in tensile

strength with the increase of the fibre density in the hybrid composite.

[6]



A K. Bledzki, J. Gassan studied the influence of coupling agents on the mechanical
properties of composites reinforced with cellulose based fibres. He found out that such
properties of composites are mainly influenced by the adhesion between matrix and fibres

[14].

The mechanical properties of annual fibre/PP composites were also studied by several
researchers [15]-[17]. The properties of these materials can reach a satisfying level by
increasing the compatibility between the fibre and the matrix using, for example, maleic

anhydride (MAH) modified PP.

The study about the impact behavior of natural fibre reinforced composites in still
developing. Pavithran et al. determined the fracture energies for sisal fibre-polyester and
pineapple fibre-polyster composites (fibre content of approximately 50 vol. %) ina
Charpy-impact-test. With an exception of coconut-fibre—polyester composites, they
found an increase in fracture energy accompanied by increasing fiber toughness, determined

by the stress—strain diagram of the fibers [18].

A study was undertaken by Hakim et al. to understand the effects of porosity on mechanical
behavior and material properties of carbon fibre-reinforced polymer composite samples
fabricated using hand lay-up. They observed that fabricating polymer composite samples
using manufacturing processes such as pultrusion, vacuum infusion and autoclave molding

yields better results than the traditional hand-layout method [19].

[7]



Subhankar Biswas analyzed the effect of ply angle in jute epoxy resin composite material
and observed better tensile properties with 0-45-90-45-0 angles within the plies. He also
compared the tensile strengths of woven and nonwoven jute-polypropylene composites and
found the woven one to have higher tensile strength (~ 69 MPa) than the non-woven one (~
49 MPa) when 0-90-0 fibre orientation was used. The value of Young’s modulus did not
fluctuate much. Comparing jute and bamboo fibres, jute fibre shows almost two times
higher transverse flexural stress than that of bamboo fibres. It also shows better results for
flexural modulus compared to bamboo fibre. This is due to their interfacial bonding, where
jute fibres have more compact structure and broader surface area compared to bamboo fibre

[20].

Researches conducted by Ismail et al. revealed that tensile strengths of rice husk fibre—
polypropene composites slightly decreased with increasing filler loading [6-8] and

presented the peak value at a crosshead speed of 500 [21]-[23] .

Selver et al. researched on some of the physical properties of flax/glass and Jute/glass hybrid
composite by altering the stacking sequence. The samples were formed by an infusion
process. When the percentages of jute and flax fibre was augmented, and the glass fibre was
added to the external layers, the tranverse rupture strength was seen to have improved [24].
Jesthi et al. found that the flexural strength of the composite was upgraded more than the
normal glass fibre reinforced polymer composite [25]. A number of researches are

conducted on hybrid composites with the mixture of glass, Kevlar and carbon fibre as

8]



artificial fibre and flax seed, hemp, banana skin, jute and so on as a regular fibre [8], [26]-

[30].

The effect of fibre angles and placing sequence on hybrid compostites made of jute/carbon

epoxy is still being developed.

Studies of Vinsova et.al stated the method of obtaining different elastic engineering
constants of the materials, eg. Young’s modulus and Poisson’s ratio ( E1 , E2 and v12 ) of
a woven lamina required for simulation of thick laminates by conducting thin laminate

tensile tests [31].

Nirbhay et al. experimentally tested the tensile properties of carbon fibre reinforced
composites consisting of fifteen plies. He numerically modeled them using ABAQUS to
determine the tensile strength and strain at failure. The parametric study revealed that the
composite strength of composite is depended on the ply orientation of reinforcing materials

[32].

Experimental and numerical approaches (using ABAQUS) were made by Wang et al. to
evaluate the Young’s modulus of unidirectional fibre reinforced composites along different

fibre orientations. The results of both approaches were found to be linear [33].

Experimental and numerical analysis of composite materials is a widely investigated topic

and many research works are available in the literature. However, the topic is vast and still

[9]



has scope for more investigations and development. This paper focuses on the experimental
and numerical investigation of the flexural and tensile behavior of carbon/jute epoxy
composites. It aims to validate the experimental results of the mechanical properties by

numerical analyses.

[10]



Chapter 3. Experimental Procedure and Numerical

Methodology

3.1 Materials and Fabrication

The current world of composite materials observes an increase of interest in using natural
fiber-reinforced composites in all aspects, starting from industrial applications to research
purposes. Natural fibers are abundant, renewable, recyclable to great extent, cheap and
biodegradable. Sustainability, biodegradability, and environmental friendliness are some of
the important properties that advance the growth of natural fibre composites. Applications
of natural fibres in various sectors have increased compared to that of synthetic fibres for
these properties. However, due to data limitation of mechanical properties of different
hybrid composites, natural fibre reinforced composites are only used in non-structural cases.
Further improvement is needed in this area due to lack of sufficient scientific literature. This
makes mechanical properties of composite materials a promising field for scientific
research. This thesis work focuses on the mechanical properties of the composite laminates

and the effect of the stacking sequence.

3.1.1 Materials

In this research work, unidirectional woven jute fiber fabrics along with carbon fiber had
been used to produce the composite material. Epoxy resin and hardener were used to

fabricate the composites of various stacking sequences to perform our experiments.

[11]



3.1.1.1 Jute Fiber

Jute is low cost, eco-friendly and extensively available in the textile fields of Bangladesh. It
has low density along with relatively stiff and strong behavior. For these reasons, in most
cases, jute is a suitable substitute of comparatively more expensive and non-renewable
synthetic fibers, like glass. It has an aspect ratio (ratio of length to diameter) of greater than
1000, allowing it to be easier to weave. The chemical and physical properties of jute fiber

are shown in Table 3-1 and Table 3-2.

Jute fiber fabrics of unidirectional characteristics, shown in Figure 3.1 have been used to
produce the composite material. Bangladesh Jute Research Institute (BJRI), Bangladesh

supplied with the jute fiber for the fabrication of the composite material for the research.

Bt

%%wk

Figure 3.1 Jute fiber fabric

[12]



Table 3-1 Chemical configuration of jute [34]

Component Content (%)
Cellulose 64.4
Hemicellulose 12.0
Pectin 0.2
Lignin 11.8
Water soluble 1.1
Wax 0.5
Water 10.0
Table 3-2 Properties of jute fiber [34]
Material | Weaving Tensile Modulus | Thickness of | GSM | Density
Pattern Strength | of asingle glem?
(MPa) Elasticity | fiber(mm)
(GPa)
Jute Unidirectional | 400 12 0.6 500 |15

[13]




3.1.1.2 Carbon Fiber

When used in a composite structure, carbon fiber can offer enhanced strength and stiffness
in a composite material. These properties can further be elevated with appropriate stacking
sequences. Like jute, unidirectional carbon fibers have been used in this research. It was
purchased from Easy Composites, England. In Figure 3.2, a sample picture of UD woven

carbon fiber fabric has been shown.

Figure 3.2 Carbon fiber fabric

Unidirectional carbon fiber fabric is a type of carbon reinforcement where the fabric is non-
woven. Here, all fibers are set in a single, parallel direction. This form of fabric ensures zero
gaps between fiber threads. The fibers are lay smooth and flat, and there is no cross-section

weave dividing the fiber strength in half with another direction.

The ultimate tensile strength of composite materials made with unidirectional carbon fibers
is the direction of the fiber grains. Hence, composites that use carbon fiber fabric that are
unidirectional provide maximum strength possible in the direction of the fiber and are
incredibly stiff. This property of directional strength makes the composite an isotropic

material, similar to wood.
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Multidirectional isotropic behaviour can be achieve by stacking unidirectional plies at
different angles. This produces a completely new composite material with anisotropic

physical and mechanical properties [35].

The properties of the carbon fiber that has been used for this research is given below in

Table 3-3.

Table 3-3 Properties of carbon fiber [34]

Material | Weaving Tensile Modulus | Thickness of | GSM | Density
Patt St th f ingl
attern reng 0 asingle glom?
(MPa) Elasticity | fiber(mm)

(GPa)

Carbon Unidirectional | 3500 240 0.4 300 1.8

3.1.1.3 Matrix

The most important aspect while selecting a resin is viscosity. Epoxy LY556 has a low
viscosity that aids the infusion process and has been used by the other researchers as well
[36], [37]. Choosing the correct hardener is also equally important. While selecting hardener
it is important to monitor the hardening time while mixing it with the resin. If the hardening
time is fast, the mixture might get immensely dense at a point blocking the flow through the

tube. So in accordance with the resin Araldite HY951 has been selected as the hardener.

[15]



These were acquired from obtained from Fix-it Industries, Bangladesh. A fixed ratio of 10:1

by weight was used to mix the epoxy resin with the hardener.

The following outstanding properties make epoxy resin and hardener a great matrix: have

the following outstanding properties:

e Outstanding adhesion to various materials

e Immense strength, toughness resistance

e Brilliant resistance to chemical corrosion and moisture
e Excellent mechanical and electrical properties

e Odourless, tasteless and entirely nontoxic.

e Insignificant shrinkage

3.1.2 Stacking sequence

Each specimen constituted of six plies of jute fiber and four plies of carbon fiber. Four
different stacking sequences were used to test its effect on the tensile and flexural behavior

of the composites. The chosen stacking sequences are presented in Figure 3.3.
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Figure 3.3 Stacking Sequences
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Each of the composite samples are constructed using VARI process, which is described, in

the section 3.1.3.

3.1.3 Fabrication Method of Composite Laminates

To facilitate the manufacturing process of the composite material Vacuum Assisted Resin

Infusion kit was ordered online from easy composite, England.

3.1.3.1 Vacuum Assisted Resin Infusion Process

The hybrid samples of carbon and jute fiber were fabricated by a process called the ‘Vacuum
Assisted Resin Infusion Process’. The Vacuum Assisted Resin Infusion (VARI) process is
a technique that uses vacuum pressure to drive resin into a laminate. This is a widely
accepted process in the field of composite research for having a number of advantages over
other ones. Composites fabricated using VARI usually show better mechanical properties,
such as more strength and less void formation, involve a cleaner process with better fiber to
resin ratio, less resin waste and consistent resin usage, and can be molded to complex
structures compared to composites fabricated by the traditional hand layup or vacuum

bagging processes.

The VARI process is carried out by using the following steps and equipment:
1. Creating the mold, selecting reinforcement and flow media, and stacking the fabric
2. Sealing the mold and creating vacuum using sealant tape and vacuum pump,
respectively

3. Catalyzing the epoxy resin in the resin storage

[18]



4. Degassing the mold

5. Infusion of resin through the resin pipe

6. Curing the fabricated plies
To aid the vacuum infusion process, an infusion mesh and vacuum bagging film were added
sequentially over the stacked plies, along with a sealant tape taped around the setup. A spiral
resin pipe was inserted to the mold through which the matrix was fed. An illustration of the

whole setup is given in Figure 3.4.

Flow Medium

Perforated foil

/
/ / Peel ply

- Valve/clamp

/

Preform
Resin storage

» Sealing tape
Resin pipe

Vacuum film

Suction fleece

Membrane -

>

Suction port

Pressure regulator Resin latch

Pressure gauge

Vacuum pump

Figure 3.4 Schematic Diagram of Vacuum Assisted Resin Infusion Process

The vacuum infusion process is established by the setting up the following equipment: a

vacuum pump, a professional resin infusion catch-pot and a resin infusion starter kit which

[19]



includes vacuum bagging gum, PVVC vacuum hose, resin infusion line clamp, resin infusion
spiral medium, flow coil, resin infusion silicon connector and vacuum bagging film. All this
are set up to complete the initial preparation for the vacuum infusion process. This will be

followed by the step-by-step infusion procedure to achieve the final composite material.

3.1.3.2 Infusion Procedure

The following steps were followed to infuse the specimen with epoxy-based resin:

Preparation of mould:

Initially, the mold was prepared where the samples will be placed for infusion. A rigid mold
helps in acquiring the best quality samples. Here, an acrylic glass plate have been used as
the mold for the fabricating of the composite samples. It has enough flanges to put the
vacuum sealant tape and vacuum bagging film around the sample without any interference.

In Figure 3.5 a picture of mould has been shown.

[20]



Vacuum bagging film

Acrylic glass as mould

Figure 3.5 Setup of mould with composite layer

After selection, the mold was cleaned thoroughly before moving to the next step.

Adding Vacuum Bag Film on the Mould:

The vacuum bagging film of the size of the plate had been cut out and placed on the glass
plate keeping the flange area out. It acts as the separator between the resin flow and acrylic
and ensures the proper removal of the composite from the acrylic layer. If a vacuum bagging
film is not used, the composite will permanently stick to the acrylic. Generally, a plastic bag
is used for this purpose.

From Figure 3.5 a layer of vacuum bagging film has been illustrated.

[21]



Placement of fiber, peel ply and infusion mesh:

The sample is then carefully placed on top of the vacuum bagging film. It is crucial to ensure
that the layers were aligned in a proper uniform way. The composite is then placed in the
middle of the acrylic. Enough room is kept for the resin to flow across the sample. After
that, a layer of peel ply is placed over the composite layer. Finally goes a layer of infusion

mesh. The infusion mesh has been illustrated in Figure 3.6.

Figure 3.6 Placement of fiber, peel ply and infusion mesh on the composite layer

Double-sided tapes were used to attach the peel ply and infusion mesh with the mold

perfectly.
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Installation of infusion spiral tube, silicon connector and sealant tape:

Figure 3.7 Installation of infusion spiral tube, silicon connector and sealant tape

Resin is passed from the source bucket to the composite sample through an infusion spiral
tube. The tube is constructed in a way that resin can enter and leave through its entire length.
This is ideal for the in-bag vacuuming feed lines. The spiral tube was attached to the resin
infusion silicon connector. It was then put at one end of the prepared bed. When not
stretched, the spiral tubes tend to straighten up. Hence, double-sided tape was used to attach
it with the infusion mesh. The silicon connector has a four-way channel that allows the resin
to flow smoothly through the spiral tubes. Another silicon connector is attached to the other
side of the bed to draw out any excess resin inside the vacuum bag. A vacuum hose of
proper diameter can also be used. The setup of infusion spiral tube, silicon connector and

sealant tape is shown in Figure 3.7.
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Sealing:

The vacuum bag is created using a vacuum seal. Firstly, the sealant tape is attached (Figure
3.7) around the flange area to keep all dry materials at the centre. The vacuum film is then
carefully attached to the sealant tape at all sides. It was ensured that no air entered and no

air leak was formed during the whole bagging placement procedure.

Figure 3.8 Vacuum-Bagging Procedure

In this step a PVC vacuum hose is attached to the resin infusion catch-pot. A catch pot was
used to store the excess resin. The vacuum hose is inserted through the tight infusion line,
called the gland nut to gather the excess resin in the catch pot. Again, sealant tapes were
used at both ends to avoid any kind of leakage. A second vacuum hose is entered into the
silicon connector that holds the spiral tubes. The whole setup for VARI process has been

shown in Figure 3.8.
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After completing the setup, the vacuum pump was turned on and air was sucked out of the
vacuum bag shortly. The pressure was monitored for 30 minutes to check for air leakages
in the whole setup. In case of the presence of a leakage, the pressure reading of the pressure
gauge will increase. This checking is important as even a small leakage can hamper the
infusion process. After inspection, no leakage was found. The pump was turned off when

the pressure inside the vacuum bag reached -1 bar.

After proper inspection, the clamp was opened to let the mixture of resin and hardener flow
through the pipe. The vacuum inside the chamber sucks in the resin-hardener mixture and
transfers it throughout the whole layout. When the infusion is done, the excess resin-

hardener mixture travels through to tube connected to the catch pot.

The composite was then cured for 24 hours. After curing, the setup was disassembled and

the completed composite was freed out from it.

3.2 Flexural Test

3.2.1 Experimental Procedure

The capability of laminated composites to withstand the bending before reaching the
breaking point is defined as the flexural strength [38]. It represents the highest stress
experienced within the material at its moment of rupture. When a material is bent, only the
fibers at the outermost layers are at the largest stress. Therefore, the flexural strength will
be determined by the strength of the intact fibers if those fibers are free from defects. Hence,

for the same material, it is common to have a higher flexural strength than tensile strength.
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Figure 3.9 Specimen dimension for flexural test

In this experiment, the flexural test has been conducted as per ASTM D 790 [39]. The
flexural, or three-point bending test was performed as per the ASTM D 790 standards. The
sample had a length of 250mm and a width of 25mm shown in Figure 3.9. Universal Testing
Machine (UTM), shown in Figure 3.10, was used at a cross-head speed of 5mm/min. The
UTM that has been used in this research can measure and store the force automatically in
different usable format. A three-point bending fixture was used with a span length of 100
mm in all samples. Tests were carried out at a room temperature of 30°C with an average
humidity of 60%. The deflection of the specimen was measured upon the application of
load. The flexural load and displacement were recorded for five samples of each stacking

sequence and an average value was considered for each.
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Figure 3.10 Flexural testing equipment with the specimen

Equation (3.2.1) has been used to calculate the maximum flexural stress (MPa)

In this equation (3.2.1), d (mm) is the depth and b (mm) is the width of the sample. L (mm)
denotes the span-length, and P (N) is the recorded total flexural load applied on the

composite samples.

Equation (3.2.1) has been used to calculate the maximum flexural strain (%)

__6Dd
& = _LZ

In this equation (3.2.2), D (mm) is the flexural displacement of the composite specimens.
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3.2.2 Finite Element Analysis

Finite element analyses of the experimental data of the composite materials were carried
out using ANSYS R20 software to validate the experimental results. To recreate the
composite materials, ANSYS Composite Pre/Post (ACP) was used as it provides all the
necessary functionalities for the analyses of layered composite structures. The setup was
then connected to a Static Structural module to solve its structural problems under static

loads for both the flexural and tensile tests.

The Finite Element Analyses was conducted in the following steps:

= Pre-Process: assignment of the properties of the materials, modeling of the parts,
creation of mesh

= Process: input of loads and boundary conditions, solution of the assembling
equations

= Post-Process: analyses, formation of different formats of the results: animations,

graphs and tables.

Initially, the material properties of the plies in the composite were assigned in the
engineering data module. Orthotropic material properties were used for both the
carbon/epoxy and jute/epoxy plies. Several engineering constants were utilized to
completely describe the 3D orthotropic laminates, as presented in Table 3-4 [40] . The

default material of structural steel was assigned to the supports and loads.
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Table 3-4 Material properties in Engineering Data, ACP (Pre) [40]

Physical Parameters

Carbon/epoxy laminate

Jute/epoxy laminate

Density (kg/m?®) 1050.7 826.07
E1=E> (MPa) 40000 3400
Ez (MPa) 5077 3200
G12 (MPa) 4000 1574
G23=G13 (MPa) 2277 1536
V12 0.045 0.08
V23= V13 0.3 0.32

3.2.2.1 Flexural Analysis

A part resembling the experimental flexural test was modeled. A rectangular ply surface of

250x25mm was created in SpaceClaim. The ply was split into four parts using the ‘split’

tool, with two lines defining the position of the supports, and one line defining the one of

the loads. Two cylindrical supports and a load-cell were created for better visualization. The

support-span length was given as 100mm. The load was given in the centerline of the

specimen, along the width.

The model body was meshed with fine mesh using multizone quad/tri method, shown in

Figure 3.11. The rest of the steps of the construction of the layered composite were done in

[29]




ACP Setup. Two fabrics, namely Carbon/Epoxy and Jute/Epoxy, were defined with
thicknesses of 0.4mm and 0.6mm, respectively, followed by setting of the rosette. The
desired sequence of the layers of plies was created in the modeling group according to the

direction set in the oriented selection set.

The shell data from ACP Setup was transferred to the Static Structural stand-alone module.
The model was then subjected to appropriate boundary conditions and load, and solved

accordingly.

ANSYS

2020 R1

000 35.00 70.00(mrm) ‘)\
I I ] 2 s

17.50 5250

Figure 3.11 Prepared mesh of pusher, base and specimen for flexural test
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3.2.2.2 Simulation Steps

ANSYS Workbench was opened and the file was saved as an archive as shown in Figure

3.12.

.ﬂ. Unsaved Project - Workbench
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Save Ctrl+5 I

(|
=
=
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=
i
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-
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Scripting 3
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2 E:\...\Simulations\Flexural\Right axes\flexural.wbpj

3 E:\... \Flexural\pakistani paper \flexural_pakistani_paper.wbpj
4E:\... \Flexural\pakistani paper \flexural_pakistani_paper.wbpj

Exit cirl+Q

Figure 3.12 Saving file

Under ‘component systems,” ‘ACP PrePost” was dragged and made ‘standalone’ as shown

in Figure 3.13.
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Figure 3.13 Creating ACP PrePost

The section named ‘Engineering data’ was selected.

The orthotropic properties were used in the engineering data section. Orthotropic materials
can be 2D and 3D. The 2D ones have been used; meaning one of the planes is the plane of
isotropy. Since ANSY'S can only input data of 3D orthotropic materials, the properties of
the remaining planes and axes were found using the equations 3.2.3 to 3.2.7. It has been
explained as follows.

If the plane x2-x3 is a plane of isotropy, there are four relationships between the 9 orthotropic

constants, where the symbols have their usual meaning:



623 = Ez/(Z(l + V23)) .................................. (326)
E=2G1+V) ceiiiiiiiiiiiiiieeeeeii, (3.2.7)
Under the contents of engineering data, two new materials were named: Carbon/Epoxy and

Jute/Epoxy.

The property ‘density’ was dragged and dropped from ‘physical properties’, and

‘orthotropic elasticity’ from ‘linear elastic’ to the two materials as shown Figure 3.14.
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Figure 3.14 Insertion of density and elasticity

The data was entered under ‘property’ using the correct units for both the materials as shown

in Figures 3.15 and 3.16
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Figure 3.15 Properties of carbon/epoxy
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Figure 3.16 Properties of jute/epoxy

The section named ‘geometry’ was then selected as shown in Figure 3.17.
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Figure 3.17 Selection of geometry

Spaceclaim was used to draw a rectangular ply surface of 250x25mm in xz plane as shown

in Figure 3.18.

Span length was given 100mm. It is the distance between two intermediate supports for a

structure.

The ply was converted to a ‘surface’ by using the marked entity.
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Figure 3.18 Dimension of ply

The ‘split’ option was used to split the surface into four parts. Two lines were used for

supports and one line for load as shown in Figure 3.19.
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Figure 3.19 The splitting of the ply

The section named ‘mechanical model” was selected as shown in Figure 3.20.
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Figure 3.20 Selection of geometry

Arbitrary thickness and material in ‘geometry’ as shown in Figure 3.21 was given.
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Figure 3.21 The arbitrary assignment of values of properties

In mesh, body sizing was used by selecting the ply. Then ‘hard behavior’ and suitable

element size of 0.5mm was selected as shown in Figure 3.22.
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Figure 3.22 The geometry and type of ply

The option ‘Method’ was used by selecting the ply. The option ‘multizone quad/tri’ was

selected as shown in Figure 3.23.
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Figure 3.23 Usage of method

The option ‘ACP Setup’ was then selected as shown in Figure 3.24
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Figure 3.24 Selection of acp setup
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In ACP setup, two fabrics were defined: CarbonEpoxy with a thickness of 0.5mm and

JuteEpoxy with a thickness of 0.5mm as shown in Figure 3.25.
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Figure 3.25 Creation of fabrics

In the rosettes, the colors red, green and blue were used for longitudinal fibre direction,
transverse fibre thickness, and as the direction normal to the ply, respectively as shown in

Figure 3.26. This was done by flipping the axes where necessary as shown in Figure 3.27.
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Figure 3.26 Flipping axes

Figure 3.27 Rosette directions
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In orientated selection set, the direction was selected upwards which indicates that the

stacking would be done from bottom to top as shown in Figure 3.28 by using Figure 3.29
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Figure 3.28 Selection of orientated selection set

Figure 3.29 Upward direction
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In the modelling group, the desired layers of plys were created, as shown in Figure 3.30,

keeping in mind that stacking would be done from bottom to top.
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Figure 3.30 Stacking sequence

The model was not converted to a solid as the option ‘simply support’ can only be applied

to the edges of a geometry.

‘Stackup’ is to be used in ‘modelling ply’ as shown in Figure 3.31.
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Figure 3.31 Setting of stack up

If the plies are angled, it can be done using the option called ‘stackup’ under ‘material data’.

The section ‘Static Structural’ was made standalone and the section ‘setup’ was dragged to

its ‘model’ and ‘shell data’ was transferred as shown in Figure 3.32.
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Figure 3.32 Creation of static structural

In ‘model’, the option ‘show mesh’ was deselected to work with the ‘shell” form as shown

in Figure 3.33.

QA [@w& % O+ QA Q@ Select % Mode- BE®E®D® P FCiposd [Empty] @btend- 9 Select

Figure 3.33 Deselection of ‘show mesh’

Under ‘static structural’, ‘analysis settings’ was selected. The following properties were

modified as shown in Figure 3.34:

e Under step control, Step end time was set to 2

e Under step control, Auto time stepping was set to off
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e Under step control, No. of substeps was set to 25

e Under solver controls, Solver pivot checking was set to off
e Under solver controls, Large deflection was set to on

e Under output controls, nodal forces were set to yes

e Under output controls, contact miscellaneous was set to yes

“ Home Environment Display Selection
I:I . g S t E" comm:
Bl . .
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Figure 3.34 Modification of analysis settings

‘Simply support’ was inserted and added to the two span edges as shown in Figure 3.35.
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Figure 3.35 Addition of simply support

‘Force’ was inserted and added in the middle of the ply. It was defined by components as

shown in Figure 3.36.
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Figure 3.36 Insertion of force

‘Displacement’ was inserted as x and z being 0, and y being -6mm as shown in Figure 3.37.
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Figure 3.37 Addition of displacement

The option ‘solution’ was created and the following were inserted as shown in Figure 3.38

e Total deformation
¢ Directional Deformation (for force-displacement graph)
e Equivalent elastic strain: sub scope by-layer

e Equivalent stress: sub scope by-layer
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Figure 3.38 Branches of solution tree

The following ‘settings’ were done in ‘chart” as shown in Figure 3.39

e Outline selection: both Equivalent elastic strain and Equivalent stress
e X-axis: equivalent strain (max)

e Time: omit

e equivalent strain (min): omit

e Equivalent stress (min): omit
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Figure 3.39 Data for graph plotting and animation

The ‘maximum’ and ‘minimum’ tags were selected to determine the highest and lowest

properties, respectfully as shown in Figure 3.40
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Figure 3.40 Marking of the positions with the greatest and smallest ‘solution’ results

[51]

Capped lsosurface



3.3 Tensile Test

3.3.1 Experimental Procedure

250 mm

25 mm

Figure 3.41 Specimen dimension for tensile test

Tensile strength is a measure of the ability of a material to withstand a longitudinal stress,
expressed as the greatest stress that the material can stand without breaking. Tensile strength
is the amount of load or stress that can be handled by a material before it stretches and
breaks. As its name implies, tensile strength is the material’s resistance to tension that is
caused by mechanical loads applied to the material. The ability to resist breaking under
tensile stress is one of the most important and widely measured properties of materials used
for structural applications. Tensile specimens were prepared following ASTM D3039 [41]
standards. A 250x25mm specimen of 6.8 mm thickness with a variation of 0.2 mm was
taken as shown in Figure 3.41. The specimen was clamped with two fixtures positioned
100mm apart, 75mm from the edges of the specimen. An increasing load was applied by
using a Universal Testing Machine with a cross head speed of 5 mm/min until the specimen
failed at room temperature. The load at this point is used to calculate the maximum tensile
strength of the composite material. Five different tests were conducted for each stacking
sequence and the average value was taken for detailed analysis. The setup is shown in

Figure 3.42
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Figure 3.42 Tensile testing equipment with the specimen

3.3.2 Finite Element Analysis

A solid model having the dimension of 250x25mm was designed in SolidWorks and later
on imported in ANSYS. The model was finely meshed using multizone quad/tri method
shown in Figure 3.43. The Jute/Epoxy and Carbon/Epoxy fabrics were defined with
thickness of 0.6mm and 0.4mm, respectively. The Rosette was set with the red arrow
defining the longitudinal fiber direction, green being the transverse fiber width, leaving blue

representing the direction normal to the ply. Later, modelling groups were created.
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Here, the ply is defined with appropriate fabric and number of layers. Finally, a solid model

of the specimen is generated.
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Figure 3.43 Prepared mesh of the fixture and specimen for tensile test

3.3.21 Simulation Steps

A specimen was designed in SolidWorks 2017 having dimension of 250x25 mm and a

thickness of 1mm, shown in Figure 3.44.
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Figure 3.44 Designing the specimen in SolidWorks 2017
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Once the specimen is designed, a pair of fixtures was designed in SolidWorks 2017. These

fixtures along with the specimen was later imported on ANSY'S for simulation.
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Figure 3.45 Designing fixtures to hold the specimen

The fixture, shown in Figure 3.45 was designed in such a way to minimize local stress
concentration on the specimen. The fixture allows independent application of load on the

specimen.

ACP (ANSYS Composite Prepost) was dragged from the left column into the blank space

of the workbench as Figure 3.46.
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Figure 3.46 Setting up ACP (ANSYS Composite Prepost)

After that Engineering Data was clicked to assign materials for the simulation as Figure

3.47.
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Figure 3.47 Inputting the property values of Carbon Epoxy
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Since Carbon Epoxy was not available in ANSYS materials library, so a new material had

to be created and its orthotropic elastic values were assigned accordingly.

Just like Carbon Epoxy, a new material naming Jute Epoxy was created and its orthotropic

elasticity values were assigned, as shown in Figure 3.48.

[, Unsaved Praject - workbench a X

Fie ESt Vew Toos Unts Bdensions Jobs Hep

A @ s2ErginerringData X
T Fiter Engneerrg Data. [l Engneerng Data Sources

| @ Chaboche TestData

[ — .
@ Posticty Propertes of Outine Ram & Xe i QI oo o i oot Bty I ]
2

{

I |

| B Creep | A 0 c D|E
|

lom \ e S ——— oo s

B, Breeeth A Materal Feid varables 3 Table
3%0

| @ Geske
| B Viscoslastic Tem Dt
| B iscostasac

B
H
g
s
F
;

Shear Modulus XZ (.10 (MPa]

| B Composte
| B Custom Materiai Modds

Figure 3.48 Inputting the property values of Jute Epoxy

The specimen drawn and designed on SolidWorks 2017 was imported in the Geometry

section of the ACP tool, shown in Figure 3.49 and 3.50.
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Figure 3.49 Importing the designed specimen into the workbench
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Figure 3.50 Imported specimen on ANSYS ACP

For meshing, the specimen had to be assigned to a fake thickness and in this study, it has
been chosen to be 1mm shown in Figure 3.51.
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Figure 3.51 Geometry assigned with a fake thickness

Once the fake thickness is defined, the material was assigned to the geometry, like Figure
3.52. In this case any one of either Jute or Carbon can be assigned. This was done only for
meshing. It is to be noted that once this geometry undergoes preprocessing in ACP, the
model will automatically get defined with the corresponding composite material properties

and stacking sequence.
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Figure 3.52 Prepared geometry for meshing

The model was finely meshed using multizone quad/tri method shown in Figure 3.53. Mesh

transition was chosen as smooth and mesh size was assigned as 0.1mm
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Figure 3.53 Finely meshed model of the specimen
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Once the specimen meshing is done, mechanical model was dragged from the left column.
This was done to import the fixture geometry. Later a connection was established between

the two models. These have been shown in Figures 3.54 and 3.55.
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Figure 3.55 Importing the fixture geometry

[61]



The fixture that was previously designed on SolidWorks 2017 was converted into 1GS

format and then imported on the mechanical model.

Once the fixtures are exported, meshing is done on the fixtures, as shown in Figure 3.56.
The fixtures are not meshed as finely as the specimen since finding out the stress, strain and
deformation of the specimen only was important. The fixture is used in this study so that

force can be applied uniformly all over the specimen and to avoid any stress concentration.

om 5000 100.00 (mm) ZA 1

[ EE— ES—

5.0 B0

Figure 3.56 Meshed fixtures

Before the specimen is put under simulation, it had to be preprocessed in the dedicated
platform for composite material that is on ANSYS ACP. Setup option was clicked on the

ACP tool and a new window was opened as shown in Figure 3.57.
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Figure 3.57 Setup window of ACP tool

At first the fabrics were defined. To define and assign the fabrics, the following steps were

followed: Material data > Fabric > Create Fabric, shown in Figure 3.58.
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Figure 3.58 Creating fabric on ANSYS ACP

At first Carbon fabric was defined. Thickness section was set to 0.4 according to the

thickness of each Carbon fabric. It has been shown in Figure 3.59.
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Figure 3.59 Defining Carbon fabric

Once defining Carbon fabric is done, Jute fabric was defined with a thickness of 0.6 mm,

shown in Figure 3.60.
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Figure 3.60 Defining Jute fabric
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When all the fabric definition was complete, a new rosette was created by the following

steps: Rosettes > Create New Rosette, shown in Figure 3.61.
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Figure 3.61 Creating new Rosette

While creating the rosette, the convention followed were: Red arrow as the direction of

fiber, Blue Arrow as the normal direction and Green Arrow as the direction of width.

After creating rosette, oriented selection sets are defined as shown in Figures 3.62 and 3.63.
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Figure 3.62 Creating Oriented Selection Set
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Figure 3.63 Defining coordinates for oriented selection set

[66]



Once the setup of rosette and oriented selection set is complete, the fabric will show the
direction of fiber and the direction of stacking. Here on the Figure 3.64 above, the purple

and green arrows indicate the stacking direction and fiber direction, respectively.

ANSYS

2020 R1

Figure 3.64 Arrows showing the direction of fiber and the normal direction

The final step of the ACP Preprocessing is to create modeling groups. Modeling groups
define the number of fabric layers and the stack up sequence. The command is executed by
the following process: Modeling groups > Create Modeling Groups as shown in Figure

3.65.
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Figure 3.65 Creating Modeling Groups

When a modeling group was created, it facilitated to create necessary number of fabric plies

in correct stack up sequence. The result it shown in Figure 3.66.
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Figure 3.66 Creating composite plies
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After the modeling ply properties window toggled up, the necessary data of the plies was
inputted. Here on the Figure 3.67 above, the previously created oriented selection set is

selected, ply material is selected as Carbon.
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Figure 3.67 Creating Carbon ply

The jute plies are also created following the similar steps as in creating Carbon plies, and is
shown in Figure 3.68. It is to be noted that the thickness of the fabric was previously
assigned while creating fabrics. Therefore, once the solid model is updated, the model will

get the exact appropriate thickness as per the number of plies.
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Figure 3.68 Creating ply for Jute

Creating Solid Model is the last step of ACP preprocessing. By creating solid model, the
thickness of the specimen was defined. The clearance in the fixture must match with the
thickness of the model so that no mesh overlapping takes place. This command is

executed by the following step: Solid Model > Create Solid Model, shown in Figure 3.69.
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Figure 3.69 Creating Solid Model
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Once the Solid Model property window toggles, element set is selected “All elements”,
Extrusion method is selected as “Analysis Ply wise”. Shell Normal is selected for offset
direction. These have been shown in Figure 3.70. It is to be noted that any global drop off
material was not selected. It is because the properties that are inputted in the very beginning
in Engineering data section is for Epoxy Jute and Carbon Epoxy. If the value of Jute and

Carbon fibers are inputted only, then Epoxy resin as global drop off material is to be input.
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Figure 3.70 Inputting necessary data for creating solid model

Section cut is created to illustrate various section throughout the specimen. This is created
by executing the following command: Section Cut > Create Section Cut, shown in Figure

3.71.
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Figure 3.71 Creating Section Cut

All parameters were set as default. Section cut was applied and apply and updated, as shown

in Figure 3.72.
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Figure 3.72 Section Cut Window
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The green lines indicate the boundary of the fabric layers. This is done to check whether the

created composite model is appropriate in thickness and number of plies. The result is

shown in Figure 3.73.
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Figure 3.73 Specimen after executing section cut

Creating solid model and section cut was the final step in ACP pre processing. Once the

model is pre processed and all other parameters are well defined, static structural tool was

dragged from the left column and then it was connected with the previously set ACP tool

and Mechanical model where the fixture was imported and meshed, as shown in Figure

3.74.
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Figure 3.74 Setting up static structural tool and connecting with ACP tool

The tools are connected by dragging the “Setup” section of ACP into the model section of
Static Structural. While doing this, ANSYS will ask for confirmation of transferring
parameters of solid composite data or shell composite data. Since the specimen is a solid

model, “Transfer solid composite data” was selected.
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The mechanical model is connected by dragging the “Model” section and dropping it into

the “Model” section of Static Structural tool as shown in Figure 3.75.

Figure 3.75 Connecting ACP and Mechanical model with Static Structural

The combined model of specimen was opened and fixture by double clicking on “Model”
section of Static Structural, shown in Figure 3.76. It is to be noted that both fixture and

specimen were meshed previously in Mechanical Model and ACP tools respectively.
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Figure 3.76 Combined model of specimen and fixture in ANSYS Mechanical

While meshing, the nature and quality of mesh for both specimen and fixture was similarly
maintained, however, the number of elements and nodes were kept different for specimen

and fixture. The mesh is shown in Figure 3.77.
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Figure 3.77 Illustration of prepared mesh in both specimen and fixture
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In order to perform a tensile test, one fixture has to be kept fixed and load is to be applied
on the other fixture. The fixed support is defined by the following commands: Static
Structural > Fixed Support. The blue square area on the figure above shows that section is

fixed and is constrained to all kinds of motion, shown in Figure 3.78.
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Figure 3.78 Defining fixed support
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A load of 25 kN was applied on the red square area on the other fixture, which is not

assigned as fixed support, shown in Figure 3.79.
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Figure 3.79 Assigning load on the fixture

Itis to be noted that as per the figure above, the load is applied towards the X direction only

and no force acts on other two directions.
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Once all boundary condition is assigned, the simulation option is manipulated as per

requirement. For calculating Equivalent stress, the simulation is sub scoped by layer and

not by plies. With all parameters set, the simulation is run by clicking solve button on the

top. The parameters are shown in Figure 3.80.
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Figure 3.80 Simulation option parameters for (a) Equivalent Stress (b) Equivalent

Elastic Strain (c) Total Deformation
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Chapter 4. Results and Discussion

In this study, the tensile and the flexural properties of jute-carbon reinforced epoxy
composite material was analyzed. First, the composites in four different stacking sequence
was fabricated, all of which were in the same unidirectional orientation. Later the
composites in standard dimensions was cut and analyzed in the lab to attain their tensile and
flexural properties following the procedure that has been already mentioned in the previous
chapter. After that the exact specimen dimensions was taken and FEA model of the
specimen was generated and then tensile test and flexural test was simulated in ANSYS
APDL. Later both the experimental data and the data acquired from the numerical analysis

were compared and validated in order to achieve a more reliable conclusion.

In this chapter, the experimental and numerical result has been discussed in two major
sections divided according to the type of the analysis, and within which there are total 4
sub-sections. The first sub-section evaluates results achieved from the experimental analysis
of tensile properties and then in the second sub-section, the attained results from the FEA
simulation was first stated and then a comparative discussion on findings was made and the
results were validated. In the third and fourth sub-section the same format for the flexural

test was repeated and results are discussed.
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4.1 Tensile Test Result Analysis

4.1.1 Experimental Result Analysis

A complete picture of the result that is obtained from the experimental analysis has been
presented in Figure 4.1 it is observed that various stacking sequence has quite significant
effect on the tensile behavior. At the point when the fibers were arranged unidirectionally,
the force was parallel to the adjusted long and continuous fibers. Thus, unidirectional
composites laminates had the option to show most extreme resistance from the deformation
to the applied force. An eminent measure of variety was seen in the Ultimate Tensile
Strength (UTS) among the four diverse stacking successions. The highest UTS has been
recorded for J3CasJs, which is 571 MPa and J.C»J2C>J. has the second highest UTS which is
548 MPa. C2J6C> gives the lowest UTS of 496 MPa and C2J:C2Jz has the second lowest

UTS of 510 MPa.
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Figure 4.1 Experimental and numerical tensile test result for all the composite laminates

Since the fibers were oriented in a single direction, the load was parallel to the fibers.
Because of the delamination and debonding occurring in the sample composite, the tensile
strength is shifted in spite of not altering the volume of the fiber in each of the hybrid
composites. Putting the jute plies halfway hinders the carbon interaction and furthermore
expands the debonding and delamination, causing a decline in the ultimate tensile strength.
Because of these, the ultimate tensile strength was discovered greatest while jute laminate
was set to the exterior surface and the carbon laminate was set in the center of the sample.

Carbon fibers are sturdier and firmer than the jute strands, explaning the sudden increment
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in the ultimate tensile strength. In this way, utilizing carbon fiber has resulted in better
properties in the hybrid composites in contrary to its natural fiber partners. Jute fibers are
naturally fragile. Because of this, jute fibers broke down in a brief timeframe, while the

carbon fibers kept on withstanding the load until the all layers failed.

Rosen’s failure model is shown in Figure 4.2, where Rosen analyzed strength distribution
of fiber einforced composite materials. There in the figure one fiber is broken when the rest
of the fibers are yet intact. Therefore, when either on load, the volume element of the fibers
changes its size or the freactured fiber increases. As a result, a redistribution of the stress
takes place around the fracture. This stress takes place in between the two broken fiber ends.
For ths, reason a high amount of stress takes place in a short distance as shown in Figure
4.2. The stress increases from zero to o, Which is the break to stress level but the composite
material stress level is far from the break. As a result, a fiber-pull-out problem is occured

after a fiber fracure.
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Figure 4.2 Rosen’s Tensile Failure Model
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In this condition, a fiber reinforced composite material failure may happen in two ways.
One way can be the failure of the matrix surrounding the area due to the shear stress. Which
means the bond between the fiber and the matrix is broken. On the other hand, there might
be an over all failure of the composite if the fracture is propagated through out the fibers

along with the matrix.

The tensile properties of a composite material depend on the position of the delamination
and deboning that occurs during an tensile test. It is also observed if the jute fibers are
positioned in the middle, the delamination & deboning significantyly increase. Therefore,
to increase the tesile strength of jute-carbon compsite, the jute fibers should be as close to

the surface as possible.

It is also observed that the tensile strength of the composite increases significantly if the
carbon fibers are positioned as the cores (Figure 4.1). This happens due to the carbon fibers
being stronger and stiffer in nature then the jute fiber. Due to the improved tensile property
of carbon fiber when hybridized with jute fiber, the composite showed significant amount

of boost in mechanical properties over the jute fiber.
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Figure 4.3 Fracture condition of Unidirectional composite (S1-S4) material after tensile

test(a-d)

Due to the brittle nature of jute fibers, it breaks earlier then the carbon fibers used in the
composite. Gradually all the fibers in the composite fractures and results in failure of all the

layers.

The jute carbon fiber reinforced compsoite material tensile failure is observed in Figure 4.3
(a-d). It is seen that for all the cases there is delamination occuring at the surface of the
composite samples. For the sample S4, the delamination at the surface showed the most

Figure 4.3 (d) and also, it showed the least UTS among all the four stacking sequnences.
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4.1.2 FEA Simulation Results of Tensile Properties

The generated FEA model was approved by contrasting the stress strain attributes of the
composite laminates acquired by means of experimental and simulated tensile test. The
result that is obtained from numerical analysis is also presented on the Figure 4.4. It is
observed that numerical results are quite close to the experimental ones. J3CaJsz gives the
maximum UTS of a magnitude of 586 MPa and C»JsC> gives the minimum UTS of 511
MPa. In case of the experimental result, the same tensile behavior is observed. The
numerical results are close to the experimental ones because of preparing and modeling the

composite specimens in ACP before simulating in ANSYS APDL. Total deformation of the

model under the application of tensile load is pictured in Figure 4.4

Figure 4.4 Total deformation after tensile load. (a) S1 = J3C4J3, (b) S2=J2C2J2C2]C, (c)

S3 =C2J3C2J3, (d) S4= C2J6C2
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It is observed that the stress strain characteristics of numerical outcomes displayed almost
close pattern of experimental findings. It is found that the result of numerical analysis is
higher than that of the experimental findings. It might be because of the explanation, that
during simulation, the laminates were considered as homogeneous and neither any void nor
any crack formation was present in the composites. Progressively, the plies are not
homogeneous which brought about voids and event of fiber-matrix breaking and cracking

during the tensile test experiments.

4.2 Flexural Test Result Analysis

4.2.1 Experimental result analysis

The flexural properties of jute-carbon composite laminates vary significantly from the
flexural property of pure jute fiber laminates or pure carbon fiber laminates as shown in
Figure 4.5. The flexural properties have also observed to be depended on the number of
plies used for a laminate and also on the sequence of stacking. The flexural performances
of composites had proven to be increased if the carbon fiber is used on the outer/skin layers
as top ply or bottom ply of a laminate. This happens as the flexural test eventually causes
compression on the top ply, tension on the bottom ply and shear stress for the middle plies.
The impact on flexural properties due to stacking sequence can be observed from Figure 1,
it is observed that the flexural strength of S1 and S2 is 142 MPa and 280 MPa is significantly
lower than the flexural strength of S3 and S4, which are 320 MPa and 445 MPa. The higher
flexural properties of S3 and S4 are results of their stacking sequence. In addition, from
further observation, comparing the results of S2 with S3 and S3 with S4 it is found that
using Carbon ply as skin layer showed a significant improvement of the flexural properties.
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The claim can be strengthened further by observing the stacking sequence of S3 (C2J3C2J3)
and S4 (C2JsC2), where the S3 sequence had 2 Carbon fabrics as the top plies and the S4
had 2 carbon fabrics as top plies another 2 Carbon fabrics as bottom plies. As a result, the
S4 laminate showed the maximum flexural performance. The S3 laminate showing
significantly higher flexural strength then S1 and S2, but strengthening less than S4 can also
be explained from the stacking pattern. Therefore, finally it can be stated that the
hybridization of the Carbon-Jute composites significantly improves its flexural
performance; the flexural properties are highly depended on the number of plies used for
lamination and the stacking pattern of the laminate. In addition, it is evident that flexural
properties are highly depended on the skin layers; reinforced layers such as carbon fabric

used as skin layers resulted in significant improvement of flexural properties.
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Figure 4.5 Flexural stress vs Strain curve experimental and FEA (a) J3CaJsz (b) J2C2J2C>J>

() C2JsCals (d) C2JsC2

The Figure 4.5 corelates the flexural strain of unidirectional composite with response to the
flexural strength observed under the applied flexural force. From the Figure 4.5 it can be
observed very clearly how the flexural stress varies amoung the four different stalking
sequences. The patterns of fracture in which the four different stalking sequece took place

was showed in Figure 4.6. They clearly show signs of delamination, matrix cracking, fiber

[89]



buckling in Figure 4.6. The sample S4 from Figure 4.6 (d) showed the maximum amount
of delamination, one important factor here is that for S4 the carbon fiber was used on both
the compression side and tensile side. It is due to the weak bonding between the carbon
fiber and jute fiber. The highest flexural strenghth of 460 MPa was found for S4 (Figure
4.5 and Figure 4.6) and for S1 Fig 4.6 (a) sample was 135 MPa (Fig 4.5 and Fig. 4.6)
which was the lowtest flexural strength among all the samples. For S3 sample (315 MPa)
which was the 2" highest flexural strength observed, it is 31% less then the flexural strength

of S4.

et
=2 o

of S~

compressive

(a) = (b)
tensile side kinking tensile
S1 S2
compressive delami
© (d) = SDa Ot
ey \\.' -.,,/‘ ‘
tensile \
S3 S4

Figure 4.6 Fracture configuration of the sample after the flexural test (a-d) for sample S1-

S4 (unidirectional)
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4.2.2 FEA Simulation Results of Flexural Properties

The FEA model was generated and simulated in ANSYS, ACP module was used to generate
the specimen and then flexural test was simulated in ANSYS APDL. The results that are
achieved from the simulation was validated by the experimental flexural test results of
stress-strain diagram. Here in Figure 1 the results found from both the experimental analysis
and FEA analysis of flexural properties were plotted. Flexural strain-flexural strength graph
for S1 (J3C4dz), S2 (J2C2J2C2J2), S3 (C2J3C2J3) and S4 (C2JeC2) of both experimental and
FEA analysis were plotted. From the graphs of Figure 1, it can be observed that the
simulation results show a similar trend as the experimental results for all laminates of
different stacking sequences. However, the data gathered from FEA analysis gives ideal
curve and the flexural strengths achieved at similar flexural strains is slightly higher than
the experimental analysis. It is due to the lack of homogenous structure of the experimental
specimen, on the other hand in case of FEA analysis a completely homogeneous specimen
was considered. Total deformation of 3D modeled specimen during flexural numerical
analysisis illustrated in Figure 4.7. In practical experiments, while producing the composite
specimen avoiding any fiber matrix crack or avoiding formation of small voids between
resin-enforced plies is impossible. Due to these, an overall enhancement of flexural
performance in FEA analysis can be seen. Therefore, considering these unavoidable
technical difficulties, observing the flexural strength-flexural strain graphs of both
experimental and FEA analysis it is noticed that the results are converging and thus the

numerically acquired data from this simulation can be considered reliable and satisfactory.
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Figure 4.7 Total deformation of FEA 3D specimen under flexural load of (a)J3zCaJs

(0)J2C2J2C2J2 (€) C2J3C2J3 (d) C2J6C2
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Chapter 5.  Conclusion

The purpose of the work was to find out and describe the properties of jute-Carbon fiber
composites, also to investigate the possibilities of using the composite for wide range of
applications by testing and discussing it’s tensile and flexural properties. Due to achieving
higher mechanical properties at a lower material density and less material cost the modern
production companies are getting more involved in natural fiber composites and laminates.
As the Jute-Carbon composite materials exhibits higher mechanical properties and it is
proven to be more cost efficient therefore, it has a significant importance for modern
industries. However, considering the possibilities despite many research and development
of testing the anisotropy properties of composite in past few years, accurately predicting the
tensile & flexural properties and failure mechanism of Jute-Carbon composite materials are
still a challenge, which is due to the non-homogenous structure and properties of jute fiber.

So, from the above discussion of our study, these following conclusions can be drawn :

e Hybridization of natural fibers such as jute fiber with carbon fiber can be a more
economical alternative of synthetic composites without significantly compromising

the mechanical properties such as tensile strength and flexural strength.

e The mechanical behaviors of Jute-Carbon composite were highly dependent on the
number of plies used in a laminate, also on the position of carbon plies and jute plies
in a sequence. Using carbon ply as skin layer of a laminate resulted in significant
improvement of flexural behavior, however it didn’t seem to affect the tensile

properties of the specimen.
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The overall comparison among S1(J3CaJs), S2(J2C2J2C2J2), S3(C2J3C2J3) and
S4(C2JsC2) sequences revealed that tensile behaviors doesn’t differ significantly for
different stacking sequences of Jute-Carbon hybrid composites. Tensile strength
was found maximum of 571 MPa for S1(J3C4J3) and minimum of 511 MPa for
S4(C2J6C2) during the experimental analysis. However, the numerical analysis
resulted in slightly higher tensile strength for each of the sequence due to the pre-
assumptions of isometric conditions, no void formation, proper bonding of

fiber/matrix and homogeneity of specimen during FEA simulation.

On the contrary, similar comparison among the sequences revealed that the flexural
behavior differs significantly for different stacking sequences of Jute-Carbon hybrid
composites. Flexural strength was found maximum of 420 MPa for S4(C.JsC>) and
minimum of 130 MPa for S1(J3C4Js) during the experimental analysis. And the
results clearly indicate the superiority of flexural properties for S4 and S3 due to the
existence of carbon fiber as skin layers. Here again the numerical analysis resulted
in slightly higher flexural strength for all the specimen for the same reasons

explained in the previous point.

Comparing with experimental results the tensile and flexural simulation results to
be reliable was found. The data achieved through ANSYS ACP simulation showed
to be converging with the data found by experimental analysis for both the tensile

and flexural properties.
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e These simulations were also very accurate in determining realistic failure zone for

the specimen during these analyses.

From these above-mentioned points, it can be confidently claimed that the hybridization
with natural composites holds a significant potential for future manufacturing industries
and the cost of the future research and development can be drastically reduced using
FEA simulations with even more accuracy using less mess dimensions and anisometric
properties. Moreover, increasing natural composite applications can produce a huge
impact on climate change by lowering the synthetic wastes and carbon foot prints. The
above study of Jute-Carbon composite can be improved further by analyzing specimen
with complex shapes at anisometric conditions, further calibration of parameters for
simulations, and investigation of mesh sensitivity can reduce computational time and

increase accuracy of validation for numerical analysis.
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