

CLASSIFICATION OF ECG SIGNAL USING

HYBRID DEEP NEURAL NETWORK

By

MD. ASFI-AR-RAIHAN ASIF (160021079)

NAFEW AHMED (160021125)

MD. MOHI UDDIN KHAN (160021163)

An Undergraduate Thesis Submitted to the Academic Faculty in Partial Fulfillment of

the Requirements for the Degree of

BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC

ENGINEERING

Department of Electrical and Electronic Engineering

Islamic University of Technology (IUT)

Gazipur, Bangladesh

March 2021

ii

A dissertation on

CLASSIFICATION OF ECG SIGNAL USING

HYBRID DEEP NEURAL NETWORK

Approved by:

Dr. Golam Sarowar

Supervisor and Professor

Department of Electrical and Electronic Engineering (EEE)

Islamic University of Technology (IUT)

Boardbazar, Gazipur-1704, Bangladesh

Date: 10th March, 2021

iii

Declaration of Authorship

This is to certify that the work presented in this thesis paper is the

outcome of research carried out by the candidates under the supervision

of Dr. Golam Sarowar, Professor, Department of Electrical and

Electronic Engineering (EEE), Islamic University of Technology

(IUT). It is also declared that neither this thesis paper nor any part

thereof has been submitted anywhere else for the reward of any degree

or any judgment.

 Authors

 Md. Asfi-Ar-Raihan Asif

 ID-160021079

 Nafew Ahmed

 ID-160021125

 Md. Mohi Uddin Khan

 ID-160021163

iv

Dedicated to

Our beloved parents & teachers whose support made it all

possible for us

v

TABLE OF CONTENTS

List of Tables……………………………………………………………... vii

List of Figures…………………………………………………………...... viii

List of Acronyms…………………………………………………………. ix

Acknowledgment………………………………………………………..... x

Abstract…………………………………………………………………… xi

1. Introduction…... 01

 1.1 Introduction……………………………………………...……………………. 02

1.2 Significance of Research…………...…...……………………………............. 02

1.3 Objectives of this Research…………………………………………………... 05

1.4 Main Contribution…………………………………………………………..... 06

1.5 Thesis Outline……………………………………………………………….... 06

2. Literature Review…... 07

 2.1 Relevant Research………………………………………………………………. 07
 2.2 Comparative Analysis of Relevant Research…………………………………… 09

3. Methodology……………………………………………………………….. 10

 3.1 Basic Methodology…………………………………………………………….... 10
 3.2 Description of the Basic Methodology………………………………………...... 10

 3.3 Description of Performance Matrices in ML/DL……………………………….. 11

 3.4 Formula of Performance Matrices…………………... 11

 3.5 Detailed Methodology of our Research………………………………................. 12

4. Data Preprocessing…... 13

 4.1 Importance of Feature Engineering……………………………………………... 13

 4.2 Dataset Description…………………………………………………………….... 14

 4.3 Feature Engineering……………………………………………………………... 15

 4.3.1 Data Visualization……………………………………………………......... 15

 4.3.1.1 Data Distribution Plotting…………………………………............. 15

 4.3.1.2 ECG Signal plotting from the dataset…………………………....... 16

 4.3.2 Finding missing values & outliers……………………………………........ 17

 4.3.3 Histogram Plotting & Data Binning…………………………………......... 17

 4.3.4 Data Resampling………………………………………………………....... 20

 4.3.5 Plotting Correlation Heatmap…………………………………………....... 21

 4.3.6 Dataset Splitting………………………………………………………........ 21

vi

5. Introduction to Algorithms…... 22

 5.1 K-Nearest Neighbors…………………………………………………………..... 22

 5.2 Random Forest Classifier………………………………………………………... 24

 5.3 Support Vector Machine……………………………………………………….... 25

 5.4 Stochastic Gradient Descent…………………………………………………….. 26

 5.5 AdaBoost………………………………………………………………………... 28

 5.6 XGBoost……………………………………………………………………….... 29

 5.7 Recurrent Neural Network (LSTM method)…………………………………..... 31

 5.8, 5.9 Convolutional Neural Network & Deep CNN…………………………….... 33

 5.10 Variational Auto-encoders (VAEs)…………………………………………..... 36

 5.11 Deep Belief Network…………………………………………………………... 40

6. Result & Analysis….. 42

 6.1 Implementation of Machine Learning Algorithms……………………………… 42

 6.1.1 K-Nearest Neighbor……………………………………………………...... 42

 6.1.2 Random Forest Classifier………………………………………………...... 44

 6.1.3 Support Vector Machine ………………………………………………...... 45

 6.1.4 Stochastic Gradient Descent…………………………………………......... 47

 6.1.5 AdaBoost………………………………………………………………...... 48

 6.1.6 XGBoost………………………………………………………………....... 50

 6.2 Implementation of Deep Learning Algorithms………………………………….. 51

 6.2.1 Convolutional Neural Network………………………………………......... 51

 6.2.2 Recurrent Neural Network (LSTM)…………………………………......... 53

 6.2.3 Deep Convolutional Neural Network…………………………………....... 55

 6.2.4 Variational Autoencoder………………………………………………....... 56

 6.2.5 Deep Belief Network…………………………………………………........ 58

 6.2.6 Hybrid Deep Neural Network…………………………………………....... 60

7. Conclusion & Future Scopes….. 65

 7.1 Conclusion……………………………………………………………………..... 65

 7.2 Future Scopes…………………………………………………………………..... 65

References………………………………………………………………… 66

vii

LIST OF TABLES

Table 1.1 How different diseases are predicted based on ECG wave pattern.……….. 4

Table 2.1 Comparative Analysis of Relevant Research……………………………… 9

Table 3.1 Confusion Matrices in ML/DL…………………………………………….. 11

Table 4.1 ECG data categories of MIT-BIH Arrhythmia dataset……………………. 14

Table 6.1 Confusion Matrix (KNN)………………………………………………….. 42

Table 6.2 Classification Report (KNN)………………………………………………. 43

Table 6.3 Confusion Matrix (RFC)…………………………………………………... 44

Table 6.4 Classification Report (RFC)……………………………………………….. 44

Table 6.5 Confusion Matrix (SVM)………………………………………………….. 45

Table 6.6 Classification Report (SVM)………………………………………………. 46

Table 6.7 Confusion Matrix (SGD)…………………………………………………... 47

Table 6.8 Classification Report (SGD)………………………………………………. 47

Table 6.9 Confusion Matrix (AdaBoost)……………………………………………... 48

Table 6.10 Classification Report (AdaBoost)…………………………………………. 49

Table 6.11 Confusion Matrix (XGBoost)……………………………………………… 50

Table 6.12 Classification Report (XGBoost)………………………………………….. 50

Table 6.13 Confusion Matrix (CNN)………………………………………………….. 52

Table 6.14 Classification Report (CNN)………………………………………………. 52

Table 6.15 Confusion Matrix (LSTM)………………………………………………… 53

Table 6.16 Classification Report (LSTM)……………………………………………... 54

Table 6.17 Confusion Matrix (Deep CNN)……………………………………………. 55

Table 6.18 Classification Report (Deep CNN)………………………………………… 55

Table 6.19 Confusion Matrix (VAE)………………………………………………….. 57

Table 6.20 Classification Report (VAE)………………………………………………. 57

Table 6.21 Confusion Matrix (DBN)………………………………………………….. 58

Table 6.22 Classification Report (DBN)………………………………………………. 59

Table 6.23 Confusion Matrix (HDNN)………………………………………………... 60

Table 6.24 Classification Report (HDNN)…………………………………………….. 60

Table 6.25 Overall Accuracy of Classifiers from Machine Learning…………………. 62

Table 6.26 Overall Accuracy of Classifiers from Deep Learning……………………... 63

LIST OF FIGURES

Figure 1.1: The classical ECG curve with waveforms………………………............ 03

Figure 1.2: 12 lead ECG placement & view parts…………………………….......... 03

Figure 3.1: Basic Methodology Flowchart…………………………………….......... 10

Figure 3.2: Detailed Working Flow of our Research………………………….......... 12

Figure 4.1: Data Distribution………………………………………………….......... 15

Figure 4.2: Five categories of ECG Signal……………………………………......... 16

Figure 4.3: Normal Heartbeat…………………………………………………......... 18

Figure 4.4: Supraventricular Ectopic Beats…………………………………............ 18

Figure 4.5: Ventricular Ectopic Beats…………………………………………......... 19

Figure 4.6: Fusion Beats………………………………………………………......... 19

Figure 4.7: Unknown Beats…………………………………………………............ 20

Figure 4.8: Class Distribution before Resampling…………………………….......... 20

Figure 4.9: Class Distribution after Resampling………………………………......... 20

Figure 4.10: Correlation Heatmap……………………………………………............. 21

Figure 5.1: KNN Architecture………………………………………………............. 22

Figure 5.2: Random Forest Classifier architecture……………………………......... 24

Figure 5.3: Support Vector Machine architecture……………………………........... 25

Figure 5.4: Linear & Non-linear SVM architecture…………………………............ 25

Figure 5.5: Stochastic Gradient Descent architecture…………………………......... 27

Figure 5.6: AdaBoost Architecture……………………………………………......... 28

Figure 5.7: XGBoost Architecture…………………………………………….......... 30

Figure 5.8: Recurrent Neural Network (LSTM method) architecture………............ 31

Figure 5.9: Deep CNN Architecture…………………………………………........... 33

Figure 5.10: Variational Auto-encoders architecture…………………………............ 37

Figure 5.11: Reparameterization Tricks………………………………………........... 39

Figure 5.12: Deep Belief Network Architecture………………………………........... 40

Figure 6.1: Comparison of Performance Matrics (KNN)……………………........... 43

Figure 6.2: Comparison of Performance Matrics (RFC)……………………............ 45

Figure 6.3: Comparison of Performance Matrics (SVM)……………………........... 46

Figure 6.4: Comparison of Performance Matrics (SGD)……………………............ 48

Figure 6.5: Comparison of Performance Matrics (AdB) ……………………............ 49

Figure 6.6: Comparison of Performance Matrics (XGB)……………………........... 51

Figure 6.7: Comparison of Performance Matrics (CNN)……………………........... 53

Figure 6.8: Comparison of Performance Matrics (LSTM)…………………............. 54

Figure 6.9: Comparison of Performance Matrics (Deep CNN)……………….......... 56

Figure 6.10: Comparison of Performance Matrics (VAE)……………………........... 58

Figure 6.11: Comparison of Performance Matrics (DBN) …………………….......... 59

Figure 6.12: Comparison of Performance Matrics (HDNN)…………………............ 61

Figure 6.13: Overall Accuracy of Classifiers from ML Models………………........... 62

Figure 6.14: Overall Accuracy of Classifiers from DL Models…………………........ 63

Figure 6.15: Comparison of Performances of All Implemented Algorithms……........ 64

 viii

 LIST OF ACRONYMS

 KNN K-Nearest Neighbor

 RFC Random Forest Classifier

 SVM Support Vector Machine

 SGD Stochastic Gradient Descent

 AdB Adaptive Boosting

 XGB Extreme Gradient Boosting

 CNN Convolutional Neural Network

 RNN Recurrent Neural Network

 LSTM Long Short-Term Memory

 DCNN Deep Convolutional Neural Network

 VAE Variational Auto Encoder

 HDNN Hybrid Deep Neural Network

 RSCV Randomized Search Cross-Validation

 GSCV Grid Search Cross-Validation

 HPO Hyperparameter Optimization

 DHP Default Hyperparameter

ix

x

ACKNOWLEDGEMENTS

Foremost, we would like to express our sincere gratitude and gratefulness to the

Almighty Allah; without His graces and blessings, this study would not have been

possible.

Acknowledging all who helped us complete this work, we wish to compliment the

university's significant role and the department that has been very amiable to us during

the entire period of our research.

We are indebted to our honorable supervisor, Dr. Golam Sarowar sir, for his selfless

support, motivation, patience, enthusiasm, and extensive knowledge of the relevant

fields. His continuous guidance and careful supervision kept us going even during the

hardest of hours.

Lastly, our warmest tribute to our parents, family members, and friends, whose moral

support and well wishes benefitted us spiritually in achieving our goals.

xi

ABSTRACT

This dissertation studies a comprehensive approach to evaluating the performance of

different machine learning and deep learning algorithms to classify five ECG signal

categories. A novel algorithm is also proposed to achieve the same objective efficiently.

Cardiovascular disease is responsible for a prominent amount of mortality among

humankind is detected by analyzing ECG signals. ECG signal classification is an arduous

task since sometimes the abnormal heartbeats are too similar to categorize. Most of the

patients with heart diseases come to the doctor when the person is severely attacked.

Therefore, doctors or medical persons cannot take much time to start the treatment. The

heart is the most sensitive organ of the body, a misapprehension in classification can cause

death to the patient. Machine learning and deep learning can be handy tools for the

classification of the ECG signal quickly and efficiently. A Famous MIT-BIH ECG signal

dataset was utilized to train and test the models. Six machine learning algorithms and five

deep learning algorithms were studied with efficient hyperparameter optimization

technique, and their performance was evaluated. Finally, a novel Hybrid Deep Neural

Network (HDNN) was proposed which provided the best accuracy of 99.23% among all

the algorithms studied for the classification of ECG signal. A detailed comparative

analysis of performance with all other algorithms was carried out in terms of accuracy,

precision, recall, and F-1 score.

1

Chapter 1

INTRODUCTION

1.1 Introduction

One of the significant illnesses affecting human health is cardiovascular disease. Mortality

from cardiovascular diseases (CVDs) ranked first of all reasons of death today, according to

the World Health Organization's estimation. More than 17.7 million people have died from

CVDs or around 31 percent of all deaths. More than 75% of these deaths have occurred in

developing nations. What's more, cardiovascular disease (CVD) prevalence and mortality are

still increasing. To control and avoid CVDs, frequent monitoring of heart rhythm has also

become a progressively significant and necessary fact. Arrhythmia in coronary diseases is a

significant category of diseases. [1]

Arrhythmias are unusual beats of the heart due to the heart's inappropriate electrical activities

that may cause severe risks, such as heart disease, stroke, sudden cardiac death, etc. Heartbeats

are commonly divided into several different forms, as like normal beat (N), right bundle branch

block beat (RBBB), premature ventricular contraction (PVC), atrial premature

contraction (APC), etc. Every one of them exhibits varying signs and needed different forms

of medication. It's also essential to correctly identify different types of arrhythmias to provide

efficient, effective, and timely therapies. [2]

Arrhythmia may happen with other cardiovascular diseases or on its own. The diagnosis of

Arrhythmia relies primarily on an electrocardiogram (ECG). The ECG (electrocardiogram) is

a significant advanced medical instrument that tracks the heart’s excitability, transmission, and

recovery process. A major task for the automated diagnosis of cardiovascular disease is the

automatic identification of abnormal heartbeats from ECG signals. [1]

Four different measures form most current rhythm/morphology abnormality detection models:

1) acquisition of ECG signals; 2) analysis of data; 3) extraction of features; 4) classification.

Each activity can produce errors and cause false detection. ECG signal analysis has recently

been successfully extended to a deep learning-based approach that assembles feature extraction

and classification into one operation to overcome those challenges. The ECG deep learning

signal processing architecture has a better ability to draw on functionality that can learn deep

characteristics from the signals generated and automatically optimize the model for a high

degree of accuracy. [3]

Chapter – 1: Introduction

2

For deep learning methods, each model is made of stacked multi-hidden layers. Each hidden

layer, meanwhile, includes expanded parameters. The number of parameters that need to be

trained in the deep learning model is therefore high. The deep learning model demands a

sufficient amount of coaching by sufficient balanced coaching expertise to achieve a high

degree of accuracy. Furthermore, in operation, the incidence rates of different anomalies are

frequent. Usually, it results in a related degree of imbalanced distribution of numerous

abnormalities in collected ECG signals between minor and large cases. This class imbalance

prohibits the deep network from being instructed on how to assess the type of minority. [3]

1.2 Significance of Research

Automaticity, auto-rhythmicity, excitability, conductivity, contractility, refractory period, all

or none law & functional syncytium comprises the properties of cardiac muscles. A healthy

person's heart muscle should initiate normal cardiac impulse by SA node without an external

stimulus. It should contract and expand due to de/repolarization after a regular interval

maintaining a proper rhythm to conduct impulse from one heart muscle cell to another cell.

Both sympathetic and parasympathetic nerves supply the heart in the cardiac plexus mainly

through β1, β2 receptors and SA-AV nodes are supplied via muscarinic (M2) receptors.[4]

Normal heartbeat has the characteristic sequence of P-wave, followed by PR interval, then QRS

Complex, ST interval, T wave, and often U wave, which can be viewed in ECG machine. [4]

In the first step, atrial depolarization occurs since action potentials (voltage) start the journey

from the SA node towards the AV node. Atrial depolarization invokes atrial systole, which is

viewed as the P wave in the ECG machine. Action potentials further spread from the Atrio-

Ventricular node sweeping the bundle of HIS, followed by bundle branches and then Purkinje

fibers. Transportation of action potential causes ventricular depolarization, which further

invokes ventricular systole. These activities are viewed as the QRS complex in the ECG

machine. The time surpassed for the cardiac impulse to spread over the atrium is viewed as the

PR interval. Ventricular diastole is induced when action potential passes out of the ventricles;

this causes Ventricular repolarization viewed as the T wave. [4]

Chapter – 1: Introduction

3

Figure 1.1: The classical ECG curve with waveforms. [5]

Any imbalance or distortion in the timing or pattern of the beat is an indication of heart disease

caused by the ill-posed electrical activity of the heart, which can be viewed from ECG. Normal

12 lead ECG recording uses six chest leads (𝑉1 to 𝑉6), three bipolar standard leads (𝐿𝐼 , 𝐿𝐼𝐼 , 𝐿𝐼𝐼𝐼)

and three unipolar limb leads (aVR, aVL, aVF), which collectively work to gather & plot

different view parts of the heart's electrical activity. [4]

Figure 1.2: 12 lead ECG placement & view parts. [6]

Chapter – 1: Introduction

4

Table 1.1: How different diseases are predicted based on ECG wave pattern [7]

Heartbeat

segment
Nominal characteristic

Underlying diseases if nominal property

violated

P wave

Upright except aVR lead

Biphasic in 𝐿𝐼𝐼 & 𝑉1 lead

P axis is between 0° and 75°

An increase in amplitude occurs for Atrial

Enlargement (AE).

Right AE: P wave > 2𝑚𝑚 in 𝐿𝐼𝐼 , 𝐿𝐼𝐼𝐼 , 𝑎𝑉𝐹

Left AE: Broad & double-peaked P wave

PR interval 100 to 200 milliseconds
Interval time extension → First-degree

atrioventricular block

QRS complex

Q wave < 50 milliseconds in

all leads, excluding 𝑉1 & 𝑉3

Abnormality indicates a past or current

infarction

Imperfect R wave size or

height

R wave height larger → Ventricular

hypertrophy

90° to −30° QRS axis

Axis of −30° to −90° is recognized as Left

axis deviation and causes inferior myocardial

infarction.

Axis of 90° to 180° is recognized as Right

axis deviation and causes right ventricular

hypertrophy.

QRS interval of 70 to 100

milliseconds

Interval ≥ 120 milliseconds →

Intraventricular conduction delay or

Complete bundle branch block.

100 to 110 milliseconds interval →

Unspecific intraventricular conduction delay

or Incomplete bundle branch block.

QT segment -
Prolongation → Torsades de pointe

ventricular tachycardia

ST-segment
Horizontal with PR (or TP)

interval baseline

Elevation → Myocardial ischemia and

infarction, Left ventricular hypertrophy, Left

ventricular aneurysm, Early repolarization,

Pulmonary embolism, Pericarditis,

Hypothermia, Hyperkalemia

Depression → Subendocardial ischemia,

Hypokalemia, Reciprocal changes in acute

myocardial infarction, Digoxin

Chapter – 1: Introduction

5

T wave

Smooth, rounded & takes the

same direction as QRS

complex

Low amplitude → Hypokalemia,

Hypomagnesemia

Tall & peaked → Left ventricular

hypertrophy, Hyper/Hypocalcemia.

U wave
Sometimes present in a

healthy person

Commonly found in patients having

Hypokalemia, Hypomagnesemia, or

Ischemia

It's too cumbersome for a human to memorize properties tabulated above & look for the

appropriate pattern to predict the correct disease. Moreover, age, gender, sex, ethnicity,

locality, etc., impose a vital role in contributing to the different features of heart diseases.

Machine learning can help solve this enormous problem reducing the burden to physicians &

increasing their diagnostic accuracy. Different machine learning & deep learning algorithms

can be used to teach the computer a vast dataset to learn the correct ECG pattern corresponding

to various diseases; the computer will use this knowledge to diagnose new ECG data of a

patient further. Here comes the significance of the research related to Machine Learning for the

multiclass classification of different ECG waveforms.

1.3 Objectives of this Research

One of the most publicly available ECG datasets is MIT-BIH arrhythmia database which is

being used for decades to develop algorithms for automated arrhythmia detection which can

read & analyze diversified features and can classify a right group of ECG wave.

MIT-BIH arrhythmia dataset comprising 87554 instances with 188 attributes consists of 5

categories of ECG data: Normal heartbeats (N), Supraventricular ectopic beats (S), Ventricular

ectopic beats (V), Fusion beats (F), Unclassified beats (Q).

The objective & scope of this research work is to select the appropriate set of parameters, to

choose sensitive & highly correlated features, and to find out efficient ensemble algorithm to

perform multiclass classification of the arrhythmia dataset aiming for the development of

technologies that would early detect cardiovascular diseases giving the scope for prevention of

the disease.

Chapter – 1: Introduction

6

1.4 Main Contribution

We've analyzed the arrhythmia dataset with six machine learning algorithms (KNN, RFC,

SVM, SGD, AdB, XGB) & 5 deep learning algorithms (CNN, RNN-LSTM, Deep CNN, VAE,

DBN). We've performed hyperparameter tuning for each of the algorithms in order to select

the right set of hyperparameters giving the best accuracy, portrayed Confusion Matrices,

calculated individual & overall Performance matrices (Precision, Recall, Accuracy, F-1 score)

for finding out the best algorithm among these. Later we've proposed an HDNN algorithm that

offers the highest accuracy of 99.23% among the recent works performed for multiclass

classification of this dataset. The proposed HDNN algorithm is an ensemble of Deep CNN (11

layers), VAE (7 layers), DBN (64 layers).

1.5 Thesis Outline

In chapter – 1, the significance of research on cardiovascular disease classification from

ECG data is explained. The necessity of ML & DL algorithms for increasing the accuracy of

diagnostics & the main contribution of our research work is also described.

In chapter – 2, relevant research works published recently on ECG data classification

using ML & DL algorithms are analyzed comparatively that in-line with our research topic of

interest.

In chapter – 3, the central architecture & methodology of our entire work, performance

matrices that we calculated are narrated.

In chapter – 4, the Data preprocessing & Feature engineering process that we've

performed are visually depicted, which is an integral part of any ML/DL research.

In chapter – 5, the 6-Machine learning & 5 deep learning algorithms & their working

procedures are briefly described that we've implemented & optimized to compare the

performance matrices with our proposed HDNN algorithm.

Chapter – 6 describes the confusion & performance matrices of all the 11 algorithms &

compares the overall result & performance with our proposed HDNN algorithm, which

portrays 99.23% accuracy in the classification of the MIT-BIH Arrhythmia ECG dataset.

Finally, the discussion of our research work is concluded in chapter – 7 by mining out

the Future-scopes to improve & better implement our study of interest.

7

Chapter 2

LITERATURE REVIEW

2.1 Relevant Research

X. Zhang et al. extracted the ECG is featured by transform wavelet and builds a vector data set

of the key characteristics of the waveform features for each heartbeat and the RR interval [8].

For the identification of Arrhythmia through training and research, the ELM model is used. All

ECG function parameters have to be correctly acquired for proper classification. Here QRS

complex wavelet transform detection algorithm is used. The model is checked, and the average

accuracy of 94.4% is finally obtained using the 10-fold cross-validation process. The

result shows, this process is highly accurate and generalized, but the true positive rate for the

F and S classes is not high enough because the number of samples is too limited.

Kachuee et al. presented a method for the classification of heartbeat through ECG based on a

transferable representation [9]. It has a deep convolutional neural network with a residual

connection for Arrhythmia classification, which can be used as a base for training the classifiers

for the classification of MI accurately. The accuracy of this method is 95.9%. Here the

disadvantage is sample labels are not used in the visualization of the learned representation.

A. Rana and K. K. Kim used the single-layer LSTM model of the time series ECG to classify

ECG signals [10]. Three kinds of gates are used here. From the MIT-BIH dataset, ECG data is

collected, and then the input is sent to the LSTM model.100 hidden units with time step 10 and

batch size 50 are used here. It has an accuracy of 95% with 200 epochs. It has the disadvantage

is that the converging starts after 125 epochs.

Pu Wang et al. augmented data by Auxiliary Classifier Generative Adversarial Network

(ACGAN) and implemented the algorithm for classifying ECG signal using eight stacked

residual blocks connected parallel with 1-layer LSTM [3]. They reported an F-1 score of 0.883

for the performance of their proposed model.

Fajr Ibrahem Alarsan and Mamoon Younes performed machine learning approach for the

classification of ECG signals [11]. They used Apache Spark's scalable machine learning library

Chapter – 2: Literature Review

8

for the simulation, implemented Gradient Boosting Trees (GBT) and Random Forest Classifier

(RFC). In multiclass ECG classification, their proposed Random Forest Classifier with ten trees

and max depth of 25 gave 98.03% of accuracy.

S. Chakroborty and M. A. Patil proposed a classification paradigm of coarse-to-fine for

Arrhythmia to calculate an extensive database of real-time classification, which seeks to

address the computer burden problem without sacrificing the accuracy of the classification

[12]. The MIT-BIH Arrhythmia database experimentation has conducted five separated model

groups with a maximum speed-up factor of 2.2:1 and with minimal classification

accuracy deterioration. A decimation-based approach has been used to minimize the beat

length, and the use of the MSVQ method reduces the number of beats. The work also integrates

these two approaches and demonstrates a 2.2:1 time-complexity reduction relative to traditional

public database classification methods. In small databases, such as MIT-BIH, the speed-up

factor might not be very promising, but in a more extensive database, classes and beats are

massive, the speed-up factor would dramatically increase. Although this is more effective for

large datasets and not wise to use for small datasets, it showed an average accuracy of 98.1321

for each class.

Rekh Ram Janghel and Saroj Kumar Pandey used machine learning techniques for the

classification of ECG signals [13]. They implemented Support Vector Machine (SVM) with

linear and RBF kernel, Decision Tree (DT), Naïve Bayes (NB), K-Nearest Neighbour (KNN),

AdaBoost (AdB), and Random Forest (RF). The proposed Decision Tree (DT) classifier for

the detection of ECG signal having an accuracy of 93.4%

R. Banerjee et al. used a hybrid CNN-LSTM structure with a combination of the hand-crafted

features to bring both CAD markers in a single frame of architecture for the classification of

disease [14]. It has been applied to the datasets of two hospitals, and it was successful, which

proves its efficiency. A low-cost sensor was used in one of them. But both the biomarkers that

are considered in this paper fail to guarantee the onset of CAD. It also shows the failed approach

in the detection of a few borderline patients. However, it showed sensitivity, specificity values

of 0.94 & 0.92 respectively for test set-1 and 0.90 and 0.85 for test set-2.

Chapter – 2: Literature Review

9

2.2 Comparative Analysis of Relevant Research

Table 2.1: Comparative tabulation for a better understanding of previous relevant research

Work Model Used
Dataset

Used

Measures

Reported

Best Performance

Reported

[8]
Extreme Learning

Machine
MIT-BIH Accuracy 94.4%

[9] Deep-CNN MIT-BIH Accuracy 95.9%

[10] LSTM MIT-BIH Accuracy 95%

[3]
1-layer LSTM with 8

residual blocks
MIT-BIH F-1 Score 0.889

[11] Random Forest MIT-BIH Accuracy 98.03%

[12]
Coarse-to-fine

classification techniques
MIT-BIH Accuracy 98.1321%

[13] Decision Tree MIT-BIH Accuracy 93.4%

[14] CNN-LSTM MIT-BIH
Sensitivity

Specificity

0.94 & 0.90 (TS-1&2)

0.92 & 0.85 (TS-1&2)

10

Chapter 3

METHODOLOGY

3.1 Basic Methodology

The basic working flow of our research is depicted by a flowchart below:

Figure 3.1: Basic Methodology Flowchart

3.2 Description of the Basic Methodology

Firstly MIT-BIH ECG dataset was collected. The description of the dataset will be discussed

in the next chapter. Then the dataset was given input to the programming platform "Jypyter

Notebook" of Anaconda Navigator, which is a very famous platform for Machine Learning and

Deep Learning [15-16]. Exploratory Data Analysis was performed for the visualization from

the dataset. Data preprocessing and feature extraction were done to make the dataset perfect

for the Machine learning/Deep Learning models. Then, Data were split into train and test sets.

After that, a particular ML/DL algorithm was selected for the implementation of the model.

Hyperparameter optimization was done to make the models more efficient and compact. Then

the model was trained with the training dataset, and later on, they were tested with the test

dataset. Respective confusion matrices were portrayed. Finally, the performance of each model

was analyzed using various performance matrices like accuracy, precision, recall & F-1 score.

Chapter – 3: Methodology

11

3.3 Description of Performance Matrices in ML/DL

Performance Matrices of ML and DL come from the confusion matrices. Confusion matrices

give the visualization of the performance of the ML/DL models. Each row of the matrix

presents the instances of the actual class, where each column represents the instances of the

predicted class or vice-versa [17]. One example of the confusion matrix is mentioned below:

Table 3.1: Confusion Matrices in ML/DL

Here, we can see four terms like True Positive (TP), True Negative (TN), False Positive (FP),

and False Negative (FN). Their description is given below:

a) True Positive (TP): A class was predicted Positive, which is True actually.

b) True Negative (TN): A class was predicted Negative, which is True actually.

c) False Positive (FP): A class was predicted Positive, which is False actually.

d) False Negative (FN): A class was predicted Negative, which is False actually.

3.4 Formula of Performance Matrices

Formulae that were used to measure the performance matrices of ML and DL models in our

research are mentioned below [18]:

Confusion Matrix

Predicted

True False

Actual

True True Positive (TP) False Negative (FN)

False False Positive (FP) True Negative (TN)

a) TP TN
Accuracy

TP FP FN TN

+
=

+ + +

b)
TP

Precision
TP FP

=
+

c) TP
Recall

TP FN
=

+

d) 2
1

Precision Recall
F Score

Precision Recall

 
− =

+

Chapter – 3: Methodology

12

3.5 Detailed Methodology of our Research

The detailed working flow of our research is illustrated below:

Figure 3.2: Detailed Working Flow of our Research

Six Machine Learning Algorithms (KNN, RFC, SVC, SGD, AdB, XGB) and five Deep

Learning Algorithms (CNN, RNN-LSTM, DCNN, VAE, DBN) were implemented with

Default Hyperparameter (DHP) and later on with Hyperparameter Optimization (HPO) in our

research. In the end, our proposed Hybrid Deep Neural Network (HDNN) was implemented.

Their description and mathematical background will be discussed in chapter five.

13

Chapter 4

DATA PREPROCESSING

4.1 Importance of Feature Engineering

The most informative property or attribute related to any dataset to classify different dataset

patterns is known as features.

Feature Engineering is an integral part of any machine learning and deep learning model. A

good feature engineering technique can increase the efficiency & overall performance of the

model effectively [19].

The raw data collected from patient history & diagnostics are processed to transform them into

useful features that are compatible with algorithm requirements & better represent the

underlying & root cause of the disease to the predictive machine learning & deep learning

models. The procedure is known as Feature Engineering. Feature engineering converts the data

inputs into the most valuable assets that the classifier algorithm can understand & work on.

Different feature engineering techniques are [20]:

a) Data visualization

b) Finding missing values & Data imputation

c) Outlier mining & Handling outliers

d) Histogram Plotting & Data Binning

e) Data resampling

f) Plotting Correlation Heatmap

g) Dataset splitting

Chapter – 4: Data Preprocessing

14

4.2 Dataset Description

In our research, we have used MIT-BIH Arrhythmia Dataset from The PhysioNet repository,

which is a popular research resource for complex physiological signals [21]. The dataset

contains 87554 instances with 188 attributes. The sampling frequency is 125 Hz, and there are

five target categories. A short description of the categories is given below [22]:

Table 4.1: ECG data categories of MIT-BIH Arrhythmia dataset

Category Annotation

N

(Normal Beats)

• Normal

• Left/Right bundle branch block

• Atrial escape

• Nodal escape

S

(Supraventricular

ectopic beats)

• Atrial premature

• Aberrant atrial premature

• Nodal premature

• Supra-ventricular premature

V

(Ventricular ectopic

beats)

• Premature ventricular contraction

• Ventricular escape

F

(Fusion beats)
• Fusion of ventricular and normal

Q

(Unclassified beats)

• Paced

• Fusion of paced and normal

• Unclassifiable

Chapter – 4: Data Preprocessing

15

4.3 Feature Engineering

4.3.1 Data Visualization

Exploratory Data visualizations of the dataset are pivotal for realizing the pattern among the

features, especially whenever the dataset is high dimensional [23].

After taking input the data into the programming platform, several data visualization were

performed.

4.3.1.1 Data Distribution Plotting

Figure 4.1: Data Distribution

From the data distribution, it is seen that the classes are unevenly distributed like 82.8% of the

class is N, 7.3% is of S, 6.6% is of V, 2.5% is of F, and 0.7% is of Q category.

Chapter – 4: Data Preprocessing

16

4.3.1.2 ECG Signal plotting from the dataset:

Five categories of ECG signal were normalized to one and plotted up to 1750 ms:

Figure 4.2: Five categories of ECG Signal

Chapter – 4: Data Preprocessing

17

4.3.2 Finding missing values & outliers:

Some data might be found missing in the dataset due to technical interruptions during data

flow, human error due to lack of consciousness or proper training & deleted data for

maintaining patient data privacy.

For data size preservation, to keep the performance of the model unaffected, most occurred

value may be imputed in place of missing value, or it may be valued as NaN.

The data due to measurement or execution error that deviates significantly from the rest of the

dataset such that it's reasonable to be discarded are called outliers. Most of the machine learning

& deep learning algorithms are very sensitive to outliers. Therefore, data visualization through

the graph in terms of Standard Deviation or in terms of Percentiles gives a better opportunity

to detect & take the decision for handling the outliers. [20]

Our MIT-BIH ECG Arrhythmia Dataset was checked thoroughly to find any missing values &

outliers since missing values & outliers may create problems while training the model [24].

There was no missing value & outliers in our dataset of interest.

4.3.3 Histogram Plotting & Data Binning:

Even though this process costs the performance a little bit by making data a bit regularized

sacrificing information, but dataset binning gives much more advantage by preventing

overfitting & making the model robust.[20]

The color-coded 2D histogram is used to differentiate two categories of ECG data from a multi-

categorized dataset where the intensity range of the image is divided into bins of color codes

varying from green to red. The green color represents low counts of the target data group while

the red represents high counts of the target data group. [25]

From these, we can clearly distinguish the heartbeat pattern of the target group we want to

visualize from the other groups.

Chapter – 4: Data Preprocessing

18

N-type:

Figure 4.3: Normal Heartbeat

S-type:

Figure 4.4: Supraventricular Ectopic Beats

Chapter – 4: Data Preprocessing

19

V-type:

Figure 4.5: Ventricular Ectopic Beats

F-type:

Figure 4.6: Fusion Beats

Chapter – 4: Data Preprocessing

20

Q-type:

Figure 4.7: Unknown Beats

4.3.4 Data Resampling:

From the data distribution (Figure. 4.1), it is clearly seen that the classes are unevenly

distributed. So, if we train the model on this Data without preprocessing, the model may get

biased [26]. Resampling was done to each category of data so that the whole Data becomes

well balanced. After resampling, the data distribution becomes like the following figure:

Figure 4.8: Class Distribution before Resampling Figure 4.9: Class Distribution after Resampling

Chapter – 4: Data Preprocessing

21

4.3.5 Plotting Correlation Heatmap:

To portray the same dataset in a visually appealing way, it's an essential step in exploratory

data analysis, which graphically shows correlating variables, degree & direction of correlation

and notify us about multicollinearity problems.

The degree of correlation between variables varies from -1 to +1. Correlating values near to -1

defines the correlation between two variables as more negative (as one value increases, the

other value decreases); the closer to -1, the stronger the relationship is. Correlating values near

0 define no linear trend between the two variables. Correlating values near 1 represent the

positive linear trend between the two variables.

A correlation heatmap was plotted to view highly correlated dataset features with the target

output variable.

Figure 4.10: Correlation Heatmap

It was seen that from five to ninety-five and from one fifty to one seventy-five, the features

were highly correlated with the target output variables.

4.3.6 Dataset Splitting:

Data (87554 instances) were randomly shuffled & then split into 80:20 ratio for training (70043

instances) and testing (17511 instances), respectively, as this ratio shows the least bias and

variance for the machine learning and deep learning algorithms we implemented.

22

Chapter 5

INTRODUCTION TO ALGORITHMS

5.1 K-Nearest Neighbors [27,28]

K-nearest neighbors (KNN) is used for both regression & classification problems, but it's

termed as typically simple, nonparametric & lazy supervised algorithm.

It has the simplest working procedure based on distance measurement:

Step 1 – At first, the training & test dataset is being loaded.

Step 2 – Then nearest 'k' (any integer) number of data points are chosen.

Step 3 – Next, the following procedures are performed on every data point in the test

 dataset –

 a − Distance between each row of training data point and test data point is

 being measured.

 b – The test data points are sorted in ascending order based on the measured

 distance.

 c – Then, from the sorted array, upper K rows are being chosen in order to

 assign a class to the test data point depending on the most vibrant class of

 those sorted rows.

Step 4 – End of the algorithm

Figure 5.1: KNN Architecture [28]

Chapter – 5: Introduction to Algorithms

23

Distance functions:

i. Euclidean distance:

()
2

1

k

j j

j

p q
=

−

ii. Manhattan distance:

1

k

j

j

jp q
=

−

iii. Minkowski distance:

()
1

1

k nn

j j

j

p q
=

 
− 

 


iv. Hamming distance:

1

0

1

k

H j j

j

D p q

p q D

p q D

=

= −

=  =

  =



e.g.:

p q Distance

Vanilla Vanilla 0

Vanilla Chocolate 1

Chapter – 5: Introduction to Algorithms

24

5.2 Random Forest Classifier [29]

Introduction: Branched-trees are the indistinguishable property of a forest; the more trees, the

more robust the forest is. Random Forest algorithm is another type of supervised learning

technique applied in the tasks where Regression or Classification of data are required. Random

Forest classifier contains a couple of decision trees composed of different sub-groups of the

input dataset, and output from each tree is taken average in order to boost the predictive

precision of that dataset. A greater number of decision trees increases accuracy & prevents

overfitting.

Figure 5.2: Random Forest Classifier Architecture [29]

Working Procedure:

Step-1: Random 'P' data points are being picked from the given training dataset.

Step-2: Using those chosen data, the decision trees are built.

Step-3: Calculate how many ('D' number of) decision trees you want to construct.

Step-4: Loop on Step 1 & 2.

Step-5: Get majority vote by averaging predictions of from all decision the tree for new data

 points & that should be the final prediction.

Chapter – 5: Introduction to Algorithms

25

5.3 Support Vector Machine [30, 31]

Introduction: SVM is regarded as a few of the foremost prevalent supervised algorithms in

order to use in Classification or Regression problems. The algorithm portrays the hyperplane

(decision boundary) along the n-dimensional training dataset to form different classes so that

test data can be put in the appropriate sub-group in the future. SVM uses the extreme

points/vectors called support vectors to draw the hyperplane; hence the name Support Vector

Machine.

Figure 5.3: Support Vector Machine Architecture [31]

SVM is of 2 types based on hyperplane: Linear SVM & Non-linear SVM

Figure 5.4: Linear & Non-linear SVM architecture [31]

Chapter – 5: Introduction to Algorithms

26

Algorithm:

Hyperplane on a set of points' z' can be equated as,

0T z a − =

Hard Margin: It's implemented on a linearly separable training dataset so as to draw two

hyperplanes parallelly at the maximum distance separating two classes of data.

Hard margin
1, 1

1, 1

T

i i

T

i i

z a if y

z a if y






=


−  =

−  − =


−

Optimization problem: "Minimize  of () 1T

i iy z a −  where, 1, ,i n=  ."

Soft Margin: It's implemented in the case of a non-linearly separable training dataset.

Hinge loss function: ()()max 0,1 T

i iy z a− −

The optimization problem is to minimize:

()() 2

1

1
max 0,1

n
T

i i

i

y z a
n

  
=

 
− − + 

 


5.4 Stochastic Gradient Descent [32]

Introduction: It is an optimization machine learning algorithm. Gradient or function slope is

changing rate of a variable with respect to that of another variable. Numerically, the convex

function called Gradient Descent calculates the partial derivative of given input parameters.

The steepness of the slope depends on the larger value of the gradient. Gradient Descent

iteratively works to reduce cost function & finds the optimum cost value utilizing the input

dataset & parameters in order to predict the proper output.

Three varieties of Gradient Descent exist (Stochastic, Batch, Mini-batch).

The word 'stochastic' means distribution or pattern that may be examined statistically but may

not be predicted precisely. In case of the smaller dataset, batch or mini-batch gradient descent

can be useful & accurate where iteration goes through each & every input sample. But in case

of a vast dataset, sweeping through every dataset takes enormous computational time, which is

impractical. Stochastic Gradient Descent solves this problem where the whole dataset or the

batches are randomly shuffled & then a few data are selected from the shuffled dataset as input

to the gradient descent algorithm.

Chapter – 5: Introduction to Algorithms

27

Algorithm:

If the objective function is ()J w , the number of samples is n , the parameter is w , step size

or learning rate is  & regularization term  ; then repeat the following until objective/cost

function is minimized:

Minimize the objective function:

()
1

1
()

n

i

i

J w J w
n =

= 

Update parameter:

: ()w w J w w = −  + 

Figure 5.5: Stochastic Gradient Descent Architecture [32]

Chapter – 5: Introduction to Algorithms

28

5.5 AdaBoost [33]

Introduction: From several weak classifiers, an ensemble learning technique called Boosting

is used in order to develop a robust classifier that also deals with bias-variance trade-offs. While

bagging algorithms work for only high variance in a machine learning model, boosting controls

both the bias & variance; thus, boosting works more efficiently. Boosting builds models on

resampled data to reduce a model's variance to increase its generalization capability. Moreover,

boosting works for both generalization and prediction accuracy.

Few boosting algorithms can be exemplified as AdaBoost, Gradient Boosting, XGBoost,

CatBoost, Light GBM

AdaBoost represents Adaptive Boosting which is the first effective & viable boosting algorithm

created to work for binary classification. The tweak in this AdaBoost algorithm is, it gradually

ensembles the weak classifiers (with decision trees) after each iteration which previously

misclassified some data adjusting the weights to focus on misclassified data & eventually, the

ensembled weak classifiers work together as strong classifier with higher accuracy. As a result,

AdaBoost is sensitive to noisy data and outliers.

Figure 5.6: AdaBoost Architecture [33]

In the picture above: D1, D2, D3 lines of Box - 1, 2, 3 are weak classifiers trying to separate +

& -, but each one does few misclassifications. Together they've become a robust classifier, as

stated in Box-4.

Chapter – 5: Introduction to Algorithms

29

Algorithm: At every iteration –

i. Choose a weak classifier
mk .

ii. The classifier mk minimizes the total weighted error,

 ()

()i m i

m

i

y k x

w




iii. Use minimized total weighted error to calculate the error rate,

()

()

()
1

1

.
i m i

N
m m

m i i

y k x i

w w

−

 =

   
=        

 

iv. Calculate the weight: 11
ln

2

m
m

m


 −

=  
 

v. Improve the boosted classifier from
1mC −
 to

mC :

1m m m mC C k−= +

5.6 XGBoost [34, 35, 36]

XGBoost stands for Extreme Gradient Boosting, which uses an optimized distributed gradient

boosting (GBM) framework.

Features of XGBoost algorithm:

a) Parallel Computing: This algorithm does parallel processing via using all the cores of

a computer processor by default.

b) Regularization: This algorithm performs regularization, which is a technique to

avoid overfitting data. It was not available in the GBM framework.

c) Enabled Cross-Validation: XGBoost has an internal CV function, but in many other

models, we need to do cross-validation manually.

d) Missing Values: This algorithm can handle missing values internally, even the

tendency can be captured by the model.

Chapter – 5: Introduction to Algorithms

30

Model Representation: If M is the number of trees & Q is all possible trees, then,

1

ˆ () ;
M

i m i m

m

o q x q
=

= 

Figure 5.7: XGBoost Architecture [35]

Objective/Loss function:

() () ()
21

ˆ ˆ, () , ()
2

i i m i i

i m i m

l o o q l o o T   = +  = + +   

After regularization & optimization of the above function, the final Objective function

becomes:

() 2

1

1

2
j j

T
t

i j i j

j i I i I

Obj u v T   
=  

    
= + + +    

   
     

  

where,

()

()() ()

()()1 1

1 12

ˆ ˆ
andˆ ˆ, ,l l

t t
i i

t t

i i i i i i
o o

u o o v o o
− −

− −
=  = 

Chapter – 5: Introduction to Algorithms

31

5.7 Recurrent Neural Network (LSTM method) [37, 38]

In a recurrent neural network (RNN), nodal connections form a directed graph along a time-

dependent sequence.

RNN has many architectures: Hopfield, Fully recurrent, Echo state, Independently RNN

(IndRNN), Second-order RNNs, Bi-directional, Differentiable neural computer, Recursive,

Continuous-time, Hierarchical, Elman networks and Jordan networks, Recurrent multilayer

perceptron network, Long short-term memory, Gated recurrent unit, Multiple timescales

model, Neural history compressor, Neural Turing machines, Neural network pushdown

automata, Memristive Networks

We've used the Long short-term memory (LSTM) method in our study.

Introduction: Unlike a typical neural network, RNNs memorize the calculated events in

sequential time, make predictions & use the result for calculations in successive time periods

(don't start calculation from scratch every second). RNN learns from past data. The specialty

of LSTM architecture is, it can remember information for a prolonged time, which resolved the

problem of long-term dependent learning & the algorithm can use that information for later

predictions. e.g., "I live in Bangladesh & I speak?" – LSTM suggests text as 'Bengali.'

Figure 5.8: Recurrent Neural Network (LSTM method) Architecture [37]

Chapter – 5: Introduction to Algorithms

32

Architecture: At first, a sigmoid gate decides what information we need to delete from the

cell state
1tC −

. For each number belonging to the cell state, the Sigmoid function calculates

a number between 0 and 1. The number 1 tells that the data should exist & 0 tells to delete the

data.

1()t f f t f tf b W x W h −+= +

The next step decides for the cell state which relevant information should be stacked in it.

(a) The sigmoid layer determines which values we'll update.

(b) Another layer, called tanh() produces a vector tC of new values, and the vector

is added to the state.

()1t i t ti b Wx Wh −+= +

1tanh()t c c t c tC b W x W h −++=

In the third step, a new cell state
tC is updated from the previous

1tC −
 state.

1t t t t tC i C f C −+=

Chapter – 5: Introduction to Algorithms

33

Finally, the updated version of the cell state is used to calculate output data. Sigmoid & tanh ()

functions are used like 2nd step & outputs are multiplied so that we only get the parts we decided

to.

1()t o o t o to b W x W h −= + +

()tanht t th C o= 

We have discussed the simplest form of LSTM architecture; more variations of LSTM

architecture are being used in the research & industrial arena.

5.8, 5.9 Convolutional Neural Network & Deep CNN [39]

Introduction: Space/shift-invariant artificial neural networks or convolutional neural network

(CNN) is a regularized type of multilayer perceptrons in which neurons of a present layer is

connected to each neuron of the previous layer. Data overfitting tendency due to that intense

connectivity is resolved using regularization technique using updated weights which minimize

the cost/loss function. CNN architectures were modeled after biological processes of human

memory cells (neurons).

Figure 5.9: Deep CNN Architecture [39]

Chapter – 5: Introduction to Algorithms

34

Architecture:

i. Convolutional layer: The core building block of a CNN is referred to as kernels

(learnable filters). During forward propagation, discrete convolution occurs in each

filter with the zero-padded input.

Though much sophisticated convolutional algorithm is used in practice via

TensorFlow, the simplest formula of convolution can be mentioned as:

If original input having 'q' elements is denoted by X to the filter W having 't' filter

elements; if the zero-padded input vector is XP, then the practical convolution

formula:

1

0

* [] [] []
q

p

l

Y X W Y j X j q l W l
−

=

= → = + −

That's how the convolutional layer gradually learns filtering with a view to detecting

particular features in case of test input. This activation stacking method is repeated

for all the filters along the whole path of the convolutional layer leading final form

of complete output volume of the CNN layer.

Local connectivity: To avoid resource-hungry, intensely connected architecture

where each neuron of the present layer is connected to all of the previous layers, in

practice, local connectivity is preferred instead while working with a high-

dimensional input dataset. Convolutional networks follow a sparse local

connectivity pattern where each neuron connects to only a small region of input

volume backward & a small region of neuron forward. Such an architecture takes

advantage of spatially local correlation.

Spatial agreement: Three hyperparameters (depth, stride and zero-padding)

determine the output volume size of the convolutional layer.

The number of neurons (responsible for activating diverse features in the input) in

a layer is defined by the depth. For example, if the input of the ECG dataset is taken

by the first convolutional layer, then various neurons along the depth may activate

when it detects diversified peak amplitudes, spectral frequency.

The column depth around height and width is controlled by stride.

Padding defines output volume spatial size.

Parameter sharing: The parameter sharing scheme determines how many

parameters are free throughout the convolutional network.

Chapter – 5: Introduction to Algorithms

35

ii. Pooling layer: Non-linear down-sampling is referred to as pooling. It can be done

by many non-linear functions, but the Max pooling technique is used mostly. This

layer works intending to successively shrink the local dimension of the problem set,

which in turn lessen the size of memory & parameters that need to be used. This

efficient property finally helps to regulate high bias.

() 1

, , 0 2 ,2maxX Y a b X a Y bfunc S S= + +=

iii. Activation unit: These units find out the new features at every neuron node.

Sigmoid function: () ()
1

1 zf z e
−

−= +

Rectified Linear Unit (ReLu): () max(0,)f z z=

Hyperbolic tangent: () ()tanhf z z=

ReLu unit is mostly used because it shortens the training time of the neural network

model, but eventually, accuracy is maintained.

iv. Fully connected layer: The layer prior to the final layer of the network model after

multiple max-pooling & convolutional layers is called the fully connected layer.

Since all the neurons of this final layer connect to each neuron of the previous &

successive layer, it ensures high accuracy of the neural network model.

v. Loss layer: It's the final layer that calculates the difference between the true output

(given in the training set) & predicted output. Use of this layer is dependent on user

application:

Softmax is commonly used among Sigmoid cross-entropy loss, Softmax loss,

Euclidean loss methods because from N mutually exclusive classes, it has the

capability of predicting a single class.

Chapter – 5: Introduction to Algorithms

36

Hyperparameter Tuning: Filter size, amount of filters & max-pooling shape are chosen

carefully to achieve higher efficiency from the overall architecture.

Regularization methods: CNN uses the regularization process to prevent data from

overfitting or to introduce extra features to remedy the ill-posed problem. Various

regularization methods are:

(a) Empirical: Stochastic pooling, Dropout, DropConnect, Artificial Data

(b) Explicit: Max norm constraints, Early stopping, Weight decay, Numbers of

parameters

5.10 Variational Auto-encoders (VAEs) [40, 41]

Introduction: VAEs are a deep learning technique in order to learn latent representations.

Instead of a single point, these autoencoders give back a distribution over latent space.

Moreover, the algorithm adds a regularization parameter to the returned distribution in the loss

function. That's how it resolves the problem of the irregularity of the latent space.

Deep Generative Model: Let a directional latent-variable model

(), (|) ()p x z p x z p z= with observed x  , on that  can be either

discrete or continuous and latent
kz .

Consider the ECG data collection and latent factors (not observed during the workout) that

clarify characteristics of the ECG continuum. e.g., the frequency & amplified ECG data can be

encoded by one coordination, another by the corresponding pattern of disease. The model

multilayer can be defined as:

() ()1 1 2 2 3 1() () () m m mp x z p z z p z z p z z p z−∣ ∣ ∣ ∣

These are classified as profound generative models and can learn latent representation

hierarchies.

Chapter – 5: Introduction to Algorithms

37

Figure 5.10: Variational Auto-encoders Architecture [40]

Auto-encoding variational Bayes: It's an algorithm based on the ideas of variational inference

which can solve three learning and interference tasks efficiently. This algorithm is represented

by the variational auto-encoder. Our focus is on optimizing the evidence lower bound (ELBO)

in variational inference:

() () (), , |qp q log p x z log q z x    
 = − 

The ELBO fulfills the equation:

() () () ()(| || | ,log p x KL q z x p z x p q   = +

We define (|)q z x to be conditioned on x , where x is fixed. That means that we basically

are choosing a dissimilar ()q z effectively for each x so as to provide an improved posterior

approximation instead of always choosing the identical ()q z .

Black-box variational inference: It is designed to optimize q, which works for broad q groups.

It suggests that q which is used in the equation is differentiable by its parameters  . Rather

than just doing inferences, we will be coding to learn by gradient descent on both  and 

simultaneously. Optimizing  will hold ELBO close around log ()p x ; optimization of

 continue to drive up the lower bound (and hence log ()p x).

Chapter – 5: Introduction to Algorithms

38

The score function gradient estimator: We need to calculate the gradient by using score

function estimator to make the black-box variational inference:

() () () ()() (), , ,q qlog p x z log q z log p x z log q z log q z         
   − = −    

The SGVB estimator: The reformulation of the ELBO can be equated as,

 () () () () ()|
[| (| ||)]

q z x
log p x log p x z KL q z x p z

   −

Assume x as a data point observed. The right-hand side has two individual terms, both of

which include a sample ~ ()z q z x∣ , that could be considered as a code that describes x .

The encoder is called q. Given the sampled code z , ()log p x z∣ term is the log-likelihood

of the observing value of x . The maximized term ()p x z∣ offers a high probability to the

original x . From code z, it is trying to reconstruct x . That's why we can say ()p x z∣ is the

decoder network, and that term is being called reconstruction error.

The 2nd term, known as the regularization term, is the divergence between the ()p z and

()q z x∣ which should be defined as a unit Normal. Codes z to appear Gaussian are needed.

This forces it to learn some more interesting features instead of preventing ()q z x∣ identity

mapping from being encoded.

And that is how the optimized goal attempts to suit a ()q z x∣ will map x in a useful latent

room z ; that we can reconstruct from x using ()p x z∣ . This form of the target is

reminiscent of auto-encoders neural networks.

Chapter – 5: Introduction to Algorithms

39

The Reparameterization tricks: Under some minor conditions, the distribution ()|q z x

can be written as a 2-step generative process:

i. Like standard normal (0,1) , sample a noise variable from a simple

distribution ()p .

()p

ii. To map the random noise to a more complex distribution, apply a deterministic

transformation.

(,)z g x= .

Figure 5.11: Reparameterization Tricks [40]

The variational auto-encoder: Now, let's define the AEVB autoencoder. In its simplest form,

the AEVB algorithm is the amalgam of:

 (a) Auto-encoding ELBO reformulation

 (b) Black-box variational inference approach

 (c) Reparameterization-based low-variance gradient estimator.

The task of the AEVB algorithm is to optimize the auto-encoding ELBO with the help of a

reparametrized gradient estimator using the black-box variational inference method. This

AEVB algorithm can be used for any deep generative model p with latent variables that

can be differentiable in  . The AEVB algorithm is used by a variational autoencoder to learn

a particular model p while using an encoder q . The model p & q are parameterized as:

Chapter – 5: Introduction to Algorithms

40

() () ()()()2

, ; ,p x z x z diag z =

() () ()()()2

| ; ,q z x z x diag x =

() ();0,p z z I=

5.11 Deep Belief Network [42, 43]

Introduction: Deep belief networks are a collection of binary latent variables modeled after

the human brain that use unsupervised learning and probabilities. DBN contains both the

undirected & directed layers. DBN works globally for learning the whole dataset & handle

each layer in order. DBN shows a greater ability to process complex information & recognize

patterns like the human brain due to these properties.

Architecture: In DBN, the neurons of each layer have a weighted connection to all neurons of

the previous & next layer; the top layer connections are undirected & it allows associative

memory formation. However, bottom layer connections are directed. DBN can be compared to

a pile of Restricted Boltzmann Machines (RBMs); neurons in DBN don't communicate

sideways within their layer, unlike RBMs though.

Figure 5.12: Deep Belief Network Architecture [42]

Hidden layer neurons identify the correlations in the data, but they perform like hidden layers

to the preceding & as visible layers to the succeeding neurons.

Chapter – 5: Introduction to Algorithms

41

Training Procedure: Deep belief networks are pre-trained by greedy learning algorithms,

which start from the bottom but gradually move to the upper layer using layer-by-layer (each

layer trained at a time) basis learning, gradually finding optimal value at each layer & finally

finds global optimum. Greedy learning algorithms are famous for training deep belief networks

since they work to optimize the weights at every layer. Moreover, they are quick and efficient.

In the Contrastive Divergence model, gradient descent is used for updating weights using the

equations below:

If the probability of a visible vector, () (),1 E a b

b

prob a e
Z

−
= 

Then, updated weight,
() ()

()log()
1ij ij

ij

prob a
t t 





= − +


The Contrastive Divergence process:

1. Visible units are initialized as a training vector.

2. If bias of hidden unit jb is jc ; given the visible training vector, update hidden units

in parallel:

()1| ()j j i ij

i

prob b A ac += = 

3. If bias of ia is id ; since hidden units are found in the previous step, it's time for

parallel upgradation of the visible units:

()1| ()i i j ij

j

prob a B d b = = +

This is known as the "reconstruction" step.

4. Since reconstructed visible units are found, repeat step 2.

5. Update weight as follows:

.ij i j i jdata reconst
a b a b  −

After the end of training of one RBM layer, another RBM layer is readied as a training vector

& goes for training, taking the recently completed layer's output as its input. The new training

vector is trained using the procedure mentioned above & the overall process is repeated until

the stopping criterion is fulfilled.

42

Chapter 6

RESULT & ANALYSIS

6.1 Implementation of Machine Learning Algorithms

Six machine learning algorithms were implemented to classify five categories of ECG signals.

Firstly, they were implemented with the default hyperparameter (DHP) setting. The

performance was too low. That is why Randomized Search Cross-Validation (RSCV)

hyperparameter tuning technique was introduced. Randomized Search Cross-Validation

(RSCV) is an efficient hyperparameter tuning technique that is suitable for a large amount of

training data [44]. It is also more time-efficient than another hyperparameter tuning technique

called Grid Search Cross-Validation (GSCV) [45]. Every machine learning model was trained

with the RSCV hyperparameter optimization technique, and the performance of the model was

increased.

6.1.1 K-Nearest Neighbor

K-nearest neighbor was implemented using neighbor size 19 and leaf size six found from

Randomized Search Cross-validation hyperparameter optimization. KDTree algorithm was

used to calculate the distance between two neighbors. Distance function was used as a weight

function. After training and testing the model, the confusion matrix was found like below:

Table 6.1: Confusion Matrix (KNN)

Confusion Matrix

(KNN)

Predicted

N S V F Q

Actual

N 12577 619 419 488 215

S 203 73 155 91 97

V 490 231 102 178 161

F 81 61 36 23 19

 Q 282 177 180 183 410

Chapter – 6: Results & Analysis

43

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.2: Classification Report (KNN)

Class Accuracy Precision Recall F-1 Score

N 84.06% 0.92 0.88 0.90

S 90.69% 0.063 0.12 0.082

V 89.46% 0.11 0.088 0.099

F 93.52% 0.024 0.10 0.039

Q 92.51% 0.45 0.33 0.38

Overall Accuracy= 75.12%

Figure 6.1: Comparison of Performance Metrics of KNN

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Accuracy Precision Recall F-1 Score

Comparison of Performance Metrics of KNN

N S V F Q

Chapter – 6: Results & Analysis

44

6.1.2 Random Forest Classifier

Random Forest Classifier was implemented with 'entropy' as the measurement of the quality s

plit, max depth of 8. 'Sqrt' was used as max feature function. The number of trees in the forest

was taken as 200. After training and testing the model, the confusion matrix was found like be

low:

Table 6.3: Confusion Matrix (RFC)

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.4: Classification Report (RFC)

Class Accuracy Precision Recall F-1 Score

N 83.06% 0.93 0.85 0.89

S 88.52% 0.18 0.25 0.21

V 87.97% 0.15 0.13 0.14

F 91.25% 0.087 0.23 0.13

Q 91.57% 0.34 0.36 0.35

Confusion Matrix

(RFC)

Predicted

N S V F Q

Actual

N 14259 141 51 33 10

S 67 361 16 11 06

V 73 16 1036 21 21

F 27 09 11 83 02

 Q 39 47 48 25 1135

Chapter – 6: Results & Analysis

45

Overall Accuracy= 71.18%

Figure 6.2: Comparison of Performance Metrics of RFC

6.1.3 Support Vector Machine

Support Vector Machine was executed with RBF kernel. 'Scale' was taken as kernel coefficient

for RBF. The regularization parameter 'c' was taken as 1. After training and testing the model,

the confusion matrix was found like below:

Table 6.5: Confusion Matrix (SVM)

Confusion Matrix

(SVM)

Predicted

N S V F Q

Actual

N 13665 348 253 161 114

S 148 134 103 41 53

V 381 219 329 124 121

F 48 9 29 38 12

 Q 241 144 136 140 560

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Accuracy Precision Recall F-1 Score

Comparison of Performance Metrics of RFC

N S V F Q

Chapter – 6: Results & Analysis

46

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.6: Classification Report (SVM)

Class Accuracy Precision Recall F-1 Score

N 90.35% 0.94 0.94 0.94

S 93.93% 0.16 0.28 0.20

V 92.22% 0.39 0.28 0.33

F 96.79% 0.075 0.28 0.12

Q 94.52% 0.65 0.46 0.54

Overall Accuracy= 83.9%

Figure 6.3: Comparison of Performance Metrics of SVM

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

N S V F Q

Comparison of Performance Metrics of SVM

Accuracy Precision Recall F-1 Score

Chapter – 6: Results & Analysis

47

6.1.4 Stochastic Gradient Descent

Stochastic Gradient Descent is performed with 'perceptron' loss function and l2 regularization.

The regularization constant multiplier was taken as 0.001, and the epsilon-insensitive loss

function was taken as 'Huber.' 'Adaptive' learning rate was used. After training and testing the

model, the confusion matrix was found like below:

Table 6.7: Confusion Matrix (SGD)

Confusion Matrix

(SDG)

Predicted

N S V F Q

Actual

N 12455 634 434 481 228

S 195 58 179 102 106

V 496 239 95 183 169

F 87 71 43 32 25

 Q 285 182 191 152 439

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.8: Classification Report (SGD)

Class Accuracy Precision Recall F-1 Score

N 83.82 0.92 0.88 0.90

S 90.33% 0.049 0.092 0.064

V 89.04% 0.10 0.080 0.090

F 93.48% 0.034 0.12 0.053

Q 92.38% 0.45 0.35 0.40

Overall Accuracy= 74.52%

Chapter – 6: Results & Analysis

48

Figure 6.4: Comparison of Performance Metrics of SGD

6.1.5 AdaBoost

Adaptive Boosting algorithm was incorporated with Decision Tree base estimator, the

maximum number of estimators of 100 and learning rate 0.01. AdaBoost assigns more weight

to the wrongly classified observation so that in the next iteration, it gets a high probability for

the classification. The model was iterated 100 times which was the number of maximum

estimators. After training and testing the model, the confusion matrix was found like below:

Table 6.9: Confusion Matrix (AdaBoost)

Confusion Matrix

(AdaBoost)

Predicted

N S V F Q

Actual

N 13216 508 355 281 159

S 177 78 126 61 59

V 463 224 142 149 146

F 53 15 29 27 12

 Q 261 194 162 164 440

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Accuracy Precision Recall F-1 Score

Comparison of Performance Metrics of SGD

N S V F Q

Chapter – 6: Results & Analysis

49

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.10: Classification Report (AdaBoost)

Class Accuracy Precision Recall F-1 Score

N 87.14% 0.93 0.91 0.92

S 91.94% 0.073 0.16 0.099

V 90.29% 0.17 0.12 0.14

F 95.65% 0.040 0.20 0.066

Q 93.41% 0.54 0.36 0.43

Overall Accuracy= 79.21%

Figure 6.5: Comparison of Performance Metrics of AdB

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Accuracy Precision Recall F-1 Score

Comparison of Performance Metrics of AdB

N S V F Q

Chapter – 6: Results & Analysis

50

6.1.6 XGBoost

Extreme Gradient Boosting was implemented where 'gbtree' was used as a booster. The

learning rate was taken as 0.2, and the loss reduction parameter 'gamma' was taken as 0.1. The

maximum depth of the trees was taken as ten, and gradient-based sampling method was used.

After training and testing the model, the confusion matrix was found like below:

Table 6.11: Confusion Matrix (XGBoost)

Confusion Matrix

(XGB)

Predicted

N S V F Q

Actual

N 12816 609 420 466 201

S 185 73 140 73 70

V 473 211 123 164 156

F 56 18 31 22 16

 Q 263 201 166 170 428

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.12: Classification Report (XGBoost)

Class Accuracy Precision Recall F-1 Score

N 84.77% 0.93 0.88 0.91

S 91.41% 0.066 0.13 0.088

V 89.97% 0.14 0.11 0.12

F 94.34% 0.025 0.15 0.042

Q 92.92% 0.49 0.35 0.41

Chapter – 6: Results & Analysis

51

Overall Accuracy= 76.6%

Figure 6.6: Comparison of Performance Metrics of XGB

6.2 Implementation of Deep Learning Algorithms

From the previous section, it was seen that Machine Learning Algorithms were not performing

that much good. The reasons behind this are multiclass classification and a considerable

amount of training data. So Deep Learning Algorithm implementation was performed, which

can handle multiclass classification more efficiently [46]. For hyperparameter optimization,

instead of Grid Search Cross-Validation (GSCV), Randomized Search Cross-Validation

(RSCV) was also used. RSCV is more efficient than GSCV in the case of deep learning [47].

6.2.1 Convolutional Neural Network

The convolutional neural network was incorporated. Here, four 2D convolutional layers and

2D Global average pooling were used. Put the first convolutional layer; the kernel size was

taken 10, 2 and 5, 2 was taken for the rest of the convolutional layers. 'ReLu' was used as an

activation function, and 'Batch normalization' was used to standardize the Data while giving

input to each layer of the neural network. Drop out function was used with the rate is equal to

0.5 to prevent the overfitting of the training data. The last layer was a fully connected layer for

achieving classification results where the softmax function was used as the activation function.

The confusion matrix which was found after training and testing of the model is portrayed

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Accuracy Precision Recall F-1 Score

Comparison of Performance Metrics of XGB

N S V F Q

Chapter – 6: Results & Analysis

52

below:

Table 6.13: Confusion Matrix (CNN)

Confusion Matrix

(CNN)

 Predicted

N S V F Q

Actual

N 14259 141 51 33 10

S 67 361 16 11 06

V 73 16 1036 21 21

F 27 09 11 83 02

 Q 39 47 48 25 1135

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.14: Classification Report (CNN)

Class Accuracy Precision Recall F-1 Score

N 97.49% 0.99 0.98 0.98

S 98.22% 0.63 0.78 0.70

V 98.54% 0.89 0.89 0.89

F 99.21% 0.48 0.63 0.54

Q 98.87% 0.97 0.88 0.92

Overall Accuracy= 96.16%

Chapter – 6: Results & Analysis

53

Figure 6.7: Comparison of Performance Metrics of CNN

6.2.2 Recurrent Neural Network (LSTM)

RNN Bidirectional LSTM was performed because rather than other RNN models, LSTM is

more efficient since it doesn't have the weight vanishing problem. Also, bidirectional LSTM is

used as It preserves both the information of past and future input. 64-layer bidirectional LSTM

was performed where 'tanh' and 'sigmoid' was used as activation function respectively. Finally,

a dense layer having a 'softmax' activation function was added for getting the classification.

After training and testing, this confusion matrix was found:

Table 6.15: Confusion Matrix (LSTM)

Confusion Matrix

(RNN)

Predicted

N S V F Q

Actual

N 14241 148 53 37 13

S 78 345 23 11 21

V 21 19 1029 23 22

F 28 09 13 79 07

 Q 41 44 49 27 1110

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

N S V F Q

Comparison of Performance Metrics of CNN

Accuracy Precision Recall F-1 Score

Chapter – 6: Results & Analysis

54

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.16: Classification Report (LSTM)

Class
Accuracy Precision Recall F-1 Score

N 97.27% 0.98 0.98 0.98

S 97.99% 0.61 0.72 0.66

V 98.39% 0.88 0.88 0.88

F 99.12% 0.45 0.58 0.50

Q 98.72% 0.95 0.87 0.91

Overall Accuracy=95.74%

Figure 6.8: Comparison of Performance Metrics of LSTM

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

N S V F Q

Comparison of Performance Metrics of RNN

Accuracy Precision Recall F-1 Score

Chapter – 6: Results & Analysis

55

6.2.3 Deep Convolutional Neural Network

The deep convolutional neural network was implemented where there were 7 two dimensional

convolutional layers. For the first convolutional layers, the kernel size was taken (20,2) and

(10,2) for the other layers. 'ReLu' was used as an activation function, and 'Batch normalization,'

'Drop out function' were used like previously implemented CNN. The last layer was fully

connected, where ReLu was used as an activation function. After train and testing, the

confusion matrix was like below:

Table 6.17: Confusion Matrix (Deep CNN)

Confusion Matrix

(Deep CNN)

Predicted

N S V F Q

Actual

N 14302 117 37 30 8

S 55 386 3 1 0

V 21 1 1128 5 3

F 15 1 7 105 0

 Q 7 0 1 0 1278

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.18: Classification Report (Deep CNN)

Class Accuracy Precision Recall F-1 Score

N 98.34% 0.99 0.99 0.99

S 98.98% 0.76 0.87 0.81

V 99.55% 0.96 0.97 0.97

F 99.66% 0.74 0.82 0.78

Q 99.89% 0.99 0.99 0.99

Overall Accuracy=98.22%

Chapter – 6: Results & Analysis

56

Figure 6.9: Comparison of Performance Metrics of Deep CNN

6.2.4 Variational Autoencoder

Variational autoencoder learns from the distribution of data by calculating the mean and

variance of the latent vectors for every sample forcing to follow a standard normal distribution.

The autoencoder was formed by repeating multiple convolutional layers and pooling layers in

the 'keras’ platform. Two fully connected layers were used for calculating mean and log

variance from the convoluted features. These mean and log-variance were used to measure the

latent encoding for the input data points. Then this latent encoding vector was passed to build

the model.

The decoder is also formed by deconvolutional layers and up-sampling layers. The decoder

takes the latent encoding vector as input and correlates with the original data. Thus, the decoder

model was built.

Finally, the variational autoencoder was formed by combining the encoder and decoder parts.

After training and testing, this confusion matrix was found:

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

N S V F Q

Comparison of Performance Metrics of Deep CNN

Accuracy Precision Recall F-1 Score

Chapter – 6: Results & Analysis

57

Table 6.19: Confusion Matrix (VAE)

Confusion Matrix

(VAE)

Predicted

N S V F Q

Actual

N 14284 128 44 30 8

S 57 379 10 2 0

V 26 7 1113 12 4

F 19 5 9 97 0

 Q 27 7 3 5 1235

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.20: Classification Report (VAE)

Class Accuracy Precision Recall F-1 Score

N 98.06% 0.99 0.99 0.99

S 98.77% 0.72 0.85 0.78

V 99.34% 0.94 0.96 0.95

F 99.53% 0.66 0.75 0.70

Q 99.69% 0.99 0.97 0.98

 Overall Accuracy=97.7%

Chapter – 6: Results & Analysis

58

Figure 6.10: Comparison of Performance Metrics of VAE

6.2.5 Deep Belief Network

Deep belief network is based on Restricted Boltzmann Machines (RBM). Deep Belief network

was implemented from TensorFlow, Scikit-Learn, and Numpy library with hidden layer

structure (50,50), restricted Boltzmann machine learning rate 0.05 and model learning rate 0.1

and ‘ReLu’ activation function. After train and testing, this confusion matrix was found:

Table 6.21: Confusion Matrix (DBN)

Confusion Matrix

(DBN)

Predicted

N S V F Q

Actual

N 14278 130 46 31 9

S 60 374 11 2 1

V 29 08 1105 14 6

F 22 08 9 92 01

 Q 39 20 8 13 1235

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

N S V F Q

Comparison of Performance Metrics of VAE

Accuracy Precision Recall F-1 Score

Chapter – 6: Results & Analysis

59

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.22: Classification Report (DBN)

Class Accuracy Precision Recall F-1 Score

N 97.91% 0.99 0.99 0.99

S 98.63% 0.69 0.83 0.76

V 99.25% 0.94 0.95 0.94

F 99.43% 0.61 0.70 0.65

Q 99.45% 0.99 0.94 0.96

Overall Accuracy=97.34%

Figure 6.11: Comparison of Performance Metrics of DBN

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

N S V F Q

Comparison of Performance Metrics of DBN

Accuracy Precision Recall F-1 Score

Chapter – 6: Results & Analysis

60

6.2.6 Hybrid Deep Neural Network

Deep CNN, Variational Autoencoder, and Deep Belief Network are ensembled to form a Deep

Hybrid Neural Network. 11-layer deep CNN was connected to a 7-layer variational

autoencoder, and then a 64-layer deep belief network was connected to it. At last, a fully

connected layer was added for getting the classification result. There are several benefits of

merging these three deep neural network architectures together. Data gets efficient nodes to

propagate as well as classification gets more perfect. But since it is a bigger network, the

mathematical calculation gets more complicated. Though it takes more amount of time for

training and testing, it gives more efficient classification. After training & testing, the confusion

matrix was found like below:

Table 6.23: Confusion Matrix (HDNN)

Confusion Matrix

(HDNN)

Predicted

N S V F Q

Actual

N 14449 30 6 5 5

S 50 392 2 1 0

V 10 2 1136 6 3

F 7 1 3 117 0

 Q 3 0 0 0 1283

Classification Report: The classification report which is found from the calculation from the

above confusion matrix is portrayed below:

Table 6.24: Classification Report (HDNN)

Class Accuracy Precision Recall F-1 Score

N 99.34% 1 1 1

S 99.51% 0.92 0.88 0.90

V 99.82% 0.99 0.98 0.99

F 99.87% 0.91 0.91 0.91

Q 99.94% 0.99 1 1

 Overall Accuracy=99.23%

Chapter – 6: Results & Analysis

61

Figure 6.12: Comparison of Performance Metrics of HDNN

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

N S V F Q

Comparison of Performance Metrics of HDNN

Accuracy Precision Recall F-1 Score

Chapter – 6: Results & Analysis

62

Overall Performance of All the Classifiers:

Table 6.25: Overall Accuracy of Classifiers from Machine Learning

Figure 6.13: Overall Accuracy of Classifiers from ML Models

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

K-Nearest
Neighbour

Random Forest
Classifier

Support Vector
Machine

Stochastic
Gradient
Descent

AdaBoost XG Boost

Overall Accuracy of the Classifiers of ML Models

Classifier Accuracy

K-Nearest Neighbour 75.12%

Random Forest Classifier 71.18%

Support Vector Machine 83.9%

Stochastic Gradient Descent 74.52%

AdaBoost 79.21%

XG Boost 76.7%

Chapter – 6: Results & Analysis

63

Table 6.26: Overall Accuracy of Classifiers from Deep Learning

Figure 6.14: Overall Accuracy of Classifiers from DL Models

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

Convolutional
Neural Network

Recurrent
Neural Network

Deep
Convolutional

Neural Network

Variational
Autoencoder

Deep Belief
Network

Hybrid Deep
Neural Network

(Proposed)

Overall Accuracy of the Classifiers of DL Models

Classifier Accuracy

Convolutional Neural Network 96.16%

Recurrent Neural Network 95.74%

Deep Convolutional Neural Network 98.22%

Variational Autoencoder 97.7%

Deep Belief Network 97.34%

Hybrid Deep Neural Network

(Proposed)
99.23%

Chapter – 6: Results & Analysis

64

Figure 6.15: Comparison of Performances of All Implemented Algorithms

Here, it is graphically seen that our proposed Hybrid Deep Neural Network (HDNN) model

has got the best accuracy among all other algorithms used in this research.

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Comparison of Performances of All Implemented Algorithms

65

Chapter 7

CONCLUSION & FUTURE SCOPES

7.1 Conclusion

Computer-Aided Diagnostics (CAD) has an extensive dominance in the pathological arena in

order to detect the underlying health conditions precisely & accurately. However, to avail the

benefits of the ideology “Prevention is better than cure,” many biotech giants & medical

research institutes have already been started working on early detection of diseases harnessing

the early-stage biomarkers. Recent developments unleashed the technology of ECG & heart

rate detection even in the smartwatch, which is being used daily; the accuracy & preciseness

of the collected data & predicted result isn’t appropriate for medical use, though. Nevertheless,

these techs can give an alert ringing the bell in the early stage of cardiovascular diseases

invoking the patient to consult physicians earlier before the most precious time is lost.

Keeping these potential scopes in mind, this research paper analyzed the MIT-BIH ECG dataset

evaluating the performance of eleven different algorithms for multiclass (Five categories of

ECG Signal) classification & finally, proposed a Hybrid Deep Neural Network (HDNN). After

calculating the individual & overall accuracy, precision, recall & F-1 score from the confusion

matrices of all the algorithms, we conclude that the proposed HDNN algorithm outperforms

the other eleven algorithms & other pieces of literature we studied, giving overall accuracy of

99.23%. Thus, our proposed model can help doctors, diagnostic centers, and medical

professionals to classify ECG signals quickly and so that it can prevent cardiovascular diseases

early and efficiently bringing welfare to the human being.

7.2 Future Scopes

The proposed model holds the future scope of upgradation by incorporating few non-invasive

features like family disease history, patient demographics & lifestyle; qualitative analysis of

different parts (P, PR, QRS, ST, QT, T, U) of the beat; implementation of software or

application for smartwatches & smartphones. Though the proposed model seems very efficient

on the MIT-BIH data set, it might fluctuate slightly on the practical data set despite doing cross-

validation. So, in the future, the proposed model can be trained with more practical data

collecting from the hospitals and diagnostic centers so that this fluctuation is as less as possible.

Also, training with regionally collected data will help to provide better results to the regional

people.

66

References

1. J. Huang, B. Chen, B. Yao and W. He, "ECG Arrhythmia Classification Using STFT-

Based Spectrogram and Convolutional Neural Network," in IEEE Access, vol. 7, pp.

92871-92880, 2019, doi: 10.1109/ACCESS.2019.2928017.

2. F. Liu, X. Zhou, J. Cao, Z. Wang, H. Wang and Y. Zhang, "A LSTM and CNN Based

Assemble Neural Network Framework for Arrhythmias Classification," ICASSP 2019

- 2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Brighton, United Kingdom, 2019, pp. 1303-1307, doi:

10.1109/ICASSP.2019.8682299

3. Wang, Pu & Hou, Borui & Shao, Siyu & Yan, Ruqiang. (2019). ECG Arrhythmias

Detection Using Auxiliary Classifier Generative Adversarial Network and Residual

Network. IEEE Access. PP. 1-1. 10.1109/ACCESS.2019.2930882.)

4. Abdullah, A. (2014). ECG in Medical Practice (4th ed.). Jaypee Brothers Medical Pub.

5. ECG & Echo Waves. (2021, February 22). ECG interpretation: Characteristics of the

normal ECG (P-wave, QRS complex, ST segment, T-wave) –. ECG & ECHO.

https://ecgwaves.com/topic/ecg-normal-p-wave-qrs-complex-st-segment-t-wave-j-

point/

6. Furst, J. (2017, February 13). Recording a 12 lead ECG/EKG. First Aid for Free.

https://www.firstaidforfree.com/recording-a-12-lead-ecgekg/

7. Electrocardiography. (n.d.). MSD Manual Professional Edition.

https://www.msdmanuals.com/professional/cardiovascular-disorders/cardiovascular-

tests-and-procedures/electrocardiography#v931549

8. X. Zhang et al., "Classification of Arrhythmia Based on Extreme Learning Machine,"

2018 10th International Conference on Intelligent Human-Machine Systems and

Cybernetics (IHMSC), Hangzhou, China, 2018, pp. 123-126, doi:

10.1109/IHMSC.2018.10135.

9. Kachuee, Mohammad & Fazeli, Shayan & Sarrafzadeh, Majid. (2018). ECG Heartbeat

Classification: A Deep Transferable Representation.

10. Rana and K. K. Kim, "ECG Heartbeat Classification Using a Single Layer LSTM

Model," 2019 International SoC Design Conference (ISOCC), Jeju, Korea (South),

2019, pp. 267-268, doi: 10.1109/ISOCC47750.2019.9027740

https://ecgwaves.com/topic/ecg-normal-p-wave-qrs-complex-st-segment-t-wave-j-point/
https://ecgwaves.com/topic/ecg-normal-p-wave-qrs-complex-st-segment-t-wave-j-point/
https://www.firstaidforfree.com/recording-a-12-lead-ecgekg/
https://www.msdmanuals.com/professional/cardiovascular-disorders/cardiovascular-tests-and-procedures/electrocardiography#v931549
https://www.msdmanuals.com/professional/cardiovascular-disorders/cardiovascular-tests-and-procedures/electrocardiography#v931549

References

67

11. Alarsan, Fajr & Younes, Mamoon. (2019). Analysis and classification of heart diseases

using heartbeat features and machine learning algorithms. Journal of Big Data. 6.

10.1186/s40537-019-0244-x.

12. S. Chakroborty and M. A. Patil, "Real-time arrhythmia classification for large

databases," 2014 36th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society, Chicago, IL, USA, 2014, pp. 1448-1451, doi:

10.1109/EMBC.2014.6943873.

13. R. R. Janghel and S. k. Pandey, "Classification and Detection of Arrhythmia in ECG

Signal Using Machine Learning Techniques," 2019 16th International Conference on

Electrical Engineering/Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON), Pattaya, Thailand, 2019, pp. 101-104, doi: 10.1109/ECTI-

CON47248.2019.8955208.

14. R. Banerjee, A. Ghose and K. Muthana Mandana, "A Hybrid CNN-LSTM Architecture

for Detection of Coronary Artery Disease from ECG," 2020 International Joint

Conference on Neural Networks (IJCNN), Glasgow, UK, 2020, pp. 1-8, doi:

10.1109/IJCNN48605.2020.9207044.

15. “Jupyter Notebook” (https://www.jupyter.org/)

16. “Anaconda Navigator” (https://docs.anaconda.com/anaconda/navigator/)

17. “Confusion Matrix” (https://en.wikipedia.org/wiki/Confusion_matrix/)

18. H. Dalianis, Clinical Text Mining: Secondary Use of Electronic Patient Records

Springer Open, Cham Switzerland (2018), p. 47, 10.1007/978-3-319-78503-5

19. Duboue, Pablo. (2020). The Art of Feature Engineering: Essentials for Machine

Learning. 10.1017/9781108671682.

20. A. (2020, October 5). 7 Feature Engineering Techniques in Machine Learning You

Should Know. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2020/10/7-

feature-engineering-techniques-machine-learning/

21. https://www.physionet.org/content/mitdb/1.0.0/

22. M. Kachuee, S. Fazeli and M. Sarrafzadeh, "ECG Heartbeat Classification: A Deep

Transferable Representation," 2018 IEEE International Conference on Healthcare

Informatics (ICHI), New York, NY, 2018, pp. 443-444, doi:

10.1109/ICHI.2018.00092.

23. Butcher, Brandon & Smith, Brian. (2020). Feature Engineering and Selection: A

Practical Approach for Predictive Models: by Max Kuhn and Kjell Johnson. Boca

Raton, FL: Chapman & Hall/CRC Press, 2019, xv + 297 pp., $79.95(H), ISBN: 978-1-

https://www.jupyter.org/
https://docs.anaconda.com/anaconda/navigator/
https://en.wikipedia.org/wiki/Confusion_matrix/
https://doi.org/10.1007/978-3-319-78503-5
https://www.analyticsvidhya.com/blog/2020/10/7-feature-engineering-techniques-machine-learning/
https://www.analyticsvidhya.com/blog/2020/10/7-feature-engineering-techniques-machine-learning/
https://www.physionet.org/content/mitdb/1.0.0/

References

68

13-807922-9.. The American Statistician. 74. 308-309.

10.1080/00031305.2020.1790217.

24. Q.McCallum. Bad Data Hand Book: Cleaning Up The Data So You Can Get Back To

Work. O'Reilly Media, 2013

25. Two Channel Histogram. (n.d.). Scientific Volume Imaging.

https://svi.nl/TwoChannelHistogram/

26. https://towardsdatascience.com/deep-learning-unbalanced-training-data-solve-it-like-

this-6c528e9efea6/

27. https://www.saedsayad.com/k_nearest_neighbors.htm/

28. https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_wi

th_python_knn_algorithm_finding_nearest_neighbors.htm/

29. https://www.javatpoint.com/machine-learning-random-forest-algorithm/

30. https://en.wikipedia.org/wiki/Support-vector_machine/

31. https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm/

32. https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/

33. https://en.wikipedia.org/wiki/AdaBoost/

34. https://www.mygreatlearning.com/blog/xgboost-algorithm/

35. https://www.programmersought.com/article/16143908973/

36. https://www.hackerearth.com/practice/machine-learning/machine-learning-

algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/

37. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

38. https://en.wikipedia.org/wiki/Recurrent_neural_network/

39. https://en.wikipedia.org/wiki/Convolutional_neural_network/

40. https://blog.bayeslabs.co/2019/06/04/All-you-need-to-know-about-Vae.html/

41. https://ermongroup.github.io/cs228-notes/extras/vae/

42. https://en.wikipedia.org/wiki/Deep_belief_network/

43. https://missinglink.ai/guides/neural-network-concepts/deep-belief-networks-work-

applications/

44. Asif, Md. Asfi-Ar-Raihan, Mirza Muntasir Nishat, Fahim Faisal, Rezuanur Rahman

Dip, Mahmudul Hasan Udoy, Md. Fahim Shikder , and Ragib Ahsan. “Performance

Evaluation and Comparative Analysis of Different Machine Learning Algorithms in

Predicting Cardiovascular Disease.” IAENG Engineering Letters, 2021-In Press.

45. Géron, Aurélien. Hands-on machine learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly

https://svi.nl/TwoChannelHistogram/
https://towardsdatascience.com/deep-learning-unbalanced-training-data-solve-it-like-this-6c528e9efea6/
https://towardsdatascience.com/deep-learning-unbalanced-training-data-solve-it-like-this-6c528e9efea6/
https://www.saedsayad.com/k_nearest_neighbors.htm/
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_knn_algorithm_finding_nearest_neighbors.htm/
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_knn_algorithm_finding_nearest_neighbors.htm/
https://www.javatpoint.com/machine-learning-random-forest-algorithm/
https://en.wikipedia.org/wiki/Support-vector_machine/
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm/
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://en.wikipedia.org/wiki/AdaBoost/
https://www.mygreatlearning.com/blog/xgboost-algorithm/
https://www.programmersought.com/article/16143908973/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://en.wikipedia.org/wiki/Recurrent_neural_network/
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://blog.bayeslabs.co/2019/06/04/All-you-need-to-know-about-Vae.html/
https://ermongroup.github.io/cs228-notes/extras/vae/
https://en.wikipedia.org/wiki/Deep_belief_network/
https://missinglink.ai/guides/neural-network-concepts/deep-belief-networks-work-applications/
https://missinglink.ai/guides/neural-network-concepts/deep-belief-networks-work-applications/

References

69

Media, 2019.

46. Maxwell, A., Li, R., Yang, B. et al. Deep learning architectures for multi-label

classification of intelligent health risk prediction. BMC Bioinformatics 18, 523 (2017).

https://doi.org/10.1186/s12859-017-1898-z/

47. Floydhub: Practical Guide to Hyperparameters Optimization for Deep Learning Models

(https://blog.floydhub.com/guide-to-hyperparameters-search-for-deep-learning-

models/)

https://doi.org/10.1186/s12859-017-1898-z/
https://blog.floydhub.com/guide-to-hyperparameters-search-for-deep-learning-models/
https://blog.floydhub.com/guide-to-hyperparameters-search-for-deep-learning-models/

