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ABSTRACT 

Optimal Reactive Power Dispatch (ORPD) problem is a genuine concern for any 

power system. It is important to determine the ideal reactive power dispatch for 

different kinds of load conditions. ORPD is responsible for reducing the active 

power loss in a system by adjusting the reactive power control variables and 

consequently influences the economics and net efficiency of the power System. 

The optimization of reactive power also ensures the voltage stability and thus 

maintains the security and reliability of the system. Slime Mould Algorithm 

(SMA) is a novel Metaheuristic Algorithm (MA) which replicates the behaviour 

of slime mould for searching and collecting food with the help of the excellent 

exploratory capabilities of slime mould. This paper brings forth the feasibility of 

the application of SMA to the realm of optimal reactive power flow. In this thesis, 

IEEE 30-bus test method is used to show the feasibility of this method. The 

findings were analyzed and compared to other approaches that are used for 

solving ORPD problems. SMA is a more efficient and robust system even 

compared to the most recent swarm intelligence based metaheuristic algorithms 

and presents a possibility for unparalleled efficiency. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The modernization of the power sector has given rise to new innovations in power 

grid activity and planning. The electrical power grid is such a complex network, 

consisting primarily of a generation, transmission and distribution network for 

the delivery of electricity on a range of load requirements [1].Existing operational 

requirements of the power grid need more careful attention in order to provide 

adequate supply, in an economic and productive fashion, for an improvement in 

the pace of demand growth. The need for reactive power management has been 

established by the utility planners and the operators to retain sufficient voltage at 

critical points and to monitor unwanted reactive power flows [2]. The preparation 

and maintenance of the modern power grid is projected to have a substantial effect 

due to the presence of intermittent renewable energy. Analytical methods used in 

the conventional grid, such as power flow analysis, Optimal Power Flow (OPF), 

Economic Dispatch (ED) and Unit Contribution (UC), will require suitable 

changes to accommodate uncertainty from renewable sources [3]. While local 

control systems have been developed to govern the generation of these renewable 

sources, they have not been able to meet the dispatch orders of the system 

operators and to balance the supply and demand of electricity.  

A wide range of stochastic techniques, such as Monte Carlo Simulation (MCS) 

and Interval Arithmetic (IA), have been used in the literature to model and 

analyze the uncertainties resulting from these energy sources [3]. Some of these 

techniques are essentially costly to use. The amount of precision needed for 

power system implementations could be missing. The aim of the power flow 
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analysis is to plan ahead and account for various hypothesized circumstances. The 

Newton-Raphson (NR) method is a solution process which can have problems of 

integration for large systems by using a flat-start or reaching the full capability 

of the system [4]. 

Often, traditional power flow solution approaches require iterative action where 

PV-PQ bus swapping as the reactive power on the generator bus breaks the 

constraints [5]. 

So, there is a need of a more reliable, scalable and stable power flow approach 

for undertaking analytic control system studies taking into account. In order to 

achieve this, a variety of optimization frameworks are suggested in this area that 

help to achieve the power flow solution steps as optimization constraints. So, in 

this paper a new optimization algorithm is proposed which helps to improve the 

power flow problems. 

1.2  History of Optimal Power Flow 

Optimal power flow or OPF has had a long history of its own. It was first explored 

by Carpentier in 1962 and it took a while to become a successful algorithm that 

might be used on a regular basis. Present interest in the OPF focuses on its 

capability to solve the optimal solution that takes ensures the security of the 

particular device. The ultimate purpose of solving the OPF for a minimal 

generation cost and require that the optimization estimate still balances the whole 

power flow-at the same time. The objective function can take different forms 

other than reducing generation costs. It is normal for OPF to be expressed as a 

minimization of electrical losses in the transmission lines, or to be expressed as a 

minimum generation change and other controls from the optimum operating 

point.  
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1.3 Literature Review  

The efficient generation and transmission of electrical energy is one of the most 

effective ways of reducing the waste of natural resources as well as the global 

carbon footprint while reducing the cost of electricity making is available to more 

people. Optimal Power flow (OPF) is the field which primarily focuses on 

reducing the thermal fuel cost of electrical energy by the optimization of the 

various operating variables. The optimum condition is attained by adjusting the 

available controls to minimize the desired objective function while also 

subjecting it to the system limitations and security constraints. One of the 

important goals of OPF is to determine the optimum planning of the power system 

and the determination of the best operating levels. Another important objective is 

to ensure the system security as well as maintaining voltage stability and power 

quality. OPF does all these optimizations while taking into account the operating 

ranges of the various equipment involved. In the extended branches of OPF 

various other factors are brought into consideration such as the system security. 

The environmental dispatch of the power is also of concern for OPF. The OPF 

problems are nonlinear and non-convex and thus can be quite a challenging 

problem for regular computational algorithms to solve. ORPD is a sub problem 

of optimal power flow. ORPD is primarily focused on the minimization of real 

power by regulating the reactive power in the system. In the initial days of power 

loss minimization, various conventional methods such as linear and non-linear 

programming, quadratic programming and Newton Raphson methods were 

primarily used [6-11]. These methods were pretty rudimentary in nature as they 

were very resource intensive for the computing device to implement especially 

as the system grew more and more complex. These techniques required many 

assumptions and the outcome would often depend on the accuracy of said 

assumptions. Furthermore, these methods have to do a considerable amount of 

rounding off for the discrete variables in order to converge to a suitable solution. 
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This rounding off results in approximations which lead to reduced accuracy and 

performance as well as high computational demand. It has been shown in various 

studies that the application of heuristic techniques [12] in such optimization of 

ORPD results in far better performance compared to traditional methods. These 

heuristic techniques provide a more realistic chance of reaching the optimum. 

These methods reduce the tendencies of classical methods of to settle to local 

optima to a large extent. Genetic Algorithm and Particle Swarm Optimization 

algorithms are some practical examples [13-17] among many others [18-21]. By 

choosing the appropriate initial values we can reach near the global optimum in 

many cases. The addition of various penalty functions helps to combat the 

rounding off issue further. As such, many new techniques have been created 

which incorporate metaheuristics methods in the ORPD. Swarm Intelligence 

techniques such as Honey Bee mating Optimization (HBO) [22] and its variants, 

Particle Swarm Optimization (PSO) and its various enhancements [23-26], 

Artificial Bee Colony (ABC) [1] and its variants, Gray Wolf Optimizer (GWO) 

[27], Ant Lion Optimizer (ALO) [28], Dragon Fly Optimization (DFO) [29] have 

been used. Physics based methods such as Harmony Search Algorithm (HSA) 

and Gravitational Search Algorithm (GSA) [30-31] have also been successfully 

been implemented for ORPD purposes along with their enhancements [32]. 

Evolutionary algorithms such as Genetic Algorithm (GA) and its variants, 

Differential Evolution (DE) [33] and JAYA algorithm [34] have also been 

employed in multiple problems regarding power system optimization including 

ORPD. Over the years, several improvements or upgraded variants of these 

metaheuristic algorithms have been invented and published bearing some sort of 

improvement. Despite of these advancements the improvements have been rather 

incremental and the issue of getting stuck in the local optima still remains. This 

work aims to present a novel metaheuristic technique in the field of ORPD with 

the objective of achieving unprecedented efficiency and accuracy. 
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1.4 Thesis Objective  

The main objective of this thesis is to solve the ORPD problem of a sample test 

system (IEEE 30-bus test system) by adopting SMA. To be more specific, the 

objectives include: 

 To develop a code for solving and providing the result of ORPD for the 

aforementioned test system. This loop is flexible and can be used for trying 

to solve the problem with various algorithms. 

 To develop the code in such a way that the individual optimized values of 

each of the variables is provided in the final result. 

 To apply and adapt the theorized SMA in the previously mentioned code and 

check the performance of this algorithm for this particular problem. 

 To apply and adapt previously used and recognized algorithms (PSO and 

DEPSO) and compare their performances with the performance of SMA. 

 

1.5 Thesis Organization 

 In Chapter 1, the introduction to the thesis is provided which describes the 

inspiration behind the analysis. It lays out a systematic analysis of the 

literature, which concentrates on the power flow analysis problem and the 

deterministic and stochastic OPF problem. It also states the basis on which the 

previous efforts have been progressively carried out throughout the past few 

decades leading to the current effort. 

 In Chapter 2, the background review of our topic is pointed out and the 

methodologies used in the analysis discussed in this study. The key topics 

relevant to this study are also discussed in this chapter before describing the 

solution. This chapter also describes the multiple constraints and boundary 

conditions. 
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 In Chapter 3, the problem formulation of our thesis is highlighted. In this 

section the problem formulation has been discussed in detail and the 

mathematical model of each formulation is shown. 

 In Chapter 4, the methodology of solving the optimal reactive power dispatch 

problem is described. The main focus of our thesis was the SMA method. 

However, the PSO and DEPSO methods have been implemented in this work 

and thus discussed in detail. The flowcharts, mathematical models, 

constraints, limitations etc. have been elaborated in this section. 

 In Chapter 5, the simulation criteria and conditions are described. The test 

system used for simulation is explained in detail and the parameters and 

various arbitrary values are noted. The control variable limits chosen are 

tabulated. The details of the computing device used for simulation and results 

compilation are also mentioned. The results obtained after simulation are 

tabulated and compiled in this section. 

 In Chapter 6, the whole thesis is summarized and concluded. The future 

prospects of this area of study is also stated for further research. 
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CHAPTER 2 

THEORY OF OPTIMAL POWER FLOW 

This chapter points out the background to the methods and methodologies used 

in the analysis discussed in this study. The key topic relevant to this is also 

discussed in this chapter before describing the solution. 

2.1 Optimal Power Flow 

 Power Flow 

Power flow is a steady state study, the purpose of which is to determine  

 Voltages.  

 Currents. 

 Active power. 

 Reactive power. 

In a network under a certain load condition. In the power flow problems the 

generator injections, generator voltages and loads are given and after performing 

the load flow analysis all the bus voltages, voltage angles and branch currents are 

obtained.  

 Economic Dispatch 

Economic dispatch deals with the minimization of the operating fuel cost. 

Economic dispatch is the short-term calculation of the optimum performance of 

a variety of electricity generation plants to meet the grid load at the minimum 

possible cost. 
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Power flow doesn’t deal with the associated costs and Economic dispatch doesn’t 

bother about the line limits. Optimizing the generator when applying the 

transmission line limits combines economic dispatch with power flow which is 

known as optimal power flow. 

2.2 Power Flow Constraints. 

In the power flow calculations and optimization, there are certain constraints 

which can’t be violated or exceeded in order to meet the demands and the certain 

limitations of the different components of the system. These constraints can be 

divided into two parts; inequality constraints and equality constraints. 

2.2.1 Inequality Constraints 

While producing generation there must be some limitations. The generation 

voltage must be within the limits, insulating material must be properly selected, 

the transformer tapping shouldn’t violate the limit. The Inequality Constraints are 

given below: 

 

 Reactive power generation limits 

 

 

 

 Voltage magnitude limits 
 

 

 𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝑁𝑔 (2.1) 

 𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝑁𝐵 
 

(2.2) 
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 Transformer tap-setting constraint  

 

 Power flow limit constraint of each transmission line 

 

 𝑆𝑙𝑚 ≤ 𝑆𝑙𝑚
𝑚𝑎𝑥 (2.4) 

 

𝑄, 𝑉, 𝑇 𝑎𝑛𝑑 𝑆  represent reactive powers, voltage, transformer tap and thermal 

limit of transmission line respectively. Subscripts B, g correspond to bus, 

generator and indices i, k and m represent the number of the generator, bus and 

line.  

2.2.2 Equality Constraints 

 Responsive power flow balance calculations for all buses except for the 

slack bus. 

 
𝑃𝑔𝑖 − 𝑃𝑑𝑖 − 𝑣𝑖 ∑ 𝑣𝑗(𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)

𝑗∈𝑁𝑖

= 0 

 

(2.5) 

 Reactive power flow balance calculations for all PQ buses (load buses) 

 

 
𝑄𝑔𝑖 − 𝑄𝑑𝑖 − 𝑣𝑖 ∑ 𝑣𝑗(𝑔𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗) = 0

𝑗∈𝑁𝑖

 

 

(2.6) 

𝑃, 𝑄, 𝐺 𝑎𝑛𝑑 𝐵 respectively denote real and reactive powers, conductance and 

susceptance. Subscripts g, d correspond to generator, demand and indices i,j 

represent the number of the generator, load. 

 𝑇𝑘
𝑚𝑖𝑛 ≤ 𝑇𝑘 ≤ 𝑇𝑘

𝑚𝑎𝑥 

 

(2.3) 
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2.3 Optimal Reactive Power Dispatch 

Optimal Power Flow (OPF) is an area that focuses on reducing the expense of 

electrical energy transfer by optimizing the different variables. The two sub 

problems within OPF are the Optimal Reactive Power Dispatch (ORPD) and 

Optimal Real Power Dispatch (ORPD). ORPD is a sub problem of OPF. Due to 

the nature of the generators and the majority of loads, complex power is obtained 

from the power system. The active power is utilized while the reactive power 

remains in the system. ORPD is primarily focused on the minimization of real 

power by regulating the reactive power in the system. This is achieved by 

optimizing the control variables such as the transformer tap ratios, outputs of the 

generator buses and outputs of the reactive power compensators, usually in the 

form of capacitors. Another significant role of ORPD is the maximization of 

voltage stability and the power quality. In order to ensure the stability of the 

system ORPD employs various techniques to keep the voltages of the load buses 

within the predetermined tolerances of the specific power system. This is crucial 

to prevent the numerous electrical equipment and devices from getting damaged. 

The basic function of the various optimization methods is to determine the values 

of the control variables for which the power losses are minimum, while keeping 

the parameters within the limits of the system while satisfying the various 

equality and inequality constraints. ORPD is a nonlinear, non-convex, 

multivariable constrained optimization problem. 

So, the optimality of the reactive power dispatch can be achieved when 

transmission losses are minimized and bus voltage deviations are within the 

limits. 
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2.4 Objective Function 

2.4.1 Objective function 

The formulation of limits on equality and inequalities in the model of control the 

framework and its operating limitations are properly addressed in the preceding 

subsections. However, these statistical limits do not explain one particular state 

of the network. An overwhelming number of states in the power structure can 

only be computed when these restrictions are taken into consideration. Thus, the 

option of an objective to simulate special, potentially extreme or ideal states of 

the power system inevitably follows. There are primarily two goals that today's 

electricity utilities are seeking to accomplish. In addition to taking into account 

organizational constraints: 

 Reduction of the total cost of the generated power. 

 Reduction of active transmission losses. 

The objective function is the summation of the total active power loss or reactive 

power loss in the transmission lines and the penalty function. The required Static 

square penalty function is used to overcome inequality constraints which are 

shown in equation (2.9). Static penalty function neutralizes the infeasible 

solutions and penalizes those which violate the feasibility. Then the modified 

objective function (function of fitness) would be given in equation (2.7) 

 

 𝐹𝑝 = ∑ 𝑃𝑘𝑙𝑜𝑠𝑠 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑘∈𝑁𝐸

 

 

 

 

 

(2.7) 
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Where, 

  

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑘1 ∗∑𝑓(𝑄𝑔𝑖) + 𝑘2 ∗∑𝑓(𝑉𝑖) + 𝑘3 ∗∑𝑓(𝑆𝑙𝑚)

𝑁𝐺

𝑖=1

𝑁𝐺

𝑖=1

𝑁𝐺

𝑖=1

 

 

 

 

(2.8) 

𝑘1, 𝑘2, 𝑘3 are constants which are selected by trial and error process. 

 

 

𝑓(𝑥) = {

0
(𝑥 − 𝑥𝑚𝑎𝑥)2 𝑖𝑓 𝑥 > 𝑥𝑚𝑎𝑥

(𝑥𝑚𝑖𝑛 − 𝑥)2 𝑖𝑓 𝑥 < 𝑥𝑚𝑖𝑛
} 

 

 

 

(2.9) 

 

2.4.2 Penalty Function 

The objective of the penalty functions is to turn constrained problems into 

unregulated problems by adding an external penalty for violation of constraint. 

Penalty function is needed when there is a possibility of violating the constraints. 

There are certain reasons for this violations. 

 Line flow violations. 

 Reactive power violations. 

 Bus voltage violations. 

 

Despite of these improvements, there are areas that can benefit from further 

improvement such as the quicker convergence to the optima and faster 

identification of the global optima from the multiple local optima. 
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CHAPTER 3 

PROBLEM FORMULATION 

  

 

This chapter highlights the formulations of the problems and discusses the 

equations that are relevant to it. 

 

3.1 Problem formulation  

 

The goals of the work are to minimize the actual power transmission losses in the 

system and the bus voltage deviations must be within the limits. Control variables 

under consideration include PV bus voltages (Vg), transformer tap ratios (Tk) and 

reactive power outputs (Qc). The current study can be mathematically represented 

as three formulations. 

 

3.1.1 Formulation -1 (Minimization of active power losses.) 

 

Since the reduction of active utilities, this is the common goal of utilities, power 

losses are both cost-effective (economic reasons) and cost-effective. 

 

 
𝑚𝑖𝑛 ∑ 𝑃𝑘𝑙𝑜𝑠𝑠 =

𝑘∈𝑁𝐵

∑ 𝑔𝑘(𝑣𝑖
2 + 𝑣𝑗

2 − 2𝑣𝑖𝑣𝑗𝑐𝑜𝑠𝜃_𝑖𝑗 )

𝑘∈𝑁𝐵

 

 

(3.1) 

 
𝐹1 = 𝑚𝑖𝑛 ∑ 𝑃𝑘𝑙𝑜𝑠𝑠 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑘∈𝑁𝐵

 

 

(3.2) 

 

Where, 

𝑘 = (𝑖, 𝑗); 𝑖 ∈ 𝑁𝐵(𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑏𝑢𝑠𝑒𝑠), 𝑗

∈ 𝑁𝑖(𝑁𝑜 𝑜𝑓 𝑏𝑢𝑠𝑒𝑠 𝑎𝑑𝑗𝑢𝑐𝑒𝑛𝑡 𝑡𝑜 𝑏𝑢𝑠 𝑖) 

∑ 𝑃𝑘𝑙𝑜𝑠𝑠
𝑘∈𝑁𝐵

= 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑛𝑒. 

𝑔𝑘 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ 𝑘(𝑝𝑢). 
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𝑣𝑖 , 𝑣𝑗 = 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒(𝑝𝑢) 𝑜𝑓𝑏𝑢𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

𝜃𝑖𝑗  = 𝑏𝑢𝑠 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑛𝑔𝑙𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑢𝑠 𝑖 𝑎𝑛𝑑 𝑗(𝑟𝑎𝑑) 

 

 

3.1.2 Formulation 2 

 

Minimization of bus voltage deviation  

 

Here, the reference bus voltage is 1 per unit. From this formulation 2, it is 

calculated how much of the respective bus voltages are deviated from the 

reference value. 

 

 

𝐹2 = ∑|𝑉𝑙𝑏 − 𝑉𝑟|

𝑁𝑙𝑏

𝑙𝑏=1

 

 

 

(3.3) 

Where,  

𝑉𝑟=reference voltage. 

𝑉𝑙𝑏=bus voltage magnitudes.  

             

3.1.3 Formulation 3 

 

The minimization of bus voltage deviations is crucial to the effectiveness of the 

overall system. For this problem we have two different objectives in the same 

solution where the Real Power is minimized while simultaneously bus voltages 

are within the limits. This is done by weighted sum method where the weights are 

varied from zero to one. The following equation is utilized: 

𝐹1 = 𝑚𝑖𝑛 ∑ 𝑃𝑘𝑙𝑜𝑠𝑠 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑘∈𝑁𝐵

 

 

(3.4) 

 

𝐹2 = ∑|𝑉𝑙𝑏 − 𝑉𝑟|

𝑁𝑙𝑏

𝑙𝑏=1

 

 

 

(3.5) 
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 𝑚𝑖𝑛∑𝐹 = min (𝑃1 + 𝑃2) 

 

 𝑃1 = 𝑤1 ∗ 𝐹1 𝑎𝑛𝑑 𝑃2 = (1 − 𝑤1) ∗ 𝐹2 
 

(3.7) 

 

(3.6) 

 

 

 

 

 

 

Here,  𝐹 is the objective function of the multi objective problem. 

 𝐹1 is the objective function of the Total Power Loss.  

 𝐹2 is the objective function of the Total bus voltage deviations. 

 𝑃1 is the objective function of the Total Power Loss multiplied by the 

weight. 

 𝑃2 is the objective function of the Total bus voltage deviations multiplied 

by the weight. 

 𝑤1 is the weight.The range of 𝑤1 is between 0 and 1 
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CHAPTER 4 

SOLUSION METHODOLOGY  

 

 

This chapter deals with the solution methodologies of our problem. There are 

numerous ways of solving this ORPD problem. Some of the methods are 

conventional methods and some of the methods are intelligent methods. By using 

conventional methods we can get the accurate results for the power system. But 

one of the drawbacks is that the processing time is high. On the other hand, using 

intelligent methods, we can use higher computing power and various algorithms 

that are processed by some uniform distribution of numbers. Here we've been 

comparing three processes. In this section we are going to discuss all the 

methodologies in detail. 

 

4.1 Introduction of Particle Swarm Optimization 

4.1.1 Origins 

Particle Swarm Optimization is a stochastic algorithm that is motivated by the 

existence of social activity and complex movements of coordination between 

insects, birds and fish. In 1986, Craig Reynolds defined this mechanism in three 

basic behaviors: 

 Separation: Separation of the local flock mates. Figure 4.1[40] shows the 

movement of the flock mates. In this step the local flock mates are randomly 

separated which is denoted by blue triangles. 
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Figure 4.1: Separation of the flock mates 

 Alignment: Shift onto the average location of the local flock mates.  

Figure 4.2 [40] Shows the average location of the flock mates. In this step  

the average position of the flockmates are determined.  

  

Figure 4.2: Alignment of the flock mates. 

 

 Cohesion: Finally Shift towards the average position of the local flock 

mates. Figure 4.3 [40] shows all the flock mates are moving towards the 

average position. The Global best is denoted by green triangle which is 

moving towards the average position. 

 

Figure 4.3: Cohesion of flock mates. 
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4.1.2 Concepts  

Particle Swarm optimization is one of the most simple and effective algorithms. 

PSO emulates the process of finding food expressed by fish schools or bird 

swarms, thus developing its specific name. They used a set of agents (particles) 

that represent a swarm running about in a solution space searching for the best 

solution. The dimensions of the global optimum are based on the number of 

variables of the problem. Each particle in the searching space changes its flight 

characteristics by its own flying experience and also the flying behavior of other 

particles. Each particle varies its moving speed continuously in accordance with 

the flying experience of itself and its colleagues. 

 

gb(global best ) 

 

  𝑣(velocity) 

 

 𝑝𝑏 

                   (best position ) 

 

𝑋(current position of the particle) 

 

Figure 4.4: Particles’ movement in PSO. 

Figure 4.4 shows that 𝑋 is the current position of a single particle,𝑝𝑏 is the best 

possible solution obtained initially,𝑔𝑏 is the global solution obtained so far. So 

the particle has got three solution of movements. Each particle modifies its 

position according to the following: 

 The current velocity(𝑣). 

 The distance between the 𝑝𝑏 and the current location.  
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 The comparison between its present position 𝑋 and the optimal 

position (𝑔𝑏) and measure the distance. 

 

4.1.3 Parameters 

The location of each particle can be updated based on its own best position, the 

global best position between the particles and its previous velocity vector 

according to the following equations: 

  

𝑣𝑖
𝑘+1 = 𝑤 ∗ 𝑣𝑖

𝑘 + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏 − 𝑥𝑖
𝑘) + 𝑐2 ∗ 𝑟2 ∗ (𝑔𝑏 − 𝑥𝑖

𝑘) 

 

(4.1) 

                          

  

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝛾 ∗ 𝑣𝑖
𝑘+1 

 

(4.2) 

                                                                                                                                                                                                  

where, 

𝑣𝑖
𝑘+1 ∶  𝑇ℎ𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 thi 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑎𝑡 ( 1)thk  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑤  ∶  𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡.  

𝑣𝑖
𝑘  ∶ 𝑇ℎ𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 thi 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑎𝑡 thk  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

𝑐1, 𝑐2: 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠. 

𝑟1, 𝑟2: 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑. 

𝑝𝑏: 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑖𝑡
′𝑠 𝑜𝑤𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

𝑔𝑏: 𝐺𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  

𝑥𝑖
𝑘+1 : 𝑇ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 thi 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑎𝑡 ( 1)thk   𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
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𝑥𝑖
𝑘  ∶  𝑇ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 thi 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑎𝑡 thk 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

𝛾: 𝐶𝑜𝑛𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟.  

Suitable range of inertia weight gives improved alignment between global and 

local experiments. 

 

                        
max min

max

max

w w
w w iter

iter


    

 

(4.3) 

 

 Where, 

𝑤𝑚𝑎𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

𝑤𝑚𝑖𝑛𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. 

𝑖𝑡𝑒𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟. 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥  𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. 
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Figure 4.5: Flow chart of PSO 

Here, the starting parameters are initialized and the particles are generated. 

After the random generation, the position and velocity of the particles are 

calculated. Then the local and global optima are determined. The velocities of 

the particles are updated according to equation (4.1) until the limit of iterations 

and then the optimal value is determined. 
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4.1.4 Advantages and Disadvantages 

Advantages: 

 Easy to implement. 

 No need to go for the derivation process. 

 Effective Global Search Algorithm. 

 Impercipient to scaling of design variables. 

Disadvantages: 

 A tendency towards rapid and premature convergence at mid-optimal 

points. 

 Sometimes its local search ability is poor. 

 

4.2 Diversity Enhanced Particle Swarm Optimization  

4.2.1 Origins 

In a particular solution space, particles throughout the swarm move in an 

unpredictable manner. So that’s why There is still the probability of spatial 

aggregation and, thus, of early convergence due to the congestion of the particles. 

Diversity-enhanced PSO (DEPSO) provides a very powerful technique for the 

treatment of crowding of the particles. DEPSO is an effective approach of solving 

these types of problems without adding additional penalty function. In this paper 

reactive power dispatch problem reactive power can be controlled using some 

controlled variables such as shunt capacitor which is supposed to be a discrete, 

transformer taps which is supposed to be integer in nature. So we want to solve 

our problem by updating the velocity of each particle in a different method. We 

can simply update the velocities in three stages: 
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 Positive Conflict phase. 

 Attraction phase. 

 Repulsion phase. 

The control variables are given below: 

 𝐶𝑉 = (𝐶𝑉𝑐, 𝐶𝑉𝑑, 𝐶𝑉𝑖) 

 

(4.4) 

Where, 

𝐶𝑉𝑐 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢s. 

𝐶𝑉𝑑 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒. 

𝐶𝑉𝑖 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. 

By using this method it assures that there is no chance of particles of getting stuck 

in the local minima. The velocity of each particle has updated differently. The 

distance between the particles is estimated by diversity. 

 

4.2.2 Concepts 

 If the diversity factor is greater than the higher diversity factor then the 

particles are attracted to each other. In Figure 4.6 [25] the movements of 

the particles are represented by blue dots. The diversity of the two blue 

dots are greater than the average diversity factor so the particles are 

attracted to each other.  

 

 
Figure 4.6: Particle movement in DEPSO (𝐷𝐼𝑉 > 𝐷𝐼𝑉ℎ𝑖𝑔ℎ) 
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 If the diversity factor is less than the lower diversity factor then the 

particles are repulsive to each other. In Figure 4.7 [25] it shows that the 

blue dots are close to each other so the diversity of these points are less 

than the average diversity. That’s why the particles repulse each other. 

 

Figure 4.7: Particle movement in DEPSO (𝐷𝐼𝑉 < 𝐷𝐼𝑉𝑙𝑜𝑤) 

 

 If the diversity factor is between the range of higher diversity and lower 

diversity then the particle moves through the positive conflict phase. In 

figure 4.8 [25] shows that the blue dots are aligned in the same manner. 

So that’s the particles are moving towards the positive direction. 

 

 

 
Figure 4.8: Particle movement in DEPSO 

(𝐷𝑖𝑣 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐷𝐼𝑉ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝐷𝐼𝑉𝑙𝑜𝑤) 

 

 

The Corresponding Equations are given below: 
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𝑣𝑖
𝑘+1

{
  
 

  
 
𝜒[𝑣𝑖

𝑘 + 𝑐1𝜁𝑖
𝑘(𝑝𝑏𝑖

𝑘 − 𝑥𝑖
𝑘) + 𝑐2𝜉𝑖

𝑘(𝑔𝑏𝑖
𝑘 − 𝑥𝑖

𝑘)]

𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑝ℎ𝑎𝑠𝑒

𝜒[𝑣𝑖
𝑘 − 𝑐1𝜁𝑖

𝑘(𝑝𝑏𝑖
𝑘 − 𝑥𝑖

𝑘) − 𝑐2𝜉𝑖
𝑘(𝑔𝑏𝑖

𝑘 − 𝑥𝑖
𝑘)]

𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒

𝜒[𝑣𝑖
𝑘 + 𝑐1𝜁𝑖

𝑘(𝑝𝑏𝑖
𝑘 − 𝑥𝑖

𝑘) − 𝑐2𝜉𝑖
𝑘(𝑔𝑏𝑖

𝑘 − 𝑥𝑖
𝑘)]

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑝ℎ𝑎𝑠𝑒 

                                      

(4.5) 

 

 

The diversity factor needs to be calculated, 

  

𝐷𝐼𝑉(𝑘) =
1

𝑚𝑝
∑√∑(𝑥𝑖,𝑗 − 𝑥𝑗𝑐𝑎𝑝

𝑘 )
2

𝑛𝑝

𝑗=1

𝑚𝑝

𝑖=1

 

 

 

(4.6) 

  

𝑥𝑗𝑐𝑎𝑝
𝑘 =

∑ 𝑥𝑖,𝑗
𝑘𝑚𝑝

𝑖=1

𝑚𝑝
 

 

 

(4.7) 

   

Where, 

𝑚𝑃 = Number of particles. 

𝑛𝑣= Number of variables. 

𝐶1= Cognitive scaling factor. 

𝐶2= Social scaling factor.  

The range of diversity factor can be selected based on the problem definition. 

For this method, the values are selected by trial and error method. 

 

4.2.3 Flowchart 

In this portion we would like to draw the flowchart of PSO and DEPSO 

together. 
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Figure 4.9: Flow chart of DEPSO 

 

Here, the starting parameters are initialized and the particles are generated. 

After the random generation, the position and velocity of the particles are 

calculated. Then the local and global optima are determined. The velocities of 

the particles are updated in three phases according to equation (4.5) until the 

limit of iterations and then the optimal value is determined. The diversity factor 

can be updated using equation (4.6). 

 

4.3 Slime Mould Algorithm 

4.3.1 Origins 

The Slime Mould Algorithm is a new metaheuristic algorithm which takes 

inspiration from the nature based living species. This method is based on the 

foraging phase of the life of a slime mould. It is a stochastic optimizer which 
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randomizes the initial search space and thus it helps with the random nature of 

the problem at hand. This nature of the algorithm is expected to be useful in non-

linear and non-convex problems. 

4.3.2 Concepts 

The Slime Mould Algorithm is mainly based on the Oscillation Mode of a slime 

mould. During the foraging phase, a slime mould has the habit for approaching 

towards the food. It does this by forming vein like structures from the center of 

its position. When the slime mould requires food, it gradually extends itself 

outwards in search of food. This process is done by the natural Oscillation mode 

of a slime mould. The slime mould has the capability to act as a bio-oscillator 

which is the driving force behind the expansion and formation of the vein like 

structures [35-37]. This characteristic gives slime mould excellent observation 

and efficient food gathering ability. When the slime mould eventually gets into 

contact with a required food, it starts absorbing the food and bringing it towards 

the center or the initial position of the mould. These nutrients are transported via 

the vein like structures formed as mentioned earlier. The slime mould also has 

the capability of determining which food particle is suitable for it and thus it 

decides which it should focus on. If a large and nutritious food is available, then 

the vein tends to be larger and when the food is smaller in comparison or less 

nutritious, the veins formed will be smaller and the amount of food transferred 

from it will be less. This nature helps it to focus on the main particles and focus 
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less on the less important parts. If the situation is such that there is abundance of 

nutritious food particles, in that case the veins formed towards the smaller food 

particles starts to dissolve. Gradually those smaller veins disappear and only the 

more important veins remain. This process is shown in Figure 4.10 [39]. 

            

Figure 4.10: Slime mould search phase. 

 

While returning to the center, the slime mould does not just randomly select a 

path; rather it chooses the path which it deems is the easiest and the path of least 

resistance. In various lab results it has been shown that the most efficient path it 

chooses it shockingly similar to the optimal path chosen by humans or other 

solution methods.  

These characteristics are actually very efficient and have the potential to become 

a very important source of inspiration from which we can develop an effective 
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algorithm for determining an optimal solution. From the above discussion we can 

see that the slime mould initially starts to spread randomly and then forms 

connections with the food particles. Then it gradually starts to determine the 

importance of the different food particles. Finally, the largest vein signifies the 

optimal solution as it is the most nutritious. It has to be mentioned that the slime 

mould also has the characteristic of forming the most efficient path towards the 

center. This attribute ensures the most efficient path towards the optima. This 

effect is shown in Figure 4.11 [39]. 

                   

Figure 4.11: Foraging of slime mould 

The SMA utilizes these characteristics of the slime mould and aims to develop a 

computational algorithm with the goal of optimization and finding the global 

efficiently. The aforementioned bio-oscillator is emulated by this algorithm by 

the use of adaptive weights which simulate the positive and negative feedbacks 

of the slime mould.  
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The algorithm begins with the initiation of the setting parameters and the 

generation of the particles. Here, the particles represent the slime mould. After 

setting the initial position of the slime mould, the location of each of the particles 

of the slime mould is updated through a series of equations by utilizing adaptive 

weights. The ideal location is obtained as a result of the back and forth movement 

which occurs due to the combination of the weight and the inequality constraints. 

The weight of the equation is also updated which is a factor of the sorted version 

of best fitness i.e. the best location set for the particles from the previous iteration. 

After the desired number of iterations, the final best fitness obtained is the optimal 

solution.  

4.3.3 Solution steps 

The steps followed to develop the algorithm is described below: 

 Initializing: 

The number of iterations, as well the number of the particles is specified. The 

dimension is set to the number of control variables. Here, the algorithm will 

simulate the number of the control variables as the limbs of the slime mould in 

order to optimize the solution. The increase in the number of particles increases 

the accuracy but also requires higher processing power.  

 Generating the particles: 
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The particles are generated randomly. Then we identify whether the 

randomized particles fall within our search space and bring back the ones that 

fall outside our scope. The best and the worst combinations are recorded as 

best fitness and worst fitness respectively initially. This is the basis on which 

the program runs the first iteration of calculations.  

 

 

 

 Determining the weights: 

Then the weights are determined through the following equations derived from 

(1).  

 

𝑊(𝑆𝑚𝑒𝑙𝑙𝑖𝑛𝑑𝑒𝑥(𝑖)) =

{
 
 

 
 1 + 𝑟. log (

𝑏𝑓 − 𝑆(𝑖)

𝑏𝑓 − 𝑤𝑓
+ 1) , 𝑖 ≤

𝑁

2

1 − 𝑟. log (
𝑏𝑓 − 𝑆(𝑖)

𝑏𝑓 − 𝑤𝑓
+ 1) , 𝑜𝑡ℎ𝑒𝑟𝑠

 

 

 

(4.8) 

Where, 

𝑁=No of Swarm. 

𝑖=current Swarm. 

𝑏𝑓= best fitness. 

𝑤𝑓= worst fitness. 

S=Smell order. 

r=random value at [0,1] 
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𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 denotes the sorted fitness values. 

The weights are updated in accordance with the dimensions i.e. the number of 

control variables. The weight is factor of the 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 and it depends on the 

best fitness obtained from the previous iterative process. 

 Updating the fitness and positions: 

The best fitness is recorded after each iteration and saved as the destination 

fitness. The data is obtained from the sorted fitness value from 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥. This 

value is critical for the solution as the final solution of the process will be obtained 

from the best fitness of the 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥. 

 Updating the location of Slime Mould or the search agents/particles: 

This step simulates to what extent the slime mould approaches the food i.e. the 

minimum solution. The higher the probability of finding the optima, the faster the 

particles approach towards that solution; which essentially emulates the 

contraction of the venous tissue structure of the slime mould. 

The search process for finding the solution is initiated when the randomized value 

exceeds the z parameter. This begins the search procedure for finding the optimal 

solution. After that the local optima are determined. When the solution starts to 

approach the p parameter it gets close to the global optima and hence the final 

result. 

The formula for updating the location of the slime mould is as follows: 
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 𝑋1 = 𝑟𝑎𝑛𝑑. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟𝑎𝑛𝑑 < 𝑧 (4.9) 

 𝑋2 = 𝑋𝑏(𝑡) + 𝑣𝑏. (𝑊. 𝑋𝐴(t)-𝑋𝐵(𝑡)), 𝑟 < 𝑝 (4.10) 

  𝑋3 = 𝑣𝑐 . 𝑋(𝑡), 𝑟 ≥ 𝑝 (4.11) 

 

Where 𝑈𝐵 𝑎𝑛𝑑 𝐿𝐵 denote the lower and upper boundaries of search range 

𝑟𝑎𝑛𝑑 and 𝑟 denote the random value in [0,1]. 𝑡  denotes the current 

iteration, 𝑋𝑏 shows the individual location with the maximum odor concentration 

presently investigated. 𝑣𝐵 is a parameter with an interval of [−𝑎, 𝑎] 

W is the weight of slime mould. 𝑋, 𝑋1, 𝑋2, 𝑋3  are the location vectors of slime 

mould, 𝑋𝐴 and 𝑋𝐵 are two individuals that we randomly selected from the current 

population. 

 
𝑎 = arctan h (−(

𝑡

max
             t

 
) + 1) 

 

 

(4.12) 

The parameter 𝑎 is responsible for setting the limit of the 𝑣𝐵. 

 𝑣𝐵 = [−𝑎, 𝑎] 

 

(4.13) 

𝑣𝐶  oscillates from -1 to 1 and eventually gets zero.The parameter p can be 

updated by following equation: 

 𝑃 = tanh |𝑆(𝑖) − 𝐷𝐹)| 

 

(4.14) 

𝑤ℎ𝑒𝑟𝑒, 𝑆(𝑖) 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑋 𝑎𝑛𝑑 𝐷𝐹 𝑖𝑠 𝑏𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑎𝑡𝑡𝑎𝑖𝑛𝑒𝑑 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

. 
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Figure 4.12: The steps of SMA. 

Here, the X1 indicates the position which does not proceed to grapple the food. X1  

is chosen when the solution is deemed unsuitable due to the value of 𝑟𝑎𝑛𝑑 

compared to the value of z parameter. In this case, the particles avoid approaching 

or exploring that portion of the search space altogether. When this condition is 

obtained the algorithm goes back to searching for the feasible solutions. These 

conditions are explained in Figure 4.12 [39]. 

X2 represents the position which the slime mould attains when the solution gives 

a promising value and is potentially a solution. These are considered as local 

optima. Each of these positions has a probability to be the final solution.X3 is the 

position which the solution converges to when the value nears the global optima. 

This is the best possible solution among all the probable solutions. Our final 

solution will be obtained from this section of the search space. 
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The solution steps and the whole algorithm is explained in the flowchart [Figure 

4.13]. 

 

Figure 4.13: Flowchart of slime mould. 
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4.3.4 Advantages of this Algorithm. 

For the case of using SMA to solve the problem of ORPD, it has to be mentioned 

that there are several reasons why a versatile algorithm like this can be useful for 

solving this sort of problem.  

 The SMA is a metaheuristic algorithm and is thus much better for solving 

non-linear problems compared to traditional classical methods. This is 

because the initial generation is randomized and thus has a better chance 

of reaching the optimum location. This is desirable as the traditional 

methods have the disadvantageous nature of sometimes giving the local 

optima as the result. 

 As it is a metaheuristic method, SMA is not as focused as the traditional 

methods for determining the exact value of the solution. Instead, it tries to 

get very close to the ideal solution. These features might seem like a 

disadvantage, but in reality we use these methods in our computational 

devices and metaheuristic methods are less resource intensive. As a result, 

they provide a better overall result for the same amount of processing 

power. 

  The traditional methods often required several assumptions such as the 

initial values and the upper and lower bounds of the search limits etc. In 

most cases, the accuracy of the result is heavily dependent on the 
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assumptions. If the assumptions are off by a few percent, the result can 

vary by a lot. 

 The heuristic and metaheuristic methods bring a new approach to 

computational optimization. These methods take inspiration from nature 

and builds algorithms that can optimize a problem. They randomize the 

particle generation process which helps to reach the global optima by 

differentiating between the local optima on multiple stages of the solution 

finding process. 

 The introduction of penalty function ensures the efficient and automated 

way of keeping the solution within the boundary limits in each and every 

iteration.  

 SMA uses a different approach from the other prominent metaheuristic 

algorithms. As this method uses variable adaptive weights, the search range 

of the location of the particles is constantly updated at the end of each 

iteration. This adaptive nature makes this method highly versatile and 

flexible which in turn improves its efficiency and overall speed. However, 

the effectiveness of the method is subject to the boundary parameters. If 

chosen correctly, this method should provide best or close to the best result 

of any metaheuristic method.  

 

 



47 | P a g e  
 

CHAPTER 5 

SIMULATIONS AND RESULTS 

 

5.1 Implementation in test systems 

The ORPD solution has done by MATLAB separately using PSO, DEPSO and 

SMA. In figure 5.1 [36] the standard IEEE 30-bus test systems has been shown. 

The efficacy of SMA over PSO and DEPSO algorithms has been tested by 

evaluating it on standard IEEE 30-bus test systems. The whole data set of IEEE 

bus 30 has been found in [38] 

 

   

Figure 5.1 :IEEE Bus -30 

 

5.2 System Description 

 The simulations are carried out in MATLAB 2017a in a laptop running 

Windows 10 Pro, equipped with an Intel core i5 7200U CPU (3.1GHz) and 

8GB of RAM. 



48 | P a g e  
 

 The search space consists of 13 control variables which are six generators, 

four transformers and three shunt capacitors. The generators are installed at 

buses 1, 2, 5, 8, 11, 13. The Transformers are installed in between buses 6 

and 9, buses 6 and 10, buses 4 and 12, buses 27 and 28. The shunt capacitors 

are installed at buses are 3, 10 and 24. The shunt capacitors used here are 

considered as the reactive power source. All the limits used in this study 

have been considered per unit. The upper and lower boundary limits of the 

generators and load bus voltages, transformer taps and reactive 

compensation devices are stated in Table 5.1. 

 

Table 5.1: Control Variable Limits 

Transformer Tap 

Limits.(pu) 

Generator bus 

voltage settings. 

(pu) 

 

Load Bus  

Voltage Settings. 

(pu) 

 

Reactive power 

Source limit.(pu) 

 
1.10 

 
.95 

     

1.10 
 

.95 
 

1.05 
 

.95 
 

.15 
 

.1 

 

This standard test has been chosen so that it can be easily analyzed and 

compared with the other previous research efforts. The detailed parameters are 

stated in Table 5.2.  

 

 

 

Table 5.2: System Description 

Description 30- Bus 

No of Bus 30 

No of lines 41 

No of generators. 6 
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No of Transformers. 4 

No of Reactive power sources. 3 

Control Variables. 13 

Base Case Real power loss. 17.557 

Base Case Reactive power loss 67.69 

 

In this thesis, the control variables in the above mentioned Table 1 are to be 

optimized. By optimizing the values of these control variables the minimum real 

power loss is obtained while maintaining voltage deviation within the 

predetermined range. 

 

To demonstrate the applicability of SMA, the test results have been compared 

with two other established methods, namely PSO and DEPSO methods. The 

variables and parameters of those methods were taken by careful considerations 

from previous researches and in some cases by extensive trial and error 

processes. 

 

5.2.2 Setting Parameters 

All the parameters which are used in all of three algorithms have some constant 

values. These values are fixed for that particular algorithm and these values are 

found by trial-and-error method since we have to consider the most economical 

and most efficient condition throughout our whole simulation. But for SMA 

there is a special constant named z which is only used for this algorithm. All the 

parameters and their corresponding values are given in the Table-5.3.                                                    
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Table 5.3: Setting parameters 

No  PSO DEPSO SMA 

1 Population size 50 50 50 

2 Constant Associated 

with penalty 

Function( ) 

10000 10000 10000 

3  Acceleration constant 

(C1, C2)  

2.1 and 2.0  2.1 and 2.0 - 

4  Constriction factor  0.729 0.729 - 

5  Max. and Min. inertia 

weights  

1 and 0.2  1 and 0.2  - 

6  Max. and Min. velocity 

of particles  

0.003 and -

0.003 

0.003 and -

0.003 

- 

7  Convergence criterion  100 iterations  100 iterations 100 iterations 

8 Upper diversity factor - -.96  

9 Lower diversity factor - -1.01  

10 Value of z   .003 

 

Here, the population size indicates the number of particles in case of PSO and 

DEPSO while in case of SMA, the population size indicates the number of 

slime moulds that perform the optimization. The number of iterations and the 

population sizes have been chosen and deemed to be sufficient for the 

demonstration of the working nature of the methods.  The acceleration 

coefficients and the constriction factors were chosen taking reference from the 
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previous research efforts and maintained for the purpose of uniformity. The 

diversity factors of DEPSO were taken through trial-and-error process. The 

value of the z parameter was also chosen through trial and error. 

                      

5.3 SIMULATION & RESULTS 

The results obtained after running the simulations are tabulated in Table 5.4. In 

this table the formulation 1 and formulation 3. The 13 control variables are 

optimized by the three algorithms and for those values the final minimized 

value of the real power loss is obtained. 

 

                            Table 5.1: Parameters obtained after optimization 

Variable 

name 

 Formulation 

1 

  Formulation 

3 

 

Algorithm PSO DEPSO Slime 

Mould 

PSO DEPSO Slime 

Mould 

V1 

 

.9925 .9946 1.061854 

 

.9641 

 

1.0196 1.06191 

V2 .9989 1.0095 1.045886 

 

1.0173 1.0024 1.04669 

V5 1.0646 .9305 1.013313 

 

1.0110 1.0297 1.01322 

V8 1.0017 1.0349 1.01976 

 

.9757 1.0016 1.01924 

V11 1.0448 1.0211 1.059526 

 

1.0429 0.9882 1.05951 

V13 1.0252 1.0359 1.060227 

 

.9906 0.9821 1.06016 

T1 1.0170 .9531 1.014885 

 

.9799 1.01 0.979351 

T2 1.0461 .9598 0.95 .9511 1.03 0.980462 
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T3 1.0363 1.0173 0.982607 

 

.9531 0.99 0.983304 

T4 1.0299 1.0073 0.96075 

 

.9693 1.03 0.957279 

Q3 14.7135 14 14.46819 

 

14.5731 11 14.5297 

Q10 13.9956 15 14.87733 

 

14.1405 9 14.3193 

Q24 12.03 14 12.99436 

 

14.4219 15 12.7342 

Real 

power 

loss 

(MW) 

17.4601 17.4356 17.31501 

 

17.5562 17.535 17.3262 

 

 

Reactive 

power 

loss 

(MVAR) 

67.565 67.5474 65.9022 

 

67.6869 67.6052 65.8833 

 

 

5.3.1 Convergence Curve 

In the comparison of these three algorithms, for the total power loss against total 

convergence criterion one hundred iterations have been taken. It can be easily 

observed that initially the total loss is very high but after 100 iterations the loss 

becomes minimized and for Slime Mould algorithm loss is minimum comparing 

with other algorithms which is shown in Figure-5.2. 
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Figure 5.2: Convergence Curve 

                                      

5.3.1 Average Performance 

The average performance is extremely crucial for determining the actual 

performance of an algorithm. As these metaheuristic methods are stochastic and 

randomized methods, the average performance justifies the overall efficiency of 

the algorithm. After running the simulations 20 times, it can be observed that 

besides the excellent peak performance, the use of SMA also provides very 

consistent and reliable performance in comparison to PSO and DEPSO. The 

average values are a clear indication of that fact. The deviation from the best 

result to the worst result is remarkably low in case of SMA. Inspection of the 

data tables paints a clear picture of the advantages of this method over the 

others which is shown in Table-5.5.                                    
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Table 5.2: Comparison of results after 20 simulation runs 

Compared items  PSO DEPSO SMA 

Worst fitness 18.5026 18.01 17.42068 

Best fitness 17.4601 17.43564 

 

17.326 

Average fitness 17.981 17.723 17.36587 

 

5.3.2 Power Loss Reduction 

The base case power loss obtained without optimization is 17.557 MW [25]. All 

of the methods managed to improve on that value to some extent on all three 

formulations. But the improvement was the highest in case of SMA. The 

following table shows the relative improvement from the base case power loss 

for the respective methods. 

 

                   

                                        Figure 5.3 : Power loss reduction 
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The voltage deviation, a key requirement of ORPD problems and power system 

analysis in general, is maintained within acceptable ranges during the use of 

SMA. Of course, it should be mentioned that this characteristic was also 

preserved in the other two discussed methods. It can be observed that the 

voltages are not much deviated from our nominal value which is 1pu. Also, all 

the voltages are in the range of limits which is conserved for the voltage 

deviation. All the voltage deviations are shown in the Figure-5.4.  

 

 

Figure 5.4: Bus Voltage Deviation. 
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CHAPTER 6 

SUMMARY OF THE THESIS AND FUTURE 

SCOPE 

 

6.1 Summary and Conclusion 

The objective of this study was to showcase the viability of this novel 

optimization algorithm in the field of power system optimization and reactive 

power dispatch. This method demonstrates the advantage of SMA in 

comparison to other previously known stochastic algorithms. As demonstrated, 

this algorithm exhibits outstanding performance and convergence 

characteristics. The improvements were 1.32% in case of real power loss 

minimization and 1.31% in case of minimization of real power losses and total 

bus voltage deviations with respect to the base case losses. The voltage profile 

was stable with the program providing results that show deviations within the 

widely accepted tolerance levels. This is an improvement from almost all the 

processes which have been used to solve similar problems in the past. In future, 

this method may be considered for the reactive power dispatch in practical 

distributed generating systems for unprecedented efficiency and robustness. The 

whole work of the thesis can be summarized as follows: 

 The optimization algorithms used for solving ORPD problems have been 

improving throughout the years through the efforts of many researchers. This 

thesis hopes to add to that effort by providing a new way of solving such 

problems with better efficiency than any other method before it. The 

improvisation of SMA into the ORPD problem was the primary focus of this 

thesis. 
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 The whole solution finding process is based on several constraints. These 

equality and inequality constraints are responsible for keeping the solution 

within the limits of our system. Careful consideration of these constraints 

and prudent selection of the parameters of the constraints are essential for 

successful implementation any algorithm. The application of penalty 

function provides further enhanced performance by implementing additional 

conditions for the solution. 

 The main goal of this study is to minimize the real power loss of a power 

system. Voltage stability is also ensured by limiting the voltage deviations 

within acceptable limits. The superiority of SMA is demonstrated by 

comparing with other renowned methods. 

 The usefulness of an optimization algorithm is acceptable and can be used in 

the real world if it is reliable and consistent. Thus, the efficiency that is 

obtained from one demonstration must be replicated when the stochastic 

process is run again and again despite of its random nature. 

 

6.2 Future Scope: 

 Enhanced versions:  

Through the years we have seen the application of numerous metaheuristic 

algorithms for solving the problem of ORPD. A significant portion of 

research has gone into upgrading and enhancing those methods for gaining 

greater performance. It can be expected that such endeavours focused on this 

method can also provide even better performance. 

 Reduction of the number of operator controlled parameters:  

By analyzing the SMA we can see that quite a few of the parameters had to 

be chosen and set by the operator. This opens the door for errors and 
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inefficiencies as the net performance of the program is dependent on the 

expert choice of those parameters. This makes the whole process reliant on 

the expertise of the operator which is not ideal. The whole process should be 

such that the efficiency is retained regardless of the skill of the people 

involved. This self-sufficiency can be incorporated by automation of the 

process of determining the values of these parameters. In this study, these 

parameters (such as the z parameter and the initial values of the  and ) 

were chosen either by trial and error process or by randomization. By 

systematic automation of the determination process of these parameters we 

can reduce the possibility of inconsistent results. 

 

 Introduction of advanced distribution functions: 

The even and uniform distribution of the generated particles is essential for 

proper search of the entire search space. This is why the random distribution 

was adopted in this study. But this has some drawbacks. If we can generate 

more particles nearer to the final solution region instead of evenly 

distributing it, we may get the result with even fewer numbers of iterations. 

To do this, proper knowledge and understanding of the higher probability 

locations is needed for finding the ideal solutions. By using this knowledge 

the whole process can be made more efficient by reducing the length of the 

iterative process.  

This might be achieved by incorporating machine learning and artificial 

intelligence within the system in order to predict the probable solution 

region. The machine learning algorithm can be trained by using it in 

practical problems the generation of the particles can be weighted heavily in 

the high probability regions and lightly in the low probability regions. This 

will increase the chance of finding the global optima faster, increasing the 

speed of the algorithm. 
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