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Abstract

Hand gestures can be defined as the movement of the hands and fingers in partic-

ular orientations to convey some meaningful information. Recently, inexpensive

depth cameras have opened ample research opportunities to work with depth-based

features in parallel to image-based features. Existing computer vision-based ap-

proaches have limitations in capturing depth variations present in the fine-grained

gestures and also in the coarse-grained. Hence, we got a scope to exploit depth in-

formation and use them in the machine learning models to distinguish those hand

gestures correctly. In this thesis, we propose a unique depth quantization tech-

nique that can effectively distinguish different hand gestures. Using the technique

first, we generate contrast varying depth images that can help to extract salient

features from gestural images of static gestures. Second, we use depth values to

capture hand finger movement information in the Z-direction to discriminate on-

air writing tasks of English Capital Alphabets (ECAs). We have used depth-based

features, like raw depth values, quantized depth values, and non-depth features like

finger joint points in 2D, fingertip coordinates, other derived features from them,

then merge these features to generate a unique dataset for testing the significance

of depth features in terms of recognition accuracy. Experiments on both static and

dynamic hand gestures showed that the proposed approach gives higher recogni-

tion accuracies. Third, to test our proposed method in deep learning settings, we

design a depth-aware CNN-LSTM-based deep-learning model to recognize 14 and

28 dynamic hand gestures. The model takes gray-scale varying depth images and

2D hand skeleton joint points as multimodal input. We achieve better recogni-

tion accuracies by performing feature-level and score-level fusion techniques in the

benchmark dataset.

Keyword - Gesture Recognition; Depth Information; Static Hand Ges-

ture, Dynamic Hand Gesture, Depth Quantization, Machine Learn-

ing;
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Chapter 1

Introduction

Hand gesture can be defined as the movement of hands and fingers in a particular

orientation to convey some meaningful information [23]. For example, pointing to

some object through index fingers, expressing ’Victory Sign’ or ’OK’ sign, waving

hands, etc. Symbolic hand gestures represent some specific symbols like OK sign

or gesture that represents numeric symbol 1 (raising the index finger and bending

all other fingers). In most of the cases, these gestural movements conveys single

meaning in each culture having very specific and prescribed interpretations. More

importantly, symbolic gestures are alternative to verbal discourse structure, differ-

ent from everyday body movement which is consciously perceived. These gestures

are observed in the spatial domain and are called static hand gestures character-

ized by the position of fingers (finger joint angle, orientation, and finger bending

information). Unlike static hand gestures, dynamic gestures are considered in the

spatio-temporal domain, presenting gesture as a sequence of hand shapes which

includes starting through ending hand pose (e.g. hand waving, grabbing an object,

pinch gesture, writing in the air, etc.). Hand gestures provide a complementary

modality to speech for expressing one’s ideas. Information associated with hand

gestures in a conversation conveys information in degree, discourse structure, spa-

tial and temporal structure.

There are two approaches to recognize these gestures, vision-based and sensor-

based. Both of them have some advantages and disadvantages with their own re-

search challenges. In sensor-based approaches, user needs to wear sensor enabled

gloves that capture accelerometer, gyroscope, and other forms of inertial sensors

data containing hand and finger movements correctly. However, this approach

limits the naturalness in interactions with computers as well as noise incurred in

1
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reading sensor values. In vision-based approaches, the problem of object segmenta-

tion from the occluded background containing various illumination conditions can

reduce the recognition rate [24]. Moreover, this approach imposes restrictions on

the gesturing environment, such as special lighting conditions, uncluttered back-

ground, difference in viewpoints, temporal variations, etc.

The recent advancements in stereo vision camera that utilizes depth perception

from smaller to larger distances have opened a huge scope for the researchers to

work with depth information [25]. Traditional web cameras do not provide the

depth values (the distance of the gesturing hand from the camera). Depth infor-

mation can help eliminating occlusion problems easily and can quicken the segmen-

tation process with less error. In an occluded background, using depth information

it is possible to extract the gesturing hand movement information including other

important features (e.g., finger bending information). While performing gestures,

(static or dynamic) gesturing hand along with different orientation of hand fin-

gers can give motion-oriented movement information in z-direction in addition to

x and y directions. Those can be represented as the most important features by

effectively utilizing them in any gesture recognition system.

In the existing system, gestures, that are very close, contain overlapped fingers,

joined finger parts, temporal variations, distance variations are not effectively rec-

ognized. Depth information can help generating contrast-varying depth images

from low-contrast depth images. Due to the low resolution, camera provided gray-

scale images do not contain enough contrast variations. So, two different gestures

that vary slightly cannot be recognized. If we can quantize depth values and gener-

ate grey-scale images with variations in contrast then it can help extracting salient

features. The fingers and palm of the hand occupy relatively similar depth val-

ues. We believe this apparent lack of contrast hides some meaningful information,

which may be useful in gesture recognition models. For example when the fingers

overlap against palm, this is not visible in the corresponding depth images. So,

by quantizing depth values into specific depth levels, the contrast between fingers

and palms is increased and we gain additional information. Depth values can be

used to capture hand finger movement information in z-direction to discriminate

gestures. Quantized depth values can be used for training to learn important

information. Moreover, if we have depth-based features, like raw depth values,

quantized depth values, and non-depth features like, finger joint points in 2D, fin-

ger tip coordinates, other derived features from them, then we can merge these

features to generate a unique dataset for testing significance of depth features in

terms of recognition accuracy.
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1.1 Thesis Contributions

Considering all these observations, this thesis address the problem of constructing

hand gesture recognition systems for both static and dynamic hand gestures that

can utilize depth information effectively. Hence we investigate the first part by in-

troducing depth quantization technique to generate contrast-varying depth images

for static or symbolic gestures, study the impact of depth information in terms of

gesture recognition accuracy. In the second part, we extend the study in dynamic

hand gesture recognition by introducing depth-based features to be considered in

the classification of on-air writing of English Capital Alphabets (ECA). In the last

part, we consider depth-based multimodal gestural input in deep learning setup.

The main contributions of this thesis are summarized below:

� Recognition of static hand gestures using contrast-varying depth

information: We introduce a depth quantization process with the help of

depth information provided by Microsoft Kinect depth camera. We generate

contrast varying grey-scale depth images according to the depth map to uti-

lize local shape information of the gesturing hand fingers. We have applied

Scale-Invariant Feature Transform (SIFT) algorithm to achieve image invari-

ant properties. The algorithm takes the generated depth silhouettes as input

and produces robust feature descriptors as output. These features (after

converting into unified dimensional feature vectors) are fed into a multiclass

Support Vector Machine (SVM) classifier to measure the accuracy. We have

tested our results with a standard dataset containing 10 symbolic gestures

representing 10 numeric symbols (0-9). After that we have verified and com-

pared our results among depth images, binary images, and images consisting

of the hand-finger edge information generated from the same benchmark

dataset. Our results show higher recognition accuracy while applying SIFT

features on depth varying images.

� A depth-aware dynamic hand gesture recognition system that cap-

tures the motion-oriented movement information in the process of

on-air writing: We have captured hand finger motion information using

a depth camera and represented them as depth images for each ECA. We

represented the hand trajectories, that is, the hand movement sequence as

a series of data points (xt, yt, dt), where (xt, yt) is the position of the hand

and dt is the depth value at time sequence t. We extend our study of depth

information utilization technique to this dynamic hand gesture recognition
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system by applying depth quantization process in the air-writing sequences.

All the data points were converted into the time-series representation of a

particular alphabet suitable for extracting important features. We merge

the depth features and the non-depth features and generated 12 datasets

to understand the significance of depth information from different perspec-

tive like considering all the features, taking only the depth features, taking

the re-sampled features, and taking features after correlation analysis. Thus

we use integrated features consisting of quantized depth values, camera pro-

vided depth values, and non-depth features represented as DTW (Dynamic

Time Warping)-based distance features, fed them into a machine learning

model. We found that features with depth information contribute more to

recognition accuracy for all the feature selection techniques we applied.

� A multimodal two-stream deep-learning-based dynamic hand ges-

ture recognition system using depth information: We have introduced

multi-modal input consisting of depth-varying grey-scale images (quantized

depth images) and 2D hand skeleton joint points from benchmark DHG14/28

dataset. Spatio-temporal information of dynamic gestures was captured in

CNN-LSTM-based architecture consisting of two sub-networks. CNNs are

designed to detect spatial patterns related to the position of the skeleton

joints in 3D space and the LSTM is used to capture the spatio-temporal pat-

terns related to the time evolution of the 2D coordinates of the finger joints.

We perform a feature-level and score-level fusion-based CNN-LSTM deep-

learning model consisting of multimodal input that achieved better recogni-

tion accuracy.

1.2 Thesis Outline

The rest of the thesis has been organized as follows: In chapter 2, we describe the

background study and literature review on both static and dynamic hand gesture

recognition technologies and related research works, then in chapter 3 we give

detail description of our proposed approach in static hand gesture recognition,

chapter 4 presents the recognition of on-air writing activity as a dynamic gestu-

ral event using depth information, then we elaborate how our proposed method

has been extended to experiment dynamic hand gesture recognition task in deep

learning-based approach in chapter 5, at last, we give concluding remarks of the

thesis work in chapter 6.



Chapter 2

Literature review

Nowadays, hand gesture recognition in gesture-based interactions is a prominent

research area which has a huge impact in the design and development of many

HCI applications. Human hand gestures, after processing, can be considered as

alternate input modality while interacting with the computers. In computer vi-

sion, understanding and recognition of the hand gestures accurately has attracted

the attention of many researchers. Moreover, recently introduced low-cost depth

cameras has opened ample research opportunities in the area of computer vision,

machine learning, and HCI.

In this chapter, we discuss on types of hand gesture, hand gesture recognition

approaches, and their applications. Then we discuss on depth information acquisi-

tion, depth cameras, depth-based benchmark datasets of hand gesture recognition,

and features used in hand gesture recognition. Finally, we review the state-of-the-

art approaches of static and dynamic hand gesture recognition based on depth

information including relevant research challenges.

2.1 Hand Gesture Recognition

Hand gesture is the translation of gestural language in to meaningful information

that is produced by the hand finger movements, orientations, shapes constructed

by the hand. In HCI applications, these hand gestures should be recognized cor-

rectly so that those can be used to map gestural movements into corresponding

computer interactions like giving instructions or commands to the computer appli-

cations, manipulating virtual objects, exploration of virtual world, doing natural

conversations through gestures and so on. Interpretation of the hand movements

5
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need to be understood correctly by the gesture recognition system. The gestures

produced in the real-world 3D space need to be understood by the system in an

efficient way. There are basically two types of hand gesture as mentioned in the

introduction, static and dynamic hand gestures. No matter whether it is static or

dynamic hand gestures, the task of a recognition system is to map the observed

input to a particular hand configuration (e.g. Numeric symbol ’7’ of static hand

gesture or writing capital English alphabet ’C’ in the air of dynamic hand gesture).

In computer vision, the gestural input could be in different forms like 2D RGB

image, 3D depth image, hand skeleton joint points in 3D provided by depth cam-

era. Those inputs are presented to the recognition system as distinctive features

extracted using various relevant feature selection techniques. Hand gesture recog-

nition consists of detection and analysis of hand gestures from the information

captured from RGB cameras, depth cameras, different sensors or wearable inertial

sensor. In general, the task of traditional vision-based hand gesture recognition

system consists of the following steps:

1. Gestural image input: Taking input of the hand gesture from one or more

input sources. The input could be images from 2D/3D cameras or input could

be hand skeleton joint point provided by depth camera (e.g. MS Kinect, Intel

RealSense).

2. Preprocessing: Calibration of the RGB and Depth images, segmenting hand

region of interest (ROI), filtering noises, representing depth images based on

depth map information are few important steps in depth-based hand gesture

recognition system. Data normalization, augmentation, transformation are

also part of the preprocessing step.

3. Feature selection and extraction: This step includes suitable feature selection

and extraction techniques to generate the training set. The input data (e.g.

the RGB image or hand skeleton joint points from depth camera) are trans-

formed into a representation suitable for feature extraction. After extracting

suitable or appropriate features the training datasets are constructed.

4. Classification: A machine learning model or a combination of machine learn-

ing models is used to recognize unknown gestures into an expected gestural

class label. Cross-validations are performed to report the accuracies.

Steps of a typical hand gesture recognition system is shown in Figure 2.1.
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Figure 2.1: A typical hand gesture recognition system
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In this thesis, we focus on computer vision-based hand gesture recognition that

are performed in natural environment and the gestural hand contains x, y image

coordinates as well as depth values in z dimension.

2.2 Depth Information acquisition and gesture represen-

tation

There are different approaches to capture hand gesture inputs. Computer vision-

based approach imposes restrictions on the gesturing environment, such as special

lighting conditions, simple and uncluttered background, and occlusions (the ges-

turing hand is occluded by other parts of the body) [23]. Traditional web cameras

do not provide the depth values (the distance of the gesturing hand from the

camera) so getting the full 3D information of the observed scene where gesturing

events need to understand is a major challenge in computer vision. Observing

the same gestural scene from two different viewpoints using 2D camera and then

calculating disparity information to estimate depth information requires a lot of

computational effort. However, the recent emergence of depth sensors has given an

opportunity for the researchers to utilize the depth information in order to over-

come those challenges. The depth data streams are provided by different depth

sensors, like Microsoft Kinect [26], Intel Real Sense [27], ASUS Xtion Pro [28],

etc. Figure 2.2 shows few of the depth sensors released recently. The depth in-

formation corresponding to the hand gesture images has given new dimensions to

conduct research in hand segmentation process, finger identification techniques,

finger joint detection, and finger tracking. Depth data can help eliminating oc-

clusion problems easily and can quicken the segmentation process with less error.

These depth sensors provides depth-map information for each pixel from which the

3D information of the scene can be estimated. Depth map information actually

stores a distance value (Z-value) for each pixel (X, Y) in an image. This depth

value are represented by 8-bit values between 0-255. 0 value represents the most

distant possible depth value and 255 is the closest possible depth value in the

image. There are different techniques and methods to calculate depth by different

depth cameras.

Microsoft Kinect version 1.0 uses Light coding technique where light-encoded in-

frared transmitter emits a ’stereo code’ with three-dimensional depth (Figure 2.3).
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Figure 2.2: Example of RGB-D camera for depth information acquisition (a) Mi-
crosoft Kinect V2 (b) Intel RealSense D435i

Figure 2.3: Depth perception uisng Structured light technique (e.g. MS Kinect V1)[3]
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Kinect version 2.0 uses time-of-flight technique to estimate depth. A light signal is

emitted to the scene, a receiver computes the distance of the object based on the

elapsed time between the light emission and reception (Fig. 2.4). A recent survey

on hand gesture recognition devices and their different applications can be found

in [23, 25, 29, 30]. They have given the comparison of the devices from a survey

based on different criteria like, type and number of objects could be detected,

tracked, sensor implementation technologies, availability of documentations, and

advantages-disadvantages of the depth sensors, etc. [29].

Figure 2.4: Depth perception uisng Time-of-Flight (ToF) technique (e.g. MS Kinect
V2, Intel RealSense)[4]

Computer vision-based hand gestures can be represented in to two ways, one is 3D

model-based method and the other one is appearance-based method [23]. Hand

skeleton model provided by the depth camera is a 3D model-based representa-

tion that contains 3D spatial information of human-hand-joint points along with

temporal information [25]. In appearance-based methods, gestures are represented

using color-based model, silhouette geometry model, etc. The geometric properties

of hand skin color, silhouette properties such as perimeter, convexity, bounding

box, centroid, etc. are used to represent hand gestures. These representations

of hand gestures help to extract discriminating properties to learn by different

machine learning algorithms.

2.3 Application areas of depth-based hand gesture recog-

nition system

A lot of HCI applications have already been emerged based on depth estimation or

depth-map information. They have been employed in object recognition, tracking,
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3D reconstruction, Augmented Reality (AR) based games, human activity recog-

nition, sign language recognition, and so on [31, 32]. In the literature, gesture

recognition has been used in varieties of applications where depth data become

crucial to recognize hand gestures effectively [33]. A real-time low-cost charac-

ter animation system was introduced in [31] that reduces manual post-processing

tasks using Kinect as the depth-data acquisition device. A quick and accurate hu-

man pose recognition system has been proposed in [32] using single depth image

acquired by Kinect. Figure 2.5 shows few common HCI applications that requires

hand gestures to interact with the systems.

Figure 2.5: Few application areas of hand gesture-based interactive systems (image
adapted from [5, 6, 7, 8, 9, 10, 11])

2.4 Datasets for hand gesture recognition

The depth sensors can capture and track the full body motion, body skeleton joint

points to provide important information directly from the software operated de-

vices. However, hand gesture recognition may not require to track the full body in-

formation compared to human activity recognition and analysis [34]. The datasets
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required for hand gesture recognition may focus on the specific hand region of the

gesturing hand. Recently, the depth-based hand gesture datasets captured by dif-

ferent depth sensors are becoming publicly available to analyze both static and

dynamic hand gestures which gave the researchers’ an ample opportunity to work

with depth information.

As the main focus of the thesis is to cover depth-based hand gesture recognition so,

depth sensor-based static and dynamic hand gesture recognition datasets will be

reviewed here. Most of the datasets are referred from the recent publicly available

datasets. In the literature a large number of datasets have been constructed with

the help of MS Kinect or Intel RealSense. Unfortunately, the precise hand-shape-

context information are not that much reliable due to its low resolution structure.

The recent depth camera-based datasets provides depth-map information including

RGB image and hand skeleton joint points in 2D or 3D [34].

A depth camera-based static hand gesture dataset named as ’NTU hand digit

dataset’ was created by Ren et. al. in [2], is a benchmark dataset in static hand

gesture recognition. The dataset was collected using Kinect depth camera from 10

subjects. Each subject has performed 10 static or symbolic gestures 10 times. So,

the dataset contains total of 1000 instances. Each gesturing instance contains a

color image and the corresponding depth map. The dataset was prepared in a very

challenging real-life environment containing the situations like the cluttered back-

ground and pose variations in terms of rotation, scale, orientation, articulation,

changing illumination, etc. They have utilized depth-map information to improve

the hand segmentation process and represented each gestural hand shape image as

time-series contour curve. An overview of their time-series data generation from

the gestural dataset is shown in Figure 2.7. They applied distance-based match-

ing algorithm named as ’Finger Earth Movers Distance (FEMD)’ to recognize

gestures.

Depth sensor-based static hand gesture datasets to recognize American Sign lan-

guage (ASL) have been used by the researchers in [15, 35, 36]. The ’HUST-ASL’

dataset used in [35] and [15] consists of 34 hand gestures generating numeric dig-

its from 0 to 9 and 24 English characters with 16 different poses with the help of

10 participants. The dataset contains 5440 RGB images and their corresponding

5440 depth-map which were superimposed to generate RGB-D images for classifi-

cation. The fusion of color and depth images are fed directly in the classification

model to predict the signs. The description of the ASL-FS dataset can be found

in [36]. A static hand-gesture dataset for human-robot interaction introduced in
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Figure 2.6: Time-series data generation of the gestural image (a) depth-thresholding-
based hand segmentation (b) A more accurate hand detected with black belt (the green
line), the initial point (the red line) and the center point (the cyan point); (c)Its time-

series curve representation). Image reproduced from [2]

[12] contains 15 static gestures as show in Figure . The dataset contains spatially

and temporally adjusted RGB images, depth images, and annotated bounding box

coordinates in separate files.

Along with the static hand gesture datasets, recently, there are number of depth-

based dynamic hand gesture datasets came into research focus. Researchers are

working on these dynamic hand gesture datasets mostly by applying deep-learning-

based methodologies to achieve higher recognition accuracies. However, to deal

with research issues like self-occluded small hand articulated parts, low resolution

depth images, capturing gestural motion information researchers are trying hard to

consider these challenges in their dataset preparation. Many of the recent dynamic

hand gesture datasets have been reported in [34, 37].

Different indoor and outdoor related activities in the form of hand gestures were

captured from 50 subjects in a multimodal large-scale dataset named as EgoGes-

ture [38] dataset. There were 2081 RGB-D videos, 24161 samples, and 2953224

number of frames containing 83 gestural categories captured using Intel RealSense

SR300 camera. It is a publicly available gesture dataset that covers different daily

activities, actions, and interaction with objects and other human. The NVDIA
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Figure 2.7: 15 static front right-hand gestures. Image reproduced from [12]

dataset presented in [13], contains 25 dynamic hand gestures from simulated card

driving scene. It contains 5 input modalities consists of RGB image, optical flow

image, depth image, IR image, and IR disparity image. They captured RGB and

depth videos using SoftKinetic DS325 sensor and a top-mounted DUO 3D sensor

for the IR streams. The optical flow images were generated from RGB image and

IR disparity image from IR-stereo pair as shown in Figure 2.8. However, hand

skeleton joint points were not considered in their dataset.

Another hand-skeleton-based depth dataset presented in [34], contains 14/28 dy-

namic gestures divided into fine-grained and coarse-grained gestures captured us-

ing Intel RealSense camera. The list of gestures are given in Table 5.2. This

dataset has came into research focus after commencing at 2016. In this dynamic

gesture event, there are also few datasets that could be found in air-writing domain

as used in [39, 40]. However, these air-writing datasets are not depth camera-based

datasets. A depth-camera captured air-writing dataset can be found in [18].
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Figure 2.8: Environment for data collection. (Top) Driving simulator with main
monitor displaying simulated driving scenes and a user interface for prompting gestures,
(A) a SoftKinetic depth camera (DS325) recording depth and RGB frames, and (B) a
DUO 3D camera capturing stereo IR. Both sensors capture 320×240 pixels at 30 frames
per second. (Bottom) Examples of each modality, from left: RGB, optical flow, depth,

IR-left, and IR-disparity. Image reproduced from [13]

Table 2.1: Dynamic hand gesture list in in DHG 14/28 Dataset

Class Gesture Grain

0 Grab Fine
1 Tap Coarse
2 Expand Fine
3 Pinch Fine
4 Rotation Clockwise Fine
5 Rotation Counter-clock Fine
6 Swipe Right Coarse
7 Swipe Left Coarse
8 Swipe Up Coarse
9 Swipe Down Coarse
10 Swipe X Coarse
11 Swipe V Coarse
12 Swipe + Coarse
13 Shake Coarse

2.5 Related work on static and dynamic hand gesture recog-

nition

Human hand is a highly articulated model, prominent in making deft poses. To

recognize those hand poses many research works have utilized RGB cameras and
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applied either template-based approaches or model-based approaches on RGB im-

ages. Conventional RGB image-based gesture recognition techniques need to con-

sider many research challenges, such as light sensitivity, cluttered background, and

occlusions. However, the recent emergence of depth sensors has given an oppor-

tunity for the researchers to utilize the depth information in order to overcome

those challenges. From the depth sensors, the most common features used in static

hand gesture or posture recognitions [41] are skeleton joint positions, hand geom-

etry, hand-finger shape, area, distance features, depth pixel values, etc. Generally,

these features can be categorized as local features or global features. The major

challenges of these feature descriptors are variations of gesturing hands while ar-

ticulating an emblem or symbolic gesture. In case of static hand gesture, a gesture

may slightly differ in terms of hand shape and size, variations in translation, or

rotation of the fingers for the same gesture.

A robust hand gesture recognition system should be invariant to the scale, speed,

and the orientation of the gesture performed. From the depth-image-based dataset

of static hand gesture recognition described in section 2.4, did not consider depth

information as important features in gesture recognition. They have considered

depth-map information for effective and robust segmentation process.

2.5.1 Hand Segmentation and localization

Hand segmentation and localization is one of the fundamental steps of both static

and dynamic hand gesture recognition system. Almost all the depth information-

based hand gesture recognition approaches as described the pre-processing step

in section 2.1, contains hand segmentation and localization based on depth values

provided by the depth camera. To extract hand ROI exactly and quickly depth-

thresholding-based techniques are recently applied among the state-of-the-art ges-

tural hand segmentation techniques: Skin-color-based, background subtraction,

and depth-based segmentation [2, 15, 34, 42, 43]. A typical depth-based hand

segmentation process is shown in Figure 2.9.

An attention network-based hand localization method has been introduced in [14]

to bypass the segmentation process. Input of the network consists the fusion of

RGB image and Depth image. The network gradually focuses on hand ROI from

the image which is later optimized for the classification tasks. Example hand

localization procedure shown in Figure 2.10.
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Figure 2.9: Hand Detection process. (a). The RGB color image captured by Kinect
Sensor; (b). The depth map captured by Kinect Sensor; (c). The area segmented using
depth information; (d). The hand shape segmented using RGB information. Image

reproduced from [2]

Figure 2.10: Examples of localization results. There are five columns in total, which
represent five different hand gestures we randomly chose in one subject from HUST-
ASL. Each line represents the results at different iterations, which are 20 0, 40 0, 20 0 0,
and 40 0 0, respectively. Green/red rectangles indicate the highest weighted proposals
computed by our attention network. Green represents good localization results, while

red represents unsatisfactory results. Image reproduced from [14]
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An improved segmentation process described in [44] combines depth and color in-

formation using a hierarchical scan-based method and then local neighbor method.

This method is suitable to give segmentation result up to two meters. A depth

range-based hand segmentation were used after Otsu’s global thresholding on color

image as reported in [45]. A binary classification-based approach using Random

Decision Forest (RDF) is applied to classify each pixel of depth information pro-

vided by the camera either contains hand or the background. However, this task

is not suitable for real-time applications [46].

2.5.2 Representing gestural features to machines

Natural and contactless communication between human and machines require

computer vision-based techniques. However these techniques impose lot of chal-

lenges due to illumination variations, background changes, occluded and complex

scenes, processing time, frame rate, resolution, skin-color confusions, and so on.

Depending on the recognition approaches like, color-based recognition, skeleton-

based, motion-based, depth-based, 3D model-based, deep-learning-based, the fea-

tures extraction and representation process also varies [45]. Features that are

extracted manually called hand-crafted features required novel and complex func-

tions which requires a great computational capacity. Features could also be ex-

tracted automatically due to the recent availability of computational resources

using deep learning algorithms. Here we mostly describe hand-crafted features

used in gesture recognition rather than automated features. However, the input

modality for automated feature extraction plays significant role in gesture recog-

nition.

2.5.2.1 Spatial features

Gestural features that contains spatial information to represent gestures can be

considered as spatial features. For example hand shape and size descriptor, color

descriptor, hand contour representation, hand finger positions, hand finger joint

point positions, and so on [47].

Color-based features like color marker, skin color angle, non-skin color angle from

the hand shape region, etc can be found in the literature [48, 49]. However, they

suffer from occlusion, presence of cluttered or complex background. A free-main

chain code based hand shape features were used in [48] to recognize Indonesian Sign
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Language. Histogram of oriented gradients (HOG) is considered as one of the basic

features in computer vision. Haar-like feature was used in real-time vision-based

hand gesture recognition in [50]. It actually describe the hand posture with the

computation of ’integral image’. Finger-emphasized multiscale descriptor (FMD)–

Dynamic time warping (DTW)-based multiscale feature descriptor has been pro-

posed in [51], found to be robust in RGB-D based static hand gesture recognition.

The FMD describe the features in 3-scale representation of time-series data. A

recent review of different features to recognize static hand gestures or hand pos-

ture is reported in [25], that mentioned techniques to extract certain features like,

Wavelet Transform, Fourier Coefficients of Shape, Zernic Moment, Gabor filter,

Vector Quantization, Edge Codes, Hu Moment, and so on. Static hand gestures

actually contains spatial patterns to learn by the machine learning algorithms.

These spatial feature are extracted in different methodologies as found in another

recent literature survey in [47]. Hand finger shape-based feature extraction pro-

posed in [52], combines number of finger tips, angle between fingertips and hand

gravity center, and Scale Invariant Feature Transform (SIFT) features.

In [2], the author used depth camera provided depth values to segment the hand

region of interest. They have generated hand shape contour image in the form of

time-series curves. The process of generating time-series curve is shown in Figure

2.7 and their proposed approach is shown in Figure 2.11.

Figure 2.11: Proposed framework of part-based static hand gesture recognition. Im-
age reproduced from [2]

The extracted curves of gesturing finger parts were matched using a distance-

based template matching algorithm called FEMD. They represented the shape

of hand fingers as a global feature (the finger cluster) by analyzing time-series

curve generated from binary image. In the curve, the Euclidean distance between

each contour point and the center point is considered in one dimension and the

angle of these contour points made with the initial point relative to the center

point is considered as another dimension. The time-series curve of the topological
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hand shape considered as finger parts and matches those fingers only, not the whole

hand shape. Features only from opening finger parts may not give good recognition

results. Rather features including bending finger parts as local features will play

a significant role to improve the recognition accuracy.

Researchers in [36], used depth images to recognize static hand gestures using par-

allel convolution neural network (CNN) architecture for human-robot interaction.

Their architecture takes input from two channels, one from RGB images and the

other one from the corresponding depth images. They considered images from

different backgrounds and different illumination conditions. However, to achieve

image invariant properties like scale, rotation, translation they relied on automated

feature extraction using CNN from low contrast 100×100 RGB and depth images.

To recognize close or fine-grained gestures where they varies with respect to small

changes in the finger local shape information, we can not rely fully on automated

feature learning. Rather, some sort of pre-processing in the image depending on

the available image information (e.g. depth) could significantly improve the recog-

nition accuracy.

Another work in [15], applied Depth Projection Map (DPM) and Bag-of-Contour-

Fragments (BCF) named as DPM-BCF method to classify different datasets in

[2, 53]. They have not considered robust key-point-based descriptors for training

and testing. The depth-map is projected into three orthogonal planes to generate

front, side, and top view of the same gestural image in to three binary image. The

process diagram is shown in Figure 2.12.

Figure 2.12: Pipeline of building shape representation in DPM-BCF, which is ex-
tracted from the depth map of each projection view. The middle box illustrates the
procedure of building shape representation: (a) contour of the hand; (b) critical points
detected using DCE; (c) some contour fragments in thick black color; (d) using shape
context to describe each contour fragment; (e) shape codes; and (f) using 1×1, 2×2,

and 4×4 spatial pyramid for max-pooling. Image reproduced from [15]
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They achieved highest accuracy with faster computation preserving shape and

topological information. However, the depth-map projections are the spatial in-

formation which are difficult to generalize and consider for temporal event (e.g.

dynamic hand gesture).

2.5.2.2 Temporal features

Compared to the static hand gestural features that contain hand description from

a single image, dynamic hand gestural features contain time-driven hand motion

information. These temporal motions need to be extracted from a sequence of hand

shapes rather than a single image. Dynamic hand gestures contains spatial as well

as temporal information in the sequence of images that are presented as spatio-

temporal features. However, image sequences consisting of spatial information can

also be fed in to a temporal classifier.

Several feature representation techniques were utilized in case of dynamic hand

gesture recognition like 3D depth information from the hand region, point clouds

[54], localized hand finger joint positions [55], spatio-temporal HOG2 descriptor

[56], histogram of 3D facets, N-gram model, dynamic programming on depth maps

[57], and so on as described in [17]. Researchers in [58] represented dynamic hand

gestures as global rotation and global translation features by wrist joint, palm joint,

and metacarpophalangeal (MCP) joints. They also concatenated these global mo-

tion features with finger motion features as final feature set. To learn automated

spatio-temporal features, a 3DCNN-based feature extractor was applied in Ara-

bic Sign Language (ArSL) gestures. Motion Fused Frames (MFFs), a technique

to append optical flow frame and color frame to generate Fused spatio-temporal

frames representing gestures as shown in Figure 2.13.

To represent a motion trajectory of dynamic gesture the researchers in [59], ex-

tracted hand position, velocity, and angle consisting of 4-dimensional feature vec-

tor for each standard gesture. For gestural sequence modeling, recurrent neural

networks (e.g. RNN, LSTM) are highly used to capture temporal relationships in

the frames. Previously, the handcrafted features were extracted containing ges-

tural sequences and classifiers such as Hidden Markov Models (HMMs), Dynamic

Time Warping (DTW) were used to recognize spatio-temporal gestures. Each ges-

tural sequence can be considered as a finite number of probabilistic states. The

state transitions represent the hand positional changes in a gesture sequence [60].

Researchers in [17], worked with various hand gesture features derived from two
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Figure 2.13: Motion Fused Frames (MFFs): Data level fusion of optical flow and
color modalities. Appending optical flow frames to static images makes spatial content
aware of which part of the image is in motion and how the motion is performed. Top:
Swipe-right gesture. Bottom: Showing two fingers gesture.. Image reproduced from

[16]

modalities with depth and skeleton data. Figure 2.14 shows the overview of the

features of dynamic hand gestures. They have extracted five types of features

to exploit robust features in dynamic hand gesture recognition. The features are

motion features, skeleton shape features, normalized hand skeleton features as

handcrafted features and joint point-cloud features, hand depth shape features

are automated features. They claim their contribution in using the pairwise joint

distance instead of using the Shape of Connected Joints (SoCJ) features as pro-

posed in [61]. To record the temporal information while air-writing, the researchers

in [18], used geometric shape features from the writing trajectory determined by

collecting the finger tip points into the frame sequences. To represent the feature

vector they use the slope sign variation at points on the trajectory and based on

the sign they define the points as critical points. An example is shown in Figure

2.15.

2.5.3 Multimodality in hand gesture recognition

Multiple input modalities of the same gesture can be considered as multimodal

input from various channels like RGB images, depth maps, and hand skeleton joint
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Figure 2.14: Overview of the features of a dynamic hand gesture. Left to right
shows the time axis of the gesture, and top to bottom shows the types of hand data
features, consisting of the original data, hand posture, hand depth, hand skeleton, hand

component, and hand point-cloud. Image reproduced from [17]

Figure 2.15: (a) Critical points on the trajectory, (b) critical points and lines in the
Persian digit trajectory 3. Image reproduced from [18]
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points belonging to the same gesture. Most of the work in hand gesture recognition

consists of collecting RGB images, depth information, or hand gesture signal from

hand-gloves. Each of the approaches has its advantages and disadvantages like,

RGB images of hand gestures are rich in texture and color but does not contain

depth-related information. The sensor-based approaches work well in occluded or

different illumination conditions, but the noise and interference may reduce the

recognition accuracy. Recently, researchers are using multiple input modalities to

be fused for the same gesture collecting gestural images from either multiple input

devices or same device with the capability of capturing multiple input streams

(e.g. Depth-map, RGB, ultrasound). In [16], optical flow graph and color map

information were combined to recognize dynamic hand gesture based on Jester

[62], ChaLearn [63], and NVIDIA [13] datasets. A combination of RGB image,

optical flow and depth information were used in [64] to recognize dynamic gesture

of human upper bodies. Cues from RGB and depth modalities were proposed in

[65] to extract spatio-temporal features such as HOG3D, motion boundary, dense

trajectories, and gradient-based features. They have recognized in car dynamic

gestures using an SVM classifier.

According to the different stages of fusion, multimodal data fusion can be divided

into four stages, data level fusion [16], feature level fusion [64], score level [66], and

decision level fusion [66, 67]. A sample data-level fusion is shown in Figure 2.16.

Figure 2.16: Data fusion process consisting of RGB, Depth, and surface EMG sensor
data for Human-Robot Ineraction. Image reproduced from [19]

As mentioned in [19], among the different fusion techniques, data level fusion can

achieve maximum fusion efficiency. Various information on the same hand gesture
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can be combined or fused and the recognition accuracy of the hand gesture can

be improved.

2.5.4 Classification models

Machine learning algorithms for classification tasks learn from data by different

types of learning strategies like supervised, semi-supervised, reinforcement learn-

ing. In supervised learning, samples with labels are used for training and unknown

samples are used for testing. The unsupervised learning tries to group or cluster

the samples into desired number of clusters whereas, the semi-supervised learning

is the mix-form of labeled and un-labeled data. Actually, depending on the hand

gesture representation suitable machine learning algorithms or models are selected

for classification tasks. In general, we can divide the classification models in to

two parts, conventional models and deep-learning-based models.

2.5.4.1 Conventional models

Some commonly used machine learning models to recognize hand gestures are

Support-Vector Machine (SVM), K-Nearest Neighbor (K-NN), Hidden Markov

Model (HMM), Dynamic Time Warping (DTW), Fine State Machines (FSM),

K-Means, Distance-based models and so on. These conventional models can be

applied in both static and dynamic gesture recognition. However, the choice and

applicability of these models depends on the feature representations and complex-

ities, number of separable classes, types of gestures, application domain, and so

on. In the literature, description of large varieties of classifiers can be found in

[23, 25, 29, 45, 68]. Here, we will discuss briefly few of machine learning models

used in gesture recognition.

Support Vector Machine (SVM) [69] is the non-linear supervised machine

learning algorithm that uses a kernel function to map the lower dimensional space

to higher dimensional space. The main idea is to identify the optimal separating

hyperplane which maximizes the margin of the training data. It finds the optimal

hyperplane with the help of support vectors that has the maximum margin. SVM

is the most used classification model for human hand gesture and action recognition

tasks [70, 71, 72, 73].

K-nearest neighbors (K-NN) is the distance-based non-parametric learning

algorithm that measures the proximity distance within K-value. Several distance
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measurement techniques are used like Euclidean distance, Manhattan distance,

Minkowski distance etc. It computes the distances between the new instance to

the training samples and then sorts the distances to find the k-nearest samples

K-NN is an instance-based learning model. To recognize hand posture in different

applications K-NN is used as reported in [74, 75, 76, 77].

K-means [78] is the unsupervised and well-known clustering algorithm in machine

learning domain. K represents the number of clusters or cluster centroids usually

chosen by the user. However, there are different ways to initialize the value of

K. It is a distance-based technique that iteratively converges to a local minimum

by updating the distances and group assignments of the numerical points in to a

desired number of clusters. It minimizes within-cluster point scatter.

Hidden Markov Model (HMM) [79] is the probabilistic model that predicts

the unobserved states from the observed sequential states. The HMM model is

parameterized by a transition matrix, emission matrix, and an initial state proba-

bility distribution. HMM has been applied in varieties of recognition applications

like speech recognition, optical character recognition, dynamic gesture recognition

and so on. In case of dynamic hand gesture recognition, each frame in a sequence

is the possible hand positions and transitions of the states mean the probability

of a certain hand configuration moves to the next hand configuration [60, 80].

Dynamic Time Warping (DTW) [81] is the distance-based similarity match-

ing algorithm that distance of two varying length time-series signals and was orig-

inally introduced for speech recognition. The DTW algorithm determines the

warping path and DTW distances following few conditions like boundary condi-

tion, monotonicity condition, Continuity condition, Warping window condition,

and slope condition. In [82], the authors use DTW algorithm to recognize static

and dynamic hand gestures from time-series representation of hand finger contour

information. There are other works on DTW-based classification tasks of hand

gesture recognition reported in [83, 84]

In the literaturec we found that, most of the classification models used for static

hand gesture recognition are SVM, K-NN, DTW and many of the research works

have reported better recognition accuracy using the SVM model with different

kernels. Whereas, most of the conventional dynamic gesture classification models

are based on HMM and DTW due to the ability to predict time-series data and

compute the likelihood of similarity.
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2.5.4.2 Deep learning-based approach

There are various recognition approaches to recognize gestures intonated by hand

movements including conventional machine learning-based models and deep learning-

based methods. For both the static and dynamic hand gesture recognition tasks,

deep learning-based approaches shown good recognition accuracies and robustness.

Rather than handcrafted feature learning, automated feature learning through

deep learning-based approaches has the ability to learn more relevant spatial

and/or temporal features, has been studied extensively in the recent years [68].

CNN [85] is the convolutional neural network that takes input images of the hand

gestures and works in three steps to extract features: convolution, activation, and

pooling in a layer-by-layer architecture. CNN may use multiple layers making

a deep layered model for feature extraction. Authors in [86] used CNN-based

feature extraction module that performs image scaling to 32×32 and used ReLU as

activation function. They used 2×2 max-polling layers and finally the classification

module has 4×4×128 size as input to recognize Kinect sensor-based American Sign

Language (ASL). Conventional 2D CNN can only extract two-dimensional spatial

information. However, to extract temporal information in dynamic gestures which

contains gestural information in a sequence of image frames or in a sequence of

hand skeleton joint points, three approaches are used like 3D-CNN, two-stream

networks, and Recurrent Neural Network (RNN)-based networks [37].

Compared to 2DCNN, 3DCNN works with multiple feature maps and are called

deep 3D convolution network (3D ConvNets) [87]. Convolutional 3D (C3D) in-

troduced in [87], is the first spatio-temporal feature extractor adopted in many

dynamic hand gesture recognition tasks as reported in [37].

A two-stream CNN network was first introduced in [20] consist of RGB image

frame and corresponding optical flow frames as two input stream of spatial and

temporal information respectively. Figure 2.17 shows an example two-stream net-

work architecture for spatio-temporal information classification.

Recurrent Neural Network (RNN) is a type of artificial neural network that are

able to recognize and predicts sequence of data containing ordered information

such as dynamic hand gestural movement in a video sequence, genome sequences,

handwriting, spoken words or numerical time-series data. This deep neural net-

work structure can hold memory data in hidden layers and can work on a sequence

of arbitrary length.
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Figure 2.17: Two-Stream architecture for video classification. Image reproduced from
[20]

A recurrent 3D convolutional neural network (R3DCNN)-based dynamic hand ges-

ture recognition system proposed in [21] contains two-layered architecture. From

the gestural frame sequences they have extracted local spatio-temporal features

through a deep 3D-CNN layer, performed global temporal modeling using RNN-

based layer, and finally calculated class-conditional probabilities using a softmax

layer. Figure 2.18 shows their proposed architecture.

Long-Short Term Memory (LSTM) network is a special type of RNN capable of

learning long-term dependencies in a gestural sequence. It handles the gradient

disappearance and gradient explosion problems during RNN training [37]. A dy-

namic gesture recognition system based on CNN and LSM network is presented

in [88] based on Leap Motion Controller (LMC) device. A combination of CNN

followed by a LSTM-based network architecture was proposed in [22] to detect

spatial patterns related to the hand finger skeleton joint points in 3D using CNN

and spatiotemporal patterns using LSTM. Their architecture is shown in Figure

2.19. They have the same architecture for both human action recognition and

dynamic hand gesture recognition.

2.6 Depth information in hand gesture recognition

Depth information is the distance value from the user to the depth camera (e.g.

Microsoft Kinect, Intel Realsense, etc.). This information helps to generate depth

image and used as skeleton features to different gesture recognition systems [89].

The depth image has a standard size, but for every pixel, it is known that how

particular distances away the object are from the camera. 3D image is considered

as depth image which has depth value. For those reasons, we can quickly calculate
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Figure 2.18: Classification of dynamic gestures with R3DCNN. A gesture video is pre-
sented in the form of short clips Ct to a 3D-CNN for extracting local spatial-temporal
features, ft. These features are input to a recurrent network, which aggregates tran-
sitions across several clips. The recurrent network has a hidden state ht−1, which is
computed from the previous clips. The updated hidden state for the current clip, ht, is
input into a softmax layer to estimate class-conditional probabilities, st of the various
gestures. During training, CTC is used as the cost function. Image reproduced from

[21]

Figure 2.19: (a) The structure of the network during the pretraining stage consists
of a CNN attached to a MLP and (b) The structure of the network during the final

training stage consists of a CNN attached to a LSTM. Image reproduced from [22]
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the length of an object. 3D reconstruction is the method through which shape

and appearances of real objects are captured from a set of 2D images. It is widely

used in fields such as computer vision, computer graphics, 3D reconstruction, and

robotics.

Depth information provided by depth camera like Kinect, Intel RealSense and

others contributes the gesture recognition research into three ways, in the hand

segmentation process, in the depth-based feature representation techniques, and

contributing as an input modality in a gesture recognition model. In the literature,

we have found that, depth values or depth images contributed a lot in the recent

computer vision-based hand gesture recognition approaches. A brief overview of

different depth sensors is given in section 2.2. Microsoft Kinect camera provides

16-bit depth images (320×240 pixels) and 8-bit color images (640×480 pixels) of

the same object. The value of each pixel in the depth image is the distance or

depth value between the 3D world point and the sensor. Kinect version 1 gives

20 joint points while version 2 gives 25 joint points consisting of coordinate values

with a range of detection from 0.5 to 4.5 meters. Intel RealSense camera gives

22 joint points of the hand skeleton structure. The joint points represent the

3D spatial positions of the body skeleton. Depth values are significant in seg-

mentation because they are not affected by environmental factors like background

color, different illumination conditions, cluttered objects, and also they faster the

segmentation process with less error. Depth-based hand segmentation and local-

ization of hand ROI are briefly written in section 2.5.1. The depth information

characterize a particular gestural event effectively while doing the same using only

RGB image will not give accurate results. For example, the ”Reach out” hand ges-

ture RGB image do not contain enough information changes in frame sequences.

However, the corresponding depth pixel changes or variations of distance values

carry important distinguishable characteristics. So, the use of right modality or

combination of modalities in a gesture recognition system can give better recogni-

tion accuracy as mentioned in [37]. A detailed study on depth value utilization in

recognition approaches can be found in [45].
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Recognition of static hand

gestures using depth information

Symbolic gestures are the hand postures with some conventionalized meanings.

They are static gestures that one can perform in a very complex environment

containing variations in rotation and scale without using voice. The gestures may

be produced in different illumination conditions or occluding background scenarios.

Any hand gesture recognition system should find enough discriminative features,

such as hand finger contextual information. However, in existing approaches,

depth information of hand fingers that represents finger-shapes is utilized in limited

capacity to extract discriminative features of fingers. Nevertheless, if we consider

finger bending information (i.e., a finger that overlaps palm), extracted from depth

map, and use them as local features, static gestures varying ever so slightly can

become distinguishable.

In this chapter, we present our idea on how the depth-map information can be

utilized to generate depth silhouettes with variation in contrast to achieve more

discriminative keypoints. The approach, in turn, improved the recognition accu-

racy to recognize 10 numeric symbols (0-9). We will discuss how the Scale Invariant

Feature Transform (SIFT) algorithm is used to produce robust feature descriptors

out of those depth silhouettes. Our process of creating unified dimensional feature

vector from a benchmark static hand gesture dataset and classification model used

will be presented in section in 3.2. Then, the comparative result analysis among

depth images, binary image, and images consisting the hand finger edge informa-

tion generated from the same dataset are described in the experiment section in

3.3. Finally, we conclude the chapter summarizing the research achievements, few

discussion points, and future scope in chapter 3.5.

31
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3.1 Background study and related works

Gesture-based interaction has been introduced in many HCI applications which

allow users to interact intuitively through computer interfaces in a natural way.

Rather than using traditional unimodal inputs, blending alternative style of inter-

actions, such as hand gestures along with mouse and keyboard introduces more

degree of freedom (DoF) to the computer users. Nowadays, hand gesture-based

interaction is a prominent area of research which has a huge impact in the de-

sign and development of many HCI applications like controlling robots through

hand gestures, manipulating virtual objects in an augmented reality environment,

playing virtual reality games through different hand movements, communicating

through sign languages etc. We need these types of interaction to achieve interac-

tion design goals like effectiveness, efficiency, affordance, feedback.

Hand gesture can be defined as the movement of hands and fingers in a particu-

lar orientation to convey some meaningful information [23] like pointing to some

object through index fingers, expressing victory sign or OK sign, waving hands,

grasping an object etc. Symbolic hand gestures represent some specific symbols

like ’OK’ sign or gesture that represents numeric symbol ’1’ (raising the index fin-

ger and bending all other fingers). In most of the cases, these gestural movement

conveys single meaning in each culture having very specific and prescribed inter-

pretations. More importantly, symbolic gestures are alternative to verbal discourse

structure, different from everyday body movement which is consciously perceived.

These gestures are observed in the spatial domain and are called static hand ges-

tures characterized by the position of fingers (finger joint angle, orientation, finger

bending information). Unlike static hand gestures, dynamic gestures are consid-

ered in the temporal domain, presenting gesture as a sequence of hand shapes

which includes starting through ending hand pose (e.g. hand waving, boxing).

There are different approaches to capture and recognize these gestures. Computer

vision-based approach impose restrictions on the gesturing environment, such as

special lighting conditions, simple and uncluttered background, and occlusions

(the gesturing hand is occluded by other parts of the body) [23]. Due to these

restrictions segmentation of hand may cause the reduction in hand gesture recog-

nition accuracy. Hand poses, generated in the process of gesticulation, can also

be detected by means of wearable sensor like data-gloves. The data-gloves are

embedded with the accelerometer, gyroscope, bend sensor, proximity sensor, and
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other forms of inertial sensors [90]. These sensors collect hand-finger motion infor-

mation as multi-parametric values. However, the sensor-based gesture recognition

approaches have limitations in terms of naturalness, cost, user comfort, portability,

and data preprocessing.

The recent advancements in stereo vision camera that utilizes depth perception

from smaller to larger distances have opened a huge scope for the researchers to

work with depth information [91]. Traditional web cameras do not provide the

depth values (the distance of the gesturing hand from the camera). Depth infor-

mation can help eliminating occlusion problems easily, can faster the segmentation

process with less error. In an occluded background, using depth information it is

possible to extract the gesturing hand movement information including other im-

portant features (e.g. finger bending information) which can be effectively utilized

in feature representations. Moreover, static gesture can be performed by the users

with varying hand size, changes in hand position (orientation, rotation), different

illumination conditions. Scale Invariant Feature Transform (SIFT) [1] is an algo-

rithm that works better for these types of variation. The algorithm generates key

points from images and provides 128-dimensional feature vectors.

In this research work, we try to recognize symbolic hand gestures representing 10

numeric symbols from 0 to 9. These are very close gestures, differing only in slight

variations (e.g. the difference between numeric symbol 2 and numeric symbol 3

is due to the presence/absence of one finger only) of finger positions. With the

help of depth data stream, after a quick and robust segmentation process, we have

calculated depth threshold based on which the contrast varying depth images are

generated according to the depth map of the individual gesture. This process was

applied to 100 image instances per gesture. In each image for the same gesture,

we got the different number of SIFT keypoints. By combining the keypoints, we

have generated bag-of-feature (BoF) vector with the help of the k-means clustering

technique to generate uniform dimensional feature vectors and classified using a

multiclass SVM.

From the depth sensors, the most common features used in hand posture recog-

nition [41] are skeleton joint positions, hand geometry, hand finger shape, area,

distance features, depth pixel values, etc. Generally, these features can be cate-

gorized as local features or global features. The major challenges of these feature

descriptors are variations of gesturing hands while articulating an emblem or sym-

bolic gesture. A gesture may slightly differ in terms of hand shape and size,

variations in translation or rotation of the fingers for the same gesture. A robust
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hand gesture recognition system should be invariant to the scale, speed, and the

orientation of the gesture performed.

The approaches that are followed by static gesture recognition system from binary

images in [92] and time-series curves in [2], do not facilitate the possibility of ex-

tracting local finger context information. The authors in [92], have captured RGB

images from webcam, converted them to binary images and applied SIFT algo-

rithm to determine the recognition accuracy. In binary images, the finger context

information - shape, orientation, bending fingers, occlusion cannot be preserved - a

limitation that can be overcome by utilizing depth map information of the gestur-

ing hand. SIFT Keypoints are important feature points which are well distributed

and contain information about not only thumb and baby fingers but also about

finger bending information of index, middle, and ring fingers. Figure 3.1, shows

the differences of SIFT keypoints in gesture 8 mapped in to the binary image (7

key points) (Figure 3.1(b)) and in to depth image (56 key points) (Figure 3.1(d)).

This information is not present in the case of binary image or time-series curve.

SIFT works on local oriented features rather than topological shapes of opening

fingers which are considered as the global features. In [2], global features are used

to generate time-series curves (Figure 3.1(f)) after the segmentation process as

shown in Figure 3.1(e) from the hand shape represented in binary image. The

edit-distances are calculated to apply distance-based matching algorithm, such as

Finger-Earth Mover’s Distance (FEMD). Edit-distance-based matching algorithms

are not completely rotation, orientation invariant because they are measured by

comparing time series trajectories based on the proximity distance and not based

on the local shape information. Moreover, the temporal information are better for

dynamic gesture recognition rather than static gesture recognition [93].

Local features measure the characteristics of a particularly important region of the

object, superior in discriminating fine details. In [94], shape descriptor-based al-

gorithm and weak learning-based strong classifier were applied to recognize three

symbolic gestures (palm, fist, six). Their goal was to get orientation invariant

property of those gestures. They have used SIFT features as local features in

weak classifier for hand detection and trained each classifier independently. The

accuracy, in this case, depends on the large set of training images which they have

not considered. They have used a varying number of training images for individual

gestures. They have not considered the fact that, SIFT features extracted from

the different gesturing image can form a natural group of clusters having feature

vectors of the unified dimensions appropriate to feed into a classifier that can
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Figure 3.1: Differences in the number of SIFT keypoints in both (a) Binary image
and (c) Depth image and the use of finger bending information

recognize more than two classes. We have achieved this by clustering feature de-

scriptors and generating BoF features. In [95, 96], the researchers have considered

Haar-like features, applied learning-based techniques to recognize hand gestures.

They required a huge number of images for training and testing with high com-

putational power and they have not considered the scale-invariant property for

object detection.

Global features measure the characteristics of the whole image and face difficul-

ties in capturing fine details. An example would be the contour representation

of a hand gesture image (e.g. the hand contour image of Figure 3.1(e)) which

gives hand finger shape information from the whole image. The limitations of

contour-based recognition methods are that they are not robust on local distor-

tion, occlusion, and clutter [97]. To extract the complete hand posture information

while a finger and a palm are overlapped, such as bending fingers, as shown in
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Figure 3.1(d), the consideration of hand contour as the global feature representa-

tions is not enough. The similar problems are also mentioned in the recognition

approaches like skeleton-based recognition methods [98], shape contexts based

methods [99] and inner-distance methods [100]. A solution to these problems was

proposed using a novel distance-based measurement technique called Finger Earth

Mover’s Distance (FEMD) [2]. They represented the shape of hand fingers as a

global feature (the finger cluster) by analyzing time-series curve. In the curve,

the Euclidean distance between each contour point and the center point is con-

sidered in one dimension and the angle of these contour points made with the

initial point relative to the center point is considered as another dimension. Fig-

ure 3.1(f), shows the time-series curve of the topological hand shape considered as

finger parts and matches those fingers only, not the whole hand shape. Features

only from opening finger parts may not give good recognition results. Rather fea-

tures including bending finger parts as local features will play a significant role

to improve the recognition accuracy. We have considered those features in our

proposed approach. Moreover, for gesture recognition, they [2] have applied tem-

plate matching with minimum dissimilarity distance which may not give improved

recognition accuracy on both changes in orientation and rotation of a particular

pose. We propose to overcome this problem using local features found as SIFT

keypoints. Edit-distance-based time series matching approaches are more applica-

ble for dynamic gesture recognition due to their spatio-temporal features, rather

than static symbolic gesture recognition. Template-based approaches are good to

recognize the shape as a whole but lack in terms of invariance. SIFT algorithm

is known to be robust for its distinctiveness and invariance to rotation, scale, and

translation in object recognition. Depth image acquired using Kinect depth sensor

suffers from low grey level contrast that can cause an unstable set of keypoints.

Recently in [101], the researchers used Kinect-based depth map information to

discard the SIFT keypoints that are located at the boundaries of an object. They

applied Canny’s edge detection algorithm [102] on depth images and generated

an object model to store depth values and distance to the nearest depth edge for

the remaining SIFT keypoints. They have used Euclidean distance based nearest

neighbor algorithm to rank the keypoints matches and performed RANSAC-based

homograph estimation for object pose estimation. Their aim was to identify pre-

defined objects in the surrounding environment for the visually impaired. To

extract a stable set of SIFT keypoints different techniques were proposed by the

researchers. Preprocessing on the medical image (retina image) was done to reduce

the number of SIFT keypoints in [103].
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In [104], the researchers have extracted the SIFT keypoints from both the color

and the depth image and tried to find out the correspondence of SIFT keypoints

between those two images. They have combined SIFT descriptor with Harris cor-

ner detector to compute SIFT features at predefined spatial scales. They enhanced

the depth image contrast by applying histogram equalization without utilizing the

depth values explicitly of the gesturing hand to generate contrast varying depth

images. However, we have considered the depth map information to determine the

contrast level and generate depth silhouettes accordingly.

SIFT algorithm along with its different variants like PCA-SIFT [105], SURF [106],

GLOH [107] has been applied in various applications such as, image stitching,

object recognition, image retrieval etc. SIFT and SURF algorithm was also applied

in simultaneous localization and mapping (SLAM) with RGB-D Kinect sensor

on robots [24]. SURF is the fast approximation of SIFT that uses box filter

instead of Gaussian filter. However, SURF is not good at different illumination

conditions[106]. To improve the time complexity of SIFT several alternatives

were proposed, such as Binary Robust Independent Elementary Features (BRIEF)

[108], Oriented FAST and Rotated BRIEF (ORB) [109] that uses binary descriptor

instead of floating point descriptor to achieve faster performance suitable for real-

time applications.

In [110], the authors showed the comparisons among different image matching al-

gorithms, such as SIFT, SURF, and ORB. They have manually performed trans-

formation and deformation on the images in respect to rotation, scaling, fish eye

distortion, noise, and shearing. The comparison was done based on different eval-

uation parameters, such as the number of keypoints in images, execution time,

matching rate. For most of the scenarios they have found SIFT performed best.

The researchers in [111], tried to use depth map to perform smoothing process in

the scale-space. They smoothed the scene surface considering smoothing quantity

as a function of the distance given by the depth map so that ’the further a given

pixel is, the less it is smoothed’. They tried to inject the smoothing filter in the

SIFT algorithm and determined the repeatability score to evaluate the keypoint

detection performance. Their goal was to find the keypoint repeatability under

viewpoint position changes. However, the dataset we have used in our research was

generated using single depth camera without changing the viewpoint positions.

Bag-of-Feature (BoF) representation was used in [112] to obtain a global infor-

mation of visual data out of arrays of local point descriptors generated by SIFT

algorithm. SIFT algorithm can extract higher dimensional feature points from
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the images even with lower resolutions but compromises the efficiency in terms of

computation. To address this problem, BoF approach has been applied in reduc-

ing feature dimensions, redundancy elimination, and to extract global information

from local SIFT features [112]. Moreover, the BoF approach has been considered

as an efficient method to represent visual contents in hand gesture recognition

[113]. The local feature points extracted from SIFT are fed into clustering algo-

rithm to learn visual codebook and then each feature vector is mapped to a visual

codeword represented by a sparse histogram. We have applied this technique to

depth images for the classification using a multi-class SVM.

3.2 Methodology

Our proposed methodology of symbolic gesture recognition system consists of dif-

ferent steps like, (1) Hand segmentation and depth silhouette generation, (2) SIFT

keypoints extraction, (3) Clustering keypoints and generating BoF descriptors, (4)

Symbolic gesture recognition using SVM.

The architectural diagram of the proposed approach is shown in Figure 3.2. The

standard dataset [2] has considered 640×480 image resolution to capture the RGB

image and the depth map of gesturing hand using Microsoft Kinect. Depth values

are stored in millimeters. After calibration, we have applied the segmentation

process as described in [2], except generating grey-scale variations on depth images.

3.2.1 Hand Segmentation

Segmentation is the process of removing the non-interesting area from the per-

tinent object. Many of the techniques in hand region segmentation worked on

color space-based detection like skin-color detection, YCbCr/HSV color space fil-

tering and so on. These color-based techniques have limitations due to the noise,

lighting variations, background complexities. However, utilizing depth map infor-

mation combined with color information improves the segmentation process which

in turns gives better recognition accuracy.

Before segmenting the hand shape or region of interest (ROI), some pre-processing

is performed. This involves calibrating the RGB and Depth Images. The RGB

image is also converted into grey-scale. To extract the region of interest, first, we

locate the smallest depth value from the depth image. This corresponds to the
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Figure 3.2: The architecture to recognize symbolic gestures

Figure 3.3: Hand Gesture Segmentation

closest point of the hand from the camera plane. We call this value minimum-

distance. Next, an empirical threshold value is added to the minimum-distance

to give the segmentation threshold. This segmentation threshold is then used to

segment the hand region from the rest of the image. This approach has proven to

be robust in cluttered and noisy environments [114]. It is important to note that

the hand should be the closest object to the camera for proper segmentation. The

segmentation threshold is the sum of a minimum distance and a depth threshold.
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The minimum distance is easily obtained from the depth image as the minimum

value in the depth matrix. The depth threshold is estimated based on different

possible orientations of the hand shape.

After multiple measurements and testing, an upper bound is chosen as the depth

threshold, such that, the sum of the depth threshold and the minimum distance

will allow us to isolate or segment the hand shape including the black belt from

the rest of the image. In our scenario, the depth threshold was estimated at 200

mm. The depth threshold is useful for filtering cluttered background containing an

overlapped image (e.g. gesturing hand is overlapped with the face having the same

color). We followed the same segmentation process as described in our previous

work in [115]. However, in this research, the segmentation process is applied to a

larger and challenging dataset [2]. Earlier, we used smaller dataset containing only

5 (five) static hand gestures representing numeric symbols 1 to 5 in a restricted

environment, collected from a limited number of users.

3.2.1.1 Generating depth silhouettes using depth map

The images from the Kinect depth stream are in 640×480 resolution which does not

show enough contrast variations. Keypoints with low contrast will not give enough

gradient variations to identify finger bending information. If we can generate con-

trast variation according to the depth values, then we can get more discriminative

keypoints. These keypoints would be the salient features to improve the recog-

nition accuracy. So, we have done some preprocessing where the depth values of

gesturing hands were used to produce grey-scale levels. The closer a point is, the

brighter is its shade. To do that, we cropped out depth values of the hands and

got an m-by-n matrix with depth values of hands and its background.

Let dist(x, y) is the distance of a point in the millimeter at (x, y). f(x, y) is the

corresponding grey level of the generated image used in extracting the key features

by SIFT. Now, we select η as the number of grey levels between greyLevelmin and

greyLevelmax. We also selected η number of distance segments between distmin

(minimum distance) and (distmin+distth); where distth is the distance we assumed

the hand would be from distmin, the depth threshold. We let the background be

black in the generated image to get the better result using SIFT. We have applied
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(3.1) to generate the grey-scale image using only the depth values.

f(x, y) =


0, if dist(x, y) > dsitmin + distth

greyLevelmin + (b(dist(x,y)−distmin

distth−distmin
× η) + 0.5c

×b greyLevelmax−greyLevelmin

η c), Otherwise

(3.1)

We can see from the equation that any point in the depth image within the thresh-

old distance is going to be a non-black pixel depending on the grey-levels deter-

mined from depth information. To assign grey-levels to those pixels we segmented

the depth values in η levels. Any Distance value under the threshold is rounded off

and normalized. The normalized distance values are converted into appropriate

grey-levels. After that, we find a grey-scale image which is the depth silhouette of

a hand with the dark background and the grey-levels corresponding to the depths

of different parts of the subject hand. To emphasize on the contrasts, η number

of segments were used. If we had used all the 256 levels of the grey image, the

contrasts would not be prominent enough to get fair results. We considered η = 10

grey-scale levels from 155 to 255, dividing the levels equally to get a good contrast

ratio. The number of levels was heuristically determined based on the assumption

that more levels of grey will mean that the hand segments’ contrast will be low.

Thus, one of our main focuses (to represent distances in distinctive grey levels)

would be undermined. Representing the distances using fewer grey-levels would

have the similar effect as the binary images. The shape would be distinct but

the local features would be lost. Moreover, the grey-scale images with proper

contrast are useful enough to distinguish the curves and angles of finger joints in

different gestures. Both of the characteristics helped the SIFT to generate feature

descriptors for the gestures, indifferent of the orientation of the hands.

For each gesturing image, we have extracted depth values within 200 from the

depth image of the resolution 640 × 480. Actually, the 200 region contains the

gesture information which we have used to generate the depth silhouettes. The

process of segmentation and grey-scale varying depth silhouette generation are

shown in Figure 3.3.

3.2.2 Feature Extraction

Features to be extracted by the feature extraction algorithm should present a high

degree of invariance to scaling, translation, and rotation. Feature representation
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depends on the algorithm to be used for classification. We have used SIFT algo-

rithm to represent the features as 128-dimensional feature points that are extracted

from the depth images.

3.2.2.1 SIFT features

The SIFT algorithm detects keypoints from a multi-scale image representation

consisting of blurred images at different scale. The keypoint location and the

scale values of each keypoint are accurately determined using the Difference of

Gaussian (DoG). Then the key points are filtered by eliminating edge points and

low contrast points. After that, the orientation of the keypoint is determined

based on the local image gradient within an image patch. Finally, The keypoint

descriptor is computed which defines the center, size, and orientation of normalized

patch [1]. We have used the SIFT implementation code as in [116].

Features generated by SIFT algorithm are invariant to scales and robust against

changing position of object, slight rotation of object and object in noisy and

varying illumination condition in different images. These feature points can be

found in the high-contrast regions and we have generated those contrast varying

images based on depth values of the gesturing hand. SIFT algorithm effectively

determines the keypoints on those depth images and represent them as feature

descriptors.

The main objective of our approach is to improve the recognition accuracy for

static gestures using depth information compared to binary and time-series repre-

sentation of the images. We have utilized depth information and generated depth

silhouettes which can be fed to any keypoint detector and descriptor-based algo-

rithm, such as SIFT, SURF, ORB etc. However, we have chosen SIFT to generate

training and testing images. The training images with corresponding keypoints

mapped over the gesturing image is shown in Figure 3.4. The first and third

columns in Figure 3.4 represent the depth silhouette generated using depth map

information of the gestures 1-10 (G1-G10) of the numeric symbols 0-9. The second

and fourth columns in Figure 3.4 represent the corresponding hand gestures G1-

G10 with 27, 41, 51, 61, 77, 101, 55, 56, 32, and 80 SIFT keypoints respectively.

While extracting the keypoints we have found that, the number of keypoints varies

according to the type of gestures. As different symbolic gestures consist of a

different number of fingers to be articulated, hence we got these variations. We
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Figure 3.4: Example images containing generated depth silhouettes (first and third
columns) and the corresponding SIFT keypoints mapped in to depth images (second
and fourth columns) showing numeric symbols (0-9) representing the gestures (G1-G10)

captured 100 images per gesture as the candidates to generate keypoint descriptors

and we got 41273 keypoints by considering 1000 images in total training images.

The distribution of the number of keypoints per gesture is shown in Figure 3.5.

The keypoint descriptors that we have found are 128-dimensional feature vectors.
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Figure 3.5: Number of SIFT keypoints at σ = 1.8

Due to the changes in orientation, scale, illumination of the same gesturing image

by multiple persons the number of keypoints varies. Moreover, the dimensions

of the gesturing images become larger which increases computations. Hence, we

have used the strategy of a bag-of-visual-words and clustering technique to reduce

dimensions.

3.2.2.2 Clustering feature descriptors

The dimension of the feature vector in each gesturing image varies based on the

number of keypoints found for each gesture. The problem is, we need unified

dimensional feature vectors as the training set to classify using multiclass SVM

[117]. The depth image that has 27 keypoints, the dimension of that image be-

comes 27 × 128 = 3456 and if another image from the same gesture contains

80 keypoints then the dimension becomes 80 × 128 = 10240. So, we have used

the bag-of-word for which we need clustering to reduce the dimensions. The ba-

sic k-means clustering served our purpose because k-means converge faster than

hierarchical-based clustering approaches. It also gives efficient performance for

larger datasets. The keypoint distributions for different gestures are found to be

almost Gaussian and distinctive as shown in Figure 3.5. In the concept of bag-of-

word, the clusters are defined as codebooks and the size of the cluster determines

the convergence property of the clustering technique. If we took smaller codebook

size then, bag-of-word vectors may not contain all the important keypoints. The

larger codebook size may raise the overfitting problem. As the keypoints in depth

images are well distributed containing information about opening finger parts as

well as bending finger parts, intuitively, we should get better accuracy.
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To build our k-means clustering model, we have chosen 1600 as the cluster size

which is the size of the visual vocabulary. An individual feature vector is assigned

based on the nearest mean value while partitioning the feature vectors. After that,

the codevectors were updated to reform the clusters until the grouping stops.

The goal of the k-means clustering approach is to minimize total intra-cluster

distance using (3.2).

J =
k∑
j=1

n∑
i=1

‖x(j)i − cj‖
2

(3.2)

Where k is the cluster size, n is the number of instances, c is the cluster centroid

of cluster j. An illustration of k-means clustering is shown in Figure 3.6 for five

keypoints: A, B, C, D, and E to form two clusters.

Figure 3.6: Demonstration of k-means clustering

We develop the cluster model from each of the training images consisting feature

vectors and encoded each of the keypoints with the clustered index. Keypoint and

the cluster centroid are mapped according to the minimum distance criteria based

on Euclidean distance measurement.

We got k disjoint subgroups of keypoints after assigning the keypoints to the

corresponding cluster centers. So, the dimension of each training image consisting

n keypoints (n× 128) reduced to 1× k. k determines the cluster numbers.

3.2.2.3 Creating bag-of-features

We have created the bag-of-feature representation of each training image from

the SIFT feature extracted. In order to learn visual vocabulary, we have built

the k-means clustering model. Keypoints from each training image is mapped

to the centroid of the corresponding cluster to represent visual vocabulary - is

known as feature vector quantization (VQ) process [118]. After that, we have

represented each training image by the frequencies of visual words and found a

unified dimensional histogram vector. The histogram representations of images
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of each gesture are ready for the classification. The process of creating Bag-of-

features is shown in Figure 3.7.

We updated the feature extraction process which is applied to two types of images,

one is the depth image and the other one is the edge image, generated from the

same dataset [2]. This is because we tried to establish more reliability in our

approach through experimental evaluation compared to our previous work [115].

3.2.3 Recognition of gestures using SVM classifier

The bag-of-feature vectors are now the input feature vectors for the classification

algorithm. In order to recognize the performed symbolic gestures, we have applied

a multiclass SVM training algorithm which is a supervised machine learning algo-

rithm. It performs non-linear mapping and transforms the training dataset into

higher dimensional datasets. The algorithm tries to find out an optimal hyperplane

which is linear.

Figure 3.7: Generating bag-of-feature for training. (a)-(e): Bag-of-feature generated
of gesture 2-6 from individual depth silhouette for 1600 clusters.

SVM determines the support vectors those are closest to the separating hyper-

plane. The margins are also defined by those support vectors. Maximum separa-

tion is ensured by the maximum margin hyperplane.
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We have applied the one-against-all approach to implement the SVM classifier

[69] that built the model in respect to the training set supplied with group vector

(class label indicator from gesture class 1 to 10).

3.3 Experimental results

In order to evaluate the symbolic gesture recognition results, we have considered

NTU hand gesture recognition dataset [2] which is a benchmark dataset in static

hand gesture recognition. The dataset was collected using Kinect depth camera

from 10 subjects. Each subject has performed 10 symbolic gestures 10 times.

So, the dataset contains total 1000 instances. Each gesturing instance contains

a color image and the corresponding depth map. The dataset was prepared in a

very challenging real-life environment containing the situations like the cluttered

background, pose variations in terms of rotation, scale, orientation, articulation,

changing illumination, etc.

We have conducted the 5-fold cross-validation process to evaluate our results. In

each fold 4 of the image groups were used as training set and one of them were

used as validation testing set. Each fold contains 20 images and we permuted

the process, calculating the accuracy of SVM classifier. All the experiments were

executed on an Intel Core I7 2.60 GHz CPU having 16 GB RAM.

Our system is robust to cluttered background due to the process of segmentation

where the depth threshold and minimum hand finger distance from the depth

camera are used to determine the segmentation threshold. Good contrast varying

depth silhouettes guarantees SIFT keypoints to be extracted in different scale-

rotation-orientation changing conditions as shown in Figure 3.8.

SIFT extracted local features which produce good recognition results compared to

global features considered in FEMD based approach [2]. We tested our results in

two types of images produced from the same dataset. Binary images and image

with edge information. The former was generated along with depth silhouette by

converting the depth silhouettes into binary images and the latter was generated

applying Canny’s edge detection algorithm [102] on depth silhouettes. Example

binary and edge images are shown in Figure 3.9. The image contains internal

finger bending edge overlapped with palm and the external hand shape edge, but

this information is not present in binary image or time series images. So, the

accuracy of our approach should vary on these different datasets.
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Figure 3.8: SIFT features are robust to orientation changes (b) and scale changes (c)
along with normal pose (a).

Figure 3.9: SIFT keypoints on binary image (a) and edge image (b).

Previously in [115], we demonstrated that the SIFT works better on depth im-

ages rather than binary images for static hand gesture recognition consisting of

symbolic gestures (numeric symbol 1-5). The dataset used in the previous work

was generated by ourselves in a constrained environment. To create the dataset,

we considered a limited number of hand gestures from a limited number of users.

The comparison of experimental results was not performed among depth images,

binary images, and edge images. However, in this research work, we have com-

pared our experimental results among all the images and also compared the result

with FEMD-based approach [2], got higher accuracy for depth images (recogni-

tion accuracy is shown in Figure 3.10.). Moreover, we elaborated the processes

of depth silhouette generation with equations which illustrates the fact that, the

intensity of a pixel in grey-scale depends on the distance of that pixel from the

depth camera. This, in turn, determines the contrast of the image based on depth

values suitable for key point detector and descriptor-based algorithms.

To evaluate the accuracy of our approach, we generated different SIFT keypoints

by varying the sigma (scaling parameter) value and found the highest accuracy at
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Figure 3.10: Accuracy comparison among different images.

σ = 1.8. The mean accuracy at different σ values is shown in Figure 3.11.

Figure 3.11: Accuracy at different sigma values.

With the increased value of sigma, we found more keypoints (Figure 3.12) which

results in spurious DoG extrema considered as less stable and not linked to any

particular structure in the image. These cause the differences in accuracy.

Figure 3.12: Number of SIFT keypoints at different Sigma values.

We evaluated the accuracy with the different number of clusters. We considered

100, 200, 400, 800, 1200, 1600, and 2000 clusters to validate our proposed method

and compared the results for depth, binary, and edge images. The comparison
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result is shown in Figure 3.13. We observed that, the accuracy increments com-

Figure 3.13: Overall accuracy comparison among different images.

mensurate with the higher number of clusters. The highest accuracy we attained

have been with a cluster size of 1600. This phenomenon can be traced back to

depth images which significantly contributes to the salient keypoints identification

for it is the depth images from which we can distinguish the positions of each

fingers. However, the same cannot be said for binary images or images containing

only edge information. FEMD has considered the shape distance metric which

matches only opening finger parts or finger shapes, not the whole hand. While

making a pose the bending finger parts are also important to distinguish slightly

varying gestures, which can be found in the local features. To avoid local distor-

tion we have chosen the correct scale factor. We have presented the input hand as

a contrast varying grey-scale image depending on the depth map information but

FEMD has presented the hand image as a global feature using time-series curves.

Shape contour presentation introduces lower accuracy in terms of scale, rotation

or orientation changes which we have overcome through depth images and got

accuracy up to 96.8421% whereas the FEMD has produced 93.2%. The confusion

matrix of our approach and FEMD is given in Figure 3.14.

We have also calculated True Positive (TP), True Negative (TN), False Positive

(FP), False Negative (FN), and based on these the F-Score values using (3.3).

F − Score =
2× TP

2× TP + FP + FN
(3.3)

The class-wise F-Score comparison between our approach and FEMD is given in

Figure3.15.
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Figure 3.14: Confusion matrix of (a) proposed approach and (b) FEMD-based ap-
proach.

Figure 3.15: F-Score comparison between proposed approach and FEMD [2]

From the Figure 3.14(a), we find that the accuracy of Gesture 2, 4, 5, 7, 8 have

been improved significantly as expected because SIFT features are found more

robust in the benchmark dataset. Moreover, we prove this by comparing the

results with binary and edge images. In binary or edge images, a small variation

in the shape may cause significant changes on the tangent vectors at the points

on the shape. Since we are considering local hand-finger features for the hand

poses we are getting better results. Shape changes over time-series data are not
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required to be considered. Recognition accuracy of Gesture 4 and 5 have increased

to 98% and 97% respectively compared to FEMD-based approach. In gesture 6

and 10, we are getting most confusing results. Gesture 6 is all finger open gesture

and contains a maximum number of keypoints (6374) as shown in Figure3.5 and

includes no bending finger information. The same is for Gesture 10 and it is the

only gesture in the dataset which contains no bending finger information like other

gestures. The pose was given by the user opposite to other gestures, the bending

fingers were facing towards the user, not the camera.

3.4 Limitations

In this study, we applied SIFT algorithm in grey-scale varying depth images. Here,

the SIFT algorithm extracts keypoint from equally distributed high contrast re-

gions of the depth image. However, the computational time of the SIFT algorithm

is higher than other keypoint descriptor-based algorithms like ORB, SURF [110].

The feature dimensions are determined by the number of cluster centroids that

we took using k-mean clustering algorithm. These keypoints are sparsely indexed

to different clusters. So, if centroid varies, the cluster assignments may also vary.

The depth quantization equation in 3.1 depends of a number of parameters like

η, greyLevelmin, greyLevelmax. These parameters are empirically determined pa-

rameters based on the benchmark dataset in [2]. In this dataset we found the

distmin = 5mm and distth = 200mm. However, these values may vary or need to

be adapted based on the dataset. So, researcher who will apply these quantization

technique, need to study these parameters on the working dataset.

3.5 Conclusion

In this study, we applied SIFT algorithm in grey-scale varying depth images. Here,

the SIFT algorithm extracts keypoint from equally distributed high contrast re-

gions of the depth image. However, the computational time of the SIFT algorithm

is higher than other keypoint descriptor-based algorithms like ORB, SURF [110].

The feature dimensions are determined by the number of cluster centroids that we

took using the k-mean clustering algorithm. These key points are sparsely indexed

to different clusters. So, if the centroid varies, the cluster assignments may also

vary.
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Preparing depth silhouettes of the gesturing hand is one the factors that affect the

accuracy of gesture recognition system. With the help of depth map information,

we were able to produce those gesturing images using fast and effective segmen-

tation process. Choosing the right cluster size is also important. Our empirical

results indicate that 1600 is the most desirable number of clusters to attain the

best accuracy. This large number of clusters is contributed by the fact that images

with only edge information or binary images contain far less keypoints than that of

depth images. The number of training samples that we have taken were sufficient

to develop the cluster model as well as the SVM classification model.

In the next two chapters, we focus on depth-map utilization technique in dy-

namic hand gesture recognition systems, first in air-writing recognition approach

and second in deep-learning-based multimodal dynamic hand gesture recognition

approach. We emphasize the fact that our technique of depth quantization also

works in increasing recognition accuracy.



Chapter 4

A system to recognize

motion-oriented movement

information as dynamic gestural

events using depth-map in on-air

English Capital Alphabet (ECA)

writing tasks

On-air writing can be considered as a time-dependent event where hand gesture is

produced in a natural environment through index finger movement. A sequence of

such movements containing several time steps in 3D space can be utilized to con-

struct an English Capital Alphabet (ECA). While Previous researches investigated

2D features, we believe that depth information may play a significant role along

with other features in recognition of these dynamic gestures. We have captured

hand finger motion information using a depth camera and represented them as

depth images for each ECA. The hand finger trajectory data were extracted from

the depth image and a combination of depth-based features and non-depth fea-

tures were generated, depth variation was performed in the depth-based features,

and then all the feature values were converted into time-series data. Dynamic

Time Warping (DTW) distances were determined between a template ECA and

a test ECA for each ECA collected from 15 participants. These distance-based

features were then fed into a multi-class SVM for training and testing and got the

54
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recognition accuracy of 80.77% without depth and 88.21% with depth-based fea-

tures. To cope with the over-fitting problem we applied the resampling technique

and got the highest recognition accuracy of 96.85% and at last, we applied some

feature selection techniques to analyze the recognition results.

In this chapter, first we will introduce the background study and related works,

then, we discuss on the methodology we followed to recognize on-air writing-

based dynamic gestures. Actually the depth quantization approach that we have

applied to recognize symbolic gestures, we tried to apply this technique in feature

generation from our own constructed dataset. At last, we conclude the chapter by

describing the result analysis.

4.1 Background study and related works

Air-writing can be defined as a motion-oriented activity of hand or finger in the free

space to represent a linguistic character. The idea of recognizing ‘air-writing’ was

incubated by Amma in [39] where he tried to recognize ECAs using wired device.

The recognition of on-air alphabet writing is a part of broader gesture recognition

research [119], kind of dynamic gesture recognition and air-writing might seem to

be similar to online handwriting recognition [120] task. In this process, a user

can lift his/her hand from the touchpad. However, in air-writing, it is difficult to

differentiate which movements are part of writing and which movements are not.

Consequently, many different extra strokes are mixed up with the actual writing

complicating the recognition process. Moreover, while writing in the air, the hand

may be near the face or the body and their similar color might be confusing due to

occlusion. To overcome this problem many researchers have used special markers

[39] around the writing finger. A special version of air-writing can be to write on a

surface (which is not touchpad), because people feel natural writing on a surface.

The use of depth information (user distance from the camera) provided by depth

camera (e.g. Microsoft Kinect, Intel Real Sense) helps to segment the hand where

the traditional cameras will fail. Thanks to the depth camera for making hand

segmentation and tracking process easier and faster without ambiguity. The depth

information help to generate depth image and used as skeleton features to differ-

ent gesture recognition systems [89]. More importantly, this depth information

can be effectively utilized to represent depth-based features along with non-depth

features. On-air writing requires index finger to move not only left/right (X-

axis) or up/down (Y -axis) but also forward/backward (Z-axis). In the free space,
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a user is not using any 2D surface for writing, so, there are some variations of

depth due to the writing process which includes motion-oriented movements of

the hand muscles. These variations in depth can be utilized as important features

to improve air-writing recognition accuracy. However, considering the index finger

movement information in Z-axis may generate an inhomogeneous distribution of

smaller depth values degrading the recognition performance. So, converting the

actual depth values into a scaled range of varying depth values, homogeneously

distributed into certain levels should give good recognition results.

On-air-writing makes the writing process natural, unconstrained, and at the same

time challenging. When someone writes an alphabet, s/he writes it as a sequence

of strokes to represent the English alphabets. The best algorithm for air-writing

should be able to segment the strokes accurately from the air gestures. However,

in air-writing, many extra movements of the user match with perfect strokes [121]

and hence become part of the writing.

In this study, we propose a system to recognize unconstrained air-writing of 26

ECAs. To facilitate unconstrained writing, we did not impose any restrictions on

the user, such as ‘write slowly’ or ‘try to write perfectly’. We represented the

hand trajectories, that is, the hand movement sequence as a series of data points

(xt, yt, dt), where (xt, yt) is the position of the hand and dt is the depth value

at time sequence t. The depth values are quantized at certain levels. Those data

points are converted into the time-series representation of a particular alphabet

suitable for extracting features. We have determined 12 time-series features and

represented those as point vectors (x and y dimensions), the depth value of the

corresponding point, quantized depth value, point-wise distances, theta value, ve-

locity, log-normal probability density functions (mean and standard deviation),

freeman chain codes (4, 8, and 16). We have generated those 12 features for each

alphabet from 22 users. Out of them, data from 15 users were used to generate

DTW distance features and we found data from 7 users are almost perfect as

we expected to consider them as templates for the DTW algorithm. Hence, one

best data for each alphabet was taken manually as a template from 7 users apart

from those 15 users. After normalizing those distance values we fed them into

a multiclass SVM classifier. The main research contribution of this study are as

follows:

1. Generation of a unique depth-based air-writing dataset consisting of 26 ECAs

in an unrestricted environment.



Chapter 4. Air-writing system to recognize ECA using depth information 57

2. Introducing DTW-based distance features for air-writing. The index finger

movement trajectory was captured using depth information while writing an

ECA letter and represented as time-series data.

3. Utilizing the depth information as significant features (depth value provided

by Kinect as one feature and the quantized depth value as another feature) to

capture the motion-oriented movement of the hand while performing natural

writing in the air.

This study is the extended work of our previous research in [115], where we used

only DTW-based classification considering data from one user with 5 variations. In

our previous work, we did not consider DTW distances as features for a multiclass

classifier. However, in this work, we took ECA gestures from 15 users, created a

larger data set, and determined the DTW distance features for SVM training and

testing. Moreover, we have utilized the depth information as significant features

which contributed to the improvement of recognition accuracy.

Human gesture is an important input modality for communication with computers

in designing gesture-based interfaces. A typical hand-gesture recognition system

uses a camera (typical stereo camera) to read the hand movement data, performs

the hand tracking, and then recognizes a meaningful gesture to control any devices

or applications.

Air writing means gesture-based writing on the air through movement of hand

fingers by which a computer system can recognize language-specific characters

and other symbols in natural handwriting [121]. In the process of air-writing,

each movement of the hand becomes a stroke. So, alongside the actual writing,

many noises are introduced into the writing. The authors in [121], defined English

characters as a sequence of strokes. The capital alphabet “A”, for instance, is

composed of three strokes mainly “/”, “\” and “-”. If the discrete strokes can

be pulled out from the seemingly continuous movement of the hand, it is possible

to infer the characters. The basic set of strokes for constructing the alphabet is

shown in Figure 4.1.

In [39], the researchers showed how a wearable device can recognize hand gestures

for air writing. The Air-writing glove fits at the back of the hand. It has motion

sensors, accelerometers, and angular rate sensors equipped with a smartphone.

The signals are recorded and transmitted via Bluetooth. A wearable hand motion

tracking system captures movement signals using an accelerometer and gyroscope.

However, converting the acceleration signal into important features to recognize
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Figure 4.1: Basic strokes for English characters

strokes can be erroneous due to the drift of inertial sensors. Moreover, wearing a

special device makes the air writing system cumbersome and not natural. Sensors

attached to a glove record hand movements, a computer system captures relevant

signals and translates them into text, which can then create an email, text message,

or any other type of mobile app [122].

YIN et. al [123] use an online approach, attentive contexts-vector (AC-Vec), and

an offline approach, attentive contexts-convolutional neural network (AC-CNN),

for character recognition. Kim et. al. [124] showed a way to recognize different

people’s handwriting on continuous images based on the similarity of the different

shapes of characters or digits based on the strokes and the ligature model. They did

not use the concept of bare handwriting without using any special input pen. They

tried to generate virtual 3D characters from 2D shapes using the ligature model

and then used the Bayesian model to recognize real on-air writing. In our approach,

we are using an unconstrained environment to write English alphabets, creating

a training model using real on-air writing gestures. We are using the character

shape and movement information as features in the form of time-series curves. On-

air writing alphabets can be considered as signals produced at a particular time

duration. So the alphabets are special curves with time variations. For example,

a person can take 3 seconds to write the character ‘A’ and another person may

take 5 seconds to write the same. Dynamic Time Warping (DTW) is a popular

technique for matching variable-length signals and the DTW-algorithm is able to

compare two curves in a way that makes sense and helps in matching the same

patterns of the curves [125].

Researchers in [18] tried to recognize air-written Persian digits representing num-

bers from 0-9. They have addressed the research issues related to ligature stroke.

The gradient variations on the trajectories are used as features for the recognition

task. Though they said these features are scale, rotation, and translation invari-

ant but there is a scope of further investigations considering the scale, rotation,
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translation-invariant features provided by the algorithms like scale-invariant fea-

ture transform (SIFT), Speeded up robust features (SURF), Oriented FAST and

rotated BRIEF (ORB), Gradient location and orientation histogram (GLOH), etc

[126]. They have implemented an analytical classifier and compared the results

with other state-of-the-art classifiers.

In [126], the researchers worked on symbolic hand gesture recognition and tried to

recognize hand postures of 0-9 numeric symbols using depth information. They

tried to extract informative SIFT features from contrast varying depth image and

the contrast variation was performed through depth-map quantization. They hy-

pothesized that the depth-map quantization process can give better recognition

accuracy which was not previously explored in static hand gesture recognition.

They applied the idea in the benchmark static hand gesture dataset and got bet-

ter recognition accuracy compared finger-earth mover’s distance (FEMD)-based

[2] method. However, we found a scope to utilize the depth-map information ef-

fectively in air-writing recognition. Section 4.2.3 contains the description of our

selected set of features for on-air writing recognition.

4.2 Methodology

Any recognition system must have data collection i.e. image Acquisition, prepro-

cessing step which may include segmentation, feature extraction, and then classi-

fication. Sometimes a post-processing step may be required before classification

for feature dimension reduction, feature selection for further analysis. Figure 4.2

shows an overview of our proposed system.

4.2.1 Image Acquisition

We placed a depth camera (Microsoft Kinect) in front of the individual user and

asked to write an upper-case English letter considering an imaginary writing board.

All the users tried to apply their self-writing style so the font-size and speed of

writing highly varied. This caused the dataset very much challenging in terms

of feature generation for training and testing the classification model. We asked

every user to write from ‘A’ to ‘Z’ in a sequence one after another. Then we

have isolated every alphabet, with the help of depth and RGB values found on

the gesturing image signal. Usually, a user pause writing two consecutive letters

that gives the user feel comfortable. We were able to accumulate ECA data from
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22 users. However, we have manually observed, contemplated, and analyzed the

individual ECA written by each user and found the best ECA data from 7 users

to be considered as a template that we have mentioned earlier in Section 4.1. The

rest of the ECA from 15 users were used for distance feature generation.

Figure 4.2: Proposed Approach

4.2.2 Segmentation and Pre-processing step

We assume the hand is the front-most object while the user is writing on the air.

The pre-processing steps were as follows: at first, the hand from the background

was separated by using depth information which is the part of hand segmentation

process as shown in Figure 4.3(c).

From the segmented hand image, we have extracted the x, y coordinate of a point

in that image by calculating the middle pixel location between the starting and

the end position that contains non-zero pixel value. We have followed this process

for each image frame and got the consecutive points of the hand movements as

shown in Figure 4.3(d).
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We have considered these middle points while writing a letter and generated an

image consisting of that letter as shown in Figure 4.3(e). These points contain

hand-movement trajectory location in the process of air-writing and the number

of consecutive points represent the time-series data. So for writing each letter,

we have traced out the written points (x, y) and their corresponding depth values

(d), represented as points (xt, yt, dt) at time t. Tracking the hand motion from

image to image gave us a series of points (xt, yt, dt). Those sets of points are the

time-series information of a particular alphabet.

Air-writing process may lead to uncontrollable jerky movement [127] of the hand

fingers. We found the written letters are not in a legitimate shape. Hence, the

generated raw image is smoothed using a moving average filter [128]. The written

letter after smoothing is shown in Figure 4.3 (f). The overall process of writing

the ECA letter “A” is shown in Figure 4.3. The corresponding time series curve is

given in Figure 4.4. In Figure 4.4, the X-Axis represents the consecutive points in

total 3 seconds taken to write the ECA, “A” by a particular user and the Y-axis

represents the corresponding pixel values in the gesturing image.

4.2.3 Feature Extraction and Classification

After converting the air written alphabet to a time-series of x, y, and d; the task is

to classify them. As finding a stroke feature proved to be very difficult, we propose

to classifying them based on time-series data. So, we investigated the use of DTW

as the classifier. Our earlier work in [129] was about matching 2D trajectory (x,

y) of an alphabet with templates and come up with a decision based on DTW

distance using the equation 4.1.

ClassifiedClassLabel(trajectory(x, y)) =

argmin(dist(trajectory(xtemplate, ytemplate),

trajectory(x, y)))

(4.1)

Here, we get the minimum DTW distance between the template trajectories and

(x, y) whose class is being identified.

The decision taken from the DTW distances was not that accurate with a small

number of users [129]. When we increased the number of users from 5 to 15, the

accuracy reduced to half. Then we looked for other features besides point vectors

such as point-wise distance, theta value of points, velocity, log-normal probability
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(a) RGB Image (b) Depth Image

(c) Hand Segmentation (d) Extracted Points

(e) ‘A’ without smoothing (f) ‘A’ with smoothing

Figure 4.3: Air-writing process to generate the letter ‘A’

density, and freeman chain code that are used regularly in online handwriting

recognition. We have also included quantized depth information where the depth

value was converted into a range of 155-255 and 10 levels. The quantization process

that we have followed is the same as shown in [126]. Each of the depth value for

an ECA was quantized using 4.2

Q(Z) = DLmin +

(⌊(
D(Z)−Dmin

Dth −Dmin

× η
)

+ 0.5

⌋
×
⌊
DLmax −DLmin

η

⌋) (4.2)
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Figure 4.4: Time-series representation of ‘A’

Here, D(Z) is the distance of point at the (x, y), Q(Z) is the quantized depth value

of the corresponding depth-map. η is the quantization levels between DLmin and

DLmax. The movement of the fingers that we have considered is the distance

values between Dmin and the depth threshold Dth within which the hand finger

movements are found.

In total 12 features were represented as time-series information. An example time-

series representation is shown in Figure 4.5 and in Figure 4.6. The list of features

is given in Table 4.1. The DTW distances of the 12 time-series features were

compared with the alphabet templates and directly used for classification. Still,

the result was not significant to report. Phase shift in signals reduces the accuracy

of recognition as the DTW algorithm does always care about the phase differences

[130]. However, the geometric shape information may be required to preserve as

important features to learn [131]. In such a situation, the state-of-the-art analysis

suggested us to use all-pair comparison and use the DTW distance features for

learning with another classifier. We choose SVM as a multi-class classifier for this

purpose.

In Figure 4.5 we show the kinect-image pixel value including depth image for

particular characters. Similarly figure 4.6 shows a simple derivative feature from

X and Y axis. Here we selected point wise distance.
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Table 4.1: Features used for on-air handwriting recognition

Features Description

Feature 1 and Feature 2
(F1, F2): Point vector of al-
phabets

The point vector generates 2 time series features: one for x-
dimension and one for y-dimension.

Feature 3 (F3): Depth value
of the point

Depth value was extracted from the hand trajectory and
smoothed. As there as fewer movements in the depth, other
derived features such as velocity was not calculated from the
depth information.

Feature 4 (F4): Quantized
depth value

The quantized depth value within 155-255 using the equation
4.2

Feature 5 (F5): Pointwise dis-
tance of point vector

This is the euclidean distance of consecutive two trajectory
points (x, y).

Feature 6 (F6): Theta value
of point

This feature helps to measure pixel-wise angular distances in
polar coordinate.

Feature 7 (F7): Velocity of
point

This feature helps to generate data point from pointwise dis-
tance which shows the speed within that distance either for-
ward or backward.

Feature 8 and Feature 9
(F8, F9): Lognormal proba-
bility density function calcu-
lation mean and standard de-
viation of data point

This function is calculated based on the average and standard
deviation. The Point vector that we are taking is based on
time sequences which are always positive. So, the log-normal
distribution function of the two dimensions will always give
non-negative values. Moreover, alphabet writing does not fol-
low normal distribution so, log-normal distribution can be a
good feature for time-series classification.

Feature 10, Feature 11, Fea-
ture 12 (F10, F11, F12): Free-
man chain code of 4, 8, 16

Freeman chain code is a shape-based matching technique found
to be successful in recognizing digits or characters [132].Chain
code represents the sequence of direction changes between ad-
jacent points of a curve. In [133], freeman directional code was
generated for dynamic hand gesture for recognition.

4.2.3.1 DTW Distances as derived Features

After separating template and user data from the entire dataset we have converted

every image to a time-series curve or signal which is shown in Figure 4.4. In

the x-axis, the consecutive points that we have extracted as the point vector

within a particular time in seconds are arranged to represent time-series data.

At 30fps, different users have taken different amounts of time to write the same

letter. In Figure 4.4, we have shown the time-series data generated from 90 frames

which took 3 seconds to write the English Capital Alphabet (ECA), A. We have

represented every signal to a feature vector for each ECA. The list of 12 features

is given in Table 4.1.

DTW gives us minimum distances between two time-series curves. When a user

writes an alphabet in an imaginary blackboard, the user does not necessarily

round-up with the same length of input for the alphabets. It also varies in case of
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Figure 4.5: Time-series of point vector and the depth value for the letter, ‘A’
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Figure 4.6: Time-series of point vectors and the point-wise distance values for the
letter ‘A’

writing the same alphabet by different users. DTW algorithm is the right one to

apply in this scenario so that we can find the minimum distance between the two

alphabets.

In our proposed approach, we compare an alphabet represented as a point vector,

to all alphabet’s point vectors using the DTW algorithm. That means, 12 time-

series features of an alphabet were compared with corresponding features of the

template which gives 12 distance values. Comparing an alphabet with all 26

templates generate 12 × 26 = 312 distance features. We have used basic DTW
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equations to calculate the distances. The class label for these 312 distance features

is given as the alphabet under consideration. We define the set of users as S, where,

|S| = 15. For our 15 users, we have calculated 12 DTW distances (between 12

source features and 12 template features for each alphabet) to produce a 312-

dimensional feature vector and normalized them between 0 to 1. So, each user

writing 26 letters produces 15 × 26 = 390 instances and 312-dimensional feature

per instance. Let Σ be the time-series representation of ECA characters ‘A’ to ‘Z’

generated by each user s ∈ S, i.e.

Σ = {UA, UB, UC , . . . , UZ} (4.3)

and T be the time-series representation of the template of each alphabet, i.e.

T = {TA, TB, TC . . . , TZ} (4.4)

Each user generated ECA character and the template ECA character contains 12

features, i.e.

F = {F1, F2, F3 . . . , F12} (4.5)

where features in the user generated ECA and template ECA possibly have dif-

ferent lengths. Each feature consists of normalized values from 0 to 1.

Fi = {x ∈ R, 0 ≤ x ≤ 1,∀i ∈ [1, 12]} (4.6)

We determine the pair-wise minimum DTW distance between UA and TA, between

UA and TB, and so on up to between UA and TZ for all the 12 features. These

are the distance features generated by taking the distances between UA and all

the template elements of T . This makes the first instance of the first user writing

ECA character ‘A’ which we denote as follows:

SA1 = [DTW (UA
F1...12

, TAF1...12
), DTW (UA

F1...12
, TBF1...12

),

. . . DTW (UA
F1...12

, TZF1...12
)]

(4.7)

Let DUA,A
F1...12

are the DTW distance features between UA and TA, DUA,B
F1...12

be the

DTW distance features between UA and TB, and so on. We continue to generate

these 12 features for each character up to ECA character ‘Z’ and the features for

the last DTW distance between UA and TZ areDUA,Z
F1...12

. Thus we get 12×26 = 312

features for the first user writing ECA character ‘A’.

So, for the first user generating 26 ECA characters we get 26 samples and the first
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training sample is SA1 , the second training sample is SB1 and so on. For all the 15

users, τA...Z will produce a training set of size 390× 312 with 26 class labels. We

can represent this training set using the matrix as per Eq. (4.9).

SA...Zi∈S =



DUA,A
F1...12

. . . DUA,M
F1...12

. . . DUA,Z
F1...12

. . . . . . . . . . . . . . .

DUM,A
F1...12

. . . DUM,M
F1...12

. . . DUM,Z
F1...12

. . . . . . . . . . . . . . .

DUZ,A
F1...12

. . . DUZ,M
F1...12

. . . DUZ,Z
F1...12


(4.8)

τA...Z =



SA...Z1

. . .

SA...Z7

. . .

SA...Z15


(4.9)

4.3 Experimental results

We have evaluated the proposed system in our own generated air-writing dataset

consisting of 26 ECAs gestures performed by 22 users (all are male). There were

no pre-instruction or guidelines on font size, speed of writing which makes the

dataset more challenging. The number of samples per ECA varies among different

users as we can see in Figure 4.7.

The maximum number of samples (102) required to write an ECA is ‘E’ while the

minimum number of samples required to write the ECA characters are ‘I’ and ‘L’

by most of the users. A total of 19350 samples were collected to build the ECA

dataset. Moreover, if we analyze the writing speed as given in Table 4.2, there

were also variations in the duration of writing the same ECA by different users.

To write ‘E’, the average number of users required the maximum amount of time

1.69 seconds whereas the minimum 0.86 sec and 1.01 sec time required to write

‘L’ and ‘I’ respectively.

From all the samples features were extracted as described in section 4.2.3. To

prepare the training set for the classification we need unified dimensional feature

vectors. However, we have considered DTW distances as features for training and

testing considering the following reasons:
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Table 4.2: Information on the speed of ECA air-writing by 22 users in Seconds

ECA Avg Std Max Min ECA Avg Std Max Min

A 1.41 0.48 3.00 0.73 N 1.07 0.28 1.67 0.43
B 1.42 0.49 2.23 0.67 O 1.01 0.29 1.83 0.63
C 0.92 0.33 1.70 0.50 P 1.10 0.33 2.17 0.57
D 1.19 0.43 2.63 0.63 Q 1.22 0.41 2.13 0.60
E 1.69 0.69 3.40 0.97 R 1.22 0.37 2.27 0.77
F 1.38 0.45 2.43 0.73 S 1.19 0.39 2.20 0.73
G 1.33 0.56 2.53 0.50 T 1.06 0.36 2.17 0.63
H 1.40 0.50 2.60 0.77 U 1.02 0.34 1.97 0.57
I 1.01 0.30 1.97 0.57 U 1.02 0.34 1.97 0.57
J 1.14 0.36 1.93 0.63 W 1.27 0.44 2.83 0.70
K 1.34 0.45 2.43 0.67 X 1.12 0.40 2.70 0.67
L 0.86 0.28 1.53 0.43 Y 1.16 0.48 3.00 0.67
M 1.12 0.32 2.00 0.70 Z 1.13 0.32 1.80 0.63

1. Air-writing is a temporal activity that can be represented as time-series data

but due to variation of movement time, while writing, the length of two ECA

varies.

2. Variable-length time-series values can be represented as features if they are in

fixed-size; DTW distance features generated using Eq.(4.9), gave us a unified

dimensional feature vector for training and testing.

3. All-pair comparison of the features among ECAs helps the classifier to learn

the information related to phase differences.

The dataset contains 312 DTW distance features with 390 instances. However,

25% and 50% resampling applied in the dataset gave us 468 and 572 instances re-

spectfully. To analyze the impact of depth information in recognition results, we

have prepared two sets of datasets, one is without depth information (390×260)

and the other one is with depth information (390×312) including their two sets of

re-sampled versions (468×260 and 572×260; 468×312 and 572×312). Moreover,

we have prepared three sets of dataset containing features related to correlation

analysis. Thus we have prepared 12 datasets to conduct the evaluation. The de-

scription of the datasets is given in Table 4.3. So, in general we can divide our

dataset in to two groups: Dataset with depth information (in Table 4.3, Dataset 1,

3, 5, 7, 9, and 11) and datasets without depth information (in Table 4.3, Dataset

2, 4, 6, 8, 10, and 12). We have used 12 datasets to understand the significance

of depth information from different perspectives, like, taking all the features, tak-

ing only the depth features, taking the re-sampled features, taking features after

correlation analysis.
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Table 4.3: 12 datasets for air-written ECA recognition

Datasets Dimensions Dataset Description

Dataset 1 390× 260 Without depth information
Dataset 2 390× 312 With depth information
Dataset 3 468× 260 Without depth, 25% resampled
Dataset 4 468× 312 With depth, 25% resampled
Dataset 5 572× 260 Without depth, 50% resampled
Dataset 6 572× 312 With depth, 50% resampled
Dataset 7 390× 120 Without depth, attribute selected using correlation
Dataset 8 390× 155 With depth, attribute selected using correlation
Dataset 9 390× 135 Without depth, attribute selected using Information Gain
Dataset 10 390× 171 With depth, attribute selected using Information Gain
Dataset 11 390× 139 Without depth, attribute selected using Gain Ratio
Dataset 12 390× 171 With depth, attribute selected using Gain Ratio

The cross-validation process was performed by splitting the dataset into k-folds

to train the model on all the samples except the (k-1) folds and evaluated the

model on the fold that was not used for training. This process was repeated k-

times and recorded the average accuracy. 2-Fold, 5-Fold, 10-Fold, and 15-Fold

cross-validations were performed in the datasets and the recognition accuracy is

recorded. All the experimental evaluations were conducted on the Intel Core I7

2.60 GHz CPU of 16 GB RAM. We collected hand gesture images of each ECA

at a resolution of 640 × 480 pixels at 30 fps with the help of Kinect in a C#

and Microsoft dot net based system. All the pre-processing steps, finger tracking,

feature extraction, and dataset preparation for machine learning were implemented

using Matlab software. We perform machine learning analysis using Weka [134]

software.

To measure the classification accuracy we have determined True Positive Rate

(TPR), False Positive Rate (FPR), precision, recall, F-measure, Receiver Oper-

ating Characteristics (ROC) area value, and Precision-Recall Curve (PRC) area

value. The classifier performed well as we can see the average ROC area value for

10-Fold cross-validation is within 0.9 to 1. Moreover, the average PRC value for

all the datasets is between 0.8 to 0.9. The classification result for dataset 8 has

been summarized in the confusion matrix as given in Table 4.4. This dataset con-

tains the minimum number of features with depth information compared to other

dataset containing depth features. Moreover, after the dataset 6 (572x312, 50%

resampled, accuracy 96.85%), this is the dataset with depth features for which

we got the maximum accuracy (88.2%) in 10-fold cross-validation. The average

accuracies that we have got for TPR, FPR, precision, recall, F-measure, ROC,
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and PRC are 88.2%, 0.5%, 89.6%, 88.2%, 88.4%, 99.5%, and 93.9% respectively.

We got the highest F-Measure score for the letters ‘C’, ‘H’, ‘I’, and ‘Q’ which is

100% and lowest 66.11% for the letter ‘N’. The result is generated considering 155

normalized DTW distance features.

Table 4.4: Confusion Matrix of Dataset 8

We can see the cross-validation comparison results of the prepared 12 datasets

divided into two groups: Dataset with depth information (in Table 3, Dataset 1,

3, 5, 7, 9, and 11) and datasets without depth information (in Table 3, Dataset

2, 4, 6, 8, 10, and 12). We have used these 12 datasets to understand the signifi-

cance of depth information from different perspectives, like, taking all the features,

taking only the depth features, taking the re-sampled features, taking features af-

ter correlation analysis. After performing the k-fold cross validation of each of the

datasets, we were able to achieve higher accuracy for depth-feature-based datasets.

The comparison results are shown in Figure 4.8. The highest accuracy we were able

to achieve is 96.85% for dataset 6 for which the dataset was generated by taking

random subsamples from the original dataset (dataset 2) with replacement. The

datasets considering depth information always gave better accuracies compared to

datasets without depth information. Taking all the features gave us 9.16%, 5.16%,
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5.40%, and 5.35% accuracy improvements in 2-Fold, 5-Fold, 10-Fold, and 15-Fold

cross-validations respectively over the datasets that do not contain depth features.

We tried to understand the impact of different features to justify our recognition

accuracies. All the features except F3 and F4 are derived features from F1 and

F2. The features F1 and F2 only gave us the recognition accuracies of 25.1282%,

27.6923%, 29.3208%, and 30.7992% for 2-Fold, 5-Fold, 10-Fold, and 15-Fold cross-

validations respectively. However, if we add one-by-one feature the accuracies

improved significantly. For example, if we add features F5, F6, F7, F8, F9, and

F10 with feature F1, F2 which are without depth features F3, F4, we got 157%,

181%, 169%, 160% improvement and with depth features we got 173%, 197%,

182%, 171% (for 2-Fold, 5-Fold, 10-Fold, 15-Fold cross-validations respectively)

improvements. We justified the use of taking 3 freeman chain code features F10,

F11, and F12, we wanted to take only one feature out of these three features.

However, taking three features gave us overall accuracy improvement around 2.62%

compared to taking any one feature.

We applied feature selection techniques to cope with overfitting problems and

ranked the features based on information gain, gain ratio, Pearson’s correlation.

We remove features that do not contain significant information. We tried to un-

derstand the relationship between different features and their corresponding class

labels, tried to analyze which features and how many features contribute more to

recognition accuracy. We found that features with depth information contribute

more to recognition accuracy for all the feature selection techniques we applied.

In the case of information gain and the gain ratio of the attribute with respect to

class, we got 48 features with a ranked value greater than 0, resulted in 73.33%

accuracy. Removing 100 worst-ranked features for both of the techniques gave

us 80.77% accuracy. However, we got the highest accuracy by removing 141 fea-

tures starting from the last, which means, using the top 171 features we found the

highest accuracy 85.13% with depth features. We removed the features without

depth information within these 171 features and got the highest 73.85% accuracy

out of 135 features. We tried to select the features based on Pearson’s correlation

coefficient values, with cut-off value 0.07 gave us 155 features, 88.21% accuracy

with depth features, and 82.05% accuracy using 120 features without depth fea-

tures. After this empirical analysis we found that in the case of information gain

and gain ratio methods, the difference between with-depth features and without-

depth features is 36 and 32 respectively whereas in case of Pearson correlation

the difference is 35. However, Information gain or Gain ratio based methods gave

us 171 features including depth features and Person correlation method gave us
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155 features. So, we retain a minimum number of features with depth values us-

ing Pearson correlation technique in case of dataset 8 which gave us the highest

recognition accuracy. We found that features with depth information always gives

better results compared to features without depth information. The highest dif-

ference we got for dataset 10 is 15% and the lowest difference we got for dataset

4 is 2% and in an average, for all the datasets we got 7% difference in 10-Fold

cross-validation.

4.4 Limitations

In this study, we proposed an air-writing dataset that contains unconstrained

writing of 22 users. The dimension of the dataset for which we got an accuracy

of 88.2051% is 390 × 155. Here if we could increase the number of users around

40 to 50, then the machine learning model might learn more information. As the

number of features was 312 and the samples were 390 in dataset 1, we had to reduce

the number of features based on correlation analysis using a threshold. However,

more studies could be performed to determine the threshold in correlation analysis.

Moreover, we could feed the raw writing images into deep-learning-based models

to analyze classification results on spatio-temporal information. However, in that

scenario, the number of samples needs to increase a lot. The depth quantization

equation in 4.2 used in this air-writing research also takes the empirical values

of DLmax, DLmin, Dth, and Dmin. These values may vary based on the input

environment.

4.5 Conclusion

In this research study, we tried to recognize on-air hand-written characters of

English Capital Alphabets (ECAs) through a Kinect depth camera. It is a vision-

based spatio-temporal activity in which the hand trajectory vectors were generated

and utilized for each of the gesturing images. we have created a unique dataset in

a complex natural environment with the help of 15 users. Each of the ECAs is pre-

sented as time-series values containing 12 discriminating features. Then, all pair

DTW distances were calculated and a total of 312 distance features represented

each of the alphabets. We got 390 instances containing the 312 feature dimensions

for SVM training and testing. However, we also analyzed the recognition accu-

racy by removing features from the ranked feature list based on information gain,
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gain ratio, and correlation analysis. With these, we have generated 12-datasets

with a different number of features based on feature analysis. We have performed

2-Fold, 5-Fold, 10-Fold, and 15-fold cross-validation and found high recognition

accuracy of 96.84% by resampling instances and also 88.21% using 155 ranked

feature list based on feature correlation analysis for our selected number of fea-

tures. These results we have achieved considering depth information as important

features compared to non-depth features. In the future, we will continue our work

to recognize small-letter English alphabets as well as Bangla alphabets including

word recognition.
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Figure 4.7: Sample distribution of 22 users for each ECA (A to Z) where x-axis
represents user number and y-axis represents the number of samples per user
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(a) Dataset 1 vs. Dataset 2
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(b) 25% resampled, Dataset 3 vs.

Dataset 4
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(c) 50% resampled, Dataset 5 vs.

Dataset 6
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(d) Attribute selected using correlation,

Dataset 7 vs. Dataset 8
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(e) Attribute selected using Information

Gain, Dataset 9 vs. Dataset 10
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(f) Attribute selected using Gain Ratio,

Dataset 11 vs. Dataset 12

Figure 4.8: Comparison of cross-validation results of the 12 datasets grouped by
without depth features and with depth features as described in Table 4.3 where x-axis

represents cross-validation folds and y-axis is represents accuracy



Chapter 5

A multimodal deep

Learning-based dynamic hand

gesture recognition using depth

information

Any spatio-temporal movement or reorientation of the hand, done with the in-

tention of conveying a specific meaning, can be considered as a hand gesture.

Inputs to hand gesture recognition systems can be in several forms, such as depth

images, monocular RGB, or skeleton joint points. We observe that raw depth

images possess low contrasts in the hand regions of interest (ROI). They do not

highlight important details to learn, such as finger bending information (whether

a finger is overlapping the palm, or another finger). Recently, in deep-learning-

based dynamic hand gesture recognition, researchers are tying to fuse different

input modalities (e.g. RGB or depth images and hand skeleton joint points) to

improve the recognition accuracy. In this paper, we focus on dynamic hand ges-

ture (DHG) recognition using depth quantized image features and hand skeleton

joint points. In particular, we explore the effect of using depth-quantized features

in Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN)

based multi-modal fusion networks. We find that our method improves existing

results on the SHREC-DHG-14 dataset. Furthermore, using our method, we show

that it is possible to reduce the resolution of the input images by more than four

times and still obtain comparable accuracy to that of the original resolution.
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In this chapter, first, we discuss the related research on deep learning-based mul-

timodal dynamic hand gesture recognition in section 5.1, second, we elaborate on

our multimodal approach consisting of gray scale varying image and hand skele-

ton joint point as input in a two stream CNN-LSTM-based fusion network and

recognition methodology in section 5.2, third, we describe the result analysis in

section 5.3, and at last, we give the conclusion remark in section 5.5.

5.1 Background study and related works

In our daily lives, we both consciously and subconsciously use numerous hand ges-

tures. Human hands are dynamic and highly dexterous, allowing hands and hand

movements to encode or represent a large variety of information. This capacity of

hand gestures to represent information is second only to that of natural language.

To account for physical disabilities related to speech, we use the symbolic sign

language, where hand gestures play a significant role.

Hand gestures are particularly suitable for interaction based applications. Al-

though their embedding capacity is lower than that of natural language, speech

controlled interaction has to consider the problem of vocal fatigue, or language

barriers (for example, a person not knowing English may not be able to interact

with their English-based system). In contrast, hand gestures are easy and natural

to use. They can often be understood intuitively (such as pointing to a person or

an object) - which is why people resort to gestures if there is a language barrier

in communication. Due to these reasons and more, gesture-based interaction have

long been introduced to many Human Computer Interaction (HCI) applications.

They play a key role in the rapidly growing field of ambient intelligence, assist-

ing us in interacting with smart homes and smart appliances. Gestures are also

important in applications such as sign language communication, interacting with

virtual objects in virtual environments, controlling robots through hand gestures,

playing virtual reality games with hand movements, etc. Thus, the development

of robust hand gesture recognition systems can be considered as a key area of HCI

research.

Formally, a hand gesture can be defined as the movement of the hands and fingers,

in some particular orientation, with the intention of conveying meaningful infor-

mation. This information can be something like some specific object (indicated by

pointing fingers), or perhaps some intention (thumbs up indicating approval), or

even specific symbols (fingers representing digits). Although many hand gestures
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are universal, they can also be culture or context specific. Symbolic gestures are

generally static, that is, they exist only in the spatial domain. For example, the

index finger representing the number 1. This is a time invariant or static hand

gesture. There are also dynamic hand gestures, which represent broader meanings,

like waving the hand to mean hello. These gestures work in both the spatial and

temporal domain. We may think of such dynamic gestures as a sequence of static

gestures which together correspond to a new meaning.

There are multiple approaches to hand gesture recognition. Computer Vision

(CV) based approaches based on regular images require restrictions on the ges-

turing environment, such as special lighting conditions, simple and uncluttered

background, and absence of occlusions. Alternative sensor based approaches uti-

lize gloves embedded with accelerometers, gyroscopes, bend sensors, proximity

sensors, and other forms of inertial sensors. However, this sensor-based gesture

recognition approach has limitations in terms of naturalness, cost, user comfort,

portability, and data preprocessing. Advances in stereo vision and infrared (IR)

cameras have lifted a lot of constraints on CV-based approaches by making depth

information available for use. On depth images, it is possible to recognize gestures

with a combination of a feature extraction mechanism and a discriminating sys-

tem. For example, Scale-Invariant Feature Transform (SIFT) can be used to form

feature vectors, which can then be fed into a classification model like a Support

Vector Machine (SVM)[126].

Despite their effectiveness in understanding spatial data, CNNs however are not

the most suitable solution to dynamic hand gesture recognition. This is because

DHG recognition is also distinctly time-dependent. Recurrent Neural Networks

(RNN) are a subset of Deep Learning methods which deal with temporal features.

In particular, Long Short Term Memory (LSTM) are highly useful in modelling

long range dependencies, which may be the case in dynamic hand movements. As

such, combinations of CNN and RNN based networks excel at the DHG recognition

problem.

Deep learning models do not require hand-crafting features, but they still benefit

from good preprocessing. While studying the depth images used as inputs to

existing CNN-RNN systems, we observed that there is not much emphasis on the

hand region of interest (ROI). The fingers and the palm of the hand occupy a

relatively similar depth value. We believe this apparent lack of contrast hides

some meaningful information, which may be useful to gesture recognition models.

For example, when the fingers overlap against the palm, this isn’t really visible in
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the corresponding depth image (as seen in Figure 5.1). However, by quantizing

the depth values into specific depth levels, the contrast between fingers and palms

is increased and we gain additional information.

Figure 5.1: (left) Original image (right) Image with quantized depth levels

In [126], the researchers verified the usefulness of this method regarding static hand

gesture recognition. They found that the gray-scale variations based on depth

values in depth images gives higher recognition accuracy compared to without

gray-scale variation up to 3.6%. However, In case of dynamic hand gesture, user

perform gestures in 3D surface and certain gestures may vary only in Z-axis.

Dynamic gestures include motion-oriented movements of the hand muscles that can

be utilized as important depth features to improve gesture recognition accuracy.

Researchers in [135], have utilized this concept in the recognition on-air hand

writing recognition of English capital alphabets (ECA). They showed that the

varying depth values distributed into certain levels based on the actual depth

value gave better recognition results if they are combined with other non-depth

features.

In this work, we focus on applying our method to multi-modal CNN and RNN

based fusion networks [136], for the task of dynamic hand gesture recognition.

Gesture and activity recognition has been an actively researched field throughout

the past decade. Due to the development of various types of sensors, it was possible

to study several forms of input modalities for the task of hand gesture recognition,

such as color, depth, acceleration, infrared, etc. Furthermore, advances in the field

of machine learning and deep learning have also had a significant effect on gesture

recognition research.
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Before the commercialization of depth-aware sensors, the predominant type of

input to hand gesture recognition systems was color or RGB data, due to their

relative ubiquity. One such early color-based approach was by Iwai et al. [137],

who utilized colored gloves along with decision trees to perform gesture recognition.
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In recent times, many core CV problems have benefited from advances in Deep

Learning (DL). Much of this success can be attributed to the development of Con-

volutional Neural Networks (CNN), which are translation-invariant and excel at

extracting spatial features. The inclusion of Deep Learning methods in Computer

Vision problems reduces the need of choosing and crafting good features. As such,

the vision-based approach to gesture recognition has also adopted the usage of

CNNs.

The research work by Lai et al. 2018 in [138] focuses on developing a multi-modal

network for the dynamic hand gesture recognition problem. The inputs to the

model consists of 16-bit depth images and 2D skeleton joint points. Lai et al.

explored several types of fusion methods in their work, including feature level

fusion, score level fusion, and decision level fusion.

The hand finger joint points pass through LSTM layers, while the corresponding

depth images pass through CNN layers and then LSTM layers. This produces
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two independent feature maps. In feature level fusion, these two resultant feature

responses are concatenated, and then passed through a multi-layered perceptron

(MLP). In score level fusion, each feature map is passed through a separate MLP.

The final two logit function responses are then combined by either taking their

maximum or their average. In decision level fusion, rather than combining the

logit outputs, the confidence responses of the final softmax layer are combined

instead.

Empirically, Lai et. al. has shown that decision level fusion does not work well

in practice. Feature level fusion and score level fusion have better performances,

with score level (average) showing the best results.

The research work in [136], followed deep leaning-based approach for temporal

3D pose recognition based on a combination of CNN and LSTM networks. They

proposed double stage training (CNN, then LSTM) where, CNNs are designed to

detect spatial patterns related to the position of the skeleton joints in 3D space

and the LSTM used to capture the spatio-temporal patterns related to the time

evolution of the 3D coordinates of the skeleton joint. However, they did not

consider multi-modal inputs, it is still of some interest to us as it uses a combination

of CNN and LSTM layers for the task of dynamic hand gesture recognition. They

have considered uni-modal inputs in the form of 3D skeleton joint points. Their

model contains CNN layers followed by LSTM layers, to facilitate both spatial and

temporal feature extraction.

Different researchers in [139],[140], [141], tried to use variety of input modality

and applied deep learning methods to learn human action or gestural features.

However, there is research scope in multi-modal data fusion in deep learning tech-

niques.

The research works in [126], the researchers verified their method on static hand

gesture recognition. They applied depth quantization on depth images to increase

contrast between palm and fingers. Using the contrasted gray-scale depth im-

age, we applied the SIFT algorithm to produce robust feature descriptors. These

features, represented as 128-dimensional feature vectors, were fed into an SVM

classifier. They showed that using depth quantization on the input depth image

resulted in improved accuracy.
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5.2 Methodology

Our proposed system consists of: (1) quantization of depth values into discrete gray

levels, and (2) a multi-modal Convolutional-Recurrent Neural Network (CRNN)

architecture which takes in a sequence of image-frames and a corresponding se-

quence of 2D skeleton joint points as input, and performs the dynamic hand-

gesture recognition.

Figure 5.3: (left) Original (right) Gray-scale Variation
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5.2.1 Gray-scale Variation

The depth images in the SHREC-DHG-14/28 dataset [142] are 16-bit images. Of

the available pixel range, only a very small portion is actually used by the hand

gestures. Furthermore, the hand ROI does not possess enough contrast to highlight

some features which may be useful to the recognition process.

For instance, information about finger position, orientation, overlap and motion

(over multiple frames) can be useful in fine-grained gesture recognition. We thus

address this issue with our preprocessing method, termed Gray-scale Variation,

which aims to increase the contrast in the hand region of interest.

The operation is pixel-wise, and can be formulated as:

f(x, y) = Gmin +

(⌊(
D(x, y)−Dmin

Dth −Dmin

× η
)

+ 0.5

⌋
×
⌊
Gmax −Gmin

η

⌋)
(5.1)

Where f(x, y) denotes an output pixel, and D(x, y) denotes an input pixel from

the input depth image.

From a high level overview, the Gray-scale Variation operation reassigns depth val-

ues into η discrete buckets, or gray levels, thus creating several sharply contrasted

regions. Moreover, the amount of output contrast is subject to some pre-specified

parameters.

We initially choose Gmin and Gmax, two parameters which determine the effective

range of the output pixels. We also choose the parameter η, which represents the

number of discrete gray-scale quantization levels in the output image. As such,

there are η unique depth values in the output, evenly distributed between Gmin

and Gmax.

The input to the operation is a hand ROI from a depth image, denoted as D in

equation (5.1). D(x, y) and f(x, y) represent input and output pixels respectively,

while Dmin is the minimum value in the input hand ROI (ignoring the zero-valued

background pixels). As stated earlier, we select η as the number of grey levels

between Gmin and Gmax. Consequently, we also select η depth segments between

Dmin and (Dmin +Dth) — where Dth is the distance, we assumed the hand would

be from Dmin and the depth threshold.
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Table 5.1: Recognition Rates (%) on the DHG-14 dataset

Method
Fine Coarse Both

Best Worst Avg ± Std Best Worst Avg ± Std Best Worst Avg ± Std

FL-Fusion-Concat [cite] 90.00 48.00 72.90 ± 10.30 98.89 78.89 86.83 ± 4.68 87.86 67.86 81.86 ± 5.38

SL-Fusion-Avg [cite] 92.00 52.00 76.00 ± 10.51 97.78 81.11 90.72 ± 4.64 95.00 72.86 85.46 ± 5.16

GVAR-FL-Fusion (ours) 100.0 50.0 86.89 ± 12.43 100.0 74.28 91.13 ± 7.013 100.0 74.44 89.61 ± 7.53

As the operation is dependent upon pre-specified parameters, it is necessary to

understand the rationale behind setting those parameters. A very low value of

Gmin would make it difficult to distinguish the hand from the background, and

if Gmin and Gmax are not sufficiently spaced apart, the range of possible values

would be compressed (and thus not have as much contrast as intended). The

choice of η also affects the quality of the output — for example, if we use all

available gray-levels (256), we would not obtain any useful contrast. However, if

we use too few gray-levels, (like perhaps 2-4) we may lose a significant amount of

spatial information.

Empirically, a well-balanced choice of Gmin and Gmax are 155 and 255 respectively,

with η = 10 levels between them.

We apply equation (5.1) on our input depth hand ROIs and get quantized gray-

scale hand ROIs, which are supplied to our model as inputs alongside 2D skeleton

joint points.

5.2.2 Proposed Architecture

The neural network architecture that we use can be divided into two main sub-

networks: (1) A CNN + LSTM network which processes gray-scale image se-

quences, and (2) an LSTM network which processes 2D skeleton joint points. We

then explore two forms of fusion: (a) feature-level fusion, where we concatenate

the feature maps from the two components before passing them to a dense clas-

sifier, and (b) score-level fusion, where we pass each component’s feature map

through a separate classifier head, finally taking the average of the logits (prior to

the softmax operation).

The CNN + LSTM sub-network is composed of two components — a CNN com-

ponent and an LSTM component. The CNN component is composed of three con-

volutional blocks, Bconv. Each block Bconv consists of two (3×3) 2D-convolutional

layers, each followed by ReLU non-linearity. The second ReLU is further followed

by a (2× 2) max-pool layer.
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We also added two Batch-Normalization layers into the block — first after the

initial ReLU, and second after the max-pool layer. The rationale behind this

placement is that Batch Normalization is intended to normalize the inputs to

convolutional layers, and thus they are placed immediately prior to them. The

LSTM component of the CNN + LSTM consists of two LSTM layers, each with 256

hidden units. The overall depth based CNN+LSTM architecture can be observed

in Figure 5.2.

It is to be noted that the CNN component is used for extracting spatial features,

while the trailing LSTM component is used for extracting temporal features. Thus,

the CNN is applied in a time-distributed manner. An arbitrary input image-

sequence tensor may be of dimensions (BS, T, C,H,W ) — where BS represents

batch size, T represents the time-step size or sequence-length, and C,H,W rep-

resent the channel, height and width resolutions of the images respectively. This

input tensor is passed to the CNN component in the form (BS ∗ T,C,H,W ); the

CNN component is actually sequence independent. The resultant feature-maps

are reshaped back to the form (BS, T, features) before being passed to the LSTM

component.
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Figure 5.5: Overview of fusion methods

Previously, Lai et al.[138] did not utilize any Batch-Normalization layers in their

proposed model. We believe using Batch-Norm is critical to speeding up the train-

ing process for this sort of model layout. Because of the time-distributed manner

in which 2D-Convolutions are applied on image sequences, we are effectively per-

forming the convolutions on a large batch size, BS ∗ T . This means that the

model would be prone to internal covariate shift, and would thus take longer to

converge. Adding Batch-Norm layers into the depth CNN reduces the necessary

training time significantly.

The joint based LSTM network consists of simply two LSTM layers, with 128

and 256 layers respectively. The inputs to the joint LSTM are a sequence of 2D
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skeleton joint points, supplied in the form of a tensor with dimensions (BS, T, 44).

Figure 5.4 shows an overview of the joint LSTM.

As stated earlier, we explore two forms of combining the resultant features from the

two sub-networks. In feature-level fusion, the two feature tensors are combined

by concatenating, and are then passed into the MLP. In score-level fusion, no

such feature concatenation is done. As such, we have two separate dense MLP

classifiers in the score-level fusion method. The MLP classifiers consist of three

fully-connected or dense layers with 256, 512 and 256 units respectively, followed a

dense layer with NC units (where NC represents number of gesture classes). ReLU

non-linearity is used in between the layers.

Previous works [138] demonstrated a notable variance problem on the SHREC

task. As such, we used Dropout layers (with a drop probability of 0.5) in between

the dense MLP layers, in order to regularize the model.

5.3 Experimental results

We conducted our experiments with the methods described above. We follow a

similar experimental setup to [22, 138, 143, 144, 145], using a 20-fold Leave-One-

Out Cross Validation strategy, where the model is trained on 19 subjects and

evaluated on the remaining one in each fold.

5.3.1 Dataset

Our work primarily focuses on the SHREC-DHG-14/28 dataset [142]. The dataset

consists of 14 types of dynamic hand gestures, performed two ways: with one

finger and with two fingers. The gestures are performed by 28 different people,

with each person repeating a gesture between 1 and 10 times, in the two ways

described above. This leads to a total of 2800 data instances.

Each hand gesture instance consists of a sequence of depth image frames, a se-

quence of 2D skeleton joint points, and a sequence of 3D skeleton joint points.

There are primarily 14 target gesture labels. The 14 gestures are further catego-

rized into fine and coarse grained gestures, which can be seen from Table 5.2. The

fine grain gestures involve more acute movements of the fingers, while the coarse

grain gestures involve motion of the entire hand or arm.
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Figure 5.6: Distribution of Classes in DHG-14

Figure 5.7: Depth Image frame with Corresponding Joint Point

The dataset also comes with a train and test split, with 1960 (70%) data instances

in the training set and the remaining 840 (30%) in the test set. Furthermore,

the training and test sets were formulated in such a way that the training test

consists data from exactly 20 of the total 28 performers. This is reasoning behind

the twenty-fold cross validation scheme used in [22, 138, 142]; the training set

consists of 20 unique subjects. Because each validation fold in the leave-one-out

method contains data from an unseen performer (thus of a slightly different data

distribution), the results of this evaluation process give a fair idea of the learning

algorithm’s robustness.
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Table 5.2: Gesture Recognition Classes in DHG Dataset

Class Gesture Grain

0 Grab Fine
1 Tap Coarse
2 Expand Fine
3 Pinch Fine
4 Rotation Clockwise Fine
5 Rotation Counter-clock Fine
6 Swipe Right Coarse
7 Swipe Left Coarse
8 Swipe Up Coarse
9 Swipe Down Coarse
10 Swipe X Coarse
11 Swipe V Coarse
12 Swipe + Coarse
13 Shake Coarse

5.3.2 Data Preparation

First, we extracted all the hand ROI from the depth image frames (the ROI coor-

dinates are available in the dataset). As opposed to the 227× 227 resolution used

in [138], we resized our images to a much smaller 50×50 resolution. Furthermore,

to speed up the training process, we applied the grayscale-variation preprocessing

method over the entire depth-image dataset in prior, thus creating a transformed

dataset.

For training our model, we utilize the depth image frames and corresponding 2D

skeleton joint points (not using the 3D skeleton data). A time-step size of 32 is

used — this means that we use exactly 32 frames from a given data instance. It is

possible for data items to contain both more and less than 32 frames. As such, for

sequences with less than 32 frames, we pad with blank frames, and for sequences

with more than 32 frames, we perform evenly distributed sampling between the

start and end frame.

5.3.3 Experimental Design

We ran several experiments with our proposed models, under different settings.

First, we evaluated the method proposed in [138] with exact settings, except us-

ing input depth frames of 50 × 50 resolution instead of 227 × 227. Second, we

evaluated our approach, on the similar 50 × 50 resolution images, preprocessed

by the grayscale variation operation. We follow some similar parameters to [138]
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– a timestep size of 32 and a batch size of 16 is used. We use a smaller initial

learning rate of 0.03 and train our model on 50 epochs (as opposed to the 100

epochs training done in [138]).

Figure 5.8: Distribution of Sequence Lengths in DHG-14

5.3.4 Result Analysis

It is apparent from Table 5.1 that despite using significantly fewer parameters and

inputs at much lower resolutions, our proposed system shows significant improve-

ment in generalization on the DHG-14 dataset. The average performance of our

feature level fusion setup shows an improvement of almost ∼8% over the feature

level fusion shown in [138].

More importantly, it was previously noted in [138] that multimodal fusion models

struggle to perform on fine gestures, as seen on Table 5.1. It can be observed from

our results that we’ve shown a drastic improvement in the performance of the

model on fine-grained gestures, having an average accuracy about ∼14% higher.

We argue that the reasoning behind this improvement is a combination of factors

— such as, a more regularized model, addressing the previously ignored internal

covariate shift, and our proposed preprocessing method.

In particular, it can be observed from Figure 5.4 that the GrayscaleVariation

operation reduces the contrast present in the hand ROI, and also highlights the

fingers and extremities of the hand. We believe this representation of the depth

images allows the model to extract some additional useful information, which is
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Figure 5.9: Averaged confusion matrix for GVAR-feature-fusion

critical to the performance of fine gestures, where finger movements dominate the

gesture sequence.

Figure 5.9 shows the confusion matrix, averaged over the twenty trained models.

Although from Table 5.1 we do see that our method has significantly improved

results, the confusion matrix actually provides us with deeper insights. We can

see that there is still some room for improvement — the model shows a compara-

tively poor performance on class 1, or Tap. It is possible that there may be some

relationship between the length of the gestures and performance, as the worst per-

forming classes have a comparatively low average sequence length, as observable

from Figure 5.8.

5.4 Limitations

We have tested our proposed greyscale variation and CNN+LSTM method for dy-

namic hand gesture recognition on the DHG-14/28 dataset only. For a better idea

of the robustness of our method, it is necessary to conduct rigorous experiments

on multiple dynamic hand gesture benchmarks which have the depth-map modal-

ity. Furthermore, apart from depth-maps and 2D hand-skeleton coordinates (in

image space), the DHG-14/28 dataset also contains another modality that we have
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not utilized: 3D hand-skeleton coordinates (in world space). Since 3D skeletons

also contain depth information, there is an additional scope to study the effect

of quantizing the depth values of 3D coordinates instead of depth pixels. Lastly,

deep learning experiments are subject to a large number of tunable hyperparam-

eters, each of which may subtly affect accuracy. Due to the expensive 20-fold

cross-validation experiment design, it was difficult for us to sufficiently search the

hyperparameter space. It may be possible to obtain slightly better results with a

good set of hyperparameters we have not explored.

5.5 Conclusion

Our work is primarily focused on studying the multi-modal fusion approach to

dynamic hand gesture recognition. We can summarize our contributions into a

few core points:

1. We proposed a new depth quantization method, Gray-scale Variation, which

is useful in highlighting additional information in low-contrast depth frames.

2. The original multimodal fusion approach to dynamic hand gesture recogni-

tion was computationally expensive. In our approach, we performed gesture

recognition where the number of input pixels of the depth image frames (2.5K

pixels) are roughly equal to only about 5% of the number of input pixels in

[138] (51K pixels). Because the model’s number of trainable parameters are

directly dependent on the input spatial resolution, our model is significantly

smaller than the previous model — 6.9 million parameters, compared to 31

million parameters. This makes the model much more suitable for real time

and edge applications.

3. We showed an increase in the overall accuracy of the multimodal fusion ar-

chitecture, with the addition of Gray-scale Variation and our minor modifi-

cations to the model architecture. Our model requires half as much training

time. Most notably, our approach shows a significant increase in the recog-

nition accuracy of fine-grained gestures — an increase of about ∼14%.
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Conclusion

Since the inception of depth-map capturing technology, the depth values are con-

tinuing to study from different perspective by the research community. Specially,

in the hand gesture recognition research area, primarily depth values were effec-

tively used in hand segmentation and localization. In computer vision-based hand

gesture recognition approaches, one of the prominent research challenges was hand

ROI extraction from full image consisting of complex background (e.g. changes

in illumination, cluttered or occluded objects, and so on) and object itself. With

the help of depth-map information, it became very faster and accurate to find the

interested objects. Later, the researcher started to utilize the depth-map informa-

tion as salient features to be learnt by the machine learning algorithms. Starting

from direct depth images generated from depth map to different types of features

representation (e.g. coordinate values of the depth dimension along with pixel

dimensions, depth matrix generated from depth image, depth-map projections,

and so on). Moreover, 3D skeleton hand joint points, different orientation, trans-

lation, rotation information of those joint points, motion information of the joint

points, shape of connected joints in the hand movements are being effectively uti-

lized as feature sets to recognize both static and dynamic hand gesture recognition.

Recently, the study of depth-map utilization is focusing on deep-learning based ap-

proaches due to the fact that, deep-learning environment setup became affordable

and easier. Now-a-days researchers are trying to utilize huge input volume consist-

ing of gestural image set to learn more high-level features or abstract level features.

They are designing single-layered or multilayered deep-learning architecture to un-

derstand spatial relationships (e.g. using CNN) as well as temporal relationships

(e.g. 3DCNN, LSTM) among the gestural images. Initially, the study was limited

to only RGB image or RGB image-based features. However, researchers are now

93
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also trying to learn the impact of depth-images or depth-based features in deep

learning-based methods in different fusion-based techniques. Rather than perceiv-

ing from single modality of input, the research has shown that multiple modalities

(e.g. RGB image, depth image, skeleton joint points, optical flow images etc.) can

significantly improve the recognition results. Use of hybrid deep learning-based

approaches (e.g. two-stream network, multi-stream network) are also trying to

capture high-level features from multimodal input.

In this thesis, we propose to utilize depth information in pre-processing steps so

that, rather than learning from the depth images directly, some significant infor-

mation if provided earlier before learning then, the process can improve the recog-

nition results consequently. We started to experiment with our proposed depth

utilization technique (e.g. depth quantization process) firstly in static hand ges-

ture recognition system. We have generated gray-scale varying depth images using

depth-map information from the benchmark dataset using our proposed method-

ology and found that the machine model responding well. We have got better

recognition accuracy by applying the depth quantization technique that in turn

helped in extracting significant features from low contrast, low resolution depth

images. The features we chose are robust in terms of scale, rotation, translation,

and orientation invariant property. After that we extend our experiment to use the

proposed technique in dynamic gestural event like on-air writing activity. While

writing in the air with bare finger the direct depth dimension along with the depth-

quantized value showed higher recognition accuracy. To do that, we have generated

our own air-writing dataset and on that dataset we studied feature-selection anal-

ysis to understand the significant of depth-based features and non-depth features.

We found that depth-based feature if merged with non-depth features can improve

recognition results. We also analyze the comparative results of the direct depth-

valued features and our proposed quantized depth-valued features. The result

showed around 3.5% improvement over direct depth-valued features. At last, in

the recent deep-learning-based approach, we experimented our proposed method

in dynamic hand gesture recognition in the state-of-the-art dynamic hand gesture

dataset. From that benchmark dataset we applied our depth-quantization tech-

nique to generate gray-scale variation depth images with a goal to use them as

another input modality in addition to the hand skeleton joint points. We design a

fusion-based deep-learning network consisting of CNN and LSTM which has taken

those two input modalities and tried to learn the important features. We actu-

ally performed feature-level fusion and decision-level fusion by which we achieved
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state-of-the-art accuracies in our proposed multimodal technique of dynamic hand

gesture recognition.

We can particularly outline three future directions of this research. First, we have

determined and used the distance threshold in the depth quantization process from

each of the image frames of a particular hand gesture, which can be considered as

the local threshold. However, there is a scope to choose an adaptive threshold con-

sidering all the gestural images of all the classes and calculate the global threshold

to test the accuracy changes. Second, with air-writing, it is possible to increase the

number of samples and then design a spatiotemporal-based deep learning model

to recognize bare hand writing. Third, in the multi-modality-based deep learning

approach of dynamic hand gesture recognition, we have not considered 3D hand

skeleton joint points. Since 3D joint points also contain depth information, there is

a further scope to study the effect of quantizing the depth values of 3D coordinates

instead of depth pixels only.



Appendix A

Scale Invariant Feature Transform

(SIFT) [1]

SIFT algorithm produces rotation and scale invariant 128-dimensional feature de-

scriptors. SIFT algorithm works in four steps.

A.0.1 Detecting scale space extrema

We calculate the Laplacian of Gaussian (LoG) for the image , with diffetent sigma

(σ) values which represents the scale parameter. We convolute the image with

gaussian filter to produce a blurred image, L, using A.1.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (A.1)

where, G(x, y, σ) = 1
2πσ2 e

−(x2+y2/2σ2)

SIFT algorithm uses Difference of Gaussian (DoG), using A.2, by taking the dif-

ference of blurred images for two different values (σ and kσ), i.e.

DoG(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (A.2)

This process is done for different octaves of the image in Gaussian Pyramid. For

our case, we got optimal values with initial σ = 1.275 and k =
√

2. With this

process we get scale invariant representations of hand gesture features.
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A.0.2 Keypoint localization and filtering

Once DoG images are found, they are searched for local extrema over scale and

space. One pixel in the image is compared with its 8 neighbours as well as 9 pixels

in next scale and 9 pixels in previous scale. Then, a pixel is selected if it is larger or

smaller (extrema) than all 26 neighbours. This is a keypoint best representing in a

scale. We remove the edge keypoints which are subject to aperture problem using

Harris corner detection and reject points with low contrast using thresholding in

the DoG images.

A.0.3 Orientation assignment

We have found that keypoints stable after localization and filtering. We assign

orientatoin to each keypoint to get rotation invariant property. Since we already

know the scale and location of the extrema, we calculate the gradient direction and

magnitute of each pixel around the keyoint. Gradient magnitude and orientation

are determined using A.3 and A.4.

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (A.3)

θ(x, y) = tan−1
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
(A.4)

A gradient histogram (orientation histogram) is created with 36 bins covering 360

degrees for each keypoint and 80% of points represent the directions as a keypoint

direction.

A.0.4 Keypoint descriptor

Each keypoint has x, y, σ,m, θ. We create the keypoint descriptor by taking a

16× 16 window of neighbourhood around the keypoint. It is devided into 16 sub-

blocks of 4× 4 size. For each sub-block, 8 bin orientation histogram is created. So

a total of 4× 4× 8 = 128 bin values are available as a vector to form the keypoint

descriptor.



Appendix B

Finger-Earth Mover’s Distance

(FEMD) [2]

FEMD is a shape matching-based algorithm of gesturing images consisting of

hand shapes represented as time-series curves. The hand finger shape or signature

represents a cluster defined as R in B.1.

R = (r1, wr1), ..., (rm, wrm) (B.1)

where, ri is a cluster representative and wri is the weight of that cluster. The angle

interval between the end points of each finger segment is defined as ri, ri = [ria, rib].

The weight of the cluster wri is the normalized area within the finger segment. The

figure in B.1 shows the process.

Figure B.1: (a)(b): two hand shapes whose time-series curves are shown in (e)(f).
(c)(d): two signatures that partially match, whose EMD cost is 0. (e)(f): illustration

of the signature representations of time-series curves. Image reproduced from [2].
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The FEMD distance between two signatures R and T can be calculated using B.2.

FEMD(R, T ) = βEmove + (1− β)Eempty

=
β
∑m

i=1

∑n
j=1 dijfij + (1− β) |

∑m
i=1wri −

∑n
j=1wtj |∑m

i=1

∑n
j=1 fij

(B.2)

Where D = [dij] is the ground distance matrix for R and T such that dij is the

ground distance from ri to tj. dij is defined as the minimum moving distance for

interval [ria, rib] to totally overlap [tja, tjb] as in

dij =

0 ri totally overlap with tj

min(| ria − tja |, | rib − tjb |) otherwise
(B.3)

fij is the flow from ri to tj and constitutes the flow matrix F [2]. Finally, gesture

recognition in FEMD is also achieved through template matching.

As FEMD is the dissimilarity measure, so the input hand is recognized as the class

with which it has the minimum dissimilarity distance using B.4.

c = argmin {FEMD(H,Tc)} (B.4)

Where H is the input hand signature and T is a template of class c.
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