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Abstract

Sleep staging is one of the most essential approaches for diagnosing many sorts of sleep-
related illnesses. Electroencephalography (EEG) is considered a computing tool for eval-
uating the relationship between neurological effects and sleep stages because it detects
sleep-related neurological changes quickly and accurately. So In comparison to the tradi-
tional polysomnographic signal based approach, EEG is considered to be a more efficient
tool to predict sleep stages outside of a fully equipped medical environment. The goal
of this study is to use sleep EEG data to identify effective neurological EEG biomark-
ers and predict five stages of sleep. We analyzed three EEG channels (F4, C4 and 02)
from the dataset collected by Haaglanden Medisch Centrum (HMC, The Netherlands)
and published by PhysioNet that contains 154 sleep recordings. In this study we have
applied different classification models that are Decision Forest, Support Vector Machine,
K-Nearest Neighbors, Extreme Gradient Boost and Neural Network to classify 5-class
sleep stages. Among those we found that the Neural Network outperformed other mod-
els. We have also identified delta wave power ratios (DAR, DTR, and DTABR) as EEG
biomarkers that improved the overall accuracy from 84% to 92% using the Neural Net-

work model.

Keywords— sleep scoring, electroencephalography, biomarker, machine learn-

ing, neural network
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Chapter 1

Introductions

Sleep is one the basic biological activities that are required for relieving stress. It is the
brain’s fundamental function that is crucial for a person’s learning ability, performance,
and physical activity [1, 2|. Understanding the sleep quality in an easier manner is
the most important and interesting topic in the field of neuroscience and sleep disorder
diagnosis. The gold standard for human sleep analysis is sleep stage scoring [3]. The goal
of sleep stage scoring is to find the stages of sleep that are important for identifying and
treating sleep disorders [4, 5|. Many researchers previously tried to turn the complicated
manual sleep scoring process into a simple automatic and reliable one. But still there
is a lack of an efficient automatic system. In this work, we focused on measuring and
understanding the sleep quality in an efficient manner by proper identification of the sleep
stages from the whole human sleep cycle for the diagnosis of different sleep disorders.
The continuous recording of several electrophysiological signals termed as Polysomno-
graphic (PSG) signals are used for sleep stage scoring purposes. PSG is done with an elec-
tronic instrument that records electrophysiological signals from the brain via electroen-
cephalogram (EEG), eyes via electrooculogram (EOG), skeletal muscles via electromyo-
gram (EMG), and from the heart via electrocardiogram (ECG) during sleep. Recording
devices are connected to the necessary body parts to capture this information. Among
all these signals EEG is considered the one of the key signals for sleep stage classification
and sleep specialists claim that EEG improves sleep stage categorization by minimizing

interference from Polysomnography (PSG) line recordings as well as other instruments

[6].



1.1 Background Study

In this section, we will discuss the required terminological background information to

understand our research work properly.

1.1.1 Polysomnography (PSG)

Polysomnographic(PSG) is basically the continuous recording of several electrophysiolog-
ical signals which are used for sleep stage scoring purposes .PSG signal recording is done
with an electronic instrument called polysomnogram that records all electrophysiological
signals from human body. Different electrophysiological signal recordings such as elec-
troencephalography (EEG), electrooculography (EOG), electromyography (EMG), and
electrocardiography (ECG) are done for this. The role of this signals are:

e Electroencephalography (EEG): EEG basically monitors all brain activity and

captures the brainwaves;
e Electrooculography (EOG): EOG monitors the eye movement;

e Electromyography (EMG): EMG checks all electrical activity of the muscle’s in

response to nerve’s stimulation;

e Electrocardiography (ECG): ECG is used for checking the heart’s rhythm and

all electrical activity of the heart;

A polysomnogram usually records a least of 12 channels, which necessitates a total
of 22 wire hookups to the patient. Every lab has its own set of channels, which may be
customized to match the needs of the doctors. The EEG has a minimum of 3 channels,
one or two for airflow; indicator, one or two of that for chin muscle tone measurement,
one or more for leg movements, two for eye movements checking, and one or two for the
heart rate and rhythm checking, one of which checks oxygen saturation, and last one for

chest wall movement checking and the upper abdominal wall movement. |7]



1.1.2 Electroencephalography (EEG)

EEG or electroencephalographic signal basically check the electrical activity that is gen-
erated from the interconnected neuronal communication inside the brain. EEG helps
significantly to detect any abnormalities in the brain waves during sleep. During the
EEG recording, electrodes having tiny metallic discs with thin wires are placed on the
scalp, and these electrodes detect any kind of small electrical charges produced by the
brain cells’ activity. Then the amplified results from those detected charges are shown as
a graph or a recording on a computer screen.

Human brain anatomically has three primary parts: cerebrum, cerebellum, and brain
stem. Among these, cerebellum is the largest and consists of the outer surface layer called
cerebellum cortex. This cerebellum cortex is divided into the four lobes: frontal, parietal,
temporal and occipital lobes [7] as shown in Figure 1.1. Different lobes are responsible
for handling different unique activities. For this reason, it requires covering all lobes’

important points in order to record all electrical activity in the EEG signal.

Cerebrum FFrontal Panictal
—

*
Brain Stem Cerebellum ‘Temporal Occipital

@ (b)

Figure 1.1: (a) [lustration of the human brain; (b) Diagram of the cerebral|7]

1.1.3 EEG Signal Acquisition Process

For the acquisition of the signals from the brain, an EEG cap is placed on the scalp that
covers all lobes. EEG cap is prepared by following the international standard of electrodes
placement called 10-20 system [8, 9, 10, 11, 12]. The actual location of electrodes on the
scalp, as well as their labeling are regulated by this 10-20 procedure where the minimum
21 electrodes is used [8]. Since the development of multi-channel EEG hardware devices,
this 10-20 system was upgraded to another one called 10-10 system with additional needles
[13]. Figure 1.2 shows the different lobes area on scalp and electrode placement points in

the 10-20 system measurement.



Figure 1.2: Electrode placement points in different lobes

In the 10-20 system, all parts of the brain are sufficiently covered by dividing the head
into proportions from major points of the skull. The 10-20 method designates that the
spacing between close electrodes will be 10% or 20% of the total gap between the ears
and nose, with electrode locations chosen from head front-side (termed nasion) to head
back-side (termed union). Even-numbered electrodes are implanted on the right side of
the head, whereas odd-numbered electrodes are placed on the left side. The electrodes
are also labeled with characters that correspond to the anatomical /structural divisions of
the brain to indicate their location: T (temporal), C (central), F (frontal), P (parietal),
O (occipital), and Fp (Frontal pole). The center-line electrodes have a subscript z and
are designated as zero |[8].

The frequency bands alpha, beta, gamma, delta, and theta can be distinguished from
the EEG waveform. Table 1.1 [14] shows all frequency bands with frequency ranges and
amplitude for the decomposed EEG signal.



Table 1.1: Bands with amplitudes and the frequency ranges.

Bands Frequency range | Amplitude
delta (0) 0-4 Hz 20-100
theta (0) 4-8 Hz, 10

alpha () | 813 Hz 2-100

beta () 13-30 Hz 5-10
gamma () | 30 Hz -

1.1.4 Human Sleep Stages

Human sleep can be divided into different stages according to the brain signal frequency
bands. There exist two global standards to categorize sleep in different stages.They are
described below:

R&K standard: R&K standard guidelines for different sleep stages are developed by
Rechtschaffen and Kales. [14]. In this criteria, PSG recordings first separated into 20s or
30s epochs. They are then divided into the basic categories: non-rapid eye movement sleep
(NREM), rapid eye movement (REM) sleep, and wakefulness (W). This NREM sleep class
further classified into S1, S2, S3, and S4 phases as per this R&K’s standards. Beside this,
in RK criteria, all movement during sleep have to be noted and the total time of movement
during sleep have to be calculated, which termed as movement time(MT) of the sleep
stage. Thus, RK criteria classify sleep into seven discrete sleep stages: W /wakefulness,
REM, S1/drowsiness, S2/light sleep, S3/deep sleep, S4/deep sleep and MT /movement
time [15].

AASM standard: AASM is the most popular standard for sleep stage classification
which is provided by American Academy of Sleep Medicine (AASM).PSG signal record-
ings also separated into 20s or 30s epochs according to this standard and then divided
into the categories: non-rapid eye movement sleep (NREM), rapid eye movement (REM)
sleep, and wakefulness (W). RK standards classify NREM sleep into S1, S2, S3, and
S4 phases but there is a difference here according to AASM standard. AASM provides
more updated rules for this which was set by the American Academy of Sleep Medicine
(AASM) [16, 17]. The significant modifications to such AASM criteria are that it merges
the NREM phases S3 and S4 of RK criteria into a single deep sleep stage known as N3 or
Slow Wave Sleep (SWS) [18, 19]. AASM criteria also excludes the movement time from
the sleep stages. In short, AASM criteria classify sleep in five stages: W (wakefulness),



N1 (NREM1), N2 (NREM2), N3 (NREM3) and R (REM). Here, N1 and N2 stages are
the part of light sleep and N3 is the part of deep sleep. The AASM rules also specify the

distinctive waves for each of the five sleep phases|20].
o Stage W /wakefulness: characterized by alpha and beta waves;

e Stage N1/NREM 1: theta waves are seen in this stage and there may be exist vertex

sharp waves;

e Stage N2/NREM 2: determined by the presence of high voltage bi-layer waves and

existence of theta waves;
e Stage N3/NREM 3: determined by high amplitude delta waves;

e Stage R/REM: stage REM is defined by the presence of theta and wedge waves, as

well as the existence of alpha waves.

1.2 Motivation and Scope

An average human being sleeps for almost a third of his life and sleep related disorders
such as insomnia, narcolepsy, and obstructive sleep apnea (OSA) are common and can
have a negative impact on physical health |21, 22]. Sleep deprivation, either caused
by a sleep pathology or a stress-related disease. In [23|, they revealed that more than
90percent of the total of people with depressive disorders have sleep issues. This sleep
deprivation poses significant cognitive hazards when doing everyday tasks like driving
or operating a basic equipment [24]. In another research [25], they show that almost
20% of all car accidents and injuries are associated with sleepiness. The American Sleep
association shows in 2019, drowsy driving is responsible for one thousand five hundred
fifty-five fatalities and 40 thousand nonfatal injuries annually in the United States. So,
it’s crucial to build systems that can identify and analyze sleep patterns autonomously
in order to detect sleep-related issues including tiredness, sleepiness, or disorders like
insomnia, apnea or narcolepsy.

The gold standard for human sleep analysis is sleep scoring [3, 3|. The goal of sleep
stage scoring is to find the stages of sleep that are important for identifying and treating

sleep disorders [4, 5|. Sleep stage scoring is usually done using polysomnographic (PSG)



recordings obtained while patients sleep in the hospital overnight. However, this PSG
sleep scoring process is extremely time-consuming and labor-intensive, requiring a trained
specialist to manually evaluate a full night’s worth of sleep data by analyzing signal-
patterns. A patient also needs to go to a laboratory or clinic and spend a full night
recording PSGs in a clinical setting, which is a costly and time-consuming operation.
Apart from that, because the PSG signal’s adhesive electrodes and wiring are always
linked to the body, it is quite bothersome and unpleasant for people. To evaluate quality
of sleep for neurobiological treatment and a range of sleep problem diagnostic procedures,
clinicians were forced to rely solely on personal questionnaires. As a result, building a
simple and trust-able automatic sleep staging system would be a major addition to this
field [26]. Heath-SOS, a wearable health monitoring device that consists of an eye mask
packed with EEG and EOG sensors, has been described as a sleep monitoring alternative
[27]. EEG signals are much more beneficial while sleep scoring than other type of PSG
signal, according to much research [28]. EEG data directly detect brain function and can

distinguish between different sleep patterns [5, 27].

1.3 Problem Statement

Based on the discussion above, this research aims to develop a model that can classify
sleep stages automatically with quantitatively evaluating the EEG Bio-markers. It will
utilize multi-channel EEG signals and features will be extracted from these signals to train
machine learning models that capable of learning generalized features while prioritizing

important features for different sleep stage identification.

1.4 Research Contribution

Using data from three EEG channels from three different locations (C4, O2, and F4), we
attempted to automate this sleep score technique . From the frontal , central and the oc-
cipital lobes we used F4, C4, O2 respectively for our work. Besides this, we are not using
the multi-modal PSG signal model and working only with EEG based on the assumption
that the EEG would detect sleep-stage dependent central nervous system reactions in-

stantly. Signal processing, feature extraction, along with the machine-learning technique



are expected to be convenient ways for investigating sleep phases’ physio-neurological
characteristics. The goal of this research is to look at EEG signal activity and find bio-
logical bio-markers while sleeping. To characterize neuronal responses in different periods
of sleep, we created the neurological-state prediction model. The key contributions of our

work can be summarized as follows:

e Machine learning models have been built to classify the various neurological states

that occur during various phases of sleep.

e Statistical analysis was used to identify EEG bio-markers, which are frequency

spectrum measurements for sleep phases.



Chapter 2

Literature Review

As the gold-standard sleep scoring approach necessitates a human specialist manually
assessing a full night’s worth of sleep data by examining the PSG signal patterns, it
is very much time consuming and labor-intensive. So researchers are trying to find an
automatic sleep scoring system that will be faster and easier. In this section we are
going to present a detailed study of the existing research works about automated sleep
stage classification. We will discuss three main steps - Feature extraction techniques,

classification models and dataset collection one by one.

2.1 Feature Extraction Techniques

There are various methods to extract features from EEG signals. Zero crossing, mutual
information, and Shannon entropy techniques are used to extract features from time do-
main data; Spectral entropy, median frequency, coherence analysis are used for Frequency
domain data and Wavelet transform, fast fourier transform (FFT), empirical mode de-
composition are used for Time Frequency domain data.

Also some modified techniques are proposed by researchers for feature extraction.
Shoulin et al [29] proposed an algorithm called Common Frequency Pattern (CFP) to
extract the sleep features, which is an extension of Common Spatial Pattern [30]. The
CFP uses correlations of signal spectrum between various frequency bands to improve
discrimination between the two classes.

Mera et al [31] used the fast Fourier transform (FFT) approach to extract features from
an EEG signal in order to classify sleep stages. They used the Random Forest Algorithm

to perform a simple feature selection depending on the relevance of each feature.



DWT is utilized for feature extraction by [32] for its ability to express multi-resolution
data. DWT decomposes non-stationary signals into several bandwidths and extracts both

time and frequency relevant features.

2.2 Classification Models

To categorize sleep stages automatically using EEG signals, Machine Learning approaches
are being applied. Feature extraction and sleep stage classification are usually the two
steps in these approaches. Firstly, they start by designing and extracting different fea-
tures from time and frequency domains. To further choose the most discriminate features,
feature selection algorithms are frequently used. Secondly, the selected features are fed
into different sleep stage classification techniques such as Statistical, Instance, Decision
Tree, Ensemble, Clustering etc. However, in order to extract the most representative
features, these approaches necessitate domain knowledge. In the following sections we
have categorized the classification techniques into three parts - Statistical models, Ma-
chine Learning based models and Neural Network models. We are going to discuss recent

studies of each category one by one.

2.2.1 Statistical Models

At the early stages of research on automatic sleep stage classification Statistical ap-
proaches are used. Ales et al. [33] used the coefficient of Kalman Filter Model to extract
the features from a single channel EEG signal. Then they applied the K-Means Segmental
Hidden Markov Model (HMM) to classify the sleep stages and got an average agreement
rate of 59.51

Fraiwan et al. (2010) [34] used Linear Discriminant Analysis (LDA) technique and got
Accuracy 84% with kappa coefficient 0.78. They utilized continuous wavelet transform
(CWT) technique to extract features from a single EEG channel.

Mera et al. [8] applied the multiclass support vector Machine (SVM) algorithm from
among the various classifications algorithms using high dimensional FFT features. To
balance the imbalanced data, they applied SMOTE (synthetic minority over-sampling
technique). The intense computing requirements in memory and processor are drawbacks

of this method. Shoulin et al. [29] also applied SVM to classify the sleep stages. Figure

10



1 illustrates their framework. They used the Sleep-EDF dataset that contains recording
of only eight subjects.

2.2.2 Machine Learning Models

Machine learning is a process that involves training an algorithm with input datasets to
get an outcome. In recent years, many machine learning techniques have been proposed

to categorize sleep stages.

Decision Tree

The segmentation of EEG signals into subsets with similar information content is done
using a Decision Tree. Nodes clearly distinguish each sleep stage. The main benefit of
DT is that it can handle noisy and missing data in a dataset. The DT model is applied by
[35, 36, 37] to classify sleep stages. A modified version of DT, Gradient Boosted Decision
Tree (GBDT) technique, which used two feature vectors taken from distinct NeuCube
modules was utilized by Sugam et al. [38] and got better accuracy.

Santosh et al. [36] got 87% accuracy. They discovered various flaws, such as a
difficulty with class imbalance and a misprediction of sleep stages between N1 and REM
sleep stages. This misprediction happens due to the highest degree of correlation in their
frequency patterns.

Santaji et al. [37] claimed that using a 10-second epoch is more beneficial than using a
20- or 30-second epoch in sleep studies. They modified the sleep stages into three categories
i.e. stage 1(REM), stage 2(NREM, light sleep) and stage 2(NREM2, deep sleep). They
got 94% accuracy with DT model.

Random Forest

The Random Forest is an ensemble technique which is created by using several decision
trees that make up the forest. The main distinction between RF and other classification
algorithms is that the input is chosen randomly utilizing bootstrap methods. This model
is applied by [36, 37, 38, 39] for sleep stage classification.

Sugam et al. [38] used the dataset recorded at the Sleep and Cognition Laboratory

at the University of Lincoln that contains only one person’s data with 6 channels. They

11



applied a 5-fold cross validation technique. Santosh et al. [36] got an accuracy of 93.8%

for two class (sleep wake) classification.

Neural Network

Neural network has recently been used in a variety of fields, demonstrating its superiority
over traditional machine learning approaches without the need for domain knowledge.
This encourages researchers to use deep learning techniques to classify sleep stages au-
tomatically. Convolutional neural networks (CNNs) have been built for this job in sev-
eral papers [32, 40]. Recurrent Neural Networks (RNN) and Long Short Term Memory
(LSTM) networks are also used in sleep scoring [41].

2.3 Dataset

There are some publicly available dataset of sleep studies.[35] used PhysioBank’s Sleep-
EDF dataset that is publicly available [42]. The dataset was collected from Caucasian
people with an age range between 21 to 35. It contains 8 recordings of two channel EEG
signals (FpzCz and PzOz). Later on Physiobank updated its dataset and published a new
dataset as Sleep-EDFx (Database Expanded)|43] that contains a total of 197 recordings.
This dataset also contains two channel EEG (FpzCz and PzOz) and one EOG and one
EMG. This dataset is used by [29, 35, 37|. [36, 39] used ISRUC-Sleep database [44] that
contains a total of 118 subject recordings with three groups of data. One group contains
one session data of 100 patients, one group contains two session data of 8 people and
another group contains one session data of 10 healthy people. In our study we used
Haaglanden Medisch Centrum(HMC) sleep staging database that is discussed in section

3.1. A comparative scenario of commonly used different dataset is givel in Table 2.1 .

12



Table 2.1: commonly used EEG datasets

Duration of

Name # of recordings Signals Channels Sampling Rate
each recording
2 EEG -
Sleep-EDF 8 24 hr EEG 100 Hz
Fpz-Cz and Pz-Oz
1-session sleep of 100 2 EEG -
ISRUC-Sleep 118 EEG -
& 2-session sleep of 8 C4-A1 and O2-A1
2 EEG -
Sleep-EDFx (Expanded) 197 9 or 20 hr EEG 100Hz
Fpz-Cz and Pz-Oz
4 EEG -
EEG, EOG,
HMC 154 Full night F4/M1, C4/M1, 256 Hz
EMG & ECG

02/M1, and C3/M2

13




Chapter 3

Methodology

The flow diagram of the proposed method is given in Figure 3.1. The proposed method

has been explained in the following subsections.
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Figure 3.1: Methodology of sleep stage classificatin using EEE signal

3.1 Data Acquisition

The dataset is collected from a sleep center named Haaglanden Medisch Centrum (HMC,
The Netherlands) [45, 46]. PSG testing was done on patients at random in the setting
of various sleep disorders. It was compiled in 2018 and only recently published on July
1, 2021. The dataset includes Whole-night Polysomnographic(PSG) sleep recordings of
154 people (88 Male, 66 Females) with a Mean Age of 53.8 4+ 15.4. At 256 Hz, all signals
were recorded. On SOMNOscreen PSG, PSG+, and EEG 10-20 recorders, signals were
collected using AgAgCl electrodes (SOMNOmedics, Germany). Each recording includes
a raw signal file (.edf) with four EEG (F4/M1, C4/M1, O2/M1, and C3/M2) derivations,
two EOG (E1/M2 and E2/M2), one bipolar chin EMG, and one ECG (single modified

14



lead II). A sleep scoring file (.txt) is also included in the recordings, which provides a
sleep score for a 30 second epoch. The AASM recommendations [20] were used to grade
sleep stages, which were manually rated by well-trained sleep technologists using the 2.4

edition of the guidelines. In this research, we use three EEG channels (F4, C4, and O2).

3.2 Preprocessing

The initial data files are combined with different types of signals. So, we need to separate
EEG from those signals. Independent Component Analysis, a blind signal separation
technique, is used to remove EOG (ICA). ICA is a technique for separating statistically
independent signals that have been combined during recording. Because EOG is unrelated
to EEG, ICA can be used to eliminate it.

In EEG data some noise is present like AC interference(either 60 Hz or 50Hz). We
used digital filtering, namely the Infinite Impulse Response (IIR) filter, to maintain the
frequency components of interest and remove unnecessary noise. The EEG is then divided
into five frequency subbands to characterise the stages of cerebrum condition, with delta
wave identified as (0-4 Hz), theta wave (4-8 Hz), alpha wave (8-12 Hz), beta wave
(12-30 Hz), and gamma wave (> 30 Hz).For each signal, the signal to noise ratio (SNR)
was calculated by dividing the power ratio of the movement-affected EEG signal by the
power ratio of the undisturbed measurement [47].We used the Acknowledge version 5.0

by BIOPAC to perform these processes and then extract the features.

3.3 Feature extraction

One of the crucial phases in analysing sleep behaviour from EEG signals is feature extrac-
tion. The feature-based analysis has proven to be extremely useful in identifying various
sleep characteristics. For effectively evaluating the sleep stages’ behaviour, extracting the
most relevant features is critical. Because the EEG signals in the brain are not constant
and static. It is exceedingly non-stationary and erratic.

The frequency and power within specified frequency bands are used to describe EEG.
The EEG Frequency Analysis script investigates the strength of EEG signals by extract-

ing various aspects from the data using Fast Fourier Transformation (FFT) and other

15



methods. This analysis is performed at the same time on multiple EEG leads, allowing
multiple leads or multiple EEG alpha, beta, theta, or delta bands to be examined from
a single raw lead. EEG signals are divided into fixed-width time epochs by the EEG
Frequency Analysis script. Using a Welch periodogram estimation approach, the Power
Spectral Density function in AcqKnowledge is utilized to estimate the power spectrum of

each time epoch. For each epoch, the following measures are retrieved from this PSD.

e Mean Power: The power spectrum’s average power for each epoch measured in unit

/Hz. The voltage at which the EEG was recorded was V.

e Median Frequency: The frequency at which half of the total power is reached,

measured in Hz, for each period.

e Mean Frequency: For each epoch, the frequency at which the average power is

reached is measured in Hz.

e Spectral Edge: For each epoch, the frequency at which a percentage (90%) of the

total power selected by the user is reached, measured in Hz.

e Peak Frequency: The frequency in Hz at which the maximum power is achieved

throughout each epoch.
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Figure 3.2: Signal to Feature

3.3.1 Fast Fourier Transform (FFT)

Fourier transform is used for decomposing multiple signals. Fourier transform represents
the complex sinusoids that constitute the original function. The Fourier transform (FT)

of the function f(x) is the function F(w)
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F(w) = /_OO f(z)e ™ dx (3.1)

Fast Fourier transform (FFT) computes the discrete Fourier transform (DFT) of a
sequence. It is the most practical way for signal processing. The main idea is to use the

identity to split a transform of N into 2 transforms of N/2:

N-1 N/2-1 N/2-1
a, e~ 2nk/N Z gy~ 2FIEMR/N 4 Z 1oy e~ 2T DR/N (3.2)
n=0 n=0 n=0
N/2-1 N/2-1
_ Z CLflven e—27r7jnk:/(N/2) +6—27rik/n Z azdde—Qﬂink‘/(N/Q) (33)
n=0 n=0

FFT is a viable static signal processing method since it outperforms practically all
other methods in real-time applications and is better suited to sine waveforms like those
seen in EEG data. Though some study [41] shows that FFT does not have excellent
spectrum estimates and hence cannot be used to analyze shorter EEG recordings, it will
not be that much of a problem for our work.

Using the FFT technique, a numeric sequence was turned of time-series data val-
ues into a limited collection of frequency-domain values and then data separation into
equal time periods termed epochs is done to decompose them into segmented EEG signal
sequences. Every 30 seconds of EEG information was used to determine the length of
each period. Further to that, the epochs were processed for frequency analysis, with a

frequency spectrum created using FFT.

3.3.2 Welch’s Method

The Welch Periodogram was also performed to analyze the EEG frequency [48].By di-
viding the temporal signal into subsequent blocks and averaging, the Welch’s approach
(periodram method) is used to forestimiting power spectra. In FFT, the whole signal is
decomposed. But in Welch’s method, we take several segments from the signal and then
decompose it. Then we add those decomposed segments and find the average. It makes

the signal more smooth and noise free. The signal x’s m th windowed, zero-padded frame
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is denoted by,

Tm(n) =wn)z(n+mR),n=0,1,........ M—-1m=0,1....... K—-1 (3.4)

The window hop size is defined by R. If K is the number of frames available, then the
preodogram of the mth block is,

N-1
1 1 A
Pt (wi) = 57 [FFTwp(@) = 27 | D wm(m)e 22 (35)
n=0
Therefore, power spectral density is,

=
SV (wy,) = = > Pomor (wi) (3.6)

m=0

3.3.3 Frequency-Domain Features

To balance the amplitudes of distinct EEG bands, relative power (RP) was computed as
the ratio of each band’s power to the total power of all bands. All band power features
were calculated for every 30 s epoch. If the EEG time series signals is x(t) with frequency
j, is the Fourier transformation of x(t) at frequency, j(Hz) using Welch periodogram, Then

the Definition of the spectral power density function will be,
Ej = lim = 1/t |7,(5)]” (3.7)

If Ej is the absolute spectral power density with frequency j and j1, j2 are the low and
high frequency(Hz) respectively, Then the EEG Band Relative power is defined as,

Ejig)
) (3.8)
Zj:0.5 L

€j:

3.4 EEG Biomarkers(DAR, DTR, and DTABR)

EEG biomarker is a biological metric collected from the EEG. It is used to diagnose
or predict disease. Biomarkers are the biological prediction parameter. They should
be reliable and static. In this study, we have found DTR, DAR, DTABR as reliable
biomarkers extracted from the EEG.
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Delta(d) is a slow-wave signal, where alpha(a) is a fast-wave signal. DAR (Delta
Alpha Ratio) means the ratio of the delta(d) and alpha(a) band power. DAR is the ratio

of a slow-wave and a fast-wave signal and it was calculated according to,

DAR = 5= (3.9)

€i=a
The delta(d) and theta(f) are both the slow-wave signals. The DTR (Delta Theta
Ratio) is the relation between delta(d) and theta(f) band power. So the DTR is the ratio

of the two slow-wave signals and it was calculated according to,

ej:(;

DTR = (3.10)

€i=0
Alpha and beta are the fast-wave signals when the delta and theta are the slow-wave
signal. DTABR refers to the ratio of the summation of delta(d) and theta(f) band power
and the summation of the alpha(a) and beta(/) band power. DTABR is the ratio of
summation of two slow-wave signals and summation of the two fast-wave signal. The

equation is,
€j:5 + €j:0
€j=a T €j=p

DTABR = (3.11)

The spectrum frequency range is j, with delta (§, 0.5 to 4.0 Hz), theta (6,4.0 to 8.0
Hz) and alpha («,8.0 to 13.0Hz); ej=¢ and ej=« are the Relative power of delta and

alpha respectively, in various sleep stages

3.5 Dataset Distribution

In this method, we used sleep and wake data for the training segment. Our data set
provides us with five different sleep stages (W, N1, N2, N3, REM). Where N1, N2, and
N3 are non-rapid eye movement (NREM) and REM is rapid eye movement. W is the
wake stage. NREM and REM are the sleep stages and W is the wake stage. Data

distributions are shown in Table 3.1 and Figure 3.3

19



Table 3.1: Initial dataset

Sleep Stages | Number of rows
W 19355
N1 11913
N2 39428
N3 21290
REM 16480

REM

N1

N2

Figure 3.3: Data Distribution Pie of Different Sleep Stages.

3.6 Machine Learning Models

Machine learning is the beauty of statistics with the power of computer coding. Nowadays
Machine learning approaches are a very famous way to train models and find accuracies.
In this study, we tried several types of Machine Learning algorithms to train our model
and compare each type of algorithm’s accuracy according to the different segmented data
set such as 10 features, 15 features,20 features, and all features. All these segmented
features are fed to different available supervised machine learning classifiers namely TF-
DF (TensorFlow Decision Forests), K-Nearest Neighbor(KNN) | Support Vector Machines
(SVM) [40], GX Boosted, and Artificial Neural Network(ANN) to select the optimum

performing classifier. The whole data set was split into 80% of the training data set and

20% of the testing data set.
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TensorFlow Decision Forests (TF-DF)

TF-DF is a set of cutting-edge algorithms for building, serving, and interpreting Decision
Forest models. The library contains Keras models that can be used for classification,
regression, and ranking [8] In our proposed method we used 300 trees for each segment.
We used the "tensorflow decision forests" python library to implement the decision
forests algorithm. Decision Forests(DF) is a class of machine learning algorithms made
up of multiple decision trees. The two most prevalent DF training techniques are Ran-
dom Forests and Gradient Boosted Decision Trees. The TensorFlow Decision forests is
a library created for training, serving, inferencing, and interpreting these Decision For-
est models. TF-DF provides a unified API for both tree-based models as well as neural

networks.

Support Vector Machine (SVM)

SVM is a Supervised Learning technique for Classification and Regression issues. The
goal of the SVM method is to discover the best line or decision boundary for categorizing
n-dimensional space into classes so that subsequent data points can be easily placed in
the right category. A hyperplane is the name for the optimal choice boundary. The

hyperplane equation that divides the points can now be expressed simply as:
H:w'(z) +b=0 (3.12)

The total of a predicted and actual label would be more than 0 (zero) if the forecast

was correct, else it would be less than zero:
Yo [w' () + b] = {> 0 if correct , < 0 if incorrect } (3.13)

K-Nearest Neighbor (KNN)

KNN algorithm is a nonparametric supervised machine learning technique. This approach
compares new data to existing cases and assigns the new case to the category that is
closest to the existing cases. The K nearest neighbor of unseen data will be found using
a specified value of the K algorithm, and the data point will be assigned to the unseen

data point using the class with the most data points among all classes of K neighbors.
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For distance metrics,

A7) = /(21— 2+ .+ (0 — ) (3.14)

Finally, the input x is assigned to the class with the greatest likelihood.
. 1 ; .
Ply=j|X=2)==> 1" =)) (3.15)

Extreme Gradient Boosting (XGBoost)

XGBoost is a distributed gradient-boosted decision tree (GBDT) machine learning algo-
rithm. It provides a parallel tree boosting and creates decision trees in sequential form

[49]. We used 100 n_estimator for this algorithm. The regression lambda is 1. We used

—

(0)

)

max depth 3 for the trees. If the prediction value at step t is y
Then,

—_

g =0
y = fi () =y + fi (@)
yz(l) = fi(x) + fo(z;) = yi(O) + fa ()

w =" folw) =o'+ fi () (3.16)
k=1

Neural Network

Neural Network is a simulation of the human nervous system. It has input layers, hidden
layers, and output layers. Each neuron has input from its previous node according to

some weight. If x is the input from the previous node and w is the weight. Then,

D = (1 xwi) + (w2 X wa) + ... A (T X wy) (3.17)
raw = (1 X wy) + (X9 X wa) + ... + (2, X wy,) (3.18)
If b is biased,
> Wik Xi+b (3.19)
=1
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Activation functions give the non-linear characteristics to neural network algorithms.
Without activation function, the neural network algorithm will behave like a linear func-
tion. The activation function has a vital impact on the learning speed of the neural

network. A logistic function can be,

y=o(z) = (3.20)

We used activate functions relu and softmax for respectively input and output neurons.
The sigmoid activation function is used in hidden layers. We used all features for the
Neural Network training phase. We used several neurons and units to improve our model

training phase with Neural Network.
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Chapter 4

Result

In our study, we used several machine learning algorithms and neural network algorithms
to classify the sleep stage for alpha, beta, theta, delta and gamma bands. In this study, we
used several python libraries and google co-lab platform for algorithms implementation
and training phase. For each machine learning algorithm the dataset was randomly split
into 80% training set and 20% testing set. The accuracy was not exactly same for multiple
time execution. This was caused by the randomly split dataset. So, the average value of
accuracy was monitored as the dataset was randomly selected. For the Neural Network,
we used maximum 5 neurons and several types of activation functions like, relu, sigmoid
and softmax. The neural network model shows the best accuracy among all algorithms.

The result will be discussed broadly in the following sections - 4.1 and 4.2.

4.1 Statistical Analysis

The process of analyzing, cleansing, manipulating, and modeling data with the purpose
of discovering relevant information through informing conclusions and helping decision
making is known as statistical analysis. This chapter is associated with Statistical relation
between EEG spectrums (alpha, beta, theta, delta, gamma) and sleep stages (W, N1,
N2, N3, REM). Mean and standard deviation have been calculated for each spectrum for

each sleep stage.
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4.1.1 EEG Biomarkers

With the progression of sleep stages, the EEG wave changes. The subject’s alpha, beta,
theta, gamma, and delta bands are taken from the subject’s frontal, central, and occipital
lobes. The average measures of those lobs are shown in the global data (Figure 4.1). The

frequency of each band changed as the sleep stages changed.
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Figure 4.1: Results from EEG spectral power features during sleep stages. Relative
mean power is described with the bar chart.(a)Alpha power band in the frontal, central,
occipital and global lobe.(b)Beta power band in the frontal, central, occipital and global
lobe.(c)Theta power band in the frontal, central, occipital and global lobe.(d)Delta power
band in the frontal, central, occipital and global lobe.(e)Gamma power band in the frontal,
central, occipital and global lobe. The average measures of frontal, central, and occipital
lobe traits are referred to as global. The hypothesis tests revealed substantial changes in
EEG characteristics among the sleep stages, as represented by the horizontal brown bars.
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The Alpha has the highest pick in the W stage and the lowest pick in the N3 or deep
sleep stage in all cortical locations. As you sleep deeper, Alpha goes dormant. Beta
has the same traits as Alpha. It also has the highest frequency in wake and the lowest
frequency in N3. The beta wave increases during the REM sleep state. Theta was highest
during REM and lowest during N3. In light sleep, theta rises. Theta waves become more
powerful during REM sleep.

In the frontal and occipital 12 cortical locations, The waking stage had the largest
delta while the N3 stage had the lowest. In the central lobe, there is an exception. In this
lobe, delta was highest in the wake stage and dropped in the N1 and N2 stages. Delta
levels increased as sleep progressed, reaching a peak in the brain during REM sleep.
In all cortical positions, gamma rose up in the wake stage and as sleep goes deeper, it

progressively weakens. The gamma wave took over again in the REM sleep period.

Table 4.1: Statistical results of EEG spectral features in the frontal, central, and occipital
lobes during different sleep stages.

EEG N1 N2 N3 R w
Features | Mean | Std.Dev. | Mean | Std.Dev. | Mean | Std.Dev. | Mean | Std.Dev. | Mean | Std.Dev.
Alpha 0.102 0.056 0.082 0.042 0.048 0.028 0.089 0.042 0.112 0.079
Beta 0.113 0.070 0.070 0.045 0.033 0.028 0.088 0.051 0.140 0.092
Frontal
Theta 0.137 0.064 0.130 0.051 0.093 0.037 0.147 0.058 0.125 0.078
Lobe Delta 0.613 0.186 0.694 0.144 0.813 0.108 0.648 0.148 0.570 0.234
Gamma | 0.036 0.061 0.024. 0.070 0.013 0.061 0.028 0.060 0.053 0.071
Alpha 0.115 0.062 0.092 0.045 0.053 0.032 0.102 0.044 0.137 0.087
Beta 0.126 0.075 0.083 0.048 0.040 0.033 0.100 0.050 0.169 0.097
Central
Theta 0.151 0.069 0.147 0.053 0.104 0.043 0.169 0.060 0.141 0.084
Lobe Delta 3.922 27.494 1.572 19.725 1.954 10.219 1.982 25.349 4.922 32.353
Gamma | 0.048 0.092 0.037 0.101 0.021 0.085 0.043 0.101 0.067 0.092
Alpha 0.112 0.064 0.096 0.046 0.057 0.032 0.108 0.048 0.142 0.097
Beta 0.117 0.074 0.086 0.050 0.043 0.033 0.102 0.048 0.161 0.101
Occipital
Theta 0.144 0.071 0.153 0.064 0.116 0.052 0.156 0.060 0.137 0.086
Lobe Delta 0.580 0.207 0.620 0.170 0.759 0.136 0.590 0.156 0.499 0.261
Gamma | 0.047 0.091 0.046 0.112 0.025 0.084 0.045 0.100 0.061 0.089
Alpha 0.109 0.058 0.090 0.041 0.052 0.028 0.100 0.041 0.130 0.084
Beta 0.119 0.070 0.080 0.045 0.039 0.029 0.097 0.046 0.156 0.090
Global Theta 0.144 0.064 0.143 0.050 0.104 0.040 0.157 0.054 0.134 0.079
Delta 1.701 9.200 0.960 6.591 1.175 3.422 1.071 8.468 1.994 10.825
Gamma | 0.043 0.071 0.036 0.084 0.020 0.068 0.038 0.076 0.060 0.075
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Statistical results that are reported in Table 4.1 represents the Mean and Standard

Deviation of each sleep stage for each EEG spectrum form three lobes.

4.1.2 Association of Biomarkers with Sleep Stages

DAR and DTR both have a delta power ratio. In the wake and N1 stages, global delta
parameters (DAR, DTR, and DTABR) were prominent(Table 4.2). In the N2 stages and
N3 stages, they dropped dramatically(Figure 4.2). The levels of DAR, DTR, and DTABR
are higher in REM sleep than in the N3 stage of deep sleep.

Table 4.2: Statistical results of EEG Biomarkers(DAR, DTR, and DTABR) in the Global
cortex during different sleep stages.

EEG N1 N2 N3 R w
Biomarkers | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev.
DAR 296,0 | 3326.7 103.0 | 1917.7 73.6 773.5 180.5 | 3406.5 292.8 | 2914.9
Global DTR 89.8 874.5 31.2 186.4 24.3 195.8 48.9 790.4 96.6 748,6
DTABR 166.0 | 1917.7 67.5 1219.8 48.6 440.1 105.1 | 1950.1 153.8 | 16786

= HEw HEN1 EN2 BN3 ER
300.00

200.00

Delta Ratio

100.00

0.00

DAR DTR DTABR

Figure 4.2: Results from DAR, DTR, and DTABR during sleep stages W, N1, N2, N-3,
and R.

4.2 Machine Learning Analysis

Machine learning techniques are applied to anticipate the physiological conditions of
distinct sleep stages. Feature selection, model training, and model testing are the three
processes in machine learning analysis. To train the model, we used a variety of machine

learning algorithms. The Decision forest gives 76.75% accuracy with all features. Support
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Vector Machine showed 70% accuracy. With all features KNN gave 75% accuracy. So we

can obtain best accuracy from Decision Forest. Though the accuracy is not satisfactory.

The XG Boost showed 72% accuracy ( Table 4.3).

Table 4.3: Classification Algorithms’ results

Algorithms Accuracy
Decision Forest 76.75%
Support Vector Machine | 70.86%
K-Nearest Neighbour 75.33%
Extreme Gradient Boost | 72.26%
Neural Network 92%

The Neural Network model had 89% average accuracy on both of the training dataset

and the testing dataset as shown in Table 4.4. We used 5 layers of neurons. Input layers

had 500 units and output 75 units. Input activation function is relu. In training phase

N2 showed 80% accuracy which was lowest among all the sleep stages and W showed 96%

accuracy which was the highest. N1 had the lowest sensitivity which is and W had the

highest. REM had the highest specificity and again the lowest is N1. In term of precision

the N3 scored highest and N1 scored lowest. W had the highest negative predictive value

when N2 had lowest. In testing phase, w scored highest again with accuracy of 92% and

N2 scored lowest with accuracy of 80%. N1 scored lowest in sensitivity and W scored

highest. In specificity, N2 had lowest value and W had the highest. N1 got lowest in

precision and W got the highest. In negative predictive value, R had the lowest score

and W had the highest.

Table 4.4: Classification Performance of the Neural Network model.

Training(average accuracy==89%) Testing(average accuracy==89%)
Negative Negative
Sleep Accuracy | Sensitivity | Specificity | Precision | Predictive | Accuracy | Sensitivity | Specificity | Precision | Predictive
Stage Value Value
N1 0.89 0.23 0.97 0.46 0.91 0.89 0.23 0.97 0.47 0.91
N2 0.80 0.78 0.82 0.71 0.87 0.80 0.78 0.82 0.71 0.87
N3 0.91 0.86 0.970 0.88 0.96 0.91 0.74 0.944 0.76 0.94
R 0.96 0.84 0.976 0.86 0.97 0.89 0.62 0.942 0.66 0.93
w 0.96 0.92 0.969 0.86 0.98 0.92 0.81 0.946 0.77 0.96
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Chapter 5

Discussion

We used three EEG channels (frontal (F4) lobe, central (C4) lobe, occipital (O2) lobe)
of a heterogeneous class of people to characterise neurological changes in sleep phases
and to classify stages of sleep. The level of neurological alteration is determined by the
individual’s sleep pattern, sleep stage transition dynamics, and overall lifestyle. EEG was
used to assess neurological biomarkers at each stage of sleep. With these biomarkers our
model abled to outperform state of the art solutions( Table 5.1). Patient recordings were
chosen randomly from a large group of persons who had been prescribed for PSG testing
for a various kind of sleep issues. REM and NREM sleep are two types of sleep. NREM
sleep is represented by N1 (light sleep), N2(light sleep), and N3(deep light). To discover
sleep related disorders, different sleep states must be described and also be categorised.
For example, For example, Recognising REM sleep is vital for determining REM sleep
behaviour disorder, and sleep monitoring needs wake-sleep stage classification. The Wake,
NREM(N1, N2, N3) and REM stages are classified in this study to fulfil these demands.

Alpha rhythm is prevalent in the calm eye-closed awake state, N1, and REM sleep,
and is one of the core aspects of human EEG. During high arousal situations, alpha
decreases. Alpha wave is stronger in the wake state and diminishes in the N1 and N2
stages, according to our findings. Alpha activity rises in the REM sleep because of the
short bursts of alpha rhythm. Beta activity in sleep stages was found to be of a similar
type. Then compared to waking sleep (N3), theta rhythm rises in N1 and N2 stages and
drops in N3 stage(slow-wave-sleep). When compared to light sleep stages, delta activity
increased in the slow wave deep sleep (N3) stage. The delta wave is thought to be a sign
of slow-wave deep sleep.

The categorization rates for the N1 has been found to be lower. N2 sleep stage has
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been found to be lower also. This is one of the most difficult challenge. The N2 sleep

state is frequently found between light and deep sleep. Since N1 and N2 both are light

sleep stages, the N2 is sometimes misclassified as N1. Furthermore, gamma rhythms in

light sleep (N1, N2) and REM sleep are identical. It could lead to this sleep stages being

misclassified.
Table 5.1: Comparative analysis with related works.
## of Subjects Dataset .
Study Year Class Algorithm Accuracy %
(channel) (Year/ Signal)
5-class
100 ISRUC
Tzimourta et al.[50] | 2018 [W, N1, N2, RF 75.29
(6-channel) (2009-13/EEG
SWS and REM]
Six-class
25 Cyeclic Alternating .
Kalbkhani et al.[51] | 2020 [W, S1, S2,S3, Hybrid Classifier 71.68
(4-channel) Pattern (2001/EEG)
S4 and REM]
Sleep Cognition 5-class
. 1 KNN, LR, SVM,
Budhrajzx et Ell[?)g] 2021 Laboratory [Avvake./ ]\I]_7 NQ7 81.25
(5-channel) MLP, RF, GBDT
(2015/EEG) SWS and REM]
100 ISRUC 2-class
Satapathy et al.[41] | 2021 SVM, KNN, DT, RF 93
(2-channel) (2009-13/EEG [sleep and wake]
Haaglanden 5-Class
157 Machine Learning ,
Proposed Work 2022 Medisch Centrum [W, N1)N2, 92
(3-channel) Neural Network
(2021)/EEG N3 and REM]
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Chapter 6

Conclusion and Future Work

In wearable sleep monitoring systems using machine learning models, sleep stage predic-
tion is considered a helpful technology.. The EEG signal of polysomnography was used
to quantify the biomarkers that holds neurological effects of sleep stages. The alpha,
beta, and gamma rhythms were shown to be attenuated in NREM sleep, theta and delta
rhythms were raised with the waking state and in REM stage alpha and beta signal sub-
sequently increased. Delta wave power ratios (DAR, DTR, and DTABR) are predicted
to be used as biomarkers due to their ability to reduce NREM sleep and the resulting
symptoms.

To acknowledge the neurological effects in EEG related to sleep stages, we studied
just three-channel EEG data. All EEG channels were not analysed. We want to make
our model simple as well as suitable for a wearable system. So we intend to expand this
research with multi-modal signals in the future to improve the prediction algorithms’

accuracy.
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