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Abstract

Plasmonic sensors are gaining in popularity as a research topic due to their
potential to overcome a number of electronic device flaws. Surface Plasmon
Polaritons (SPPs) are a promising choice for producing highly accurate biosensors
due to their unique optoelectronic characteristics that exceed the diffraction limit at
a nanometer scale. Plasmonic refractive index sensors based on MIM waveguides
are gaining popularity for their molecular binding and instant label-free detection.
We attempted to develop a plasmonic sensor for the refractive index that had a high
degree of sensitivity and optical features that could be tuned. The initial attempted
designs along with their performance has been discussed as well. An elaborate
physical mechanism of the observed sensor performance i.e. energy streamlines,
transmittance spectrum, surface power flow intensity, magnetic and electric field
distributions, and sensor performance has been shown here. We also tried to entail
how the variation of different parameters has an effect on the performance
matrices. Lastly we showcased our future plans and endeavors regarding the design
of the plasmonic sensor.
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Chapter 1
Introduction and Background

Attenuated total reflection occurs when photons from an optically condensed
medium strikes an optically sparser medium at an inclination larger than the critical
angle. As a result, an evanescent wave (EW) originates along the crucial contact.
With the aid of TM-polarized input light, free electrons of metals can readily form
a surface plasma wave that travels orthogonal to the alloy surface. Surface plasmon
resonance is defined as a phenomenon in which the EW and SPW couple and
resonate when their frequency, amplitude, and phase are all the same. This makes
the reflectivity curve dip at the resonance point. As described in the
Kretschmann—Raether (KR) setup, a SPR effect can be developed using a coupling
prism. [1,2,4]. The sensitivity of the SPR signal makes it perfect for the detection
of different processes. Optical sensors have high sensitivity, low distortion, and
strong electrical and chemical reliability. Thus, these signals are frequently used to
detect biological changes [5-7] , chemical processes [8§—10].

There is a wide variety of biochemical activity that takes place in the sensing
medium layer. Some examples of this activity include the detection of human

immunoglobulin [11-13], single-stranded DNA or RNA [14-16], and toxic
chemical compounds [17-19].

In addition, they are utilized in the monitoring of food safety and the environment.
As these RI processes continue to take place, the refractive index of the
surrounding environment will shift. Observing these biological or chemical
processes may thus be restated by observing changes in the sensor layer's RI. As a
result, new research works are seen on SPR biosensors with better sensitivity
[20-24] . By assessing changes in light strength, orientation, and other pertinent
data, an optical sensor can detect the biological response processes [25, 26].

The refractive index is the most important optical parameter for sensor design.[27].
Real component of the refractive index influences the waveguide phase. On the
other hand, the imaginary portion affects lightwave intensity, and asymmetrical
distribution determines polarization and chirality.
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1.1 Overview of Surface Plasmon Polariton

When metals and dielectric mediums are brought into close proximity with one
another, an electromagnetic excitation known as SPP is produced. Additionally, at
metallic interfaces, the resonant interaction between SPPs and EM wave radiation
produces a remarkably improved spectral near-field.

In the year 1902, Wood made the initial discovery of SPPs when he discovered
unexpected characteristics while conducting optical resonance measurements on
metallic polarizers [28].

After that, in the year 1908, Mie presented the concept of dispersion by spherical
particles [30], and Maxwell Garnett discovered vivid colors in metal-doped glasses
[29].

In 1956 [31], Pines illustrated the typical power dissipation experienced by
electrons traveling rapidly along metals. He attributed these losses to plasmons, or
cohesive vibrations of conduction electrons in the metal [32]. In the corresponding
year, Fano came up with the term polariton to describe the vibration of linked
electrons and light in a transparent medium.

Ritchie then studied electron energy dissipation in thin films, defining surface
plasmons [33]. Using surface plasmon resonances, he explained the unusual
activity of metal gratings [34].

After that, Otto and Kretschmann suggested laser-excited metal surface plasmons

[35, 36]. Due to its unique properties, SPP-based structures ,data storage devices,
solar cells, and sensors, [37] have gained popularity in recent years.

1.2 Literature Review

The index of refraction (RI) is a crucial optical property of materials. Alterations in
RI [38] can be utilized to reflect changes in physical specifications, including
pressure, concentration, and temperature.

10
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As a consequence of this, RI measurement is applicable in a diverse array of
contexts, and it is widely utilized in the fields of diagnosis of diseases [39], food
hygiene [41], pollution monitoring [40], and biochemical sensing [42].

Optical fibers detect ocular changes caused by analytes and radiated photons.
Optical fiber sensing has progressed since the 1960s. Optical fiber based sensors
have distributed sensing, electromagnetic immunity and remote sensing
capabilities, unlike electrical sensors [43].

To this day, many different designs of refractive index sensors have been
suggested. For instance, the fiber array sensors such as fiber Bragg reflectors
[44,45,46], the long-duration fiber reflectors [47,48,49], and the tilted fiber Bragg
reflectors [50,51,52] were used for refractive index sensing [53,54,55,56].

In addition to this, for the purpose of RI measurement, two-dimensional materials
such as graphene [57,58,59.60] and molybdenum disulfide [61,62.63.64] were
incorporated onto the fiber.

The vast majority of published optical fiber refractive index sensors are centered
on optical crystal fibers. Despite this, once the structure is altered, the fibers
become extremely fragile, rendering them unsuitable for measuring RI in certain
scenarios. Polymer optical fibers, in contrast to crystal optical fibers, have the
ability to solve problems of this nature.

This particular kind of fiber 1s made up of polyethylene components that are easy
to produce and work with, cheap, very flexible, gentle, and lightweight [65.66].
The high strain limit, ease of operation, and good repeatability of the POF-based
sensors make them suitable for use in challenging environments and bending
scenarios [67,68]. In addition, polymer materials can be organically doped more
easily [69] which provides POF-constructed sensors with promising prospects in
the biological discerning domains [70]. POF-based devices have various
applications to date, such as temperature detection [71], liquid level detection
[72,73], bending measurement [77], displacement detection [74], strain detection
[76], PH detection [75], and environment detection [78].

The sensing industry is seeing a rise in the importance of thin metal films,
particularly gold, as well as the plasmonic resonance of light that these films

possess. Surface Plasmon Resonance, also known as SPR, is one of the approaches
that is utilized the majority of the time. This resonant coupling occurs only under

11
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specific optical conditions, such as dielectric and metal permittivity, angle,
wavelength, and polarization of the photons impacting the dielectric and metal.
Surface-resonant phenomena that are sensitive to optical changes. Alteration in the
medium , alters the resonance state and sends a signal. It has been successfully
used 1n applications like enzyme-linked immunosorbent assay (ELISA) which rely
on adsorption and desorption of biomolecules [79].

Among them, gold nanoparticles have some interesting properties and are used to
keep probes in place and find targets on surfaces requiring sensing with a better
detection limit. Like nanoparticles of gold (Au), nanoparticles of silver (Ag) are
used in antimicrobial, diagnostic, and therapeutic biotechnology fields [80—83]. It
has also been used to make sensor materials, cosmetics, materials that conduct
electricity, and parts for electronics. Ag nanoparticles are employed in biosensors
to make it easier to detect targets because of their great thermal stability, chemical
stability, electrical conductivity, and catalytic activity. Recent research suggests
that using Ag nanoparticles in biosensors and bioimaging is both fascinating and
effective. The refractive index of most molecules is greater than that of Ag
nanoparticles. When a molecule is attached to an Ag nanoparticle, the local
refractive index rises, causing the Ag extinction shift to be seen. Different sensors
have demonstrated that target molecules may be discovered efficiently using these
changes with Ag nanoparticles. Also, putting a protective coating (like silica) atop
the silver nanoparticle results in better biomolecular detection [84]. Different
chemical and physical methods were used to stabilize Ag nanoparticles, which
were then used in different sensors like surface plasmon resonance, Raman
spectroscopy, enzyme-linked immunosorbent assay (ELISA), and electrochemical
sensors to find different clinical biomarkers with higher sensitivity [85].Reviewing
this, the authors talk about how Ag nanoparticles can be used in the biosensor and
bioimaging fields.

1.3 Thesis objective:

The thesis aims to design a RI sensor with high sensitivity. Here we have proposed
an unique structure with high sensitivity using Ag material employed for bio
sensing applications. However, more specifically, the objectives are

o Compare the sensing ranges for gold and silver material for the same
structure.

12
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o To obtain validity of the designed sensor by measuring the sensitivity, FOM,
Resonant wavelength.

o To summarize important conclusions from the obtained results and discuss
the potential applications such as creating datasets with the simulations for
using machine learning approaches and checking for bio sensing
applications.

1.4 Thesis organization

The thesis has been arranged in the following way-

e In Chapter 2, the basic theory about the propagation of SPP has been
described. This chapter introduces the fundamental knowledge and
necessary mathematical formulations of SPP propagation at the single and
double interface.

e In Chapter 3, the widely used models for modeling metals have been
described in detail with necessary derivations. Since SPPs are created by
photon energy coupling to metal free electrons, modeling metals is an
important step in SPP simulation.

« Since we have developed our simulation model based on the FDTD method,
Chapter 4 introduces the fundamentals of the FDTD algorithm for 1D and
2D simulations. The original formulations of Yee do not include the
frequency dependent dispersion properties of materials. We have used the
ADE based general algorithm for our simulation model which is discussed in
Chapter 4. This chapter also discusses the absorbing boundary condition.

e In chapter 5 modified Debye model, Lorentz model is discussed and also a
developed simulation model 1s established.

¢ In chapter 6 the design of plasmonic sensor along with the Ex,Ey,Ez profiles
on the Metal-Dielectric-Metal interfaces will be provided .

e In chapter 7 the validity of the design of the proposed device including the
modifications are provided.

13

Scanned with CamScanner



Chapter 2
Physics of surface plasmon polaritons

2.1 Fundamentals of Plasmonics

Plasmonics is an emerging field that enables it to confine light in scales shorter
than the wavelength beyond the diffraction limit by exploiting the pairing of light
to unbound electrons at the exterior of a metal and generating density waves of
electrons, called a plasmon. Due to the nature of the plasmon, electrons and
photons can coexist on the metal interface under certain conditions to create a new
quasiparticle called plasmon polariton [81-82]. Even though the optical properties
of plasmons are studied in nanoscale, most of the plasmon's properties are easily
developed from the equation of Maxwell without resorting to quantum mechanics
since it 1s the quantization of classical plasma oscillations [83].

2.2 Maxwell's Equations

The four intricate equations that make up Maxwell's equations are essentially the
key to unlocking a mathematical understanding of the realm of electromagnetics.
Light 1s a form of electromagnetic radiation, and in an empty space,

electromagnetic waves can be modeled using the electric field E and magnetic

induction B vector. Maxwell's equations show how these fields interact with
matter [84-85], also known as Gauss's Law for electric fields, Gauss's Law for
magnetic fields, Faraday's Law, and Ampere's law with Maxwell's addition, are
given by:

V-D=p @.1)
V-B=0 (22)
V x E =— Z—f (2.3)
VxH= J, .+ %—‘f (2.4)
Where,
14
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D= Electric displacement.
B= Magnetic induction.
E= Electric field intensities.

H= Magnetic field intensities.

p = Electrons’ external charge density.

ext
] e External current density.

=,

aD . .
—; = Displacement current density.

Moreover,
D = EOEE
B = quH
] = oF
Where,

£ =Electric permittivity in free space.

i, =Magnetic permeability in free space.

i = The relative permeability.
o =Conductivity.

E =Dielectric constant.

(2.5)

(2.6)

(2.7)

15
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2.3 Basic Principles of Localized Surface Plasmon Resonance

When localized electrons in a nanostructure of metal are energized by an adequate
incident wavelength, they oscillate and form powerful surface waves [80]. The
particle's curved surface exerts an effective restoring force on conduction electrons,
allowing resonance. This causes significant field augmentation in the near field
zone. This resonance is known as Localized Surface Plasmon Resonance (LSPR).
This concept can be theoretically applicable to any metal, as well as alloys with
limited imaginary part of electric permittivity and a huge negative real part.
Particles interacting with an electromagnetic field, an explicit form of the
electromagnetic field distribution can be found using simple assumptions.

To begin, we suppose that the particle size is shorter than the light wavelength in
the medium surrounding it. In an electromagnetic field which 1s oscillating
harmonically, the phase is almost unchanged across the volume of the particle. This
state can be called quasi-static approximation. Next, a simple geometry is chosen
for analysis. A isotropic sphere with homogeneity of radius r, -2 homogenous

material surrounding it, non absorbing and isotropic medium. On static electric

fields illumination, solving Laplace equation for the potential, V'V = 0. The
solutions for potentials inside and outside of the particle are shown as follows for
azimuthal symmetry of the problem and because we require that at the center of the
particle the potential will remain finite:

3e - - £ (w)—¢ - 3 0
_ d __ m d COSCOS

Vin = T wie, |E|rcosH, Vout =— |E|rcos® + T @)z, |E|r0 —z (2.8)
Where,
£m(u)) = Electric permittivity of metal.
€= Electric permittivity of the surrounding dielectric layer.
r = Position vector.

16
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E = Electric field.

6 = The angle between r and E .

2.4 Performance Characteristics of Plasmonic Sensors

A discussion is made in this subsection about the main parameters that are used to
evaluate the plasmonic RI-sensors. We define the bulk refractive index sensitivity
as [86]:

s == (2.9)

Where,
A = Measured parameters (wavelength, angle or intensity).
n = Refractive index of analytes.

In addition, for practical applications we can use the linearity between A and n, so
we can consider here a correlation coefficient factor [88].

Another important parameter 1s figure of merit also known as FOM [89], whose
equation can be written as:

FOM = —3

FWHM

(2.10)

Here,
FWHM = “Full Width at Half Maximum of resonance spectra”.

FOM represents whether the sensors have the ability which can detect the small RI
change; thus we require larger FOM values. Due to metals' high intrinsic loss,
plasmonic RI sensors have low FOM. We can improve FOM by using optical field
coupling. There are also other performance characteristics that are important, such
as how accurate the product 1s, whether or not it is reproducible, and whether or
not it has a wide range of applications. The accuracy refers to how closely the value
that was measured corresponds to the actual value. Reproducibility refers to the
ability of something to produce consistent results while maintaining the same
working conditions.

17
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It 1s important to note that in order to apply plasmonics in practical settings, we
will need to strike a balance between the sensors' costs and their levels of
performance.

Chapter 3
Dielectric Models for Surface Plasmon
Resonance Structure

3.1 Introduction

To generate the absorption coefficient and refractive index values of dielectrics and
metals we deploy Dielectric function models at specific wavelengths, and we
utilize them to characterize dielectric-metal interface field interactions.

To model optical properties of different materials Drude model is the fundamental
and basic one [93-95] and all other models are mainly improved versions of this
model. Many scientists experimented to develop new models by directing their
focus on primarily experimentally nonparametric models [96, 97] which were not
extensive. Widely applied among these are the Brendel-Bormann model [98, 103],
Drude-Lorentz model [98-103], and multi oscillator model [104—106] as they were
more well founded than other models; although the study of these models are not
elaborate in different application situations. Vial et al. [107] explained the
scattering characteristics of metals by making use of the Drude Model as opposed
to the Drude-Lorentz model. A similar model discussion was presented in a later
work [108] by including two crucial points in the Drude-Lorentz model. This was
done in order to illustrate the similarities between the two models. The comparison
of these models is exciting, but to utilize reliable experimental data as a reference,
their validity must be examined.

18
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3.2 Drude model

The Drude model is used to estimate the dispersion characteristics of alloys in the
most simple examples of time domain approaches that seek metal-dielectric
frequency characterisation. We can estimate a deficient span of wavelength by
Drude model [21, 38]:

©) = g(o0) — —L2_ G

EDrude( w(w=il)

Here,
f , = Oscillator strength.

w = Intraband plasma frequency.

[' = Scattering frequency.

3.3 Drude-Lorentz model

The Drude-Lorentz model expands the scope of the Drude model's validity as it
incorporates the split interband expression [105-107, 109]. The Drude-Lorentz
model improves on the Drude model by explicitly separating interband expression.

With the addition of this Lorentzian factor, which is defined by a semi-quantum
model, the Drude model's range of validity can be expanded significantly[26]. The
D-L model is not suitable for explaining abrupt absorption on specific metal edges.
According to a number of references, the approximation provided by the
Drude-Lorentz model during the beginning of interband absorption does not work
well for noble metals like silver, gold, and copper[26]:

k f (.02
- _ g
J J

Here,
w, = Oscillator resonant frequencies.

l"j = Qscillator resonant bandwidths.

k = Number of oscillators with frequency W

3.4 Brendel-Bormann model

19
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Brendel-Bormann uses a complex Gaussian error approach in place of the
Lorentzian function used by Drude to minimize the errors caused [40]. This avoids
the irregular absorption bands that Drude exhibits. Within the Drude model, the
performance of Gaussian line shape functions is superior to that of Lorentzian
linear shape functions within broadening functions for example, optical
characteristics.

In situations where both of these functions have the same full width at half
maximum (FWHM) and weight, the wings of the Lorentzian function are typically
more stretched out and higher than those of the other function. As a consequence
of this, all of the models that are based on Lorentzian show excessive absorption in
spite of what is anticipated [98].In order to improve the accuracy of the Drude
model, Brendel and Bormann [103] developed a model for the dielectric function
of solids that is based on a Gaussian CEF method [40]. A Brendel Bormann
polynomial, X; is introduced instead of the Lorentzian term in the Drude-Lorentz

model, as given in reference [26], which is upgraded by using CEF mechanism
[40]. Here k 1s the number of B-B oscillators. [98, 103].

As a result of such an analytic function, a variable form for the absorption profile
may be obtained.:

g, p(0) = g() — W + Z X;(w) (3.3)

Where,
X, = BrendelBormann polynomial.

3.5 Multioscillator model

Multioscillator 1s another interpretation of the Lorentz model that extends the
authenticity range by adding different interband concepts [104].
The multiple oscillator model is a widely accepted model for metal dielectric
optical characteristics. In the visible spectral ranges, thin metal film wavelength
dependencies in optical indices are very complicated [104, 106].

k 2 2\ . )
f W —If m fw -0 +o |+HofTo
M 0((1)) — E( ) _ ( +FZ) + Z J P]( - pfz - ]21 121 (34)
wjw L, j=1 w Fj+(—w +ij)
20
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Here,
oopj = Plasmonic resonant frequency.

r ; = QOscillator bandwidths.

f]_ = Weight factor.

Chapter 4
Overview of Finite-Difference Time-Domain
Method

4.1 Introduction to FDTD

Very few methods are as popular as FDTD for the resolution of electromagnetic
calculations. It has also been utilized for modeling nano structural devices. The fact
that the FDTD approach is incredibly straightforward, even for writing a
three-dimensional code, has been one of the key primary attributes. In the early
1970s, K. Yee presented the approach, which was later developed by others.

4.2 1D FDTD

The principle behind the FDTD technique i1s straightforward. To solve an
electromagnetic issue, just discretize in both areas of time and space the Maxwell's
equations taking central difference approximations. The novelty of Yee's concept
lies in the spatial allocation of the electric and magnetic field portions. We'll start
with a basic one-dimensional problem to better comprehend the method's theory.
Assume "free space" as a propagation medium at this point. Here, we can write

Maxwell’s equation as,

dE 1
T—EOVXH (4.1)
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oH _ 1
a0 " VXE (4.2)

For one-dimensional scenario, we can employ only Ex and Hy and (1), (2) can be

rewritten as,

JE, 1 OH,
o T, oz e
oH 1 OF

ot~ oz “4)

Here, a plane wave is traveling in the z direction.

Yee’s technique considers Ex and Hyshifted by 50% of space in a cell and in time

by 50% of a time step while approximating derivatives with central difference.. In
such a case, the following equations can be written in this way-

1

Nt n— n 1 n 1
E T ()—E. * (k) H"(k+1)-H"(k—L
e =— ELO 3’( Z)AZ ‘,V( 2) (4.5)
Y (k) (ke+5) i EZ+%(k+l)—E:+%(k)
y ZAt A7) . — (4.6)

The explicit FDTD equations are obtained from the following

stk = 5) = (e + 3))
@)

E T = B (k
T =E )+

H (ke + )= ik + )+ 15 (E:+Z(k) —E *(k + 1)) 4.8)

4.3 FDTD in Dielectric

Using Maxwell’s equations again we can derive the changes in algorithm. For a
generic medium, Maxwell’s equations can be written as,

22
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1— oAt 1 A

”“/ 20k) = — g M2y 4 F—A(H (k — 1/2) — H" (e + 1/2)) 4.9)

oAt
X
25 €, 1+ 25 €,

;H(k T ) H;(k = 3) \/_ Az( (k) - ;(k + 1)) (4.10)

Chapter 5
Designing Plasmonic Sensor

5.1 Introduction

For plasmonic sensor modeling, the propagation of Surface Plasmon Polariton can
be employed. Having developed the simulation model, structures can be such a
way that resonant wavelengths vary with reference to alternation of refractive
index. For the most accurate realization of the design, appropriate materials must
be used. Although, while it is not feasible to create the perfect plasmonic sensor, it
may be modeled for extremely excellent performance by adjusting various
parameters, which will be addressed in the following sections.
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5.2 Initially attempted structures
Hollow Semi- circular arch shaped plasmonic sensor

Structural Parameters of the Proposed RI Nanosensor

Paruinieter Symbol Value(nm)
Width of the cavity w 20 nm
Radius of outer semi-circle R 100 nm
Radius of inner semi-circle j 80 nm
Length of the outer rectangle E 200 nm
Height of the outer rectangle L 200 nm
Length of the inner rectangle d 160 nm
Length of the inner rectangle d 160 nm

Gap between cavity and rectangle w

20 nm

—
R
d r L

—_— —_—

Input Output

. Air-
D Au

Fig 5.1: Hollow Semi- circular arch shaped plasmonic sensor structure and
parameters.

& o b
EN (2] o

Transmittance
o
w

Transmittance vs Wavelength Plot

0.2
Refractive Index
n=1.00
0.17 n=1.05
/ =1.1
o i i i i I
1200 1300 1400 1500 1600 1700 1800
Wavelength(nm)

Fig 5.2: Transmittance characteristics of Hollow Semi- circular arch shaped
plasmonic sensor.
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It has a distinctive capsule form, and the inside chamber was comparable to the
exterior covering during the design process. After experimenting with different
settings, it was discovered that an arch-shaped inner chamber produces sharper
dips and has better sensitivity. The development took place using gold material.
The best results have been obtained by shifting the refractive index from 1 to 1.1.
By observing the transmittance spectra, we notice that there are Dips obtained at
wavelengths 1462 nm, 1532 nm and 1604 nm respectively. The maximum

sensitivity obtained was 1440 nm/ RIU.

Butterfly shaped plasmonic sensor

Structural Parameters of the Proposed RI

Nanosensor
1
Parameter Symbol Value(nm)
SPPs — St SR
Width of the cavity w 20 nm o — —— —————]
— Input
Radius of semi-circle R 300 nm T < T
g
Thickness between the two t 15 nm
semi-circle W A
Au
length of the break g 20 nm

Fig 5.3: Butterfly shaped plasmonic sensor structure and parameters.
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Transmittance vs Wavelength Plot

0.03
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Fig 5.4: Transmittance characteristics of Butterfly shaped plasmonic sensor.

The first concept was to create two semi-circular rings with horizontal surfaces
facing each other. The rings were then flipped vertically, and a butterfly structure
was formed. A considerable increase in sensitivity was noted when two breaks
were added, and after countless parameter modifications and trial and error the
given parameters demonstrated maximum sensitivity. After numerical analysis, it 1s
found that the structures have 3 peaks in 1273nm, 1334nm and 1394 nm
respectively and have a sensitivity of 1210nm/RIU.
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Magnifying glass shaped plasmonic sensor

Structural Parameters of the Proposed RI
Nanosensor

Parameter Symbol Value(nm)
Radius of the outer circle R 125 nm
Thickness of the ring t 15 nm
Baffle length 2 20 nm
Height of lower groove h 250 nm
Length of lower groove 1 15 nm
Width of the cavity w 20 nm

Fig 5.5: Magnifying glass shaped plasmonic sensor structure and parameters.

Transmittance vs Wavelength Plot

0.035
Refractive Index
0.03 ¢ ——n=1.00
—n=1.05
o 0.025 ¢ —n=1.1
o
8
£ 0.02
&
9 0.015 |
E
= 0.0
0.005 |
o i I
1200 1400 1600 1800 2000
Wavelength(nm)

Fig 5.6: Transmittance characteristics of Magnifying glass shaped plasmonic
Sensor.

As a groove, a ring resonator and a rectangle resonator were employed on either
side of the waveguide. Two baffles were placed along the waveguide which
resulted in a higher sensitivity. Three peaks were i1dentified at 1497 nm, 1550 nm,
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and 1598 nm with refractive indexes ranging from 1.0 to 1.1. We estimated the
sensitivity using the formula, which is roughly 1010 nm/RIU.

5.3 Final Proposed Sensor Design and Formulation

Ring-Type Octagonal Resonator
plasmonic sensor

I Dielectric
| Air
t I || silver

L1
Input Output
e
A w &

______._____.________________
-+
i =]
- e e e R e e e e G e e e e e e e e e e e e e e e
il

Fig 5.7: Ring-Type Octagonal Resonator plasmonic sensor structure.

Structural Parameters of the Proposed RI nanosensor

Parameter Symbol = Value(nm)
Width of the straight waveguide w 40 nm
Thickness of the octagonal resonator t 15 nm
Length of outer octagonal side L1 200 nm
Length of inner octagonal side 12 160 nm
Gap between the straight waveguide and the resonator g 15 nm
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The final design of the sensor utilizes an octagonal ring shaped resonator. A
linearly straight waveguide has been fitted with the ring-type octagonal resonator.
We denote the waveguide width by w, the side length of the octagonal resonator
with outer side and inner side of the octagonal shape denoted by L1 and L2
respectively, the thickness of the ring denoted by t, and the gap between the
straight waveguide and the resonator symbolized by g are the geometric parameters
of the structure of the resonator. The straight waveguide is air filled; the resonator
has been filled with the dielectric of which we are going to measure the RI; and the
remainder of the design has been filled with silver Ag. The dotted line indicates the
iput and output ports, which are labeled A and B, respectively. A part of the SPP
propagates via the straight waveguide and couples with the resonator before
returning to the straight waveguide after completing the effective route. These
events cause a wavelength to resonate.
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Chapter 6
Performance Analysis of Proposed Plasmonic
Sensor

6.1 Performance Analysis

6.1.1 Overview

For Plasmonic Sensors, performance matrices are the sensitivity with respect to the
refractive indices and then Figure of Merit (FOM). While the signal is incident on
one port, the energy transported by the sensor is measured at both ports one by one.
The simulations were carried out for a variety of incident signal wavelengths. We
can visualize the performance of the sensor at different wavelengths by plotting the
energy measured at the two ports vs. the wavelength of the incident signal.

6.2 Performance Metrics review

Refractive index sensitivity (S) and Figure Of Merit (FOM) are the two key areas
focused on to design the proposed plasmonic nanosensors. As stated in chapter 2.3,
The sensitivity can be explained as the change of the resonance wavelength, caused
due to a change in refractive index.

The Figure Of Merit (FOM) can be calculated with the ratio of sensitivity and the
Full Width at Half Maximum (FWHM) value of the resonance spectrum in nm.
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6.3 Performance of the Designed Sensor

6.3.1 Electric Field and Transmittance curve
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Fig 6.1: Normalized Electric Field of Proposed Sensor.

EM wave normalized electric field components propagating in the design at n =1
have been presented in the figure.

31

Scanned with CamScanner



09 F

08

0.7

0.6

05

04r 5

Transmittance

031 5

2T ’

Refractive Index

0.1 -

0 1 1 1 1 1
800 1000 1200 1400 1600 1800 2000

Wavelength, A (nm)

Fig 6.2: Transmittance vs Wavelength curve.
Using COMSOL Multiphysics,the octagonal resonator transmittance was
determined and recorded. The initial simulation was done at a refractive index of

value 1, and within the wavelength range of 800 nm to 2000 nm. A dip was
obtained at the wavelength 1240 nm.
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6.3.2 Sensitivity analysis

0.9 |
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Fig 6.3: Transmittance characteristics with respect to varying refractive index of
the plasmonic sensor.

To formulate the structure in order to achieve maximum sensitivity, the sensitivity
has been calculated for the refractive index variation from n=1.5 to n=1.6 with a
step of 0.05. We vary the geometric parameters as the gap, g = 15 nm, Length of
outer octagonal side L1 =200 nm, Length of inner octagonal side L2 = 160 nm,
and the thickness of the octagonal ring, t = 15 nm. The maximum sensitivity thus
obtained 1s 2360 nm /RIU and we found its FOM to be 28.3. Further analysis on

the variation of the sensitivity depending upon the change of gap between the
resonator and the waveguide and thickness of the ring resonator has been carried
out in the upcoming sections.
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6.3.3 Effect of variation of the gap between resonator and waveguide

Transmittance vs Wavelength Plot
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Fig 6.4: Effect of variation of gap in the design of the sensor (a) Transmittance vs
wavelength for different values of gap (b) Resonant wavelength.

Exploring the octagonal structure,we first vary the gap as 10 nm, 15 nm, 20 nm, 25
nm, and 30 nm unchanging the other parameters identical to section 6.3.1 and
n=1.5. The simulation demonstrates a blue shift of the transmittance and a gradual
declination of resonant wavelength is observed.
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Fig 6.5: Effect of variation of gap in the sensitivity of the designed sensor.

By keeping all the parameters of section 6.3.1 unchanged, the gap between the
resonator and waveguide was changed between the values g = 15 to g =35 witha
step of 5. The sensitivity decreases drastically from 2360 nm/RIU to 1824 nm/RIU

between the values g = 15 to g = 20 which indicates the requirement of precision of

fabrication in this area. From g = 20 to g = 35, a gradual drop of sensitivity occurs
from 1824 nm/RIU to 1326 nm/RIU.
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Fig 6.6: Effect of variation of gap in the FOM of the designed sensor.

It was observed that during the shifting of g = 15 to g = 30, the FOM increases,
with a dramatic change from 35.27 to 53 in between g values 25 nm to 30 nm. The
FOM again begins to drop as g 1s further increased after 30 nm.
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6.3.4 Effect of variation of the thickness of the ring resonator

Transmittance vs Wavelength Plot
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Fig 6.7: Effect of variation of thickness of the ring resonator (a) Transmittance vs
wavelength for different values of thickness (b) Resonant wavelength.

To investigate the model, the thickness, t of the ring resonator was varied between
15 nm, 20 nm, 25 nm, and 30 nm while leaving the remaining parameters the same
as in section 6.3.1 and n=1.5. This simulation also shows a blue shift in
transmittance as well as a gradual declination of the resonant wavelength.
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Fig 6.8: Effect of variation of thickness in the sensitivity of the designed sensor.
The thickness of the ring resonator was altered from t = 15 to t = 35 with a step of
5 while keeping all other parameters constant. Between the values g = 15 and g =

25, the sensitivity drops significantly from 2360 nm/RIU to 1680 nm/RIU. The
sensitivity 1s very stable between g =25 and g = 35.
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Fig 6.9: Effect of variation of FOM in the sensitivity of the designed sensor.

The FOM essentially remains constant during the transition from g = 15 to g = 20,
with a considerable change from 27.54 to 53 between g values 20 nm and 30 nm.
After 30 nm, the FOM continues to grow when g increases further.
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6.4 Result analysis

From the above discussion we observe a compromise might be required within the
performance parameters themselves. For gaps within the value 15-20 we notice a
high sensitivity but a drop in the FOM. In this case we prioritize the sensitivity as
the primary function of the plasmonic sensor is to sense the change of the analyte
with respect to the RI change. FOM is mainly prioritized in the case of formulating
plasmonic filters, So we emphasized on the sensitivity and kept the gap of the final
design at 15 nm. We also notice that there are sharper dips at higher gaps. This
might be because of the variation of energy transmission at the ring resonator
because of the change in gap 1.e, a lower gap lets in more energy into the ring
resonator. We also notice blue shifts on transmittance for increasing the gap and
thickness. It 1s also observed that using silver material instead of gold greatly
increases the sensitivity. Finally after careful observations and countless
simulations, the structure at section 5.3 1s finalized.
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Chapter 7
Conclusion and Future works

7.1 Conclusion

We have done about two hundred simulations of different structures. We have
planned to store our obtained results and create datasets using those. It will help us
to find the pattern of different structures and understand the main reasons behind
the variations.

7.2 Future Works

In the future, we plan to use machine learning techniques for plasmonic design.
Artificial neural networks enable deep learning methods, which provide a strong
and fast tool for constructing precise correlations between plasmonic geometric
characteristics and resonance spectra. The spectra of millions of distinct
nanostructures may be acquired without the need for expensive simulations, and
the cost is merely a one-time expenditure of two thousand groups of training data.
This method may be easily extended to other nanophotonic systems of a similar
nature, reducing the need for simulation and speeding up the photonic sensor
design process.
To give more particular view of the planned future works, following list is
provided-
e Improving transmission spectra sensitivity.
e To represent the performance of the frequency converter by spectrum and
also find the conversion dependency on composite film dimensions.
e Automatic design of plasmonic nanosensors and reducing the simulation
complexities.
e Checking for potential biosensing applications.
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