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ABSTRACT

Diaphragm walls are constructed with structural concrete, usually in deep excavations, either cast
on location or using precast components. The construction of diaphragm walls is primarily
concerned with supporting walls, heavy foundations, combined retaining walls and foundations,
and deep basements. In the past, geotechnical engineers predicted excavation performance using
conventional soil mechanics and empirical data. Deep excavations, however, were not easily
predicted using these methods. The thickness of the diaphragm walls isconsidered 0.5m, 1m,
1.265m & 1.5m. Mohr Coulomb model and Hardening soil models are usedto calculate the
maximum wall displacement and ground settlement for each thickness. Also, theground
settlement and wall displacements are measured in both adjacent load and non-adjacentload
conditions. The maximum allowable deflections are compared with other researches to
validate the study.

In this study Diaphragm walls have shown fewer bulging effects. In general, hardening soil model
shows less displacement and ground settlement compared to Mohr coulomb model. Ground
settlement and wall displacements show harmony with the available literature. The maximum
lateral deflection of Diaphragm wall towards the excavation measured is generally within 0.2% of
excavation depth. And ground settlement should be 0.3% of excavation depth. From this study it
is conclusive that Diaphragm wall with thickness of 0.5m of single basement is most cost efficient
and satisfactory. Diaphragm wall is recommended as the retaining structure in Bangladesh for
future projects.
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1.INTRODUCTION
1.1 General

In recent times with the ever-growing urbanization, lots of big infrastructures are being

made. For these structures massive excavations are taking place, a lot of which have been subject
to soil failures. To prevent this, we are conducting a numerical model analysis to find feasible

solutions to these failures with the use of Retaining walls.

In Modern times rapid industrialization is leaving us with inadequate land for development within
the populated areas. In the construction of these underground projects,deep excavation is
required in deplorable soil conditions and not very far away from surrounding

structures. These deep excavations can induce excessive ground deformations which can
inevitably harm the encompassing nearby buildings.

If for some reason the soil failures are not kept in check, this can result in catastrophic
consequences. Special care must be taken so that in no circumstance, the situation can be let to go

in that direction.

However, in most cases, the soil performance is very important and significant efforts have been
made by engineers to grasp

the failures due to excavation, wall and support systems were designed using available
construction methods. As the excavation becomes deeper and a lot larger in scale and if done in
problematic soil condition, new challenges arise for the analysis, design and construction of these wall
and support systems. Therefore, the performance of soil in deep excavations ought to be understood better
through refined processes ex timely field observation and numerical predictions.

The bottom condition (e.g., initial stress states, stiffness and strength properties and groundwater regime)

of the soil mainly effects ground movements and deep excavations.
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1.2 Background Study

Deep Excavation is very common projects in many urban areas all around the world nowadays.
In the above model the soil is retained byhorizontal struts and anchors. There are some steps to
measure and analyze the deep excavationsupport system. These are: To calculate the wall
displacements, ground settlement, adjacentstructure load, force acting on the structure. A
numerical analysis is performed to analyze thosedata. Retaining walls must be built completely
by calculating the stability and safety factor of thesoil and the wall itself, and this can be done
manually or using software programs such as Oasis,Plaxis, Geo 5, etc. Programs such as Plaxis
are used to solve various geotechnical problems, suchas analyzing stability issues and designing
foundations and retaining walls. Plaxis 2D is used toanalyze 2D finite element models of
various wall configurations in this project.

1.3 Objectives:

The followings are the main objective of the research:

1) To perform a numerical analysis of diaphragm wall for a single and two basement system
to obtain ground settlement and lateral wall displacement.

2) Compare the numerical method with physical data.

3) To find of the feasibility of diaphragm in the context of Dhaka.
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2. LITERATURE REVIEW

This Chapter will discuss about the use case scenario of Diaphragm walls and the studies related
to the topic.

2.1 Introduction

As a result of the installation of the diaphragm walls, the surrounding soil undergoes deformation
and stress changes. The already existing piled foundation nearby may have an effect given the

construction procedure. As there happens to be very little data regarding the direct effects

surrounding slurry trenching on piled foundations, the given chapter elaborates a generalized
characteristic of the exiting pile under normal circumstances following the effect of the variations
of construction activities on the slurry trench’s level of stability and the curiosity which has piqued
many researcher’s interests in trying to understand the stress mechanism of the surrounding trench
in hopes of being able to develop an understanding of such a mechanism which may help to seek
out the effects regarding a slurry trench on piles. Deep excavations of deep deposits of soft clay
can result in excessive levels of shifting positions of the ground and in turn, may result in adverse
effects on the soil causing damage to adjacent buildings.

The overall in-depth explanation of predicting wall deflection has been elaborated in section 2.2.
Given in section 2.3 and 2.4, we discuss the Numerical Modelling approach we have taken and
our Model details. Further sections elaborate on more related topics regarding deep foundation,
vertical loads and soil deformation. In the given last section of 2.13, there is a vast yet summarized
portion of the chapter.

2.2 Predicting wall deflection

According to Kung (2009) [1], the lateral movements account for nearly 0.2% of excavation depth.
Kung (2009) evaluated the effect of excavation methods from the top-down (TDM) and bottom-
up (BUM) on diaphragm wall deflection. According to the study, in general, wall deflections of
BUM cases are smaller than those of TDM cases.

When anchors are used, the displacements at the anchor level are limited, according to Andzio
(1998). While the wall can bend between these two positions, the total displacement will be much
smaller than that of a similar height cantilever wall.

A semi-empirical method was developed by Clough and O'Rourke (1990) [3] to estimate
excavation deformations in soft clays.The stiffness of thesystem can greatly affect the
movement of the soil, according to Clough and O'Rourke.

The data collected by Peck (1969) [4] was normalized by excavation depth to measure ground
surface settlement. This leads to sizeable settlements, which may have an extent up to 0.2 percent
of the
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excavation next to a supporting wall and also settle 4x the depth from side to side compared to the
wall. In general, the maximum settlements are expected to be smaller when a stiffer retaining wall

1s used.

Table 2.2.1: Predicting wall Deflection
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Study Reference | Criteri Literary Info Year
on
Bentler [5] Lateral Maximum lateral ground settlement should be 1998
Displacement 0.22% - For sand andhard clay
Maximum Lateral diaphragm wall ground
settlement should be 0.55% of groundsettlement -
For soft to stiff soil.
Konstantakos Lateral Maximum Lateral diaphragm wall ground 2008
[7] Displacement settlement should be 0.2-0.4% ofexcavation
depth.
Moorman [2] Lateral Maximum Lateral diaphragm wall ground 2004
Displacement settlement should be 1.1% of excavationdepth.
Clough and Lateral Maximum Lateral diaphragm wall movement 1990
O’Rourke [3] Displacement within point two percent.
National Lateral Lateral displacements should be within 25mm- 2007
Engineering Displacement 75mm
Handbook
El- Nahhas et al. | Lateral Lateral Movements are nearly 0.2% of excavation | 2009
And others [5] Displacement depth
Kung [1] Lateral Max Movement exceed not point one percent. 2009




2.3 Numerical Modelling

The numerical modeling of soil structure mechanisms is a powerful method for studying them in
deep excavations. It can provide the necessary data for outlining purposes. Here we depict a portion
of the numerical modeling forms as well as an overview of early discoveries.

2.4 Model details

A large number of 2D simulations have been used in the design phase and for research due to the
limited capabilities of software and computing resources available.

PLAXIS having been chosen for this project and we will be reviewing the constitutive soil models
of PLAXIS. Only models associated with the chosen models will be reviewed. For more detailed
information, consult PLAXIS manuals.

PLAXIS is an engineering soil simulation tool that uses numerical soil models to qualitatively
represent soil behaviors and use parameters to quantitatively define soil characteristics. There are
7 variations of soil models included in PLAXIS.

Hardening Soil (HS) is an advanced soil model thatgenerates more realistic soil responses, such
as nonlinearity, stress dependence, and inelasticity.However, it suffers from the same problem
as the MC model when determining undrained shearstrength using effective stress parameters c'
and ¢'. It is most likely that the HS model will replacethe MC model. The MC model as a quick
and simple approximation can be followed by the HSmodel to provide a 'second opinion.' The
LE model is mainly used to model piles, diaphragm walls,and other structural components.
Models will all be evaluated by comparing their performances tomeasurements taken in the field.

Models that are not better than or not developed specifically for excavation analysis are not
considered. Models such as SS and SSC are better suited to modeling loading behavior of very
soft soils; MCC is better suited to modeling near-normally consolidated clayey soils, and NGI-
ADRP is less commonly used for excavation modeling. In the PLAXIS Material Models Manual,
further details are given regarding their limitations to simulate excavation works.

Page | 5



2.5 Deep Foundation Stress and Strain Mechanism (Pile
Foundation)

Models that are not better than or not developed specifically for excavation analysis are
notconsidered.Models such as SS and SSC are better suited to modeling loading behavior of
verysoft soils; MCC is better suited to modeling near-normallyconsolidated clayey soils, and
NGI-ADP is less commonly used for excavation modeling.In the PLAXIS Material Models
Manual,further details are given regarding their limitations to simulate excavation works.

2.6 Pile Group Under Vertical Load

It was accepted by many researchers such as Tomlinson and Woodward (2008) [11] and Fleming
et al. (2009) [9], that in most cases the single pile without a group supporting capacity is higher
than that in a group. A group effect factor should be taken into consideration for the design of
piles in group. Design charts were developed by Poulos and Davis (1980) [12] to show the effect
of group on the pile. The design charts include the spacing, number and size of piles, etc
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2.7 A Theoretical Study on the Analysis of Diaphragm Wall

Diaphragm walls are deep retention systems used as a part of foundation. Building basements,
urban spaces congested with people, metro train tunnels, river forts and marine structures typically
require these types of structures. Construction procedure and equipment for diaphragm
walls are described in Indian code IS 9556-1980. The code of practice for reinforcement concrete
design IS 456-2000 is used for the analysis and design process. The aim of the paper is the
theoretical study on the analysis procedure of diaphragm wall.

2.8 Soil deformation calculation using analytical solution

The lateral displacement of the earth can be calculated from Equation 2.8.1 which is based on
Timoshenko, Goodier (1951) [13] for deep circular cut (Xanthakos, 1994). [14]

5h=0.75(koy'-yf)2L/Ei  ...2.8.1

Where L is the length of the panel, Ei is the initial tangent modulus of the clay and ko is the at rest
earth pressure.

Lei et al. (2001) [15] used the method of complex variables with a simplified conformal
transformation function to transfer the exterior of rectangular section into the interior of the circle.
In order to obtain an approximate elastic solution capable of calculating the stress distribution and
deformation around a rectangle opening such as trench. Uniaxial stress was used. The finite
element model was used to verify their method. Ng and Lei (2003) [16] came up with a two-
dimensional elastic solution to solve biaxial stress problems as an improvement to the previous
method. In addition to soil characteristics, geometric properties are also important in determining
the solution. They provided calculation charts that could help to find empirically the soil
deformation and stress during trenching. Lei et al. (2014) [17] approximately predicted the ground
surface settlement due to the diaphragm wall construction along the centerline. The solution was
based on applying the total earth pressure on the trench side walls and base. In the model, a
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homogeneous, isotropic, elastic soil was assumed. The settlement was calculated by applying the
method of superposition with respect to maximum horizontal total earth pressure changes; soil
undrained Young’s modulus and trench length. This method was verified with finite element and
field data.

2.9 Soil deformation calculation using numerical analysis

In the last few decades, the numerical solutions were widely used in engineering problems. Many
researchers studied the diaphragm wall trenching using numerical analysis such as finite element
or finite difference analysis.

Gunn and Clayton (1992) [18] discussed the change in stress during diaphragm wall installation
and its effect on deformation. They showed that the limit equilibrium analysis did not take into
consideration the change in stress and its effect on design. Accordingly, Gunn et al. (1993) [19]
used two-dimensional finite element mish to simulate a full trenching process in order to estimate
the lateral stress reduction. The soil was modeled using the Mohr-Coulomb model while the slurry
was simulated with an equivalent hydrostatic pressure. Their intention was to find out the effect
of wall installation on the final wall bending moment after excavation. The cantilever wall was not
noticeably affected, while the propped wall was affected. The

installation effect is low if the water level is high and vice versa.
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2.11 Comparation Study of Stabilization Work using Sheet Piles
made of Reinforced Concrete-Steel-Vinyl

The purpose of this paper is to compare the use of sheet piles to protect river embankments from
scouring under normalization works. This study describes briefly how sheet piles can be used to
reinforce embankments of rivers against landslides. This chapter describes how sheetpiles are used
for stabilizing river embankments. After that, it is discussed the comparison of sheet piles used at
several different locations in Batang Manggor and Batang Anai. Geotechnical

and geographical characteristics of both sites are similar, so a comparative study is possible.
Concrete, steel, and vinyl sheet piles make up the piles. After presenting a comparison of the three
types of sheet pile in terms of materials cost and site workability, the study concluded.
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From observations made during the construction, it seems that the installation of reinforced
concrete sheet piles was more problematic than the other works. As a result of the large cross
section of the concrete sheet pile tip contacting the ground when driven, this problem is generally
experienced. Due to the relatively smaller cross section of steel and vinyl sheet piles compared to
concrete sheet piles, installation is relatively simple. In addition, the vibratory machine used to
drive the piles has a greater capacity than the others. A chainsaw can additionally be used to cut
vinyl sheet pile neatly and easily. Cutting Steel and concrete sheet piles require greater amounts
of effort.

As a construction option for riverbank stabilization, sheet piles can be used. The application must
choose from the available types of sheet pile however. In addition to geotechnical and geographical
data, the decision maker must also consider relevant nontechnical matters. In
comparison to concrete and steel sheet piles, installing vinyl sheet piles is relatively easy and less
expensive. Sheet pile implementation costs are mainly determined by the different material
choices. Depending on the material selected, the budget incurred will be affected by variations in
the costs of the material, installation, human resources, and other aspects of the project. This study
compared the costs of river banks stabilization with steel sheet piling to concrete and vinyl
sheet piling. We can conclude that the steel sheet piling is much more expensive than concrete
and vinyl piles. A special maintenance program is required for steel materials after construction
to prevent corrosion.

2.12 Parametric Study of Different types of Diaphragm Wall

using Soil-Structure Interaction for Section Optimization

This paper presents a study of the effects of deep excavations with diaphragm wall in loose sandy
soil, medium sandy soil and clay soil.

The objectives of this study are to investigate the effect of different parameters on the prediction
of wall deformation by using STAADpro software. Study aims to find an optimal section for a
differentdiaphragm wall considering variations in many of its design parameters to suit the soil
conditionsand depth of excavation.

Results of these analyses were recorded in terms horizontal displacement of the diaphragm wall,
steel consumption at the depth of 3m, 8m, 12m at Strutted Diaphragm Wall, Cantilevered
Diaphragm Wall, Anchored Diaphragm Wall behind the diaphragm wall, and deflection induced
in the diaphragm wall due to an adjacent deep excavation Using STAADPro Software.
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The lateral earth pressure is of three types at rest, active and passive. By using Rankin's analysis,
we can calculate the lateral earth pressure.

Type of diaphragm wall used for study

1- Cantilever Diaphragm wall
2- Anchored Diaphragm wall
3- Strutted Diaphragm Wall

IS2911 method has been considered for the calculation of the soil sub grade modulus and spring
constants can be calculated from these subgrade reaction coefficients.

Modulus of subgrade reaction taken from Joseph E Bowles’ Foundation analysis and design
book’s table 9-1 Range of modulus of subgrade Reaction Ks We assume the following values of
K For sands and normally consolidated lays, modulus varies with depth (type 2 soils)

K=(hh)(z/B),p =hh(z/B)

Where, hh=coefficient of horizontal modulus variation (kN/m3) z= depth below G.L. B=width of
shaft in meters.

For analyzing diaphragm wall, modeling has been done for different sections, such as cantilever,
anchored and strutted section in STAADPRO software. For a particular depth of wall and for
different models were made by changing soil condition such as loose sand, medium sand and

clay soil.

Maximum horizontal Displacement is little higher in loose soil compare to medium and clay soil.
By providing the different type of wall it is found that cantilever wall has maximum horizontal
displacement @. At the height of 12m itis found that compare to all the cases of 3m and 8m ,12m
wall height has maximum horizontal displacement. @ Maximum Steel Consumption of different
diaphragm wall. It is found that cantilever wall has little higher consumption of steel compare to
the other wall and at the height of 12 m steel consumption is maximum for different type of wall.

2.13 Summary

Numerous aspects of deep excavations have been analyzed numerically, including wall
though some parts of comprehension of deep excavation needed to be contributed to. With the
advancement of hardware and software, 3D analysis is now entirely feasible even in deep
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The lateral earth pressure is of three types at rest, active and passive. By using Rankin's analysis,
we can calculate the lateral earth pressure.

Type of diaphragm wall used for study

IS2911 method has been considered for the calculation of the soil sub grade modulus and spring
constants can be calculated from these subgrade reaction coefficients.

Modulus of subgrade reaction taken from Joseph E Bowles’ Foundation analysis and design
book’s table 9-1 Range of modulus of subgrade Reaction Ks We assume the following values of
K For sands and normally consolidated lays, modulus varies with depth (type 2 soils)

Where, hh=coefficient of horizontal modulus variation (kN/m3) z= depth below G.L. B=width of
shaft in meters.

For analyzing diaphragm wall, modeling has been done for different sections, such as cantilever,
anchored and strutted section in STAADPRO software. For a particular depth of wall and for
different models were made by changing soil condition such as loose sand, medium sand and

clay soil.

Maximum horizontal Displacement is little higher in loose soil compare to medium and clay soil.
By providing the different type of wall it is found that cantilever wall has maximum horizontal
displacement @. At the height of 12m itis found that compare to all the cases of 3m and 8m ,12m
wall height has maximum horizontal displacement. @ Maximum Steel Consumption of different
diaphragm wall. It is found that cantilever wall has little higher consumption of steel compare to
the other wall and at the height of 12 m steel consumption is maximum for different type of wall.
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3. DATA COLLECTION AND VALIDATION

From the data obtained, it shall be compared to an existing data for validation.

3.1 Data Collection:

The test was conducted with soil samples collected from Dhaka and Chittagong. Field tests are
also described here. In this chapter, a parametric study is conducted using an idealized excavation
geometry. The findings and conclusions generated are useful for designing and work procedure of
deep excavations.

A sub-soilinvestigation report of the project area served as the primary source of information.
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Figure 3.1.1: Soil test report
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3.2 Validation:

To validate our data we have taken a study by Hsiung, B. C., Dan, D. S., & Lum, C. W. (2016) [31].
With that as our reference, we used our data obtained from the field and compared them.
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Figure 3.2.1: Evaluation of performance of diaphragm walls by wall deflection paths
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Figure 3.2.2: Mesh analysis
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We have compared the data obtained from our model with the data from the literature and found our

results to be within acceptable margins..
PLAXIS 2D vs. Data from Literature

68.34mm 72.3mm (+5.79%)

Wall displacement of

model by Researcher Result from our model

PLAXIS 2D vs. Data from Literature

21.9m 22.5m(+2.74%)

Depth of maximum
displacement from Result from our model
researcher’s model
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4. NUMERICAL MODELLING

This chapter will discuss about the various models and parameters we have rendered with computer

aided software named PLAXIS 2D.

4.1 PLAXIS 2D:

PLAXIS 2D is a finite element software package for geotechnical engineering and rock
mechanics that analyzes two-dimensional deformation and stability. Excavation, dams,
embankments, and tunnels are some examples of geotechnical structures that can be modeled via
the software. The software calculates 2D plane strain and axisymmetric deformations as well as
soil stresses, water flow, and pressures, as well as structural and thermal forces. In order to account
for the behavior of different soil types, such as clay, sand and rock, as well as the behavior of the
soil when loaded, unloaded and reloaded, many different soil models are included. In addition to
providing users with an environment that resembles a CAD system, PLAXIS 2D allows users to
create models quickly and efficiently, allowing them to spend more time interpreting results.

4.2 Soil Parameters:

The Tables below show the soil parameters we have used in our PLAXIS model. We have used

both MC Model and HS Model.

MC Model:

Table 4.2.1 shows the soil parameters used for MC Model.

Table 4.2.1: MC model parameters

Formation
Parameter Unit Staff Silt with | Medium dense | Verv dense
little fine sand fine sand fine sand
Avg SPTN 16 37 =50
Unit weight KN/m® 19 18 20
Dry unit weight KN/ m’ 158 16 17
Ligquad limit % 50 = &
Plasticity index %o 22 B &
Undrained shear strength | Su Kpa 19 - =
Cohesion ., ¢’ Kpa 31 0 0
Angle of friction . & Degree 14 31 33
Dilantancy angle, 'V Degree 0 1 3
Poison’s ratio, v 03 03 0.3
Co efficient of permeability m/s 7=107 SR 5.78x10°
Young modulus, E KPa 26500 27000 28000
Secant modulus, Esp KPa 35000 43000 35000
Oedometer modulus Eced EPa 33000 22000 35000
Unloading reloading modulus, Eur KPa 10500 129000 10500
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HS Model:

Table 4.2.2 shows the soil parameters used for HS Model.

Table 4.2.2: Hardening soil parameters

Formation
Parameter Unit Stiff Silt with Medium dense | Very dense
little fine sand | fine sand fine sand
Unsaturated unit weight KN/m?® | 18 16 17
Saturated unit weight KN/m® | 20 18 20
secant modulus of elasticity E50 KN/m® | 35000 43000 35000
Oedometer modulus of elasticity Eoed | KN/m® | 33000 22000 35000
Unloading/Reloading modulus of KN/m® | 105000 129000 103000
elasticity Eur
Poisson’s ratio, v 0.3 03 0.3
Cohesion ¢’ EN/m® | 31 0 0
Angle of friction , @ Degree | 14 31 i3
Dilation angle_ ¥ Degree | 0 1 3
Unloading/Reloading poisson’s 02 0.2 03
ratio, Vur
Ko value for normally consolidated 0.640 0.4408 04554
soil Ko ne
Interface factor, Rint 0.7 0.7 0.7

4.3 2D Models used and their variations:
We have designed different 2D models in PLAXIS 2D. Both MC and HS models were used along

with variations in basement levels, diaphragm wall thickness and presence of adjacent load.

s For MC Model Variation are:

* Double Basement with no adjacent load for 1.265m diaphragm wall.

* Double Basement with no adjacent load for 0.5m diaphragm wall.

* Double Basement with no adjacent load for 1m diaphragm wall.

* Double Basement with no adjacent load for 1.5m diaphragm wall.

» Single Basement with no adjacent load for 1.265m diaphragm wall.
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* Double Basement with adjacent load for 1.265m diaphragm wall.

» Single Basement with adjacent load for 1.265m diaphragm wall.

% For HS model the variations are:
+ Single Basement with no adjacent load for 1.265m diaphragm wall.
* Double Basement with no adjacent load and 0.5m diaphragm wall.

* Double Basement with no adjacent load and 1m diaphragm wall.

« Double Basement with no adjacent load and 1.5m diaphragm wall.
* Double Basement with adjacent load for 1.265m diaphragm wall.
* Double Basement with no adjacent load for 1.265m diaphragm wall.

« Single Basement with adjacent load for 1.265m diaphragm wall.

4.4 Diaphragm wall properties:

The Table below shows the properties of the Diaphragm walls of different thickenesses.

Table 4.4.1: Diaphragm wall properties

Parameter Value Unit

EAl 48x10° KN/m
EA2 48x10° KN/m

EI 1x10° KN m?*/m
D 0.5 m

w 10 KN/m/m
v 0.3 -
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Parameter Value Unit

EAl 12x106 KN/m
EA2 12x106 KN/m

EI 1x106 KN m2/m
D 1 m

A\ 10 KN/m/m
\% 0.3 -
Parameter Value Unit

EAl 7.5x10° KN/m
EA2 7.5x10° KN/m
El 1x10° KN m?/m
D 1.265 m

W 10 KN/m/m
v 0.3 -
Parameter Value Unit

EAI 5.3x10° KN/m
EA2 5.3x10° KN/m
EI 1x10° KN m?/m
D 1.5 m

A\ 10 KN/m/m
v 0.3 -
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4.5 Plan and Section view of the model:

Figures 4.5.1 and 4.5.2 show the PLAXIS 2D model's Plan view and Section view.

Strut

30.00m

30.00m

Figure 4.5.1: Plan view of the model

3H:m D b osd

e e
L ..

Figure 4.5.2: Section view of the model
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4.6 Mesh Analys

Figures 4.6.1-4 shows the Mesh Analysis of our 2D model with variations in basement levels

and presence of adjacent loads.

Figure 4.6.1: Diaphragm wall model with single basement
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Figure 4.6.2: Diaphragm wall model with single basement with adjacent load
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Figure 4.6.3: Diaphragm wall model with double basement
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Figure 4.6.4: Diaphragm wall model with double basement with adjacent load
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5. ANALYSIS & COMPARISON

With the data obtained from our PLAXIS 2D model, we plotted graphs for analysis and comparison
based on different thickness of diaphragm wall, basement levels and adjacent load.

5.1 Depth Vs Displacement graph for Diaphragm wall
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Figure 5.1.1: HS model Left wall (thickness 0.5m)
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Figure 5.1.3: Single Basement HS Model Left wall
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Figure 5.1.10: Double Basement MC Model Left wall

Figure 5.1.11: Double Basement MC Model right wall
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Figure 5.1.22: Single Basement HS 1 m Right Wall
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5.2 Soil Displacement graph

In this chapter the settlement of soil against distance from the wall graphs are shown. And in the
end a summary table of wall deformations are shown.
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Figure 5.2.1: HS model for single basement from right wall Figure 5.2.2: MC model for single basement (wall thickness
(thickness 1m) 0.5m)

§30 B

g 530

g | B

820 870

g g

g | g |

g' R

=10 &

A 2"
ST TS T || Ry
Distance (m) Distance (m)

Figure 5.2.3: MC model for single basement (wall thickness

1.5m) Figure 5.2.4: MC model for single basement (wall thickness
.5m

im)

Page | 30



L T O\ T

Displacement (
N T

Distance (m)

Figure 5.2.5: HS model for double basement (wall thickness
im)
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Summary of the MC Models Wall deformation

In the following table 5.2.1, the deformation of the MC Models have been summarized.

Table 5.2.1: Summary of the MC Models

Building Adjacent No. of Basement Diaphragm wall | Deformation max

Load(KN/m/m) Load(KN/m/m) thickness(m) (mm)

-288 0 2 1.265 6.79

-288 0 2 1 6.78

-288 0 2 0.5 6.76

-288 0 2 1.5 6.81

-288 0 1 1.265 7.48

-288 0 2 1.265 3.05

-288 -86 2 1.265 3.94

-288 -86 1 1.265 4.45

Summary of the HS Models Wall deformation

In the following table 5.2.2, the deformation of the HS Models have been summarized.

Table 5.2.2: Summary of the HS model wall deformation

Building Adjacent No. of Basement Diaphragm wall Deformation max
Load(KN/m/m) Load(KN/m/m) thickness(m) (mm)

-288 0 1 1.265 4.061

-288 0 2 0.5 2.766

-288 0 2 1.5 2.79

-288 0 2 1 2.73

-288 -86 2 1.265 43

-288 0 2 1.265 2.73

-288 -86 1 1.265 2.77
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5.3 Maximum Displacement in Graphs
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Figure 5.3.1: Maximum Displacement of Diaphragm wall in HS model (wall thickness 1m)
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Figure 5.3.2: Maximum Wall displacement for MC Model (wall thickness 1.265m)
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Figure 5.3.6.: Maximum Wall displacement for MC Model (Wall thickness 0.5m)
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Figure 5.3.9: Maximum Wall Displacement for HS model (single basement)
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Figure 5.3.11: Maximum Wall displacement for MC Model (wall thickness 1.5m)
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Figure 5.3.13: Maximum wall displacement for HS Model with adjacent load (double basement)
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Figure 5.3.14: Maximum Wall displacement for MC model with adjacent load (Single basement)
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5.4 Comparison

Here, the depth and displacement comparisons between HS model and MC model are given.
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Figure 5.4.1: Depth vs displacement graph comparison
between MC and HS model for double basement
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Figure 5.4.3: Depth vs displacement graph comparison
between MC and HS model for single basement with
adjacent load.
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Figure 5.4.2: Depth vs displacement graph comparison
between MC and HS model for single basement.

T T T
= HS with adjacent load |
* HS

710 0o 10
Displacement (mm)

Figure 5.4.4: Depth vs displacement graph comparison
between MC and HS model for double basement with
adjacent load
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5.4.1 Comparison with Available Literature

The data we have obtained from our model tests will be compared with the findings from available
literature. In table 5.3.1-2 the maximum wall displacement has been shown for both MC and HS
models. In table 5.3.3-4, we have compared our results with available literature for both MC and
HS model and found them to be within acceptable margins.
In tables 5.3.5-6, the Maximum ground settlements have been summarized for both MC and HS
model. These results have been compared with available literatures in tables 5.3.7-8 and have been
found to be within acceptable margins.

Maximum wall Displacement for MC Model
Table 5.4.1: Maximum wall Displacement for MC Model

Building Adjacent No. of Diaphragm  Deformation Excavation | Maximum
Load(KN/m/m) | Load(KN/m/m) Basement | wall max (mm) Depth, He | Lateral Wall
thickness(m) (m) deformation(%o)
-288 0 2 1.265 6.79 6 0.1131
-288 0 2 1 6.78 6 0.1130
-288 0 2 0.5 6.76 6 0.1126
-288 0 2 1.5 6.81 6 0.1135
-288 0 1 1.265 7.48 3 0.2493
-288 0 1 1.265 3.05 3 0.1016
-288 -86 2 1.265 3.94 6 0.0656
-288 -86 1 1.265 4.45 3 0.1483
Maximum Wall Displacement for HS Model
Table 5.4.2: Maximum Wall Displacement for HS Model
Building Adjacent No. of Diaphragm  Deformation Excavation | Maximum
Load(KN/m/m) Load(KN/m/m) Basement wall max (mm) Depth, He | Lateral Wall
thickness(m) (m) deformation(%o)
-288 0 1 1.265 4.061 3 0.1354
-288 0 2 0.5 2.766 6 0.0461
-288 0 2 1.5 2.79 6 0.0465
-288 0 2 1 2.73 6 0.0455
-288 -86 2 1.265 43 6 0.0716
-288 0 2 1.265 2.73 6 0.0455
-288 -86 1 1.265 2.77 3 0.0923
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Relative comparison with other studies for MC Models

Table 5.4.3: Relative comparison with other studies for MC models

Researcher Group | Basis of Comparison | Result from | Result from Comments
the literature | the model
Clough and O’ourke | Lateral Displacement for | 6mm 5.7mm Acceptable
(1990) Single Basement
Kung (2009) Lateral Displacement 6mm 5.7mm Acceptable
Single Basement
Bentler(1998) Lateral Displacement 5.7mm 5.7mm Acceptable
Konstantakos (2008) | Lateral Displacement 6mm 5.7mm Acceptable
Moorman (2004) Lateral Displacement 26.1mm 5.7mm Acceptable
Relative Comparison with other studies for HS Models
Table 5.4.4: Relative Comparison with other studies for HS models
Researcher Group Basis of Comparison Result Result comments
from the | from the
literature | model
Clough and O’ourke | Lateral Displacement 6mm 3.12mm Acceptable
for Single Basement
Kung Lateral Displacement 6mm 3.12mm Acceptable
Single Basement
Bentler Lateral Displacement 5.7mm 3.12mm Acceptable
Konstantakos Lateral Displacement 6mm 3.12mm Acceptable
Moorman Lateral Displacement 26.lmm | 3.12mm Acceptable
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Maximum Ground Settlement for MC model

Table 5.4.5: Maximum Ground settlement for MC model

Building Adjacent No. of Diaphrag | Maximu | Excavati | Maximum
Load(KN/m/ | Load(KN/m/ | Baseme | m wall m on Ground
m) m) nt thickness( | Ground | Depth, Deformati

m) settleme | He (m) on (%)

nt (mm)
-288 0 2 1.265 38.5 6 .6416
-288 0 2 1 38.4 6 .6400
-288 0 2 0.5 38.4 6 0.6400
-288 0 2 1.5 38.5 6 0.6416
-288 0 1 1.265 13.2 3 44
-288 0 1 1.265 13 3 4333
-288 -86 2 1.265 14.3 6 2383
-288 -86 1 1.265 13.1 3 4366
Maximum Ground Settlement for HS model
Table 5.4.6: Maximum Ground Settlement for HS model
Building Adjacent No. of Diaphrag | Maximu | Excavati | Maximum
Load(KN/m/ | Load(KN/m/ | Baseme | m wall m on Ground
m) m) nt thickness( | Ground | Depth, Settlement(
m) settleme | He (m) %)
nt (mm)

-288 0 1 1.265 7.79 3 2596
-288 0 2 0.5 6.88 6 1146
-288 0 2 1.5 6.86 6 1143
-288 0 2 1 6.86 6 1143
-288 -86 2 1.265 16.5 6 275
-288 0 2 1.265 6.87 6 1145
-288 -86 1 1.265 9.4 3 3133
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Relative Comparison with other studies for MC model

Table 5.4.7: Relative Comparison with other studies for MC model

Researcher Group Basis of Result from | Result from | comments
Comparison the literature | the model
Clough and O’ourke | Maximum Ground | 9mm 25.92mm Not acceptable
(1990) Settlement
Kung (2009) Maximum Ground | 6mm 25.92mm Not acceptable
Settlement
Bentler (1998) Maximum Ground | 16.5mm 25.92mm Not
Settlement Acceptable
Konstantakos (2008) | Maximum Ground | 12mm 25.92mm Not Acceptable
Settlement
Moorman (2004) Maximum Ground | 33mm 25.92mm Acceptable
Settlement
Relative Comparison with other studies for HS model
Table 5.4.8: Relative Comparison with other studies for HS model
Researcher Group Basis of Result from Result from comments
Comparison the literature the model
Clough and O’ourke | Maximum Ground | 18mm 8.73mm Acceptable
(1990) Settlement
Kung (2009) Maximum Ground | 12mm 8.73mm Acceptable
Settlement
Bentler (1998) Maximum Ground | 33mm 8.73mm Acceptable
Settlement
Konstantakos (2008) | Maximum Ground | 24mm 8.73mm Acceptable
Settlement
Moorman (2004) Maximum Ground | 66mm 8.73mm Acceptable
Settlement
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6 CONCLUSION & SUMMARY

Finally, in the last chapter we conclude with the result and discussion from what we have learned from
this thesis project. We have graphically represented the maximum displacement observed by the retaining

wall in PLAXIS for both MC and HS model with varying basement levels, wall thicknesses and
adjacent loads.

6.1 Conclusion

This research compares the effect of diaphragm wall for deep foundations in the context of
Bangladesh using numerical analysis. Moreover, this research has investigated the ground
response as well as diaphragm wall horizontal deflections for deep excavations. Initially, MC
model has been used in the finite element code PLAXIS 3D. Later, an attempt has been made to
see if it is possible to obtain better predictions using a more advanced HS model based.

A parametric study on a simplified excavation and detailed analyses of two additional case
histories investigated the performance of deep excavations and the influence of several critical
aspects.The studies shed light on acomplex soil structure interaction problem, and can be used
to design and analyze deep excavationsmore effectively. There is an in-depth discussion
and conclusion for each chapter.Throughout this chapter, we summarize these conclusions
for a more complete understanding.

In this study, the results are compared with the available literatures and based on the comparison,
different color codes are used to show the harmony of the results with the available literatures. In
spite of the fact that the advancements available through cheap computer hardware and the
improvement of modeling techniques have made numerically modeling a necessity for routine
design. The advanced models such as the HS model remain unpopular due to lack of necessary
advanced tests (at least the drained tri axial test), especially in the commercial environment where
these tests are considered not only time-consuming but expensive. Besides, because of the
lack of field calibration to obtain confidence in the method and especially the input soil stiffness,
it is understandable that the simple MC model remains a popular choice.
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6.2 Summary

e Diaphragm wall have shown fewer bulging effects.

e In general, HS model shows less displacement and ground settlement compared to MC
model.

e Ground settlement and wall displacements show harmony with the available literature.

e Enough variations of Diaphragm wall models of single and double basement with and
without adjacent loads by using PLAXIS 2D with different parameters of soil.

e The maximum lateral deflection of Diaphragm wall towards the excavation measured is
generally within 0.2% of excavation depth. And ground settlement should be 0.3% of
excavation depth.

e No sign of structural damage at the joint between the Diaphragm wall and the basement
slab.

e An approximate cost estimation for the various models. The cost was efficient for
constructing such as structures

e Diaphragm wall with thickness 0.5m of single basement is most cost efficient and
satisfactory.

e Diaphragm wall is recommended as the retaining structure in Bangladesh for future
projects.
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