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Abstract

Software Defined Networks (SDN) are programmable networks that can be easily

managed with a global understanding of network topology. However, while the

software-defined network architecture enhances network resource pooling by sep-

arating the control layer from the data layer, this centralized management and

control introduces security vulnerabilities into the SDN architecture. One of the

most dangerous attacks that the SDN architecture faces is distributed denial of

service (DDoS). Aiming at the detection of DDoS attacks under the SDN archi-

tecture, this paper proposes faster DDoS attack detection using machine learning

based classifier XGBoost which provides higher accuracy.

Keywords: SDN, XGBoost, Random Forest, Decision Tree, KNN, SVM,

CICDDoS 2019, DDoS
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1 Introduction

A detailed background of history of Software Defined Networking (SDN), our

problem statement and objectives are discussed in details in this section.

1.1 Overview

Software Defined Network (SDN) is often defined with terms like mininet, open-

flow, Ryu, ODL, and OVS. However, this is only partially correct. SDN is es-

sentially composed of all of these components. Numerous network devices such

as switches, routers, firewalls, IDS(Intrusion Detection System), IPS(Intrusion

Prevention System), and load balancers are available. All of these devices are

composed of two components: the data plane, which transmits packets, and the

control plane, which determines how the data plane should act and how packets

should be forwarded. These traditional network devices have a number of draw-

backs. They are vendor-specific, with hardware and software combined. Costs

vary according to technology but are extremely high. Additional features can

be added only at the vendor’s discretion. The client can only request features;

the vendor will decide whether to add them or not, and the vendor will choose

the time frame in which these features will become accessible. The devices are

purpose-built. We cannot configure a router to act as a load balancer, or a switch

to act as a firewall, or vice versa.If a network contains hundreds of these devices,

each one must be set separately. There is no centralized administration.

Unlike traditional networks, where the forwarding plane and data plane are tightly

coupled, SDN networks have decoupled both the hardware and software compo-

nents, such that the control plane is distinct from the forwarding plane, and the

planes communicate using a protocol called OpenFlow. The OpenFlow protocol,

Openflow-based switches, SDN controllers (POX, Ryu, OpenDayLight, Flood-

light), and SDN applications are the primary components of the SDN architecture

( hub, switch, router, firewall, load balancer). The control plane communicates

with the simple networking devices, i.e. the SDN controller advises the switches
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via the southbound openflow protocol what actions they should do. Northbound

openflow protocol is used to communicate between the control plane and the ap-

plication layer. A simple SDN architecture is given below:

Figure 1: SDN Architecture

When a packet arrives at the switch, one of two things can happen: 1. packet that

matches a flow entry (carries out the actions described in the flow entry); 2. packet

that does not match any of the flow entries (forwarded to the controller as Packet

In message). The OpenFlow switch maintains flow tables that are used to perform

packet lookups and routing choices. The flow table is the most critical component

of OpenFlow switches. Each packet that enters the switch must travel through

one or more flow tables. Flow refers to the sequencing of packets. The OpenFlow
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protocol defines the messages that are sent between an OpenFlow controller and

an OpenFlow switch. Three distinct sorts of messages exist:

• The controller starts messages between the control plane and the switch in

order to control or view the status of the switch directly.

• Symmetric communications are transmitted in both ways without being so-

licited.

• Asynchronous messages are transmitted from the controller to the switch

without the controller requesting them.

Because traditional networks can’t handle today’s dynamic, scalable processing

and storage needs, SDN has emerged as a new paradigm for network design.

High-bandwidth dynamic applications are perfectly suited to SDN’s dynamic, con-

trolled, cost-effective, and adaptive design. Using the controller as an operating

system, real-time installations and modifications may be performed. SDN’s unique

capabilities allow it to be used in a wide range of network scenarios, from home

and business networks to data centers and cloud networks. The centralized control

plane in software-defined networking (SDN) simplifies network management, but

it also creates several potential security risks. A topology of SDN is given below:

Figure 2: SDN Topology
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1.2 Thesis Objectives

SDN has improved the world of networking by giving users more flexibility and

convenience in resource utilization, hence easing network administration. Multiple

methods exist for mitigating the vulnerabilities that SDN has introduced. Several

papers have analyzed the risks and threats posed by SDN, as well as detection

techniques for mitigating these dangers. Given the significance of SDN technol-

ogy in networking, our primary objective has been to bring improvement in the

detection mechanism of SDN risks.

1.3 Problem Statement

SDN (software-defined networking) is a networking technology that manages net-

works by allowing network configuration to be programmed efficiently in order

to increase the performance of the network. By creating a physical separation

between the network packets sent by the forwarding process and the SDN control

layer sent by the routing process, SDN can construct a centralized intelligence for a

single network component. The control plane serves as the network’s brain. [4] A

number of disadvantages of centralized designs exist, including security, elasticity,

and scalability issues, to name a few. As a result of the architecture’s central-

ized structure, security is the primary concern of SDN users and administrators.

DDoS attacks are a huge danger to the security of the Internet. The purpose of

this attack is to render a targeted service unavailable by flooding the internet with

traffic. By depleting the network’s resources, delays and interruptions are caused.

Different sorts of DDoS attacks have been documented in recent years. A DDoS

attack renders the resource unavailable and limits service availability for a cer-

tain period of time, resulting in service failures, resource exhaustion and increased

expenses. As a result, detecting DDoS attacks has become a significant research

topic. Numerous studies in this area have been conducted till now, including sta-

tistical methodologies, entropy-based approaches, and machine learning models.

So far, all research has been conducted using datasets of traditional networks.
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Figure 3: DDoS Attack

Most of the advanced machine learning-based solutions have used outdated bench-

mark datasets instead of SDN-specific datasets for training purposes. As a result,

we propose this work, in which we have used an SDN-specific dataset to get a

more practical model that will work in a real SDN environment. Additionally,

what makes this research topic more significant is the requirement for early detec-

tion of such denial of service attacks with reduced execution time, in addition to

accuracy. As a result, keeping both aspects in consideration, we provide a solution

that gives highest accuracy of detection with lowest execution time.

1.4 Thesis Contribution

The contribution of this paper is to propose such a detection method that gives the

minimum execution time and at the same time highest accuracy. We compared

the most prominent methods, capable of detecting SDN DDoS attacks, in terms

of their accuracy, false alarm rate and execution time, along with our proposed

methodology in order to demonstrate how our classifier provides a significant im-

provement.
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1.5 Research Challenges

One major challenge in our research scope is the fact that DDoS attacks indicate

an increasing attack scope; the attack mode is also increasingly intelligent. The

various challenges in detecting DDoS attacks are due as follows :

1. the attack traffic characteristics are difficult to identify

2. there is a lack of collaboration between coherent network nodes

3. the attack tool is strengthened, while the threshold of its use decreases

4. widely used address fraud makes tracing the source of the attack difficult

5. the attack duration time is short and response time is limited.

Security concerns are expected to grow as SDN technologies are gradually de-

ployed.

1.6 Organization of Thesis

The rest of the thesis is organized in the following manners. Section 2 canvasses

prior works related to our topic of interest. Section 3 discusses our proposed

detection approach. Section 4 discusses how we conducted our experiment and set

up the environment required for it. Section 5 discusses result analysis and hence

performance evaluation. Section 6 mentions the future work in mind with regard

to our research topic. Finally, section 7 draws the conclusion.
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2 Literature Review

Many authors have proposed DDoS attack detection and mitigation using different

techniques such as evolutionary algorithms, genetic algorithm, machine learning

techniques, swarm particle optimization, fuzzy logic etc. We mainly researched

and analysed DDoS detection technique in SDN using Entropy and machine learn-

ing techniques and mentioned our findings in this chapter.

2.1 DDoS Detection using Entropy

Mousavi et al. [5] proposed a methodology for recognizing DDoS attacks based on

the destination IP address’s entropy fluctuation. Their approach quantifies the

unpredictability of incoming packets using entropy. Each host should have a high

likelihood of receiving fresh incoming packets in a 64-host network. As a conse-

quence, the degree of entropy is increased. When one or more hosts experience an

exceptionally high volume of incoming packets, randomness and entropy degrade.

The entropy attribute is used in this study to detect an attack in its early phases.

They established an experimental threshold for entropy in the research based on

the simulation results, and values less than the threshold are deemed attacks.

To identify DDoS attacks using entropy, two critical components are required: i)

a window size and ii) a threshold. The window’s size is determined by the time

period or the amount of packets. Within this duration, entropy is calculated to

determine the degree of uncertainty in the incoming packets. If n is the number of

packets included inside a window and pi is the probability of each element being

within the window, the entropy (H) is calculated as follows:

Entropy is calculated only by the destination IP address for newly incoming pack-

ets. Entropy falls during an attack, as the IP address of the attacked host(s)
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appears more often. The window size is set to 50 due to the network’s restricted

capacity for new connections. Unrouted packets are retained forever in the absence

of a fresh request. A controller is restricted in its ability to link switches and hosts.

Its little size significantly minimizes the amount of processing required for each

window. A 50-packet attack is more quickly detected than a 500-packet attack.

Memory use remains constant, while CPU consumption increases somewhat.

The destination IP address of incoming packets is monitored in order to determine

whether the controller is under attack. Entropy is maximized when each IP address

occurs just once. When a host is attacked, it receives a huge quantity of packets.

These packets will fill the window, reducing the number of unique IP addresses

and so increasing entropy. As a consequence, an experimental cutoff point is

determined. If the entropy goes below this value for five consecutive windows, an

attack is conducted. The attack detects 250 packets and informs the network in

five entropy intervals. The proposed technique may be summarized in four parts:

• Using SDN Capabilities: With each new incoming connection, the con-

troller creates a flow in the switch, which routes the remaining incoming

packets directly to the destination. As a result, each time the controller

encounters a packet, it treats it as fresh. Another well-known characteristic

about newly received packets is that the destination host is inside the con-

troller’s network. This assumption is made on the basis of an attack on one

of the network’s hosts or a subnet of network hosts. The network is made

up of switches and hosts. With the packet’s origin and destination known,

the quantity of randomness may be determined by computing the entropy

for a given window size. Maximum entropy is achieved when each packet is

destined for a single host. On the other hand, when all packets in a window

are meant for a single host, the lowest entropy is achieved. For example,

if a window comprises 64 components and each component appears only

once, the entropy value is 1.80. When a single element appears ten times,

the entropy is 1.64. This entropy property will be utilized to compute the

randomization of SDN controllers. We can examine the rate at which new
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packets arrive to the controller and establish whether or not an attack is

occurring due to the controller’s centralized view of the network.

Due to its ability to quantify randomness and to calculate a minimum and

maximum entropy value based on entropy, this becomes a viable solution for

DDoS detection. When a high volume of packets arrives at a single host or

a subnet of hosts, the entropy value decreases.

Collecting entropy statistics: Collecting entropy information from switch

tables is one of the controller’s duties. After an inert time, the controller

evaluates existing flows and eliminates inactive ones. This functionality is

used in this study to enhance the controller’s data collection capabilities.

They provided the source IP address of newly received packets, which were to

be clustered into 50-byte windows. The entropy of each window is computed

and compared to a specified experimental value. An assault is detected

when the entropy value goes below a predefined threshold. Due to these two

characteristics, the approach is adaptable to a wide variety of controllers.

Window Size: They have picked a 50-inch window. The primary rationale

for selecting 50 is the limited amount of new connections that each server in

the network may accept. Once a connection is established, packets are not

routed via the controller until a new request is received. A second problem is

that each controller is limited in terms of the number of switches and hosts

it can connect.Finally, selecting this size minimizes the amount of processing

required for each window. As the size of the window increases, so does the

CPU utilization. Given the controller’s limited resources, this window size

is optimal for networks consisting of a single controller and a few hundred

hosts.

Attack Detection: The destination IP address of incoming packets is mon-

itored to determine whether the controller is under attack. When an IP

address is added to the database for the first time, it is assigned a count of

one. If it appears in the table, its count will be increased. The window’s
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entropy will be determined after 50 packets. Entropy is maximized when

each IP address occurs just once. When a host is attacked, it receives a

tremendous volume of packets. These packets will use the majority of the

window’s available space, reducing the number of unique IP addresses and

so entropy. If the entropy value falls below this level and five successive

windows have entropy values less than the threshold, an attack is underway.

Within five entropy periods, 250 packets in the attack are detected, alerting

the network to the attack.

Problem: Although using entropy seemed to be a viable solution, it has

several limitations: it could detect when only a single host is under attack

and specific to only one type of DDoS attack. The new novel DDoS attack

surpass without being detected by the entropy approach.

2.2 SDN Dataset

Most of the SDN DDoS detection systems using different machine learning ap-

proaches use data generated from conventional networks. To the best of our knowl-

edge, there is no well-established benchmark/standard dataset for SDN DDoS

detection. Some common benchmark dataset used in IDS from conventional net-

works are mentioned below:

2.2.1 KDD’99

This is one of the most well-known datasets widely used in IDS training. It

contains 41 features and contains four types of attacks: Denial of Service (DoS),

Remote to Local (R2L), User to Root (R2L) and Probe attack. This dataset has

a lot of duplicate entries and is biased toward DoS attacks.

2.2.2 NSL-KDD

This is an updated version of KDD’99 dataset. It has additional 17 attacks and

uses an outdated version of TCP protocol. Even though this is a modified version
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of KDD’99, this dataset can’t reflect the current attack trends as this was captured

almost 20 years ago. Only 6 out 41 features concern SDN according to literature.

2.2.3 Kyoto Dataset

This dataset was collected from servers in Kyoto University from 2006-2009.

Though the dataset contains real traffic, the attack types are unknown and have

an imbalanced class distribution making it a biased dataset. We haven’t come

across SDN DDoS detection models trained using this dataset yet.

2.2.4 CICIDS 2017

This is one of the most recent dataset with 80 features covering comprehensive

attack scenarios. This was released based on the foundation of ISCX2012 dataset

published in 2012. It contains many redundant records and almost 40 features are

irrelevant to SDN DDoS detection. Recently, CICIDS 2019 has been published

which is an updated version of CICIDS 2017.

2.2.5 InSDN Dataset

As majority of the literature use incompatible and outdated dataset for anomaly

detection in SDN, InSDN [3] was proposed in 2020 as attack-specific SDN dataset.

This dataset has 7 attack classes generated in a virtual environment: DoS, DDoS,

Web attacks, R2L, Malware, Probe attack and U2R. The dataset was generated

from low scale topology. The authors evaluate their dataset on 8 machine learning

algorithms: KNN, Decision Tree, Random Forest, AdaBoost, Naive Bayes, rbf-

SVM, lin-SVM and MLP.

2.3 DDoS Detection Machine Learning Technique

SDN DDoS detection using different machine learning techniques have gained

popularity recently and many literature have done comparative analysis on them.

But the dataset used were from traditional and conventional networks. In 2018,

a new type of DDoS was proposed by Di Wu et al. [8]. As far as we are aware,
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there is no standard SDN DDoS dataset other than InSDN and let alone any

benchmark dataset which takes this new type of DDoS into consideration. Tradi-

tional DDoS used to target a single victim using multiple source ip to mimic the

transmission from different sources. New type of DDoS attack targets multiple

victims/destinations (even one’s that are not in the network). Traditional DDoS

takes down the switch by sending huge amounts of packets to one victim whereas

the new type of DDoS attack has the potential to take down the whole network

by targeting the controllers. We briefly discuss the common supervised machine

learning techniques to detect DDoS in SDN:

2.3.1 SVM

Jin Yu et al. [12] proposed that existing neural network algorithms are not practical

solutions to be applied in SDN for anomaly detection. The author proposed SVM

classification algorithm to detect DDoS in SDN and obtained 95.24% average

accuracy. The authors didn’t evaluate their accuracy on any standard dataset.

They generated their own flow information and extracted 6 tuple characteristics:

• Speed of Source IP (SSIP)

• Speed of Source Port (SSP)

• Standard Deviation of Flow Packets (SDFP)

• Deviation of Flow Bytes (SDFB)

• Speed of Flow Entries (SFE)

• Ration of Pair-Flow (RPF)

DDoS attacks are executed by sending UDP/IMCP/SYNC packets. ICMP traffic

doesn’t source port and destination port. So, the SSP and RPF become zero

making 6-tuple characteristics to 4-tuple characteristics. Daniel Burgos et al. [7]

in 2020 proposed SVM with KPCA (Kernel Principal Component Analysis) with

Genetic algorithm (GA). KPCA is used for feature reduction and GA is used to
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find optimal SVM parameters. The author obtained 98.907% accuracy on the

NSL-KDD dataset. One of the biggest drawbacks of SVM is that it takes a lot of

time to train.

2.3.2 Random Forest(RF)

This paper [9] uses a combination of trigger module based on Gini impurity

and Random Forest classifier to detect DDoS in a SDN environment. Controller

requests the switch for flow information. After receiving the flows, the controller

doesn’t execute the random forest classifier. Instead, gene impurity is calculated

using two features (source IP destination IP). If the gini impurity is greater

than a certain threshold, the random forest classifier is triggered. The random

forest classifier is trained on ISCX-DDoS 2012 dataset. The author also compares

Random Forest with SVM and Decision Tree. The detection rate of Random

Forest (RF), Support Vector Machine (SVM), Decision Tree (DT) are 98.63%,

97.1% and 97.86% respectively.

2.3.3 Decision Tree (DT)

The authors of [4] propose detection of DDoS using Decision Tree, Naive Bayes

and SVM. They evaluated their technique using a custom dataset generated from

linear SDN topology with 3 switches and 6 hosts in a virtual environment, CIC-

DDoS 2019 dataset and hybrid dataset (custom + CIC-DDoS 2019). Decision tree

gives the best result in all 3 types of dataset and the average accuracy is 99.9%.

2.3.4 XGBoost

Zhuo Chen et al. [1] extreme gradient boosting algorithm using JDD’99 dataset.

The authors use 9 features out of 41 from KDD ’99 and obtained accuracy of

98.53%.
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2.3.5 KNN

Huseyin Polat et al. [6] mentioned that use of wrapper feature selection with KNN

classifier achieved 98.3% accuracy in DDoS detection of SDN. The 12 features used

in training are:

• Ifinpkt

• Ifoutpkt

• Hits

• Miss

• OpenFlowforum

• Cpu-util

• Mngmnt interface inpkts

• Mngmnt interface outpkts

• OpenFlowto

• OVSFlow

• OVSLost

Liang Tan et el. [10] proposed a new framework for detecting DDoS in SDN. The

framework consists of K-Means based training data processing module and K-

nearest neighbor (KNN) based traffic detection module. Average precision of KNN

algorithm and K-Means algorithm are 95.83% and 95.99% respectively. Average

precision of the framework proposed by the author is 99.03%.

2.4 Novel DDoS

In [11], Di Wu et al. revealed a new sort of DDoS attack that targets the SDN

environment and is more difficult to detect. Authors suggested a unique real-

time DDoS detection system for new type of DDoS by analyzing network status
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data via Principal Component Analysis (PCA), statistical trapezoidal model in

the literature.

2.4.1 Principal Component Analysis (PCA)

As described in [11], this new sort of DDoS attack is distinct from traditional

DDoS attacks in that the packet’s destination is chosen at random. This attack

is not directed against a specific server, but at the SDN network system as a

whole. Thus, there will be no server that detects an attack, and thus no server

that will warn the attack, making it more difficult to identify and report. By

comparing with a sample entropy, they identified that when the destination IP

becomes random as in the new DDoS attack, sample entropy cannot detect it but

PCA can.

2.4.2 Statistical Trapezoidal Model

Bakhtiari et al in [8] introduced a new linear regression based method that can

detect the recent DDoS attack which entropy-based methods are incapable of

detecting. This paper used a statistical trapezoid model to estimate the amount

of table misses for each switch based on the SDN structure and traffic analysis.

Linear regression and EWMA estimates are then used to estimate the table’s

threshold misses at defined time intervals. Using this strategy, it has been said

that one can detect DDoS attacks in software defined networks at an early stage,

independent of the type of DDoS attack. The suggested approach for detecting

denial of service attacks is divided into three general stages: fetching, estimation,

and detection.

The controller first retrieves the number of received packets and table misses for

each switch per second. Second, the equations of threshold lines are estimated

at t seconds. The intercept parameters and slope for the following interval are

computed using EWMA. Third, the number of table misses is compared with

the estimated value of the threshold. If the threshold value is surpassed, a DDoS

attack is detected. Additionally, the paper says that entropy and PCA approaches
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cannot completely detect this form of attack.
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3 Proposed Approach

In order to address the issue of accuracy, execution speed and false alarm rate , we

propose an extreme gradient boosting algorithm i.e XGBoost algorithm classifier as

the detection algorithm. XGBoost classifier is a distributed gradient boosted tree

classifier that aggregates hundreds of tree models of lower accuracy and generates

a model with higher accuracy and lower false positive rate.

Figure 4: Simplified XGBoost Architechture
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3.1 XGBoost Classification Algorithm

In this part we discuss the working method XGBoost algorithm. XGBoost is an ef-

ficient and improved implementation of the traditional Gradient Boosted Decision

Tree algorithm in respect to computational speed, performance and scalability .

The objective function of XGBoost is as follow:

FObj(θ) = L(θ) + Ω(θ)

whereL(θ) = l(ŷi, yi) (1)

Ω(θ) = γT +
1

2
λ||x||2

Expression Meaning
L(θ) differentiable convex loss

function which calculates
the difference between the
prediction value and the
real value.

Ω(θ) Regularized Term
T Number of Leaves
γ Learning rate

Table 1: Detals of the terms used in equations
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Some of the most common convex loss functions that can be used are :

Mean square loss function: l(ŷi, yi) = (ŷi, yi)
22 and

Logistic loss function : l(ŷi, yi) = yiln(1 + e−ŷi) + (1− yi)ln(1 + eŷi)

In comparison to the gradient boosting algorithm , XGBoost increases the term

1
2
λ||x||2 . This increasing term can further prevent overfitting and even increase

the generalization capability of our model.

However, the objective function in Eq(2) fails to optimize the traditional methods

by existence of the model penalty items and functions as parameters. Hence, we

use the following equation to predict the target yi.

L(θ) =
n∑

i=1

l(yi , ŷi
(t−1) + St(Ti)) + Ω(θ) (2)

The optimization goal here is to build a tree structure such that it minimizes

our target function after each iteration. Every tree learns from the previous tree’s

conclusions and residuals.

residual = real value− predicted value

We can transform Eq(2) to Eq(3) through the two order Taylor Expansion.

L(θ) =
n∑

i=1

[
l(yi , ŷi

(t−1)) + giSt(Ti) +
1

2
hiS

2
t (Ti)

]
+ Ω(θ) (3)
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4 Environment setup and experiment

4.1 Experimental Setup

For all experiments , a Google colab notebook with following specifications was

used :

GPU: 1xTesla K80 , 2496 CUDA cores , 12GB GDDR5 VRAM

CPU: 1xsingle core hyper threaded Xeon Processors @2.3Ghz

Disk space : 34 GB

The following programs as well as their dependencies were installed and im-

ported into the notebook in order to run the experiment :

• NumPy

• Pandas

• Scikit-learn

• XGBoost

4.2 DataSet

Since we mainly focused on machine learning techniques to detect traditional and

novel DDoS attack in SDN, we require training and testing network traffic to train

and evaluate our classifier models. This training and testing network flow dataset

should be robust.

4.2.1 Dataset Source

For our experiment , we have used the InSDN data set published in [3] paper.

This is the most recent published dataset for Intrusion Detection in SDN. The

data set was published in 2020.

The dataset is divided into three groups based on the traffic category and target
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machines. The first group contains attack traffic that targets the Mealsplotable-2

server, the second group contains attack traffic on the OVS machine and the last

group contains normal traffic data only.

This InSDN dataset was generated using CICFlowMeter.
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4.2.2 Dataset Characteristics

The dataset contains more than 80 features with 56 categories. The entire feature

set is divided into 8 broader groups :

Network identifiers attributes Network identifiers attributes IP ad-
dress, Port number, protocol

Packet-based attributes total number of packets in a forward
and backward direction

Bytes-based attributes total number bytes in the forward and
backward direction

Interarrival time attributes the interarrival time in both forward
and backward directions

Flag attributes SYN Flag, RST Flag, Push flag, etc.
Flow descriptors attributes the number of packets and bytes in

both forward and backward direction
Subflow descriptors attributes the number of packet and bytes in

forwarding and backward directions

Table 2: Dataset Characteristics
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4.2.3 Data Set pre processing and feature Selection

From a 84 set of features a subset of 48 features is selected which are specific

to SDN environment. We derived 6 key features from these 48 feature set. The

feature mapping of the source dataset features and our derived features is shown

below :

Source Dataset Feature Derived Dataset Feature
Tot Fwd Pkts packet count
Tot Bwd Pkts

Tot len Fwd Pkts Byte Count
Tot len Bwd Pkts

Flow Pkts Packet rate
Fwd Pkts Tx rate
Bwd Pkts Rx rate
Flow Byte Byte rate

Table 3: Dataset Mapping

The rest of the features have been discarded as they either do not contribute to the

detection of the attack or have high correlation with the already derived features.

There are 141953 data points in the reduced/derived dataset. We split the

dataset into a train set and a test set of a 80-20 split ratio. We normalize the con-

tinuous and discrete values within the range of 0 to 1 using the following formula:

yki =
xk
i − xk

min

xk
max − xk

min

(4)
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The table (no.) shows the training set and test set used in the experiment.

Training Set Testing Set Total Features

DDoS 58943 14586 73,529 6

Normal 54619 13805 68424 6

Table 4: DATA SETS USED IN EXPERIMENT

A flowchart showing the experimental procedure is shown below:

Figure 5: Flowchart showing experimental procedure
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5 Result Analysis

In this section , we show the results of the classification using XGBoost algorithm

classifier and then compare it to 4 other classifiers including KNN , Random For-

est, Decision Tree and SVM. The performance measures used here are : accuracy

, false alarm rate , Detection Rate and Execution time.

Predicted DDoS Predicted Normal Total

Original DDoS TP FN P

Original Normal FP TN N

Table 5: CONFUSION MATRIX

The first three indicators are calculated using confusion matrix and the given for-

mulas

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

Accuracy denotes the ratio of the number of samples that are correctly classified

by the model to the total number of samples

FalseAlarmRate =
FP

FP + TN
(6)

The False Alarm Rate(FAR) denotes the ratio of the number of samples that are

incorrectly classified as attack traffic even though it is normal traffic to the number

of all normal traffic samples
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DetectionRate =
TP

TP + FN
(7)

The detection rate(DR) denotes the ratio of the number of attack samples that

are correctly classified in comparison to the total number of DDoS attack samples .

A table showing the performance metric of the classifiers is shown below :

Accuracy

(%)

Detection

Rate(%)

False

Alarm

Rate(%)

Execution

Time (in

sec)

XGBoost 99.83 99.97 0.185 5.05

KNN 99.80 99.79 0.192 17

Random Forest 99.78 99.78 0.226 6.18

Decision Tree 99.42 99.71 0.857 11

SVM 96.59 99.97 6.615 1560

Table 6: Comparative Analysis between the classifiers
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5.1 Accuracy

As we can see in Figure(6) , XGBoost classifier achieves highest accuracy com-

pared to the other four classifiers. The Table no.6 shows that the accuracy of the

XGBoost classifier is about 99.83% whereas that of KNN, RF,DT and SVM are

99.80%, 99.78%, 99.42% and 96.59% respectively. Even though all the classifiers

have given quite a good accuracy score , XGBoost has outperformed the others in

accuracy.

Figure 6: Accuracy
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5.2 False Alarm Rate

Again in case of False Alarm Rate, XGBoost achieved a rate of 0.1851% which

is also the lowest amongst all other classifiers used in this experiment. Table no.

6 shows details of the False alarm rates for the rest of the classifiers.We can see

that KNN also has a very low False Alarm Rate of 0.192% . However SVM has a

significant FAR score of 6.615% .

Figure 7: False Alarm Rate
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5.3 Detection Rate

From Figure(8) , we can see that XGBoost classifier also has the highest detec-

tion rate of 99.97%. However, SVM classifier also has the same DR for the given

dataset. From Table no.6 we can speculate that the other three classifiers have

about same detection rate which is lower than XGBoost and SVM.

Figure 8: Detection Rate
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5.4 Execution Time

In Table no.6 we can see that the execution time of XGBoost classifier is 5.03 sec-

onds while that of KNN , Random Forest, Decision Tree and SVM are 17s,6.18s,11s

and 1560s respectively. Figure(9) shows a logarithmic plot of the execution time

of the different algorithms. We can see that XGBoost has the lowest run time and

SVM has the highest run-time amongst the classifier algorithms.

Figure 9: Logarithmic Plot for Execution Time

5.5 Summary

In summary , the results of binary classification on the test set denotes that

XGBoost classifier outperform the rest classifiers in accuracy, detection rate ,

execution time and false alarm rate. Even though all classifiers have a very good

performance and accuracy score , still one of the main concerns of our work was

early detection of the DDoS attacks. As the experimental results prove, XGBoost

classifier has a very low execution time with highest accuracy.So, we can say that

our model is the best fit to fulfill our requirements and objectives.
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6 Conclusion

Even though InSDN is a SDN specific anomaly detection dataset, it doesn’t take

into consideration the new type of DDoS attack mentioned in [2,3]. In future we

plan to included new type of DDoS traffic in InSDN dataset and evaluate the per-

formance of Support Vector Machine (SVM), Decision Tree (DT), Random Forest

(RF), K-Nearest Neighbor (KNN) and Extreme Gradient Boosting (XGBoost).

We have already written a python script using scapy library to generate the new

type of DDoS attack in the virtual SDN environment. The topology proposed

above is created using Mininet, an emulator to emulate SDN topologies. Then

we used packet capturing and analyzer like Wireshark and tshark to get the pcap

file. This pcap file can be converted to csv format using either Wireshark or

tshark. Tshark is the CLI version of Wireshark. Traffic captured by Wireshark

has 242,000 features in total over 3000 protocols. We can collect SDN specific

feature from pcap file using CICFlowMter [2].A detailed description about our

pcap file containing new DDoS attack is mentioned below:

Figure 10: FlowDump in WireShark for New DDoS Attack
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In future, after evaluating novel SDN specific dataset containing new DDoS at-

tacks, we will save the best DDoS classifier as a pkl file and load it in the controller.

The controller can request flow information from switches and predict whether the

traffic is benign or malignant. If the traffic turns out to be malignant, necessary

measures can be taken by the controller depending on the rules/policy put in ac-

tion by the network administrator. For example, as controller can act as a hub,

load-balancer and firewall application, we plan to restrict packets from malicious

sources using firewall application if the model predicts PACKET IN request from

switch to controller as malignant traffic.

SDN security is now a major concern. DDoS attacks are becoming more and

more prominent. In this report, we have shown that various work done on early

detection of DDoS attacks, the dataset used in IDS training/testing and the scope

to improve the solution to the problem. Through our research, we focused on

new type of DDoS and novel SDN specific dataset to evaluate the performance of

existing machine learning models.
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