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Abstract

Keywords: Segmentation, Attention Gate, Residual Block, U-Net,
Double U-Net.

A common use case for image segmentation in medical-image-based diagnosis is
to help clinicians to focus on a specific area of the disease. Manually inspect-
ing polyps from colonoscopy for colorectal cancer or performing a biopsy on skin
lesions for skin cancer are time-consuming, laborious, and complex procedures.
Automatic medical image segmentation aims to expedite this diagnosis process.
The accuracy of image segmentation has increased due to advancements in ma-
chine learning techniques and deep learning models. However, there is still room
for improvement as there exist various challenges due to the large variation in the
appearance of objects in different sizes with no distinct boundaries. To address
these issues, we propose a novel-attention based residual Double U-Net architec-
ture that improves on the currently existing skin lesion segmentation networks.
We incorporate attention gates on the skip connections and residual connections in
the convolutional blocks of Double U-Net, a state-of-the-art (sota) segmentation
network. The attention gates allow the model to retain more relevant spatial infor-
mation by suppressing irrelevant feature representation from the down-sampling
path. At the same time, residual connections help to train deeper models by en-
suring better gradient flow. We conducted experiments on three datasets: 1SIC
2018 (skin lesion), CVC Clinic-DB (polyp), and the 2018 Data Science Bowl (nu-
clei) datasets and achieved Dice Coeflicient (DSC) scores of 91.64%, 94.35%
and 92.45% respectively. Further improvement can be achieved by simplifying

the structure of our architecture in order to reduce the number of parameters.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Skin cancer is one of the most rapidly growing cancer worldwide. Melanoma, a type
of skin cancer, accounts for 75% of skin cancer deaths [44], so the proper diagnosis
of melanoma is of growing importance. When detected early, the 5-year survival
rate for melanoma is 95% [40]. Manually inspecting and performing a biopsy on
skin lesions for cancer is time-consuming, laborious, and requires complex clinical
experiences and there could be errors due to fatigue. So diagnosing melanoma
quickly and accurately is a critical task. This is where computer-aided approaches

could be helpful in efficiently diagnosing melanoma from dermoscopic images.

Colorectal cancer is a common form of cancer affecting the colon and rectum.
Colonoscopy is a recognized polyp detection method for the early detection and
prevention of colorectal cancer. Patients with missed polyps who are diagnosed
with advanced-stage colorectal cancer have less than 10% survival rate whereas
early-stage diagnosis can ensure survival rates greater than 90% [4]. However,
clinicians need to carefully examine the colonoscopy input for polyps which can be
challenging due to their various morphological features and sizes. If there are flat

polyps, they align with the walls of the rectum, making it indistinguishable from
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its surroundings. Automatically segmenting out the polyps can help to facilitate
better diagnosis as it can pick up on the slight pixel variations in order to extract

out the region of interest, which may not be perceivable to the human eye. [19, 32].

1.2 Overview

Image segmentation is the process of assigning a label to every pixel in an image
such that pixels with the same label share similar characteristics. Labeling the
pixels in this way results in the region of interest (ROI) sharing the same label.
One of the pivotal applications of image segmentation is localizing diagnostically
important anatomical structures on medical images, also known as biomedical
image segmentation. It is a crucial task for the automation of medical image-based
diagnosis. It can be used to identify single structures of an elliptical shape. Heart,
kidney cells, skin lesions, polyps, etc. all fall under this category [3|. Segmentation
of these structures is one of the important pre-processing steps for other medical

tasks like classification or detection.

In the early days, medical segmentation was done using traditional machine learn-
ing methods. Celebi et. al. [9] performed unsupervised methods to segment out
skin lesions using clustering algorithms. Wong et. al. [49] implemented a stochas-
tic region merging approach on a pixel level and a region level for extracting the
lesions from macroscopic images. For automatic polyp segmentation, Gross et. al.
[23] used a template matching algorithm where they applied multi-scale filtering
for edge detection, the result of which are then compared to a set of elliptic tem-
plates. With the advancement in technology and rapid increase in computational
resources, however various deep learning models have emerged for the analysis of
medical images. Although the results of these models have been impressive, anal-
ysis of medical images with lesions, polyps, and other abnormalities with these
techniques still experiences some challenges due to the unique and complex fea-
tures of the skin lesion images. Convolutional Neural Networks (CNNs) have

recently had excellent performance across several medical segmentation bench-
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marks [34]. One of the most used neural network architectures for biomedical
image segmentation is U-Net [41]. It uses a series of CNNs in the encoding path
for spatial information and a similar series of CNNs in the contracting path with
skip connections to retain contextual information. This allows the network to
simultaneously learn context and precise localization. Various modifications and
improvements to the U-Net have been proposed. Zhou et. al. [51] introduced U-
Net++ where the encoder and decoder are connected via convolutional networks
instead of simple concatenation. Oktay et. al. [39] proposed attention gates on
the skip connections that allow the model to automatically learn to focus on target
regions having irregular and non-standard shapes. Jha et. al. [29] proposed an ar-
chitecture called Double U-Net based on two U-Nets stacked on top of each other.
More recent image segmentation architectures include the use of transformers that
help to model long-range contextual information that lead to better performance
as seen in DS-TransUnet architecture by Lin et. al. [33] and Boundary Aware
Transfomer architecture by Wang et. al. [46]. Srivastava et. al. [43] introduced
a residual fusion network having the ability to exchange multi-scale features that

ensure better propagation of high and low-level features.

1.3 Problem Statement

The goal of this thesis is to delineate the region of interest (skin lesion, polyp,
or nuclei) from biomedical images. So taking the images as input, we need to
generate a binary mask of the corresponding image where the pixels covering the
region of the lesion belong to one class (region of interest) and all the other pixels

belong to another class (background).

Medical Image Segmentation can be defined as an automatic process to detect
boundaries or region of interest (ROI) within a 2D or 3D image. For segmentation,
we assign each pixel a specific class, where the ROI belongs to one class and all

the other pixels belong to another class.

Segmentation can be divided into two types:
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e Binary segmentation: The ROI belongs to one class (1) and all the other

pixels belong to the background class (0) as shown in Figure 1.2.

e Semantic segmentation: The ROI belongs to one of multiple classes along

with the non ROI regions belonging to the background class as shown in

Figure 1.1: Examples of semantic segmentation (Courtesy of [22])

Figure 1.1.

Eial

-

d

°

(a) Dermoscopic image containing b) Corresponding binary mask

skin lesion highlighting the region of interest

Figure 1.2: An example of input skin lesion image and its corresponding output

mask (Courtesy of [15])
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For example, skin lesions are areas of skin that look different from the surrounding
area. They are often bumps or patches, and many issues can cause them. So the
task for skin lesion segmentation is to identify the pixels that belong to the ROI

in the lesion image and group them together, whether it be binary or semantic.

1.4 Research Challenges

In order to sufficiently train deep models, a large number of training samples are
necessary. However, the availability of medical images is very scarce, especially for
rare diseases such as melanoma. This poses a significant challenge in the domain

of medical image segmentation [30].

Due to huge variations in human skin color, skin lesion segmentation becomes an
incredibly complex task. In addition to that, variability in lesion location, size,
and shape makes the task even more challenging. Lesions with irregular and fuzzy
boundaries also contribute to difficulties in localizing them. The presence of noise
and various artifacts like hair, air bubbles, and blood vessels also affect image
interpretation by computer-aided lesion segmentation techniques. In some cases,
color illumination and low contrast of images where lesions are visually inseparable
from the background skin color, pose additional difficulty in segmenting the lesion

accurately and may require some form of pre-processing [36, 1].

Polyps in colonoscopy images are also subject to variable sizes and shapes. More-
over, they can be very small and flat, becoming indistinguishable from the mucosa
of the colon. Nuclei can also appear densely clustered, making it difficult to extract

the overlapped objects.

Apart from issues related to the input images, some of the corresponding ground
truth masks acquired from the benchmark datasets also contain noise and are
mislabelled. Finally, training our models requires a huge amount of computational

resources which poses an additional challenge in our research.
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1.5 Contributions

In this report, we have introduced a novel architecture that is built upon the

Double U-Net model with our contributions as follows:

e We incorporate attention gates that allow the model to retain more rel-
evant spatial information by suppressing irrelevant feature representation

from the down-sampling path of the encoding network.

e We include residual connections which help to train deeper models by

ensuring better gradient flow.

e We apply color constancy (CC) as a pre-processing technique that allows
the model to give state-of-the-art performance even with less number of data

augmentations over the standalone Double U-Net architecture.

1.6 Organization of Thesis

The chapter 2 of our thesis discusses related works in the domain. Chapter 3 gives
an overview of the benchmark datasets used for experiments. In chapter 4, we de-
scribe our proposed model. The 5th chapter gives a qualitative and aquantitative
analysis of the outputs of our work. Finally, the 6th and last chapter concludes

the work with a brief summary and direction for future research endeavors.



CHAPTER 2

LITERATURE REVIEW

With the dawn of deep learning came a very popular method for image segmen-
tation using CNNs. U-Nets, Attention U-Nets and Double U-Nets are among the
most successful approaches toward biomedical image segmentation. Moreover, in
recent times, many unique and interesting research directions have been adopted
to improve the quality of medical image segmentation. Generative Adversarial
Networks [21] have been a popular choice for lesion segmentation purposes. They
contain a pair of neural networks, a generator, and a discriminator. The goal
of the generator is to produce the segmentation masks while the discriminator
tries to differentiate between the original and generated masks. Using the feed-
back from the discriminator, the generator tries to produce better segmentation
results. The arrival of transformer-based architectures [45] in Natural Language
Processing (NLP) paved the way for Vision Transformers (ViT) [17] as well for im-
age classification, detection, segmentation, etc. ViTs add positional embeddings
to each patch of an image to form an input sequence that is fed to the transformer
network which uses a multi-headed attention block so that the image can retain
its positional information which is lost when using traditional neural networks.
Some preprocessing techniques have also been proposed to improve segmentation

tasks. Marin et. al. [3] suggest training on polar transformed images to give

12
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better segmentation results.

2.1 Convolutional Networks for Biomedical Im-
age Segmentation: U-Net

Deep learning has been widely used for medical image segmentation and has be-
come an important research direction in the field of computer vision. The promis-
ing ability of deep learning approaches has put them as a primary option for image
segmentation, and in particular for medical image segmentation. Especially in the
previous few years, image segmentation based on deep learning techniques has
received vast attention. U-Net [41] is an architecture for semantic segmentation.
As shown in Figure 2.1, it consists of an encoding path followed by a decoding
path. The encoding path follows the typical architecture of a convolutional net-
work that properly encodes contextual information. It consists of the repeated
application of two 3x3 convolutions (unpadded), each followed by a rectified lin-
ear unit (ReLU) and a 2x2 max pooling operation with stride 2 for down-sampling.
At each down-sampling step, we double the number of feature channels. Every
step in the decoding path consists of an upsampling of the feature map followed by
a 2x2 convolution (“up-convolution”) that halves the number of feature channels,
a concatenation with the correspondingly cropped feature map from the encoding
path, and two 3x3 convolutions, each followed by a ReLLU. The decoder path uses
the encoded context for accurate localization. Cropping is necessary due to the
loss of border pixels in every convolution. At the final layer, a 1x1 convolution is
used to map each 64-component feature vector to the desired number of classes.
In total the network has 23 convolutional layers. Furthermore, U-Net also has
skip connections between encoder and decoder blocks so that spatial information

can propagate deep into the network.

U-Net was applied to the segmentation of neuronal structures from electron micro-
scopic readings. The dataset was collected from the EM segmentation challenge

(8], on which they achieved a warping error [28| of 0.000353 surpassing exist-
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Figure 2.1: U-Net Architecture (Courtesy of [41])

ing methods. More experiments were performed on the segmentation of cells in
light microscopic images. They achieved an Intersection over Union (IOU) score
of 92.03% on the ISBI cell tracking challenge 2014 dataset [35], consistently im-

proving upon existing state-of-the-art models at the time.

U-Net consists of a very simple structure of convolutional networks. This poses
a range of limitations. The model cannot localize complex features with non-
standard shapes and irregular boundaries. The skip connections between the
encoder and decoder cannot suppress irrelevant features from the down-sampling
layers, for which the model loses the relevant spatial information for proper local-

1zation.

2.2 Attention U-Net

Since the skip connections in U-Net are unable to suppress irrelevant features from

the down-sampling path, Oktay et. al. [39] suggested a novel Attention Gate (AG)
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module on the skip connections. Attention gates learn how to focus more on target
regions of various shapes and structures, rather than having equal focus on the
entire image. Models trained with AGs know how to suppress irrelevant regions
in the image and focus more on extracting important features required for the

specific task.
Attention can be of two types:

e Hard Attention: The function of attention is to somehow focus on relevant
regions more. One way of implementing this would hard attention which
crops out the image in places of interest. Since hard attention considers one
region at a time to look at so it is not differentiable and hence cannot be

learned by backpropagation.

e Soft Attention: Weighs different parts of the image. A small weight is
given to the regions of lesser importance and a larger weight is given to the
regions of more importance. As training progresses, the model learns even

more about how to focus on relevant regions.

Soft Attention thus removes the need for explicit image localization modules of

cascaded CNNs and also the need for hard attention.

In the up-sampling path of the U-Net, the spatial information recreated from
the activation feature maps is incorrect. To counteract this, U-Net uses skip
connections joining spatial information from the down-sampling path with the
corresponding activation feature maps of the up-sampling path. This is because
feature maps from the down-sampling path have very good spatial information but
very poor feature quality, whereas feature maps from the up-sampling path have
very good feature representation as they come from a deeper part of the network
but have poor spatial information. Thus, implementing skip-connections gives the

best combination of spatial and feature representation.

However, implementing the skip connection brings over redundant features from

the down-sampling blocks because they have poor feature quality as they are
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extracted from shallower layers of the network. Placing AGs at the spot of the skip
connection helps us suppress this redundant information. In Figure 2.2, we can see

that there are gates placed in places where the skip connections are implemented.
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Figure 2.2: Attention U-Net Architecture (Courtesy of [39])

The authors of [39] show that incorporating AGs in the skip connections improves
the performance across all the metrics. The results of Attention U-Net compare

to U-Net on the TCIA Pancreas-CT Dataset [14] is shown in Table 2.1.

Method Dice Score | Precision Recall S2S Dist (mm)

U-Net 0.690 = 0.132{0.680+0.109| 0.733£0.190 | 6.389+3.900
Attention U-Net |0.712+0.110|0.693+0.115|0.751+0.149 | 5.251+2.551

BFT

U-Net 0.820+0.043 |0.824£0.070| 0.8284-0.064 | 2.46440.529
Attention U-Net |0.831+0.038|0.825+0.073|0.840+0.053 | 2.305+0.568

AFT

U-Net 0.815£0.068 |0.815%£0.105| 0.826+0.062 | 2.576£1.180
Attention U-Net | 0.821=£0.057 [0.815+0.093|0.835+0.057 | 2.333+0.856

SCR

Table 2.1: Attention U-Net vs. U-Net on the TCIA Pancreas-CT Dataset in all
three conditions: Before Fine Tuning (BFT), After fine tuning(AFT), and Mod-
els trained from scratch (SCR) (Courtesy of [39])
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2.3 Double U-Net

Debesh Jha et. al. [29] proposed Double U-Net, a novel architecture for semantic
image segmentation. Although Attention U-Net improved upon the traditional
U-Net, it still remained a simple convolutional architecture. To capture more
complex regions of interest, the authors proposed an architecture that uses two
U-Nets in sequence. The Double U-Net outperforms the standalone U-Net due to
a lot of factors. A typical architecture of the Double U-Net is shown in Figure 2.3.
The improvements of Double U-Net over the standalone U-Net are achieved with

the help of the following modules:

e Encoder 1: Instead of a normal encoder, the authors use a VGG-19 archi-
tecture [42] pre-trained on the Imagenet [16] dataset. The intuition is that
its architecture is quite similar to that of the encoder path of a U-Net. On
top of that, it harnesses transfer learning to leverage the pre-trained weights

while training on small datasets.

e Atrous Spatial Pyramid Pooling (ASPP) Layer: The ASPP [11] block
uses re-sampling techniques at multiple rates and dilated convolutions to
extract more meaningful contextual information compared to other context

extraction techniques.

The ASPP block is used in both the bottleneck layers of Network 1 and
Network 2.

e Concatenation of the output from Network 1 and Network 2: If
we concatenate the outputs from network 1 and network 2 the boundaries
of the segmentation mask get much more refined, which is visible in Figure

2.4.

e Squeeze and Excite blocks: As the network gets deeper, the number of
channels increases. Each of these channels might contain different types of
feature representation. Thus, each channel of the model’s filters can learn

different weights. The task of the Squeeze and Excite blocks[25] is to filter
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out which channel information is more relevant by using a series of fully

connected layers followed by ReLU activation. There are Squeeze and Excite
blocks in each of the blocks of decoder 1, encoder 2, and decoder 2 of the
Double U-Net.

Input Outputl Output2 Final OQutput

K ik XK ]
L s e e

Figure 2.4: Impact of concatenating two outputs of the Double U-Net (Courtesy
of [29])

Double U-Net performed significantly better than other baseline models. The
authors performed experiments on the CVC-Clinic DB dataset [4] for polyp seg-
mentation, the ISIC 2018 Dataset [15] for skin lesion segmentation and the 2018
Data Science Bowl dataset [7] for nuclei segmentation. They achieved a DSC
score of 0.9239 on the polyp dataset surpassing the traditional U-Net which
scored 0.8781. For the lesion dataset, they outperformed other state-of-the-art
methods by 5.7%. Finally, for the nuclei segmentation, the authors achieved a
promising DSC score of 0.9133. These results show that the modules discussed

above effectively improve Double U-Net over its traditional counterpart.

2.4 Skin Lesion Segmentation using Generative
Adversarial Networks

Izadi et. al. [27] proposed a pix2pix [26] based segmentor network to segment

out skin lesions. They used the U-Net as a generator and used a Critic network
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which acts as the discriminator, by assigning a real value number to the input
of the discriminator. The architecture of the network proposed in this paper is
shown in Figure 2.5. The authors trained the model on the DermoFit dataset [2]
and achieved a DSC score of 0.898 improving on the traditional U-Net’s score
of 0.887, thus showing that adding a critic network along with U-Net produces

better segmentation masks.
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Figure 2.5: Architecture proposed by Izadi et. al. (Courtesy of [27])

Wei et. al. [48] proposed a GAN-based boundary aware architecture as shown in
Figure 2.6 where they tackled the challenge of irregular boundaries by introducing
a Scale-Att-ASPP module in the skip connections for more contextual information.
They also introduced a multi-scale L1 loss that guides the model to learn more
meaningful boundary information. Their proposed model was evaluated on the
ISIC 2017 dataset [5] and they performed slightly better compared to other state-

of-the-art models at the time with a dice coefficient of 0.8781.

2.5 Transformer-based model for medical image
segmentation

Convolution operations are generally good for modeling local information, hence
U-net [41] works very poorly when trying to model long-range dependencies. As a
result, U-Net is not able to segment out structures that are not regular and shows

a great range of variation. Chen et. al. [10] proposes a new architecture called the
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Figure 2.6: Architecture proposed by Wei et. al. (Courtesy of [48])

TransUNet which uses both U-Net and Transformers that solves the problem of
U-Net alone not being able to capture long-range dependencies. In their proposed

architecture the Transformers act as a strong encoder.

If we directly use the transformer as an encoder on the tokenized input image
and use decoders to upsample the encoded features, it does not produce satisfac-
tory segmentation maps. As Transformer treats its input as 1D sequences and
thus concentrates on how to model global context at all stages, this results in
low-resolution features lacking detailed localization information. To alleviate this
problem the authors of this paper propose a slightly different approach to design-
ing the encoding path by using a hybrid CNN-Transformer architecture. This
leverages both the high-resolution features provided by the CNN and the global
context extracted by the Transformer. In 2.7, initially in the encoding path, CNN
is used to extract high-resolution features from the input image. After that 1x1
patches are extracted from the feature maps of the CNN, and patch embedding
is applied to the extracted patches, which maps the vectorized patches into a D-
dimensional embedding space using a trainable linear projection. The decoding
path consists of multiple upsampling layers taking in encoded features and through
a series of convolution and transposed convolution the required segmentation map

is generated.

For experimentation, the authors trained their model on the Synapse Multi-Organ
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Figure 2.7: Architecture of TransUnet. (a) block diagram of the transformer

layer, (b) overall framework of TransUnet (Courtesy of [10])

segmentation dataset ! and the Automatic cardiac diagnosis challenge (ACDC)
dataset 2. They achieved an average Dice Score of 0.7748 on the Multi-Organ
dataset and 0.8971 on the ACDC dataset, improving well upon the likes of U-Net,
Attention U-Net and ViT itself.

2.6 Polar image transformations to improve med-
ical image segmentation

Rather than proposing an improved model for image segmentation tasks, Marin
Bencevic et. al. [3] proposed a pre-processing technique that improves neural
network performance and data efficiency on segmentation tasks. Their suggested
method was to convert cartesian images to polar coordinates such that the center
point of the object becomes the polar origin for the transformation. This reduces
the dimensionality of the image and also separates the segmentation task from the
localization task which helps the model to converge easier. They proposed two

methods for obtaining the polar origin of an image: (1) Estimating with a model

'https://www.synapse.org/#!Synapse:syn3193805/wiki /217789
2https://www.creatis.insa-1lyon.fr/Challenge/acdc/
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trained on non-polar images, and (2) Estimating with a model trained to predict

the optimal origin.

In the first method, the authors use a cartesian network that takes in a cartesian
image as input and performs an initial segmentation. This cartesian network
can be any neural network of choice that can perform segmentation tasks. The
authors of this paper used U-Net [41], Res-U-Net++ [31], and DeepLabV3+ [12]
as their choice of neural networks for all the experiments. Using the segmentation
produced by the cartesian network, the polar origin or center of mass of the image
can be calculated using a few simple mathematical equations. To calculate the
center of mass of an image I(x,y), at first the spatial image moments matrix M
needs to be determined. The entry of the matrix at the i-th row and j-th column

can be calculated using the following formula:

Mg = ZI(CL‘, y).aty’ (2.1)
zy

After this, the center of mass of the image (c,,c,) can be calculated using the

following formula:

Cy = J\/fgl/ﬂ/IOO (23)

This center of mass is used to transform the original cartesian input image to
its corresponding polar coordinates. This polar image is then fed into the polar
network which is another neural network of choice. This network produces a
second segmentation mask in polar coordinates and after applying the inverse polar
transformation to this output, the final cartesian segmentation mask is obtained.

A walk-through of this method can be seen in Figure 2.8a.

In the second method, a center-point predictor network is trained whose task is
to specifically predict the center of mass of the input image. This model is based

on the stacked hourglass architecture [37]. The model takes a cartesian image
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Figure 2.8: Two of the proposed methodologies illustrating the pipelines for im-

age segmentation using polar transformation (Courtesy of [3])

as input and generates a heatmap prediction of the image. The ground truth
heatmaps required for training the model are generated using the same equations
discussed in 2.2. The coordinate of the pixel with the highest intensity in the
heatmap is considered to be the polar origin which is then used to transform the
cartesian image to its polar form. The polar image is then fed to the polar network
similar to the previous method. The polar network produces a polar segmentation
mask on which inverse polar transformation is applied to generate the final output

segmentation mask. The steps of this method can be seen in Figure 2.8b.

The authors of [3] show in their experiments on the polyp [4] and skin lesion [15]
datasets that they got the best results using the second method of the center-
point predictor. They were able to achieve a dice coeflicient of 0.9374 on the
polyp dataset using U-Net as their choice of polar network and a dice coefficient
of 0.9253 on the skin lesion dataset using Res-U-Net++ as the polar network

making their approach the current state-of-the-art.
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PROPOSED METHODOLOGY

The traditional U-Net has a very simple structure of a decoding path followed
by an encoding path. In the decoding path, the activation cannot be up-sampled
properly as spatial information gets lost. To overcome this, skip connections are
added from the encoder blocks to the decoder blocks. But due to poor representa-
tion of features from the encoding path, irrelevant features are also concatenated
in the skip connections. The Attention U-Net alleviates this problem by discard-
ing irrelevant features using attention gates. The Double U-Net proposes using a
pre-trained VGG-19 model as the first encoder, ASPP layers, Squeeze and Excite
blocks, and finally concatenating the outputs of two U-Nets stacked on top of each
other to produce more refined segmentation maps. However, it still fails to filter
out the irrelevant features being concatenated in the skip connections. Thus, the
Double U-Net leaves scope for spatial attention to be implemented and filters out

those irrelevant features through the skip connections.

The Double U-Net is a very large network with a significant number of parameters
and the architecture proposed by the authors does not include residual connections
in the encoding and decoding blocks. To ensure better gradient flow and quick
convergence, we consider incorporating residual connections in the encoding and

decoding blocks.

25
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Finally, the authors of Double U-Net suggest augmenting the ISIC 2018 dataset to
increase the dataset size to 50,000 images. Unfortunately, this is computationally
infeasible for us to train. Thus, it provides us an avenue to use the color constancy
algorithm as a pre-processing step that can reduce the number of training images

in the dataset making the training process much more computationally feasible.

With these research gaps in mind, we propose a spatial attention-based Double
U-Net architecture with residual connections across the convolutional blocks that
can be trained using a smaller dataset using a color constancy algorithm as a

pre-processing technique.

3.1 Overview of our proposed architecture

Figure 3.1 illustrates the block diagram for our proposed architecture. The input
image is fed into Encoder 1 which is a pre-trained VGG-19 network, followed by
an ASPP block which is used to retain contextual information. The activation
maps produced are then passed to Decoder 1 which is a series of upsampling
convolutional blocks to generate an output. This result is further multiplied with
the input image and then passed through another set of Encoder-ASPP-Decoder
path to produce a second output. The outputs from the first and second decoder
are concatenated and passed through a final convolutional block to generate our
final segmentation mask as the output of our model. We incorporate attention-
based skip connections between Encoder 1-Decoder 1, and Encoder 2-Decoder 2

to retain more spatial information.

As shown in Figure 3.7b the convolutional blocks that make up each of the encoders
and decoders contain residual connections between the input of the convolutional
block and the output of the CONV-BATCHNORM-ReLU-CONV-BATCHNORM
path to better learn the identity function to prevent vanishing gradients. Further-
more, dropout is added as means of regularization to prevent overfitting. Finally,
the output is passed through a squeeze and excite block that provides channel-wise

attention and the final output is fed to a subsequent convolutional block.



CHAPTER 3. PROPOSED METHODOLOGY 27

We apply color constancy as a pre-processing technique to the input images before
feeding them to our network. Alongside this, our proposed model has four main
components, namely a squeeze and excite block, an ASPP block, attention gates
on skip connections and a modified convolutional block with residual connections.
The data pre-processing and key components are discussed in detail for the rest

of this chapter.
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Figure 3.1: Block diagram of the proposed model architecture

3.2 Data preprocessing: Color Constancy

Dermoscopy and colonoscopy images are captured on different camera devices
and consequently under different light sources. There are also places of high
reflectance in the images containing polyp. All these issues can be alleviated if we
can normalize the image using the Color Constancy (CC) [38] as a pre-processing
step. Even though there are changes in the illumination of different pictures, color
constancy helps bring the illumination of all the images into the same illumination

spectrum, which in most cases is the white light.

In Figure 3.2, we observe that before applying color constancy the values in the
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red channel are higher than all the other channels. As a result the image also looks

reddish. After the pre-processing is done we see all the channels have an equal

value and produce an image with near-white skin as seen on the bottom left.
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Figure 3.2: The graphs in the middle column show the values of each RGB color
channel before normalization, where it can be clearly seen that R channel values
are higher, resulting in the red skin of the original image shown in top left. Af-
ter normalizing each channel value, the values for each channel get distributed

to similar values, producing an image with near white skin as seen on the lower

left. (Courtesy of [38])

There are several algorithms for color constancy but the one that we used is the
shades of gray algorithm [20]. This algorithm is formed from the notion that color
constancy would perform better if the scene average, that is, the color to which
different images are brought is a shade of grey. The equation of the algorithm is

shown below:

(3.1)

(Lipis)

[ dx
Here p is the Minkowski Norm and shades of grey works best with p = 6. An

example of shades of grey is shown below in Figure 3.3.
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Figure 3.3: Before and after applying shades of gray variant

For the ISIC 2017 dataset [5], the authors Hua Ng et. el. [38] found that applying
the shades of gray [20] algorithm improved the Dice Coefficient by at least 1
percent for three classes Nevi, Melanoma, and Seborrheic Keratosis. Moreover,
this is one of the easiest color constancy algorithms to implement. Thus, we got
the motivation to use the shades of gray algorithm as a pre-processing step in our

methods.

3.3 Squeeze and Excite Block

Double U-Net employs the Squeeze and Excite blocks which recalculates the
channel-wise feature responses by modeling the dependencies between the acti-
vation in each of the channels. In Figure 3.4, we can see that the height and width
of the tensor are made to be one which is then passed through a series of fully
connected blocks and activation. As the input propagates through this network, it
filters out which channel information is more relevant. By using this Squeeze and
Excite module in each of the blocks of decoder 1, encoder 2, and decoder 2, we
can construct an architecture that generalises extremely well across challenging

datasets.

3.4 Atrous Spatial Pyramid Pooling (ASPP)

ASPP is a module that performs re-sampling on activation maps at different rates
before applying convolutions. We apply multiply filters that have complementary

effective receptive fields, capturing relevant contextual information from the input
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Figure 3.4: Squeeze and Excite Block Architecture (Courtesy of [25))

image at multiple scales. This re-sampling is implemented using multiple parallel
dilated convolutional layers with different sampling rates [50]. Figure 3.5 gives
an illustration of how ASPP exploits multi-scale features by applying multiple

parallel filters to classify the center orange pixel.

3.5 Attention Gates

As channel-wise attention is already employed in Double U-Net, there is room for
improvement by incorporating spatial attention to suppress the irrelevant features
coming from the down-sampling path in the skip connections. Attention gates
help the model focus on relevant activations by giving prioritizing relevant regions
more than non-relevant regions. AGs do this by element-wise multiplying the input
coming from the encoder path with a weight matrix generated by the attention

gate. The detailed diagram of the gate is shown in Figure 3.6.
On the basis of Figure 3.6, the following describes how AGs work:

e The gate takes in two inputs x and g, which have varying size as x comes
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Figure 3.6: Attention Gate structure (Courtesy of [39])

from the down-sampling path one level higher compared to the gating signal
g.

e Let’s consider x to have a size of [128x128x128| and g to have a size of

[64x64x64].

e To make the size of the two signals equal, x goes through a convolution
with filter size (1x1), stride=2 and number of filters=128. g goes through
a convolution with filter size (1x1), stride=1 and number of filters = 128.

Thus both x and g have the same size of [64x64x128].

e The two signals of equal size are then added which makes the aligned weights

larger and unaligned weights comparatively smaller.
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e The resultant signal passes through a 1x1 convolution with number of fil-

ters=1, which collapses the size to [64x64x1].

e This signal then passes through a sigmoid activation which brings the ac-
tivation values between 0 1. This produces weights to filter out irrelevant
information coming from the down-sampling path. A weight closer to 1

indicates that particular activation is important and vice versa.

o The resultant signal is up-sampled to the size of x and element-wise multipli-
cation is done between x and the activation weights. Thus we are multiplying
each pixel of x with a weight calculated from the Attention Gate. These

weights get updated after each epoch through back-propagation.

e Through the multiplication, the dominant features are retained as they are
multiplied with values close to 1, while the irrelevant features are neglected

as they get multiplied with values close to 0.

Our intuition behind incorporating AGs is that since the traditional Attention
U-Net generates better feature maps with the help of AGs in skip connections,
the Double U-Net could leverage this soft attention mechanism as well. Hence we

incorporated AGs in the places where skip connections occur in the Double U-Net.

3.6 Residual Connections

Double U-Net is a very large network as it is one U-Net, which by itself is a neural
network, stacked on top of another. Furthermore, there are additional compo-
nents like the Squeeze and Excite blocks and ASPP blocks. So quite naturally,
the network gets very deep with a substantial number of parameters. As deeper
networks fail to propagate small changes in derivatives to earlier layers, they suf-
fer from vanishing gradient problem. To help facilitate proper gradient flow and
smoother convergence of the network, a need for residual connections arises. As
explained in [24], residual connections help deep networks perform better and con-

verge faster. Qur intuition was to employ residual connections in the encoder and
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decoder block units as Double U-Net is a deep architecture.

3.7 Improvement of our proposed convolutional

block over that of Double U-Net

In Figure 3.7, we can observe the differences between the structure of the convo-
lution blocks of Double U-Net and our proposed model. The convolution blocks
contain the fundamental components that build up each individual block of de-
coder 1, encoder 2, and decoder 2. Figure 3.7a shows the components of the
convolution block of the original Double U-Net. It consists of two consecutive
CONV-BATCHNORM-ReLU operations followed by a Dropout layer that pro-
ceeds to a Squeeze and Excite block. Figure 3.7b illustrates the changes that we
made to the convolution block in our proposed model. Here, the input passes
through two separate paths. The first path is similar to the original Double U-Net
block where the input passes through a series of CONV-BATCHNORM-ReLU-
CONV-BATCHNORM operations sequentially to produce an intermediate out-
put. But there is another parallel path where the same input goes through a single
CONV-BATCHNORM operation before being added to the intermediate output
produced from the first path. The addition of these two paths forms the residual
or skip connection that improves the gradient flow in our proposed model. The
concatenated output is then passed through a ReLU activation which is followed

by a Dropout layer before passing through a Squeeze and Excite block.

3.8 Architecture Variants

So far, we described the addition of residual connections and AGs in the Double
U-Net architecture and the entire structure of the model that we propose is shown
in Figure 3.1. We added AGs in the skip-connections between encoder 1-decoder
1, as well as between encoder 2-decoder 2. Based on the placement of attention

gates, we propose two variants of our model: Half-Attention Double U-Net and
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Figure 3.7: Comparison of the convolutional blocks of the Double U-Net with

ours

Full-Attention Double U-Net. When attention gates are placed only in the skip
connections between encoder 1-decoderl, we call the model Half-Attention Double

U-Net as shown in Figure 3.8.

When AGs are placed in the skip-connections between encoder 1-decoder 1 as well
as the skip-connections between encoder 2-decoder 2, we call it the Full-Attention

Double U-Net as shown in Figure 3.9.

3.9 Loss Function

To train and evaluate our model on each of the datasets we chose Dice loss as our

loss function which is defined by the following formula.

2|Imageyreq N IMmage g|+A

Dicejyes =1 (3.2)

| Imagepred|+|Imageg |+

Here, A represents a small constant to prevent dividing-by-zero. Imagepreq and

Imagey refers to the predicted mask and ground truh mask respectively.
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Figure 3.9: Block diagram of the Full-Attention Double U-Net
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RESULT ANALYSIS

4.1 Dataset Description

There are several datasets in the medical image domain that are regarded as
benchmark datasets. Among these datasets, we used the ISIC2018 (Skin Lesion),
CVC-ClinicDB (Polyp), and 2018 Data Science Bowl (Nuclei) datasets for training,

validating, and testing our proposed methods and architectures.

4.1.1 ISIC 2018

The ISIC 2018 Challenge [15] on Skin Lesion Analysis Towards Melanoma De-
tection was divided into three parts among which the first task was skin lesion
segmentation. This dataset includes 2594 dermoscopic images along with corre-
sponding professional annotated binary segmentation masks. Some samples of this

dataset can be seen in Figure 4.1.

4.1.2 CVC-ClinicDB

CVC-ClinicDB [4] is a database containing colonoscopy images and their corre-

sponding binary segmentation masks. These masks correspond to the region of

36
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(a) Original Dermoscopic Image (b) Lesion Segmentation Mask

Figure 4.1: Sample Image and Corresponding Binary Segmentation Ground

Truth Mask from ISIC 2018 Dataset (Courtesy of [15])

the image covered by polyps. The colonoscopy images were extracted as frames
from colonoscopy video sequences. Several types of polyps can be found within
these frames. This dataset contains 612 images from 29 video sequences along
with the manually annotated ground truth mask covering the polyp associated
with each image. The images have a resolution of 388x288 pixels. We can see a
few examples of these colonoscopy images along with their corresponding ground

truths in Figure 4.2.

4.1.3 2018 Data Science Bowl

The 2018 Data Science Bowl [7] dataset contains segmented nuclei images ac-
quired under a variety of conditions such as cell type, magnification, and imaging
modality (brightfield vs. fluorescence). This dataset forms a diverse collection of
biological images containing tens of thousands of nuclei. The nuclei in the images
are derived from a range of organisms including humans, mice, and flies. The
nuclei also appear in different contexts and states including cultured mono-layers,
tissues, embryos, cell division, genotoxic stress, and differentiation. This dataset

is designed in such a way that it challenges a model’s generalizability across these
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(a) Original Colonoscopy Image (b) Polyp Segmentation Mask

Figure 4.2: Example of Colonoscopy Image from CVC-ClinicDB Database Along
with its corresponding Ground Truth (Courtesy of [4]

variations. It contains 670 nuclei images and the segmented masks of each nu-
cleus. Each mask contains one nucleus and is not allowed to overlap, i.e. no pixel

belongs to two different masks. A few example images of this dataset can be seen

L 9«

in Figure 4.3.

Figure 4.3: Example Nuclei Images from 2018 Data Science Bowl Dataset
(Courtesy of [7])
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4.2 Experimental Setup

We trained our model and performed all experiments on Kaggle using Tesla V100
GPU. The training hyper-parameters used in our experiments for each dataset are
shown in Table 4.1. All of the datasets were split into an 80-10-10 train-valid-test
split. For the polyp and nuclei dataset, we used the original image size since they
are small datasets. However, for the lesion dataset, we had to resize the images
to 192*256 to balance between training time and complexity. We used Dice Loss
as the loss function and the Nadam [18] optimizer for each dataset. The learning
rates were varied according to the size of the dataset. We used a lower learning rate

for the nuclei dataset since the model would run out of data before convergence.

CcvC .
Dataset ISIC 2018 Nuclei

Clinic

Image Size 192*256 288*384 | 256%256

Loss Dice Loss | Dice Loss | Dice Loss
Optimizer Nadam Nadam Nadam
Learning Rate 0.0001 0.0001 0.00001
Epochs 40 395 30

Table 4.1: Training hyperparamaters for each dataset

Alongside applying CC, we performed normalization and sample wise centering
on the images to ensure zero mean and unit standard deviation. Random rota-
tion, Vertical and horizontal flip, converting to Hue Saturation Value (HSV) form,
random brightness-contrast, and histogram equalization were among the data aug-
mentation techniques we applied to each of the datasets to increase the dataset

sizes by six-fold [6].
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4.3 Evaluation Metrics

The measure of dice coefficient is the standard evaluation metric for skin lesion seg-
mentation. It represents the similarity between the generated skin lesion regions
and those of the ground truth. Apart from this. we have used other evalua-
tion metrics including Intersection over Union (IOU), precision, and recall which
are associated with four values, i.e. true-positive(TP), true-negative(TN), false-
positive(FP), and false-negative(FN). These four metrics are widely used in image

segmentation literature, and therefore are suitable choices for our experiments.

Duce = p Fﬁ)*fgp + FN) (41)
1.B

10U =757 FPTJ; FN (42)

Precision = T;;—)l—iFP (4.3)

Recall = TP+ FN (4.4)

4.4 Quantitative Results

4.4.1 Ablation study

We conducted three experiments incorporating different modules to determine
which overall pipeline works best for our cause. The first experiment is concerned
with the comparison between the two variants of our architecture. One is the Half
Attention Double U-Net, where the attention gates are only placed between the
first encoder and the first decoder, whereas the Full Attention variant also includes
attention gates between the second encoder and decoder. Table 4.2 indicates
that the Full Attention variant results in better performance (DSC of 91.64%)
compared to its counterpart (DSC of 90.9%). This implies that adding more
attention gates in the skip connections allows for more relevant spatial information

to be harnessed providing better segmentation results.
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Model DSC(%) | IOU(%) | Precision(%) | Recall(%)
Half-Attention-DU-Net 90.9 83.38 94.63 85.79
Full-Attention-DU-Net 91.64 84.63 95.76 86.13

Table 4.2: Result of our proposed approaches on ISIC 2018 dataset

The goal of our second experiment was to determine the effectiveness of adding a
critic network in improving the results of our proposed architecture. The job of
a critic network in a conditional GAN is to look at each individual patch in the
image generated by the generator and evaluate how real or fake they are. Using this
feedback from the critic, the generator can adjust its weight overtime to generate
better and better segmentation masks. As we can see from Table 4.3, initially, we
found that training the baseline DU-Net as the generator in a conditional GAN
setting helps to improve the DSC from 89.62% to 89.70%. However, when we
tried to use our Full-Attention-DU-Net as the generator, the model started to
overfit (training DSC 97.68% and test DSC 84.10%) due to a large number of
added parameters and a small amount of training data. Consequently, we removed
the critic network and trained the Full-Attention—-DU-Net model separately which
yielded a DSC of 91.64%.

Model DSC(%)
DU-Net 89.62
DU-Net + Critic Network (cGAN) 89.70
Full-Attention-DU-Net + Critic Network (cGAN) 84.10
Full-Attention—-DU-Net 91.64

Table 4.3: Comparative result of our proposed model with and without a critic

network ISIC 2018 dataset

Our aim in the third experiment was to illustrate the effectiveness of the different
modules that we wish to incorporate. One is the pre-processing of images using
color constancy, and the other is the incorporation of residual connections in the

convolution blocks of the encoder/decoder networks. As shown in Table 4.4, we



CHAPTER 4. RESULT ANALYSIS 42

observe that applying CC improves our model from a DSC of 90.73% to 91.64%.
This shows that transforming images so that they appear under a uniform light
source helps the model to achieve better segmentation results. Moreover, adding
residual connections further enhance the DSC to 91.68% which leads us to the
conclusion that the Full Attention Double U-Net model with residual connections
across the convolution blocks trained on images pre-processed by applying CC

generates the best possible results for the ISIC 2018 benchmark dataset.

Model DSC(%) | IOU(%) | Precision(%) | Recall(%)
Full-Attention-DU-Net
90.73 83.14 92.54 88.66
(Without CC)
Full-Attention-DU-Net
91.64 84.63 95.76 86.13
(CC)
Full-Attention-Res-DU-Net
91.68 84.68 94.19 87.55
(CC)

Table 4.4: Results of our proposed model on the effect of adding color constancy

and residual connections on ISIC 2018 dataset

4.4.2 'Training progression

We illustrate the learning process of our model through the graphs presented
in Figure 4.4, 4.5 and 4.6 where we show how the DSC scores and Dice losses
converge when training on all three datasets. In each of the cases, we can observe
the training and validation DSC scores are close to each other at the end of training
and have plateaued off except the one for the polyp dataset in Figure 4.5 where

we can observe a difference in train and valid loss indicating slight overfitting.
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Figure 4.4: Progression of Training and Validation Dice Loss and Dice Coeffi-

cients over the number of epochs for ISIC 2018 dataset
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Figure 4.6: Progression of Training and Validation Dice Loss and Dice Coeffi-

cients over the number of epochs for 2018 Data Science Bowl dataset

4.4.3 Comparitive analysis with current state-of-the-art

architectures

We evaluated our proposed architecture on three different datasets and compared
our results with that of the state-of-the-art models on these datasets. Table 4.5
shows the performance of the current state-of-the-art models on the ISIC 2018

dataset based on the Dice Coefficient. We can see that even though the base-
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Figure 4.5: Progression of Training and Validation Dice Loss and Dice Coeffi-
cients over the number of epochs for CVC-ClinicDB dataset

line Double U-Net requires a huge number of data augmentations, it still ranks
6th on the table. The authors used around 50,000 training images to reach the
given DSC score. The architectures of DS-TransUNet ranked 4th and Boundary
Aware Transformer (BAT) ranked 5h are both based upon transformer architec-
tures that are computationally very expensive to train due to their large number
of parameters. Based on the encoder used, the number of parameters in these
models can vary anywhere between 60 - 234 Million. Ranked 3rd on this table
is the RMSM U-Net which uses a complex dual attention mechanism that is in-
corporated on top of the traditional U-Net. The method ranked 1 in this table is
a pre-processing technique that converts cartesian images to polar coordinate im-
ages using a center-point predictor network. Therefore, this method relies heavily
on the pre-processing technique which requires a model based pre-processing
approach both during training and inference. Now our model improves upon all
the existing models discussed by using attention mechanism with a far less num-
ber of parameters (36 Million), and requires fewer images (14,000) to train with
the help of a much cheaper pre-processing technique which is the color constancy
algorithm.

To verify the robustness of our model, we further trained and tested our model

on two other datasets. Table 4.6 shows the results of our proposed model on the
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Rank Model DSC(%) | Year
1 Polar Res-U-Net++ [3] 92.53 2021
2 Our Model 91.68 2022
3 RMSM U-Net [13] 9152 | 2021
4 DS-TransUNet [33] 91.32 2021
5 BAT [46] 9120 | 2021
6 Double U-Net [29] 39.62 2020

45

Table 4.5: Comparative result of our model against the current state-of-the-art

models on the ISIC 2018 dataset

CVC-ClinicDB dataset in comparison to the current state-of-the-art results. We

can see that our model achieves the best DSC score (94.35%) which is higher

than all the existing methods in this dataset. Similarly, our model achieves the

best DSC score (92.45%) on the 2018 Data Science Bowl dataset as well. We can

see the scores of our model compared to the state-of-the-art models in this dataset

from table 4.7. From these experiments, we can successfully say that our model

generalizes extremely well on segmentation tasks across various types of medical

data.
Model DSC(%) | IOU(%) | Precision(%) | Recall(%)
Our Model 94.35 89.32 97.37 87.50
Polar Res-U-Net-++ [3] | 93.74 80.77 04.88 93.68
MSRF-Net [43] 0120 | 90.43 : .
Double U-Net [29] 92.39 86.11 95.92 84.57
U-Net [41] 87.81 78.81 03.29 78.65

Table 4.6: Comparative result of our model against the current state-of-the-art

models on the CVC Clinic-DB dataset
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Model DSC(%) | IOU(%) | Precision(%) | Recall(%)
Our Model 92.45 85.96 96.29 65.55
SSFormer-L [47] 92.30 86.14 - -
MSRF-Net [43] 92.24 85.34 - -
Double U-Net [29] 91.33 84.07 94.96 64.07
U-Net [41] 75.73 91.03 - -

Table 4.7: Comparative result of our model against the current state-of-the-art

models on the 2018 Data Science Bowl dataset

To summarize, if we compare the DSC scores of our proposed approach with that
of the standalone Double U-Net, we can observe a clear distinction in results across
all the datasets involved with a net improvement of 1.96%, 2.06% and 1.12%

over the lesion, polyp and nuclei datasets respectively.

Double U-Net Ours Net
Modality
(DSC) (%) (DSC)(%) | improvement (%)
Polyp 92.39 94.35 1.96
Skin Lesion 89.62 91.68 2.06
Nuclei 91.33 92.45 1.12

Table 4.8: Overall improvement on the three benchmark datasets over stan-

dalone Double U-Net

4.5 Qualitative Results

Figure 4.7 illustrates the outputs of our model for the three different datasets. We
can observe that our model was able to segment out even flat polyp structures
shown in Figure 4.7b and the application of CC helped to reduce the reflectance
in each image. From Figure 4.7a we can observe that the variable shapes and sizes

of skin lesions along with hair artefacts were also not a challenge as our model still



CHAPTER 4. RESULT ANALYSIS 47

produced high quality segmentation masks for them. Moreover, our model was
able to correctly segment out the densely connected nuclei cells as seen in the input
images in 4.7c, irrespective of the color of the image. From this qualitative analysis
we can conclude that our model mitigates the research challenges mentioned at
the beginning of this report and generates good quality segmentation masks across

all datasets 4.7a.
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Input Image Ground Truth Prediction

(a) Qualitative predictions of our model on skin lesion dataset

Input Image Ground Truth Prediction

(b) Qualitative predictions of our model on polyp dataset

Input Image Ground Truth Prediction

(¢) Qualitative predictions of our model on nuclei dataset

Figure 4.7: Qualitative results of our model across three datasets



CHAPTER 5

CONCLUSION AND FUTURE WORK

In this paper, we propose a novel attention-based residual Double U-Net architec-
ture for the task of medical image segmentation. Our approach incorporates three
components over the standalone Double U-Net architecture. One is the addition of
attention gates to the skip connections. We also added residual connections to the
convolutional blocks and applied the color constancy algorithm to each dataset as
a pre-processing step. As seen from the experiments our approach performs better
than standalone Double U-Net across several datasets highlighting the robustness
of our model. We achieved state-of-the-art DSC values in the polyp and nuclei
datasets while having DSC score close to the state-of-the-art in the lesion dataset.
For further improvements, we aim to design a simplified architecture to reduce
the number of parameters while retaining similar accuracy in order to train the
model faster. We can also look toward integrating different types of CNN blocks

into our model with different hyperparameters.
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