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ABSTRACT 

In recent years, the use of Unmanned Air Systems (UAS) has become popular in many 

industries including agriculture, logistics, security agencies and humanitarian missions. An 

Unmanned Air System consists of a drone or Unmanned Aircraft (UA) connected to the 

Ground Control Station (GCS) via various means of communication. During the early 

stages of development, most of these UAs were remotely operated by a pilot. However, 

various modes of autonomy are added nowadays to make way for autonomous flights. This 

allows the systems to be implemented in long haul flights, specifically in the realm of parcel 

delivery and humanitarian aid missions. To perform these missions, path planning is 

required since there is a multitude of paths that the UA can follow in order to reach its 

destination. The paths may vary in terms of distance, environmental parameters including 

wind speed and temperature, potential danger zones and so on. In order to minimize the 

costs of the user and to ensure the success of the mission, the operator has to select the best 

possible path for the flight. Since the problem comprises a lot of variables, a multiobjective 

function may be devised to help with the selection process. This paper explores the use of 

a custom-made cost function which is used to check the usefulness of a set path. The cost 

function takes into account the distance, time of completion and the energy consumption 

of the path to come up with a score for that specific path. The start and end points of the 

journey are fed to the system and an optimization algorithm is used with the custom-made 

cost function to derive the optimum path for the UA to complete the mission. The process 

is run for an array of environments, each with a different start and end point, and the 

optimized path is fed to the UA. The UA then actually flies through this route and the 

results of the actual flight are compared to the results obtained from the theoretical process 

to ensure that there is harmony between them.  
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CHAPTER 1: INTRODUCTION 

1.1 Background of the study 

Unmanned Air System or UAS in short is an assembly of a drone and the Ground Control 

Station or GCS in short with various means of communication between them[1][2]. The 

system can be reportedly piloted by a trained pilot in which case the aircraft is known as a 

Remotely Piloted Aircraft System (RPAS)[3]. However, various modes of autonomy can 

be added to the system to facilitate autonomous missions. Semi-autonomous features like 

auto pilot, steering assist, auto land is available, whereas more complex missions like 

autonomous touch and go, mass land survey, surveillance missions and so on.  

1.2 Applications 

1.2.1. Agriculture 

a) Agricultural Mapping: For agricultural mapping, survey drones are used which 

incorporate a specialist camera which includes multispectral/LiDAR/RGB sensors. 

b) Crop Health Assessment: From the images captured by the drones, Produce NDVI 

Image of the corn fields in the site, generate NDVI for the fields using multispectral 

data, Define regions for healthy crops, stressed crops & unhealthy crops[4]. 

c) Spraying: A tank, pump, and nozzles are all on board the spraying drone. Batteries 

may be used to power the drone. By using an automated device called the "Ground 

Station" to fly above their field, an operator may send a downward force of 

propellers to push a spray onto their crop. The turbulence from the drone's 

propellers helps to guarantee that the spray coverage is constant and comprehensive 

since the drone is usually just 9-12 feet (3-4 meters) above the crop[5].  

1.2.2. Industry Inspection 

Line of Sight Survey (LOS): It is the level of obstruction present between two places. This 

level of obstruction governs the visibility and quality of signal between the two points. 

Unmanned aerial vehicles (UAVs) are a promising component of future wireless 

communication networks because of their potential to link devices without access to 

existing infrastructure at a reasonable cost. On-demand wireless systems with low-altitude 

UAVs are in general quicker to deploy, more flexible to reconfigure, and likely to have 
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stronger communication channels owing to the availability of short-range line-of-sight 

(LoS) connections[6]. 

1.2.3. Package Delivery 

Drones can be used to supply and transport packages containing food, medical equipment, 

ration supplies etc over large distances in an exceeding short amount of time. The reduction 

in time is crucial while transporting goods nd supplies in time-sensitive scenarios. This has 

been implemented in many countries all over the world. Most notably, Zipline, a company 

based in the USA, is pioneering drone delivery all over the world. Besides this, there have 

been constant efforts from Amazon, Airware etc to repeat the same[7].  

1.3 Problem Statement 

While commercial airlines rely on radar technology coupled with an array of Air Traffic 

Control or ATC for coordination and movement in an airspace, drone technology is still 

not supervised in real time by a systemic set of coordinators. This is because most drone 

operations are carried out within a very small airspace which is in the range of 1-2 km from 

the take-off and landing position. Furthermore, a Remote Pilot is usually present during 

the operation of the drone within the 2 km operational circle or geofence. However, for 

long haul missions like, surveillance across the coast of Bangladesh or entire district survey 

of agricultural land, the path or route taken by the Unmanned Aircraft (UA) has to be 

clearly defined. This is to ensure that there is compliance between the autonomous mission 

and the laws of commercial aviation. Therefore, the GCS has to identify and plan the path 

to be taken by the UA by maintaining complete liquidity of the local airspace laws.  

When planning for the path taken by the UAV, the GCS Operators have to consider an 

abundance of factors before feeding the path to the autonomous system. Some of the factors 

are outlined below: 

I. Permitted Routes by Local Aviation Authority: Aerial robotics is subject to a lot of 

regulatory constraints from local government agencies. This is to ensure the safety of 

the people and the cause of the national safety regulations. As a result, drone operators 

have the liberty of flying in only certain green zones which are away from areas of 

commercial aviation to ensure the set standard of safety.  
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II. Energy Consumption of UA: The energy usage of the UA is a driving factor behind the 

route to be selected for a particular mission. If the energy consumption for a route is 

too high, it will lead to substantial losses for the commercial user. This can lead to a 

variety of other multivariable economic problems. Therefore, in order to make a profit 

and to cut down on costs, the drone operator at the GCS has to select the route that has 

the lowest energy consumption for the UA.  

III. Velocity of UA: The speed at which the UA flies is not usually constant. During turns, 

gaining height, the velocity is constantly changing. However, if 2 journeys are 

considered with 2 different average speeds, the total time to complete the journey will 

vary. This leads to the paradigm that the average speed of the UA affects the outcome 

of the mission in the sense that it controls how fast or how slow the mission is being 

carried out.  

IV. Total Distance Covered: The length of the path taken by the UA is also a factor to be 

considered when selecting the best possible path for flight during a mission. This is 

because the electro mechanical components of the UA operate within a certain 

threshold of operational limit. Crossing the limit would alter the overall safety of the 

mission. Hence, the total distance to be covered has to be controlled and the lowest 

distance to be covered should be selected. 

V. Miscellaneous Variables: Other variables including the sound or noise from drone 

operation in a neighborhood has to be controlled. Environmental factors such as wind, 

temperature etc. are also deciding factors while selecting the perfect path for the 

operation.  

1.4 Goal and Objective 

The goal of this thesis project is to find and derive the computational methods necessary to 

generate paths to be taken by a UA in an autonomous mission. The methods will then be 

used to run a custom-made cost function which will be used to evaluate the usefulness of 

the individual paths by considering a range of different factors. The best path will be 

selected by running an optimization algorithm which will find the best possible path for a 

given set of parameters. The entire process will be validated in real time using a custom-

made drone and using the drone to perform the real time mission using the results obtained 
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from the optimization algorithm[8]. The results of the experiment will then be evaluated 

against the theoretical data to prove the validity of the experiment.  

1.5 Scope and Limitations 

It should be noted that the path planning paradigm can be done in two ways. The scope of 

this paper will explore the path generation, optimization and selection of the best path from 

an array of different paths using various computational methods and optimization 

algorithm. However, this still leaves the drone susceptible to real time dangers and 

obstacles. In fact, real time obstacle avoidance using various image processing techniques 

may be used to avoid any obstacles that the drone encounters in real time. Furthermore, 

onboard computers coupled with various probes can allow the drone to consider various 

parameters including wind speed, outdoor temperature etc. to accurately carryout the path 

planning on air.  

The Global Positioning System (GPS) used in this project has an operational resolution of 

5m. This means that the positional data obtained may all vary by a certain degree. Using a 

Real Time Kinematics GPS would mitigate this problem but that is beyond the scope of 

this paper. 

CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Conventional Unmanned Aerial Vehicle (UAV) mission and route optimization has been 

developed with a single aim or set of control parameters in mind, as has been the case for 

many years. With each new application, whether military or civil, the technology and its 

use cases get more and more sophisticated. As a result, the goals are no longer linear or 

solitary in character, but instead reliant on a variety of factors. Several scholars have 

attempted to address the topic from multiple perspectives. 

2.2 Multi Objective Optimization for UAV Path Planning 

The application of the Multi-Objective Multi-Verse Optimization (MOMVO) method to 

handle the route planning issue of quadcopters with moving obstacles has been attempted 
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by [9]. This method is concerned with the quadcopter taking the shortest route possible 

while avoiding collisions with moving objects. 

The deployment of a set of homologous metaheuristics, such as the Multi-Objective Grey 

Wolf Optimizer (MOGWO), the Multi-Objective Salp Swarm Algorithm (MSSA), the 

Non-Dominated Genetic Algorithm II and the Multi-Objective Particle Swarm 

Optimization (MOPSO), has been compared to the discovery of different possible 

alternative paths (NSGAII). 

[10] addresses the issues that arise during the design of automated missions in an unmanned 

aerial vehicle. These missions comprise a variety of duties, unmanned aerial vehicles, and 

ground control stations (GCS). The following goals are taken into account for optimization: 

make span, fuel consumption and cost, and reliability. An evolutionary algorithm with 

several objectives, paired with a constraint fulfillment issue model, is used by the 

researchers to resolve these challenges. 

It is treated as a constraint satisfaction problem (CSP) and addressed using a multi-

objective evolutionary algorithm (MOEA) to solve the mission planning problem (MPP). 

This is the method that optimizes amongst a number of different variables in the situation 

at hand. 

[11] is concerned with route planning for search and rescue operations. The main goal is 

to shorten the time required to complete the mission while locating a target and sending 

the coordinates of that target back to the ground control station. 

Using a genetic algorithm technique, the researchers intend to solve this multi-objective 

issue by assessing tactics via the use of a data mule, a relay chain, and a unique hybrid way 

to connect with the ground crew members. 

Depending on the mission requirements, the algorithm may be tweaked to favor coverage 

or connection above others. As a result, connection is seen as a mission objective rather 

than a limitation in these cases. 

The goal of [12]’s study is to develop a solution to the problem of route planning in three-

dimensional space.  
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Meta-pathways are used to construct a large number of different solution paths. When 

generating several solution pathways, the path planner uses Particle Swarm Optimization 

(PSO) to ensure that they all meet the established requirements. It is these criteria that are 

regarded as the goals for which the solutions are optimized. 

It is possible to keep a safe distance from any barrier by including topographical 

information in the UAV's navigation system. 

[13] describes a three-dimensional offline route planner for unmanned aerial vehicles 

(UAVs) that is based on a multi-objective optimization approach. 

The optimization of two competing goals: one is the minimization of the total route length; 

and two, the maximization of the margin of safety from ground impediments, is 

accomplished at the same time. In this way, it is ensured that both goals are given top 

priority, and no extra issue information is required for transforming this two-objective 

problem into a single-objective problem. According to their findings, a variety of optimal 

pathways with variable trade-offs between the goal functions are produced by the 

evolutionary optimization approach used by the researchers. 

In the past, evolutionary algorithms (EA) have been employed effectively to calculate near-

optimal pathways in blocked and constantly changing environments. When the uncertainty 

of the barriers is explicitly taken into consideration, it is possible for "optimal" pathways 

to survive that are different from those that would be preferred in a fully deterministic 

environment.  

[14] have studied and investigated the application of evolution-based route planning to the 

travel of an unmanned aerial vehicle (UAV) over a field of obstacles at a variety of 

unpredictable locations in an uncertain environment. Beginning with the static version of 

the EA method, which is used to generate a route at a single moment in time, it can be seen 

that it is quite efficient. We here discussed the algorithm and demonstrated its behavior, 

especially how it reacts in various ways depending on the known accuracy of the 

predictions of the surrounding environment. After that, they also demonstrate how the 

static structure may be expanded to take into account uncertainties that vary over time. 
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Application to route planning across a field of moving obstacles whose future motion is 

unpredictable allows us to show our theory. 

[15] study examines numerous unmanned aerial vehicle (UAV) route planning algorithms 

that have been developed over a long period of time. In route planning approaches, the goal 

is not just to discover the shortest and most efficient path, but also to offer a collision-free 

environment for unmanned aerial vehicles (UAVs). It is critical to have route planning 

strategies in place in order to calculate a safe path to the end destination in the shortest 

amount of time feasible. Different route planning strategies for unmanned aerial vehicles 

(UAVs) are discussed in this work and grouped into three major categories: 

representational techniques, non-cooperative techniques, and cooperative techniques. The 

connection and coverage of the UAVs' network communication are explored and studied 

in the context of these strategies. The present ideas for UAV path planning have also been 

subjected to a critical study based on each category of UAV path planning. Different 

comparison tables based on factors such as route optimality, length, cost-efficiency, 

completeness, energy-efficiency, time-efficiency, collision, and robustness avoidance are 

also given in the text to aid in comprehending the subject matter better. Other unsolved 

problems in UAV route planning and network communication are also addressed so that 

the paper's audience may have a more comprehensive understanding of the subject matter 

at hand. 

2.3 Energy Consumption Model 

Drone operations have a significant energy limitation if they are to realize their full promise 

in terms of delivering speedy delivery, lowering costs, and decreasing emissions. A large 

number of optimization models used to build drone or drone delivery systems only partially 

account for energy consumption as a fixed limitation on drone endurance (flight time limit) 

or range (discounted in certain circumstances) (flight distance limit). The fundamental 

physical forces that are involved during flights, or data taken from the ground, are used in 

other drone delivery studies to directly incorporate energy. [16] makes a crucial addition 

to the modeling of quad model energy consumption by converting the all the fundamental 

flying principles of manned aircraft into a considerably smaller sized model for the of 

UAVs, which is a first in the field. Lift-to-drag ratio, a critical factor in drone design, is 
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examined in this paper utilizing an integrated approach that takes into account both 

aerodynamic and drone design considerations. In addition, the energy model contains a 

fixed component for the power consumption of avionic systems. In addition, the RAND 

Corporation is using this integrated model in a series of studies looking at the amount of 

energy consumed by city-scale drone delivery systems. 

When estimating drone energy consumption, an alternative approach might be taken from 

the perspective of helicopter operations, assuming how much energy has been put to use 

takeoff, during level flight, and landing is about equal to the energy spent when hovering. 

According to [17], a multirotor helicopter's hover power consumption is a function of 

payload mass and battery capacity. They also describe field trials and create regression 

parameters for modest payloads, which they include in this paper as well. This hovering 

model is modified for the MikroKopter MK8-3500 drone, based on payload mass, a 

regression model is described in detail in [18]. They write, "The suggested energy 

consumption model gives realistic results that are equivalent to the experiment results," 

although they don't specify which parameters should be used to create the model. 

According to several previously mentioned studies, one method of predicting drone energy 

usage is to use regression based on field tests. [19]. A nine-term nonlinear regression 

models for drone energy usage that consider payload mass, as well as horizontal and 

vertical speed and acceleration and wind velocity are provided by the authors.  

[20] gives a uniform framework to aid with the understanding of diverse drone energy 

consumption models in addition to the interrelationships between important elements and 

performance measurements, in order to aid in the decision-making process for delivery 

drone. Drone energy consumption models are reviewed, evaluated, and classified. There 

follows a detailed discussion of how extremely large discrepancies exist in the estimated 

energy consumption rates due to varying factors such as (a) the specifics of their expected 

activities and uses; (b) the precise designs of the drones; and (c) the breadth and 

characteristics of the models. This study demonstrates that extreme caution must be used 

when selecting a specific drone energy consumption model and that more research, 



 

 21 

particularly empirical research, is required to guarantee that the chosen model 

appropriately represents delivery drone designs and usage. 

Another prominent method of modeling is the white-box approach, which is based on 

unique vehicle dynamics to understand the energy consumption of any electric vehicle [21]. 

The black-box approach is yet another technique for simulating electricity use. In this 

technique, the power consumption of automobiles is modeled using a broad statistical 

approach based on a regression model rather than a vehicle dynamics model [22]. This 

technique is more straightforward and offers adequate information for power consumption 

estimations for unmanned aerial vehicles (UAVs) mission planning. So, in the power 

consumption model, they use a "black box" approach that takes into account different 

flying situations but not the way the vehicle moves. 

2.4 Nelder Mead Algorithm 

One of the most challenging aspects of engineering system design is dealing with the large 

number of possible local solutions. This has prompted significant efforts to be made in the 

development of global search algorithms. Globality, on the other hand, has a prohibitively 

large numerical cost when applied to real-world issues. It is planned to establish a fixed-

cost local search that will eventually become worldwide. Globalization is accomplished 

via the use of probabilistic restart. The local optimizer is created using an upgraded Nelder–

Mead algorithm. It takes into consideration varying boundaries. By reinitializing degraded 

simplexes, they are also made more resilient in general.  

The Nelder-Mead method, also known as the simplex search algorithm, was first described 

in 1965 (Nelder and Mead, 1965)[23]. It is one of the most well-known algorithms for 

multivariate unstructured optimization involving no derivatives and has been around since 

then. Due to the fact that it does not need any derivative information, it is ideal for situations 

involving functions that are not smooth. A common use of this technique is to address 

parameter estimation and comparable statistical issues when the values of the function are 

unclear or sensitive to noise. Also, it can be used to solve problems in statistics and 

experimental mathematics that involve discontinuous functions. 
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A Globalized Bounded Nelder–Mead (GBNM) algorithm was developed by [24]. As a 

consequence of this research to deal with multimodal, discontinuous optimization 

situations in which it is unknown whether or not a global optimization can be performed. 

Various ways of re-starting the local search are explored in this article. It is possible to do 

numerical experiments on analytical test functions and composite laminate design 

challenges. The GBNM method is better than an evolutionary algorithm in terms of 

numerical cost and accuracy, and it is also faster. 

[25] presented an algorithm that is comprised of two processes, each of which is dedicated 

to a single job. Global metaheuristics, such as simulated annealing, tabu search, and genetic 

algorithms (GAs), are effective in identifying the "optimal" locations to focus attention. 

Local search techniques, on the other hand, are well-established and include, for example, 

hill climbing (e.g., the quasi-Newton method) and the Nelder–Mead simplex search (SS). 

Consequently, we developed a hybrid approach, known as the continuous hybrid algorithm 

(CHA), that does the exploration with a GA and the extraction with a Nelder–Mead SS 

while maintaining the consistency of the exploration and extraction. The effectiveness of 

CHA was measured by putting in place a set of "benchmark" functions and comparing the 

results to those of other competing methods. 

Approximation functions and traditional approaches for recovering external orientation are 

examined by [26]. That technique doesn't take into consideration the unique features of 

photographs captured by unmanned aerial vehicles, as shown in this study by Nelder-

Simplex. Mead's approach is examined as an alternative. The independent variables' 

external orientation angles were measured in order to derive the components of external 

orientation. Angles and reference points were used to compute the spatial location. 

2.5 Summary 

In order to formulate the objective function for this study, path length, travel time, energy 

consumption, path smoothness and collision with obstacles were considered. 

Nelder-Mead algorithm was chosen as the optimization algorithm. It works with 

multidimensional search space and suitable for solving nonlinear objective function with 

unknown derivatives.  
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CHAPTER 3: STUDY OF SWARM INTELLIGENT 

ALGORITHM 

swarm intelligence is a computational intelligence field devoted to studying collective 

behavior in self-organizing communities of agents. swarm intelligence Animals and other 

organisms in their local habitat use these methods to accomplish tasks such as obtaining 

food and avoiding danger, as well as mating, in order to be more efficient in doing these 

tasks. Intuitive computing techniques based on data-driven problem optimization are used 

in these methodologies. SI and similar ecosystems do not have a single set of rules that 

control the movement of individual agents; rather, their aggregate behavior is developed 

by the interactions of several individuals. Small time interval adjustments are used to define 

each agent's mobility according to the ambient parameters that it is aware of. The SI 

algorithm is used to improve algorithms that search for the optimum answer to difficult 

circumstances in terms of flexibility, robustness, and resilience. 

3.1 Particle Swarm Optimization (PSO): 

In 1995, Eberhart and Kennedy came up with the first concept for PSO. First thoughts on 

particle swarms were mostly centered on the production of intelligent calculation via the 

use of important social interaction models, rather than just individual computing. This 

algorithm is a SI algorithm because it mimics the way animals interact socially in nature. 

A multi-agent population, known as swarm intelligence, is more precisely impacted by 

PSO than a single-agent population[27]. 

3.1.1. Identification of PSO 

In order to address a variety of optimization problems, PSO employs stochastic, hybrid, 

and artificial intelligence techniques. It is feasible to create random locations of candidate 

solutions in PSO using a stochastic probability distribution, although this is not guaranteed. 

Metaheuristic search techniques may be identified even when the data collection is 

insufficient or the processing capability is limited since PSO is metaheuristic. Particle 

swarm optimization, according to the researchers, is based on a simple notion that can be 

implemented in a minimal amount of code. It just necessitates basic mathematical operators 

and makes effective use of available storage and processing power. 
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3.1.2. Objectives of PSO 

As a non-expert user, you may take use of the PSO method's multiple aims to achieve your 

objective. The following are the goals: 

I. As a long-term strategy, it is necessary to collect a comprehensive evaluation of the 

most often occurring PSO variables. 

II. An overview of the theoretical elements of the algorithm and their relationship to 

PSO parameters. 

III. In order to improve the algorithm's efficiency. 

IV. Analysis of a range of algorithm applications and results will help determine the 

algorithm's present functioning and regulations.  

3.1.3. Features of PSO 

Particle Swarm Optimization (PSO) is a popular approach for solving non-convex, integer 

variable type, discrete, nonlinear problems. In this system, competition and cooperation 

among colonies or swarms influence swarm intelligence. Swarm animals have various 

unique qualities that have been included into the PSO algorithm to obtain best outcomes 

when they work together to accomplish shared community goals. When it comes to 

optimizing a process, there are a lot of useful traits that include communication, 

information sharing, and collaborative decision-making. Our work attempts to minimize 

an objective function as a means of evaluating the optimization problem. The method's 

solutions are assessed in terms of the objective functions in order to establish their 

acceptability and efficacy. 

3.1.4. Methodology of PSO 

A number of particles are used to begin the search process, and each of these particles has 

been programmed to look for appropriate results in the search region. If there is a 

community of particles, the computation time is reduced since everyone is searching for 

exactly the same item at once. Particles, on the other hand, are able to explore every nook 

and cranny of the search area in order to gather relevant data. 

As the cost function in the algorithm developed to minimize costs, our thesis replicates the 

requirement, which is also known as an optimization issue. After establishing the goal 
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function, the particles are now ready to search for the best possible answer. Optimal 

positions for each particle indicate the best solution. 

Information is transmitted among the population when each particle's motion is finished so 

that a global ideal position may be agreed upon. They are repeated and their values adjusted 

in every loop. Particle velocity, the particle's personal best location, and the population's 

best solution are all important components in the algorithm that governs and decides the 

movement of individual particles. The statistical model uses the three vectors indicated 

above to determine the particle's displacement and velocity in the next iteration of the 

model. Because of this, the calculations included both individual and collective 

perspectives. 

Each additional iteration of the PSO algorithm improves the method's performance. Using 

extra parameters in the equations for calculating particle movement improves the 

algorithm's efficiency. Random functions are employed in the equations to prevent the 

parameters from being stuck in the same place. Acceleration coefficients are included in 

the equation, enabling the agents to move faster toward their own and the world's best 

values. There must be some kind of balance when deciding on the constant values, since a 

greater number forces the particles to move swiftly toward or beyond the intended areas, 

while a lower number allows particles to traverse through the search region without being 

prompted to return. The inertia weight parameter is added to the particle velocity, which 

ranges from 0.9 to 0.4, to ensure that both individual and global optimal outcomes are 

satisfied. For a global poll, the greater the inertial weight number, the more likely the 

respondent is to like it. Finally, after the necessary number of iterations, the method is 

complete. 

3.1.5. Exploitation and exploration in PSO 

Exploitation has to do with the algorithm's ferocity, while exploration has to do with its 

breadth. This algorithm has both of these properties. When solving an optimization issue, 

pertinent knowledge is often exploited. To find the greatest deals, we apply a local search 

strategy. When it comes to exploring the search area, random functions may help. 

The PSO algorithm uses the global best solution for decision, however the personal best 

solution's consequences are not evident in the PSO method. The PSO algorithm is more 



 

 26 

mobile and energetic in its search because of the absence of crossover. Exploration and 

exploitation must be balanced, however, in order to maximize the pace of convergence 

while avoiding an early convergent with non-profitable options. 

3.1.6. Mathematical model of PSO 

Using PSO's mathematical model, one may track the movement of particles.' A particle's 

mobility may be assessed by its location and velocity in the search area. 

The particle velocity equation for the traditional Particle Swarm Optimization technique is 

provided below. 

𝑣𝑛
𝑡+1 = 𝑤 ∗ 𝑣𝑛

𝑡 + 𝑐1 ∗ 𝐹1 ∗ (𝑝𝑛𝑏 − 𝑑𝑛
𝑡 ) + 𝑐2 ∗ 𝐹2(𝑔𝑏 − 𝑑𝑛

𝑡 ) 3.1 

  

The displacement of the particles is computed using the following equation 

𝑑𝑛
𝑡+1 = 𝑑𝑛

𝑡 + 𝑣𝑛
𝑡+1 

The terms carry out the following representation: 

w= Inertia weight 

c1,c2= Acceleration Constants 

F1,F2=  Random Function 

𝑑𝑛
𝑡 = Movement of the nth particle in the tth iteration 

𝑑𝑛
𝑡+1= Movement of the nth particle in the (t+1)th iteration 

𝑣𝑛
𝑡= Speed of the nth

 particle in the tth iteration 

𝑣𝑛
𝑡+1= Speed of the nth

 particle in the (t+1)th
 iteration. 

𝑝𝑛𝑏= Personal best value of the nth member 

𝑔𝑏= Global best value among the entire community. 
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3.1.7. Flowchart of PSO 

The functions and the algorithm's computation are 

outlined in the following steps: 

Step 1: Begin the procedure by creating a community of 

particles. 

Step 2: The optimization problem may be solved by 

defining the fitness function. 

Step 3: Calculate each particle's new velocity using the 

previous location data. 

Step 4: find the new location. 

Step 5: Analyze the optimum reaction of each individual 

particle. 

Step 6: Compare the best individual solutions of all 

particles to arrive at the global best value. 

Step 7: Count how many times you have to repeat a 

process to reach the threshold. 

Step 8: Go back to step 3 and do it all over again if you 

haven't completed all of the repetitions. 

Step 9: When the best option is discovered, stop the 

procedure. 

The Figure 3-1 shows the flowchart of the PSO. 

3.2 Artificial Bee Colony (ABC) 

In 2005, Karaboga originally proposed the concept of a computer program based on a 

swarm intelligence principle, based on a model of a synthetic bee colony. This algorithm 

is based on honey bees' social and cooperative behavior in their daily foraging operations. 

Honey bees are very intelligent and resourceful creatures that work diligently to ensure that 

the hive has enough food to last them through the winter. According to the algorithm, 

Figure 3-1: Flow Chart of PSO 

Algorithm 
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artificial bees must choose food sources depending on the quality of the food. In order to 

achieve optimum efficiency, the bees' purposes and activities are categorized, and each 

category fulfills its role while simultaneously providing information to the other categories. 

The ABC algorithm employs a similar approach to find the best solution to a comparable 

problem. By fine-tuning the algorithm's control parameters, the output may be easily 

governed and controlled[28]. 

3.2.1. Identification of ABC 

Accordingly, Artificial Bee Colony is an algorithm that uses a combination of 

metaheuristics, stochasticity and artificial intelligence. Iterative discovery of effective 

solutions to problems with minimal prior information is possible because of this method. 

Food sources with a high nectar content are recognized by the bee colony as the algorithm's 

optimal options. One of the algorithm's advantages is that it evaluates the probability of the 

new food sites in terms of fitness, resulting in faster convergence of the algorithm. While 

prior and current solutions are evaluated, the greedy selection strategy is utilized to 

preserve the best of both. Because of the algorithm's extensive testing, it is more likely that 

optimal results will be obtained. Bee colony actions such as searching for solutions, 

comparing the findings, selecting the best-quality options in terms of fitness, removing 

low-quality food sources and finally producing superior solutions are all included in the 

ABC algorithm. When a bee performs a ceremonial dance while searching for food, the 

data it transmits becomes accessible to other bees. The algorithm's applicability is 

improved by adjusting several parameters. 

3.2.2. Stratification of bee based on their functions: 

The honey bees are divided into 3 groups according to their jobs. 

I.  Employee:  A team of bees is on the prowl, continuously searching for new food 

sources. As soon as a food source has been found, each recruited worker bee goes to 

work gathering information about it. Following that, the adequacy of the food sources is 

reviewed in order to give a reasonable chance of a solution while also engaging with the 

community at large. 

II.  Onlooker: Searching for the best answer, the bees look at all of the options that 

have been generated and choose the one that is the most fit. Updates to food sources will 
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take use of these potential solutions next. A scout bee is classed as a worker bee, and food 

sources that do not provide feasible solutions are eliminated. 

III.  Scout: It is for this reason that scout bees have been developed to make up for the 

shortcomings of the hired bees of the past. Searching for food sources that the hired bees 

have missed; the scout bees survey the region. For this reason, Scout beehives are unlikely 

to come upon highly optimized food supplies. Food options for scout bees are being 

reviewed to see whether they can be used commercially. 

The ABC algorithm uses employed and spectator bees for local investigations and scout 

bees for global ones to do research both locally and globally. That way, the search space 

may be thoroughly examined while also having a high rate of convergence. 

3.2.3. Methodology of ABC 

Honey bees of three distinct species work in three stages to complete the ABC algorithm. 

In the optimization problem, the nectar content of the food sources is proportional to an 

objective function, suggesting that the solutions are better matched. The target function of 

our job is designed to be as minimal as feasible. 

To begin, the algorithm creates a colony of honey bees with each bee providing a possible 

food source. Track the position, direction, and quality of food establishments using their 

GPS systems. When nectar in food sources has been examined, a solution's fitness and 

probability may be computed. Comparing previously found answers to newly discovered 

ones using the 'greedy selection strategy' helps to preserve the better solutions. Afterward, 

the bees in the search arena exchange probability data and solutions in a dance. 

The number of observers equals the number of hired bees. The observation bees then 

choose the food sources they believe are most likely to help them achieve their fitness 

goals. The new food sources are updated using the best solutions that have been found. 

This means that certain food sources are excluded from the search since they don't provide 

feasible possibilities. The hired bees transform into scout bees and scour the search area to 

make up for the lack of answers. They're on the hunt for any kind of high-quality food they 

can get their hands on. Consequently, they provide low-cost search services and meals of 

bad quality. Scouts are only sometimes able to locate important food sources, though. The 
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transition from employed bees to scout bees is controlled by a limiting parameter. if the 

answers don't become better after a particular number of tries, they're thrown out of the 

equation A predetermined number of iterations, often known as the maximum number of 

cycles, is used to execute the algorithm (MCN). The algorithm's methodology offers a 

search engine that is dependable, easy, and speedy. 

3.2.4. Exploitation and exploration in ABC 

Using exploration and exploitation simultaneously allows the algorithm to strike a 

compromise between quicker convergence and finding the best possible answers in the 

search space. 

It's a double-edged sword for both the bees who are employed and those that are spectators. 

Unlike honey bees, scout bees conduct their research by scanning a large area in search of 

new possibilities. Scout bee exploration is often effective, although convergence may be 

slow since crossover is not present in this phase, and hence exploitation capability is 

limited. The parameters for the bees employed and scouts may be adjusted to achieve a 

more even distribution. 

3.2.5. Mathematical Model of ABC 

The equation to calculate the optimal solution  

𝑋𝑛𝑚 = 𝑥𝑛𝑚 + 𝜑𝑛𝑚(𝑥𝑛𝑚 − 𝑥𝑘𝑚) 3.2 

 Where m ∈ 1,2,3,4………. N 

And, 𝑘 ∈ 1,2,3………… . . 𝐷 

The probability of individual obtained solution with respect to fitness function using the 

following equation: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑛

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑛
𝑁
𝑛=1

 

The updated solution by the scout bees are found by the equation below 

𝑥𝑛
𝑚(𝑛𝑒𝑤)

= 𝑥𝑚𝑖𝑛
𝑚 + 𝑟𝑎𝑛𝑑()(𝑥𝑚𝑎𝑥

𝑚 − 𝑥𝑚𝑖𝑛
𝑚 ) 3.3 

Here, 𝑚 ∈ 1,2,3, ……… .𝐷 
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The description of notations used here are given below. 

N = Population of Employed bees = Population of onlooker bees. 

Xnm = New optimal solution 

xnm = Initial optimum solution. 

𝜑𝑛𝑚= Random value ranging from -1 to 1. 

Probabilityn = Probability of individual solution according to fitness function. 

fitnessn = Fitness of each solution n. 

xn
m(new) = Updated soltution by scout bees. 

xmax
m = Maximum limit of parameter 𝑗 ∈ 1,2,3……𝐷 

xmin
m = Lower limit of parameter 𝑗 ∈ 1,2,3, …… . 𝐷 

rand() = Array of random numbers which are uniformly 

distributed between 0 to 1 

D = Optimum parameter number of each solution. 

3.2.6. Flowchart of ABC: 

The following stages outline the ABC algorithm's strategy. 

Step 1: Start with a honey bee colony. 

Step 2: Declare that the goal function has to do with the food 

source's nectar content. 

Step 3: Find out where the bees get their food. 

Step 4: The fitness function should be calculated. 

Step 5: Find the likelihood of a fitness function solution. 

Step 6: Using a selection process based on greed to find the 

best answer possible. 
Figure 3-2: Flowchart of 

Artificial Bee Colony. 
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Step 7: Update new food sources with the help of probable fixes. 

Step 8: Keep an eye on the threshold. Consider dumping honey if it's not plenty. 

Step 9: Count the number of times a scout bee finds a new food source and the number of 

iterations that occur. 

Step 10: If the halting requirements are met, the iteration may be stopped or the process 

can be restarted from step 3. 

Now the steps are minutely depicted in the Figure 3-2 flowchart. 

3.3 Ant Colony Optimization for Continuous Domain (ACOR)  

Since its conception in 1992 by Dorigo, Ant Colony Optimization (ACO) has been used to 

solve a wide range of combinatorial optimization problems[29]. In 2008, Socha and Dorigo 

proposed ACO as a solution to the problem of continuous optimization. Foraging habits of 

ants have an effect on it[30]. Ants are highly sociable creatures. It's a team effort for a 

variety of reasons. Pheromones are a kind of hormone that people use to communicate 

while working. An animal's pheromone is a substance that influences the behavior of 

another animal of the same species. The term "behavioral-altering agents" is used to 

describe them. Many people don't know that pheromones may influence animals of the 

same species to engage in a variety of different behaviors. 

3.3.1. Identifications of ACOR: 

An ACOR algorithm is just like another algorithm. In other words, it is a metaheuristic 

process that is stochastic and random. ACO was first developed for discrete optimization 

issues before being adopted for use in the more general continuous setting. It is essential 

that each choice variable in this class of optimization problems be genuine. Applied to the 

task of training neural networks for pattern recognition, it performed well on a variety of 

low-dimensional benchmark functions. However, ACOR and other ACO-based continuous 

algorithms have not been properly examined on widely available higher-dimensional 

benchmarks, such as those in the forthcoming Smart Computation magazine special issue. 

People respond favorably to our combined demeanor. Converge and develop an ideal 

solution using this tool. ACOR relies on pheromone-biased probabilistic selection of 
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solution components for its progressive evolution. Each construction step is assigned a 

different Probability Density Function by the ant. 

3.3.2. Exploitation and Exploration in ACOR: 

As a pseudo-random proportional approach, ACO is often referred to as such. On the basis 

of the beginning value and the modified value, ants migrate from node to node. The balance 

between exploration and exploitation may be found using the state transition rule. 

Several tests are conducted to this end. An analogy can be that of pheromone intensity 

reinforcement on trips taken by ants to discover the optimal solutions. An ant's ability to 

deposit additional pheromone may be construed in this way. However, this rule of 

transition usually converges quite quickly. It's because pheromone strength has a 

significant impact on an ant's choice of the next node to visit, but heuristic information has 

very little effect on this decision. 

3.3.3. Mathematical Model of ACOR 

Gaussian kernel PDF was used to represent the search area's multi-promising area. The 

sampling shape of a Gaussian kernel pdf is more versatile than that of a simple Gaussian 

function. ACOR's solution archive file is where all of your solutions are stored. The 

solution archive is begun by producing n entries at random at the beginning of the program. 

Assuming that all of the solutions have been collocated, k will be maintained and the rest 

will be discarded. As a result, the specified standard deviation must be computed as 

follows:  

𝜎𝑙
𝑖 = 𝜉 ∑

|𝑠𝑒
𝑖 − 𝑠𝑙

𝑖|

𝑛 − 1
;      𝑖 = 1,2,3……𝑛

𝑛

𝑒=1

 

3.4 

Here, ξ remains unchanged in al l dimension and has an impact on evaporation rate of ACO. 



 

 34 

3.3.4. Flowchart of ACOR 

Step 1: Classify the storage capacity according to duration. 

Step 2: Create a trail of pheromones and other cues. 

Step 3: Initiate each ant from the beginning. 

Step 4: The transition rule should be applied to each ant. 

Step 5: On the basis of pheromones, choose the appropriate 

course of action. 

Step 6: Calculate the local and global values for each cycle 

separately. 

Step 7: Terminate or repeat step 3 if the end condition is 

met. 

Figure 3-3 shows the flowchart of ACOR. 

 

 

  

Figure 3-3: Flowchart of 

ACOR. 
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CHAPTER 4: AUTONOMOUS SYSTEM 

4.1 UAS autonomy: 

Self-flying drones are electronic robots powered by artificial intelligence and computer 

vision that use integrated circuits and programming to perform airborne tasks. Figure 4-1 

shows the concept of autonomy from start to finish[31] 

It used to be the case that unmanned aerial vehicles (UAVs) and autonomous drones 

(drones) were solely utilized by the military to carry out espionage or military-grade 

operations. 

Commercial drones for commercial use have also grown very popular in recent years and 

are being developed by corporations throughout the globe. Drones that are able to fly on 

their own have no limitations. Whether they're flying inside, underground, in the skies, or 

somewhere else, they're smart and competent enough to serve one's needs. The military has 

been using autonomous drones for a long time now. Due to their high price tags (tens of 

thousands, if not hundreds of thousands of dollars), these self-piloting drones were 

originally designed only for military usage. 

Figure 4-1: Autonomy from start to finish [31] 
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Computer vision is used by autonomous drones to make judgments about movement and 

fly without the need for a pilot. Using high-quality image sensors and computer vision, 

autonomous drones gather images and videos from their surroundings, convert them to 

digital signals, and produce maps using GPS. To comprehend their environment, 

computers employ computer vision, which is the process of converting images and movies 

into digital signals. As a starting point, computer vision is all that's required. Here are some 

things to consider to answer why are current autonomous drones so capable of navigating 

through a wide variety of obstacles at fast speeds, and how did they get to this point. One 

is the AI or artificial intelligence. By applying artificial intelligence approaches and 

algorithms, today's consumer and industrial grade autonomous drones are able to 

distinguish between bigger and smaller obstructions. They devise new routes of travel and 

carry out the duties for which they were built. This is the fundamental operation of a self-

flying drone, which does not need the assistance of a pilot or remote control. It's awe-

inspiring, and drone autonomy will continue to improve over time.[32] 

4.2 Quadcopter Flying Theory 

In a quadcopter, four motors are attached to the frame's four limbs. Each motor's rotational 

orientation is designed to offset the torque created by the motor on the other side, as seen 

in Figure 4-2[33]. 

As a result of the torque effect, this is how the 

quadcopter maintains its position in the sky. 

There are two sorts of propellers because they 

are spun in opposite directions by the engines. 

Pusher propellers are used to provide thrust for 

motors that rotate counterclockwise. To create 

thrust, puller propellers are used on both 

clockwise and counterclockwise rotating 

engines. 

 

Figure 4-2: quadcopter motor spin direction [33] 
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Hover: 

 To hover in place, quadcopter requires that: 

I. There are no varying speeds among the motors. 

II. The rotation speed must be sufficient to provide lift that counteracts the 

quadcopter's weight. 

III. In order to offset the quadcopter's weight, the rotation speed must be high enough 

to provide lift. A quadcopter's body should be able to handle the torque exerted by 

all of its motors. 

Gaining and Losing Altitude: 

All four of the quadcopter's motors must spin faster at the same time in order to acquire 

altitude. Similarly, to lower altitude, the rotational speed of all four motors must be reduced 

concurrently. 

Pitch: 

The quadcopter's pitch control instructs it to yaw forward or yaw back. The speed of the 

quadcopter's rear motors must be increased in relation to the speed of the front motors in 

order for it to pitch forward. This causes the quadcopter's nose to be lowered, causing it to 

go forward. The speed of the front motors must rise in relation to the speed of the rear 

motors in order to pitch backwards. 

Roll: 

The quadcopter's roll control instructs it to travel from left to right. The quadcopter can 

only roll to the right if the left motor speed is increased in relation to the right motor speed. 

Sideways movement will occur as a consequence of the quadcopter rolling left. A similar 

ratio must be used for the quadcopter's right motors to the quadcopter's left motors in order 

to roll the quadcopter left. When you roll the quadcopter left, you'll see a leftward 

movement. 

Yaw: 

The yaw is the quadcopter's z-axis rotating movement. In order to do this, two similar 

directional spinning motors must be increased or decreased in order to accomplish this. 
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Increased torque causes the quadcopter to rotate in the direction of that torque. There is 

an image in   

Figure 4-3 exhibiting pitch, roll and yaw.  

Figure 4-3: Movements on Quadcopter's Axes [33] 

 

4.3 UAV Manufacturing 

Gathering parts: 

To build a high-quality autonomous drone, one needs the following components and 

equipment. 

The drone's structure with quad-propellors, serving as its foundation. 

• It is also crucial to consider the motors. They'll power the rotors and allow the drone 

to take off and land. 

• The motors will be powered by the battery. 

• The drone's speed is controlled by an electrical speed controller. 

• In order to make the drone self-driving, that needs a circuit board. 

• Using an RC controller to configure the drone's flight direction and calibrate it is 

essential.  
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Assembly: 

Figure 4-4 depicts the usual wiring of a quadcopter in visual form. If anyone is unfamiliar 

with quadcopter wiring, this graphic provides an excellent image of how it should be done. 

Using the illustration, it's clear that each ESC should be attached to one of the two motors. 

A third cable connects the flight controller to the ESCs, which in turn get power from the 

Lipo battery. Signals are sent by this third wire, which links to the ESCs from the flight 

controller. The ESC (Electronic Speed Controller) receives a PWM (Pulse Width 

Modulation) signal from the flight controller that tells it what RPM to run the motor. It is 

shown in Figure 4-2, the numbers on each propeller match to the signal output number on 

the FC. The motors should be attached to the flight controller in a certain manner as it is 

pre-determined by the software developer. 

 

Figure 4-4: Typical Quadcopter Wiring Layout [35] 

When it comes to flight controller, this makes sense since it must be able to know the 

position of each motor it is driving, along with its rotational axis. 

The illustration doesn't illustrate how the flight controller gets its power. The Pixhawk's 

power distribution board was included in our arrangement. Connecting power and ground 
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wires to the PDB included into the frame connects this board to the battery, which then 

delivers 5V to the Pixhawk. Connecting the GPS and RC receivers to the flight controller 

is as simple as inserting the appropriate connections into the flight controller's relevant 

sockets. 

Coding:  

There are several steps in this process, but coding is crucial. Any open-source coding 

platform, such as PX4 or MultiWii, will be used for the project, and it has to ensure that 

the setting is correct. 

Once the circuit specifics and essential autonomy functions are provided, all the coding 

and installation will be completed into the frame's corresponding circuit. 

The RC controller will then be programmed in line with the drone circuit using the program 

or a template found on the internet. 

Flying: 

In order to begin flying your autonomous flight drone, both the hardware and software 

development and integration must be completed. 

Using an RC controller and the right drone settings, pilot need to fine-tune the drone's 

settings. The calibration process is now complete, and the drone is ready to go to the 

skies.[34]  
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CHAPTER 5: SOFTWARE STACK 

5.1 Flight Controller Firmware 

APM and PX4 are two of the most frequently utilized controller firmware in the industry. 

The Ardupilot Mega (APM) is an IMU autopilot based on the Arduino Mega platform of 

professional grade. This means multirotor helicopters, fixed-wing aircraft, and standard 

helicopters may all be controlled by this autopilot. Fully autonomous stabilization, 

waypoint-based navigation, and two-way telemetry are all possible with this autopilot. 

There are a number of other light controllers that can run APM, including the Pixhawk, but 

it was initially developed for the Arduino Mega platform. Like APM, PX4 is part of the 

Drone code Effort, which is an open-source project that aims to provide a complete 

platform for unmanned aerial vehicles (UAVs) from start to finish. 

As the DroneKit-Python interface with Pixhawk, we chose to utilize it instead of the APM 

flight controllers designed for mission planner. There was a problem at this point. It works 

fine with the old APM hardware, however the recent stable version 3.4 of APM, is not 

compatible with the Pixhawk Mini because of the newer hardware platform's design. For 

now, we were able to get past this problem by switching to the Pixhawk 2.4.8 or Pixhawk 

Cube. For our experiments, APM 3.6 on the Pixhawk Cube seems to operate well enough 

and some of the features, like as monitoring the power consumption level and RTH the 

drone when it becomes low, are working as expected[35]. 

5.2 Installing and Configuring APM Firmware 

In order to install and configure the APM firmware, we had to have a GCS or Ground 

Control Station installed on our desktop or laptop. APM provides social support for two 

GCS initiatives. If someone has a Windows system, Mission Planner is advised, whereas 

if anyone with a Linux distro or MacOS, APM Planner 2 is recommended. Mission Planner 

is the original GCS program for APM installation. APM Planner 2 is a cross-platform 

successor to Mission Planner. We've noticed that there is minimal difference between the 

two programs after playing with both. anyone may install a variety of APM firmware from 

the GCS software. Even after a fresh firmware installation, it provides a wizard that will 

guide someone through the process of configuring. 
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Before the UA is ready for test flight after a new firmware installation, a number of tasks 

must be completed. Frame type, accelerometer calibration, compass calibration, radio 

calibration, failsafe configuration, and flight mode setting are all included in these required 

configurations. With the GCS program, it's easy to set up the frame type, calibrate the 

compass, and calibrate the accelerometer. 

It's a bit more difficult to calibrate the radios. Binding the RC transmitter and setting the 

controller which channels will be utilized for certain instructions and what the thresholds 

are for each of those channels during this stage. It's possible to adjust the current lighting 

mode using a three-position switch on the controller's front right, which corresponds to 

Channel 5. As of right now, the three flight modes (STABILIZE, ALT HOLD, and UP) 

are all set to their default settings (LAND). 

A manual flight mode, STABILIZE, is similar to this mode. In stabilize mode, pilot is in 

complete control of the drone, and the flight controller's only purpose is to maintain the 

drone's stability. Stabilize flight mode is the most difficult mode to manage the copter, and 

we have had a number of rough landings when flying in this mode. ALT HOLD mode is 

much easier mode for flying the drone. To keep the copter at the present height, ALT 

HOLD lets pilot manage the rest of the plane's functions. ALT HOLD keeps trying to hold 

the current altitude, but in windy conditions there is still some drift, particularly. If this 

happens, pilot may still use the throttle joystick to command the flight controller to raise 

or decrease altitude. However, the rise or drop rate will be extremely slow which can be 

changes from default values assigned by the software for safety. The LAND flight mode 

should be utilized as the final flight mode configuration. Landing mode disables the 

joystick's throttle control, allowing the copter to level out and gently drop to the earth. In 

case the operator loses control of the copter, the LAND button may be used to land it 

without fear of destroying the aircraft. The failsafe configuration is the last essential 

configuration to be put up. The failsafe setting tells the flight controller what to do if the 

battery voltage goes too low or the RC transmitter loses signal. Faulty landings have been 

pre-set in our system to land in the present location. Pilot may fly the quadcopter using the 

RC transmitter after the APM software has been loaded and verified.  



 

 43 

5.3 DroneKit-Python 

A program on a companion computer was required in order to transmit orders to the flight 

controller so that we could independently fly our drones. We used DroneKit-Python for 

this. 

As a result, developers may write programs that run on the companion computer and 

connect with the APM flight controller over a low-latency link using DroneKit-Python 

(DK-Python). 

MAVLink, or Micro Air Vehicle Link, is the method through which the API connects with 

drone. It allows programmatic access to a connected condition, vehicle's telemetry, and 

parameter information, as well as direct control over vehicle movement and operation and 

mission management. With the classes and methods provided by the DroneKit-Python API, 

a script  

I. can connect to a car (or a group of cars). 

II. Inquire about the vehicle's current state/telemetry/parameters. 

III. Receive notification of state changes in an asynchronous manner. 

IV. To direct a UAV to a certain location, use a gyroscope (GUIDED mode). 

V. control the movement of the UAV and associated hardware (GUIDED mode) by 

sending arbitrary custom messages. 

VI. Set up and maintain missions based on waypoints (AUTO mode). 

VII. The RC channel settings will be overridden. 

DroneKit-Python may be learned by anybody with a working knowledge of Python. The 

API documentation is very excellent, providing step-by-step instructions and examples for 

all of the built-in features. [36] contains all of the relevant documents. 
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CHAPTER 6: PROBLEM FORMULATION 

6.1 Environment and path representation: 

Creating a route that avoids obstacles and meets the constraints in a complicated 3D 

environment is the purpose of the algorithm. A route in the 3D mission space is defined as 

(x, y, z) as the coordinates of a point in the mission space. 

So, the task space may be described as 

{(𝑥, 𝑦, 𝑧) ∣ 𝑋𝑚𝑖𝑛 <= 𝑥 <= 𝑋𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛 <= 𝑦 <= 𝑦𝑚𝑎𝑥 , 𝑍𝑚𝑖𝑗
𝛽

<= 𝑧 <= 𝑍𝑚𝑎𝑥} 6.1 

The cost of path is evaluated using the cost function which takes a collection of 3D points 

as input and outputs the cost value of the input path.  

Mathematically obstacles are defined as geometric cylinder with infinite height, such as 

Obstacle 𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑟𝑖) where xi, yi denotes the position of the obstacle and ri denotes the 

radius and the value of the function defines the associated cost. For a no-fly zone scenario, 

cost is regarded as infinite. 

6.2 Cost Function: 

A cost function is a function that transforms an event or the values of one or more variables 

into a real number that intuitively displays some "cost" connected with the occurrence. 

A cost function is used to determine how far off the mark the model is in terms of 

establishing a relationship between the input and output. It informs you of how poorly your 

model is doing and forecasting[37]. 

When fitting a linear regression model, a straight line is used to fit the model. This is 

accomplished by the use of the following equation for a straight line: 

Output = 𝑎∗ Input + 𝑏 6.2 

Notice that the variables a and b, which represent the point at which a line intersects the x-

axis and the slope of a line, respectively, may have different values (variables). A is a 

changeable value (variable), and b is a changeable value (variable). If the variables are not 

adequately optimized, you will initially obtain a line that may or may not be a good match 

for the model. As you refine the parameters of the model, you will get the best possible fit 
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for certain variables. Optimization If the data is perfectly fitted, a straight line will be drawn 

across most of the data points, disregarding noise and outliers in the process. The minimal 

feasible Root Mean Squared Error of the model, which can then be obtained by deducting 

the estimated values from the actual values, will serve as the cost function for the Linear 

Regression model. Taking the smallest of these error values, the cost function will be 

defined as Furthermore, the cost function will be 

Cost Function (𝐽) =
1

𝑛
∑  

𝑛

𝑖=0

(ℎ𝜃(𝑥𝑖) − 𝑦𝑖)
2
 

6.3 

6.2.1. Objective functions: 

For this work objective function consists of five objectives, they are – path length, time 

required to traverse the planned path, collision cost, the smoothness of the path and the 

energy consumed. The final evaluation function can be represented as follows: 

𝐹 = 𝐹Length + 𝐹Time + 𝐹Smoothness + 𝐹collision cost + 𝐹energy consumption  6.4 

6.2.2. Path length: 

Total Path length s nothing but the cumulative sum of the length of all the path segments.  

For a given path, Path Length is – 

∑  

𝑖=𝑛−1

𝑖=0

(√(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 + (𝑧𝑖+1 − 𝑧𝑖)2) 

6.5 

6.2.3. Traverse Time: 

The time required for the quadrotor to traverse through the optimized path is determined 

by flight controller firmware. The flights are conducted in AUTO. The behavior of the 

flight controller in “AUTO” mode is determined by parameters that have the “WP_NAV” 

prefix. The flight parameters affect flight time –  

WPNAV_SPEED: Waypoint Horizontal Speed Target -When flying on a WP mission, the 

aircraft will attempt to maintain this horizontal speed in centimeters per second. 
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WPNAV_SPEED_UP: Waypoint Climb Speed Target - During a WP mission, the speed in 

centimeters per second (cm/s) that the aircraft will strive to maintain while ascending is 

defined. 

WPNAV_SPEED_DN: Waypoint Descent Speed Target - During a WP mission, the speed 

in centimeters per second (cm/s) at which the aircraft will try to hold its position while 

falling is defined. 

WPNAV_ACCEL: Waypoint Acceleration - Specifies the horizontal acceleration in 

centimeters per second per centimeters per second utilized during missions. 

WPNAV_JERK: Waypoint Jerk - The horizontal jerk, measured in milliseconds per second, 

is employed throughout the mission. 

These flight parameters are set before flight. Using these parameters as constraints, 

minimum possible flight time required for traverses is calculated. 

6.2.4. Path Smoothness: 

In order to properly describe a twice differentiable plane curve, we may use 𝑌(𝑡) =

{𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)}. In this context, appropriate implies that the derivative d/dt is defined, 

differentiable, and not equal to the zero vector on the domain of definition of the 

parametrization. A parametrization like this one yields a signed curvature where the prime 

numbers relate to derivatives of t. The curvature κ is thus- 

𝜅 =
|𝑥′𝑦′′ − 𝑦′𝑥′′|

(𝑥′2 + 𝑦′2)
3
2

 
6.6 

The curvature value is found at every point on the path and the summation of curvature 

values is taken as the path smoothness cost. Without smoothness in the cost function, the 

path generated by the optimizer may not be suitable for traverse. 
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6.2.5. Collision Cost: 

 

Figure 6-1: Collision cost 

A set of points P (x, y) along a line represented by two points 𝑃1(𝑥1, 𝑦1, 𝑧1) and 

𝑃2(𝑥2, 𝑦2, 𝑧2) as shown in Figure 6-1 is described by, 

𝑃 = 𝑃1 + 𝑢(𝑃2 − 𝑃1) 6.7 

 Alternatively, for each coordinate 

𝑥 = 𝑥1 + 𝑢(𝑥2 − 𝑥1); 𝑦 = 𝑦1 + 𝑢(𝑦2 − 𝑦1); 𝑧 = 𝑧1 + 𝑢(𝑧2 − 𝑧1) 6.8 

 A cylinder positioned at 𝑃3(𝑥3, 𝑦3) with a radius of r is an infinite height can be 

represented by 

(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 = 𝑟2 6.9 

 Putting the linear equation into the equation of the cylinder's equation, it gives a quadratic 

equation which can be described as 

a𝑢2 + 𝑏𝑢 + 𝑐 = 0 6.10 

 where: 

𝑎 = (𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

𝑏 = 2[(𝑥2 − 𝑥1)(𝑥1 − 𝑥3) + (𝑦2 − 𝑦1)(𝑦1 − 𝑦3) + (𝑧2 − 𝑧1)] 

𝑐 = 𝑥32 + 𝑦32 + 𝑥12 + 𝑦12 + 𝑧12 − 2[𝑥3𝑥1 + 𝑦3𝑦1 + 𝑧1] − 𝑟2 

This quadratic's solutions may be found by the following equation 

−𝑏 ± √(𝑏2 − 4𝑎𝑐) 

2𝑎
 

6.11 

 Expression inside the square root determines the exact behavior. 
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(𝑏2 − 4𝑎𝑐) 6.12 

 If this value becomes less than zero then the path will never intersect the cylinder. 

If the value is equal to zero then the path is a tangent to the cylinder crossing it at a single 

point, namely at 𝑢 = −𝑏/2𝑎. 

If the value is greater than zero the line intersects the cylinder at two points. 

For every path segment, distance of the edges of the segments, and distance of the line 

from the center of the cylinder is calculated. If the line segment intersects the cylinder, 

inverse of the distance is calculated as a collision cost. The same process is done for all the 

line segments and summation of all collision cost is regarded as the final collision cost for 

a particular path 

6.2.6. Energy Consumption: 

In order to calculate energy consumption from a given path, a mathematical model of the 

quad copter is generated.  

In order to generate the quadcopter, two reference frames are defined – the body frame and 

the inertial frame. the roll, pitch, and yaw angles for quad model frame can be described as 

𝜃 = (ф, 𝜃, 𝜓)T, with comparable angular velocities equal to �̇� =  (�̇�, �̇�,  �̇�)𝑇. Similarly, 

the velocity and position of the quadcopter in the inertial frame can be described as �̇� =

(�̇�, �̇�, �̇�)𝑇 and 𝑥 = (𝑥, 𝑦, 𝑧)𝑇, respectively. Here, the angular velocity vector 𝜔 ≠ �̇�. There 

are two types of rotational motion: rotational velocity and rotational acceleration. The latter 

is defined as the time derivative of rotational pitch, yaw, and roll. To get an angular velocity 

vector from these angular velocities, we may apply the following relationship: 

𝜔 = [

1 0 −𝑠𝜃

0 𝑐𝜙 𝑐𝜃𝑠𝜙

0 −𝑠𝜙 𝑐𝜃𝑐𝜙

] �̇� 

6.13 

 Using a rotation matrix R, the body and inertial frame may be linked together by way of 

the body frame. Utilizing the ZYZ Euler angle conventions and redoing roll, pitch, and 

yaw in a stepwise fashion, this matrix is generated[38]. 
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𝑅 = [

𝑐𝜙𝑐𝜓 − 𝑐𝜃𝑠𝜙𝑠𝜓 −𝑐𝜓𝑠𝜙 − 𝑐𝜙𝑐𝜃𝑠𝜓 𝑠𝜃𝑠𝜓

𝑐𝜃𝑐𝜓𝑠𝜙 + 𝑐𝜙𝑠𝜓 𝑐𝜙𝑐𝜃𝑐𝜓 − 𝑠𝜙𝑠𝜓 −𝑐𝜓𝑠𝜃

𝑠𝜙𝑠𝜃 𝑐𝜙𝑠𝜃 𝑐𝜃

] 
6.14 

for A specific vector v⃗ in a frame structure corresponds to a vector Rv⃗ in an inertial 

reference frame. 

6.2.7. Equations of Motion: 

For a quadcopter, acceleration is caused by propulsion, linear friction, and gravity when 

considered within an inertial frame of reference. Rotation matrix R may be used to transfer 

the inertial thrust vector from the quad model body frame to its inertial frame equivalent. 

Thus, the linear motion for the model can be described as –  

𝑚�̈� = [
0
0

−𝑚𝑔
] + 𝑅𝑇𝐵 

6.15 

where TB is the thrust vector, �̈� is the position of the quadcopter in the body frame and g is 

the acceleration due to gravity. In contrast to having the linear equations of motion in an 

arbitrary frame, having the rotational equations of motion in a body frame is useful, since 

it allows rotations to be represented around the quadcopter's center of gravity rather than 

the inertial center. Euler's equations, which reflect rigid body dynamics and are used to 

generate the rotational equations of motion, are used to represent the dynamics of rigid 

bodies. When Euler's equations are stated in vector form, the following is how they are 

written: 

𝐼�̇� + 𝜔 × (𝐼𝜔) = 𝜏 6.16 

 where τ is a vector of external torques, I is the inertia matrix, and ω is the angular velocity 

vector. It can be rewritten as- 

�̇� = [

�̇�𝑥

�̇�𝑦

�̇�𝑧

] = 𝐼−1{𝜏 − 𝜔 × (𝐼𝜔)} 

6.17 

 In a simplified representation, the quadrotor may be represented by two thin uniform rods 

that are crossed at the origin and have a point mass (motor) at the end of each. The diagonal 

inertia matrix becomes- 
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𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] 

6.18 

 As a consequence, we derive our final conclusion for the rotational equations of motion of 

the body frame. 

�̇� = [

𝜏𝜙𝐼𝑥𝑥
−1

𝜏𝜃𝐼𝑦𝑦
−1

𝜏𝜓𝐼𝑧𝑧
−1

] −

[
 
 
 
 
 
 
𝐼𝑦𝑦 − 𝐼𝑧𝑧

𝐼𝑥𝑥
𝜔𝑦𝜔𝑧

𝐼𝑧𝑧 − 𝐼𝑥𝑥

𝐼𝑦𝑦
𝜔𝑥𝜔𝑧

𝐼𝑥𝑥 − 𝐼𝑦𝑦

𝐼𝑧𝑧
𝜔𝑥𝜔𝑦]

 
 
 
 
 
 

 

6.19 

 After deriving the equations of motion, a quadcopter object was made in python which 

followed the above mention equations. a quintic polynomial trajectory generator was used 

to generate a trajectory from the given path. A PD controller was used to calculate control 

commands in terms of thrust and torque required follow the trajectory. Using the output of 

PD controller power required was logged at every timestep. From the calculated power 

data, energy required for the path was estimated. 

6.3 Proposed Path Planning Algorithm: 

The following is proposed path planning algorithm: 

Initial guess paths are created by linking the start and target locations, as well as the sample 

point along that line, according to a preset resolution value. It was decided that random 

noise should be added to the sample points to give the straight-line route a small change, 

and this was thought to be the first answer. 

The original route was used to figure out the limits of the optimized route. 

The original solution was utilized as an input to the optimization process, which produced 

the final solution. The Needler Mead optimizer was used to find the best way through the 

forest. As an objective function, it was necessary to use the cost functions listed above to 

figure out how much the route would cost. 

Finally, the improved route was stored as a csv file together with the related cost values 

so that it could be evaluated further.   
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CHAPTER 7: SYSTEM DESIGN 

7.1 Airframe 

7.1.1. Functional Description: The Unmanned Aircraft used for this experiment is a quad 

rotor drone which is powered by a 3200 mAh battery. The drone utilizes 4 high torque 

motors which are connected to 4 Electronic Speed Controllers (ESC). The entire system is 

then connected to the Pixhawk 2 cube which acts as the heart of the entire system.  

7.1.2. Rationale for Selection: The simple design of the quadcopter is useful for a lot of 

reasons. This makes the system easy to design and repair in case of any damage. The system 

is also very stable which makes it easier to perform the missions since there are already an 

exceeding number of variables which might alter the results of the experiment. Fixed wing 

aircrafts would not be able to take the sharp turns which are possible via a rotorcraft. The 

quadrotor drone also has the ability to hover in air which is a huge advantage compared to 

fixed wing configuration. 

7.2 Navigation & Mission Control 

7.2.1. Functional Description: A PixHawk 2.1 as shown in Figure 7-1 is used for 

navigation of the UA, the flight controller 

(PixHawk cube) runs Arduplane firmware 

onboard[39].  Data collected from the on-

board sensors: GPS, IMU, Airspeed sensors, 

Lidar data, barometer reading, is fed into the 

flight controller in order to determine the state 

of the UA[40]. The ground control station is 

connected to the flight controller using a RFD 

868 UX Telemetry module. “Mission 

Planner” will be used as ground control 

software. It will be used to give commands to 

the UA like - ‘Takeoff’, ‘Navigate to Waypoint’, ‘Land’ etc. from the ground control 

station. Mission control can be used to pre-plan flights as well as giving commands in real 

time. Each of the commands will take necessary parameters as arguments and implement 

them, i.e., take-off will take height as an argument.  

Figure 7-1: PIXHAWK [39] 
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The sensor outputs can also be observed from the Ground Control Station, to determine 

any discrepancy. “Radio link AT-9S” is used as the “master controller” and is used to take 

manual control of the UA in case something goes wrong. There is a manual FTS trigger on 

the master controller and an option to switch flight modes. 

7.2.2. Rationale for Selection: PixHawk 2.1 cube is an all-in-one FMU. It has Triple 

redundant vibration damped IMU with dual barometers and support for up to 3 GPS 

modules. It also has a heating system to maintain consistent performance. It also offers an 

adequate number of IO ports for servos, ESCs and sensors with various communication 

standards (UART, i2c, SPI etc.). An Extended Kalman Filter (EKF) algorithm is used to 

estimate vehicle position, velocity and angular orientation based on gyroscopes, 

accelerometer, compass, GPS, airspeed and barometric pressure measurements. Based on 

these data, the UA will navigate accordingly. It offers separate power lines for FMU and 

servos. RFD 868 UX Telemetry module is chosen as it offers wireless connectivity with 

the flight controller, transmits data at compliant frequencies, offers adequate range (>40 

km) and data rate. It is also highly configurable to meet any legal and mission requirements. 

Such as power consumption can be reduced to meet regional law.  

Radiolink at 9 offers a mode-2 configuration for manual control. It uses FHSS technology 

and operates at 2.4GHz and its transmitter consumes less than 100 mW. It has an operating 

range of 1 km. It also offers multiple configurable switches and knobs. 

7.3 Sensors 

7.3.1. Functional Descriptions: The used flight controller PixHawk has built-in -- 9 axis 

IMU (Inertial Motion Sensor), which consists of an accelerometer, gyroscope, and 

magnetometer.  It’ll provide the acceleration, rate of rotation and orientation of the UA. 

PixHawk also has a barometer, which is used to measure the 

height of the UA with respect to sea level. The IMU sensor 

is isolated, minimizing the interference due to vibration. The 

system utilizes the following external sensors: 

a) GPS and Compass: The GPS sensor is used to 

determine the position of the UA. Magnetometer is used to 

provide the heading of the UA with respect to magnetic Figure 7-2: HERE 2 GPS [39] 
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North.It will send the longitude and latitude, heading and the ground velocity of the UA. 

Figure 7-2 shows the Here 2 GPS used for our mission.  

b) Airspeed Sensors: Consists of a pitot tube, which utilizes Bernoulli's law to measure 

the airspeed. The sensor also measures temperature to calculate the true airspeed from 

induced air speed. 

c) Lidar: the sensor uses laser to measure the height of the UA, 

with respect to the terrain below. Shown in Figure 7-3 

d) Power module: It monitors the onboard battery voltage, the 

current draw and power consumption of the UA. 

7.3.2. Rationale for Selection: Each of the sensors described 

above helps the flight controller to measure the value of necessary 

state variables which is essential for making the state estimation of 

the UA more reliable in order to ensure robust automatic operation.  

GPS with integrated compass makes it easier to place both of these sensors away from the 

source of noise (mainly from power cables, esc cables). Airspeed sensor offers true 

airspeed of the UA and aids the TECS controller which is used for height and speed. The 

downward looking lidar measures height from the terrain below and aids the flight 

controller to follow terrain and obstacles below. It also aids in landing and take-off. 

The power module logs and monitors power consumption, battery voltage and current 

draw. These are necessary for safe operation of the UA. 

7.4 Autonomy 

7.4.1. Functional Description: For automatic operation, Mission Planner will be used. It 

is a free, open-source, UI application for the arduplane firmware. Mission planner 

communicates with the autopilot (the flight controller board- PIxhawk cube) using 

telemetry modules. The pair telemetry modules (one connected to the GCS computer and 

another one with UA’s flight controller) acts as a virtual USB cable between the GCS and 

the UA. Mission planner offers various interfaces such as - data monitoring, automatic 

mission planning, hardware and software setup of the GCS and UA, SITL simulation etc. 

A fully automatic mission can be uploaded using the planning interface of Mission 

Planner’s UI. 

Figure 7-3: LiDAR 

Lite V3[39] 
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A custom algorithm will be used to plan the optimal path to maximize the desired property 

of the path (example- fastest time, least energy usage, shortest path, max area coverage 

etc.). The algorithm will take the flight dynamics and the payload into consideration. 

The mission planning procedure is described below –  

For the core mission task, the UA will have to navigate through the given waypoints and 

supply the given cargo and then proceed to complete the climb and glide task. Since all the 

mandatory waypoints will be given, a python script will be used to plan the most optimal 

path which will consider the flight dynamics of the UA, minimizing time and energy 

consumed, maximizing the accuracy of cargo drop and landing. 

After dropping the cargo, the UA will proceed to launch through a direct path and do the 

climb and glide mission. For this portion of the mission, preconfigured waypoints will be 

set in such a way that the glide time is maximized and proper approach for landing is 

maintained. 

For the Speed Trial and the marker identification task path will be planned to minimize 

flight time and maximize average speed. For the Area Search task, a path will be planned 

in such a way so that the maximum area is covered in the shortest time. 

After uploading the output of the algorithm, which are desired waypoints, a mission start 

command will be issued from the GCS and the UA will start executing the uploaded 

mission. While the UA completes the uploaded mission, flight critical parameters of the 

UA will be monitored using the GCS, which will display data received over radio 

telemetry. 

7.4.2. Rationale for Selection:  

Mission planner along with Arduplane was chosen for the following reasons: 

a) Interactive UI with Google map support 

b) Easy to understand commands from drop-down menus 

c) Mission log files visualizer 

d) Real time configuration of autopilot settings for UA 

e) SITL support 
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f) Geo-fencing 

g) Configurable Failsafe options 

h) Open-source community support 

The Controller board running the free plane firmware (Arduplane) provides full 

autonomous capabilities to any tilt rotor fixed wing craft. The firmware is also capable of 

enabling hovering and cruising of tilt-rotor fixed wing aircrafts in different configurations. 

The firmware works with a variety of GCS software. Mission Planner was chosen as it 

offers an all-around UAV solution for programming and mission operations incorporating 

support for hundreds of 3D waypoints, automatic takeoff and landing as well as 

sophisticated mission planning. The easily configurable package can be modified for 

custom education and research applications as well. 
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CHAPTER 8: EXPERIMENT DESIGN 

8.1 Introduction 

For each given environment, the optimization algorithm was run 3 times. This gave way to 

3 different optimized paths being delivered by the system with 3 different costs. The UA 

was then fed with each of the optimized path and the test flight was carried out. Hence, the 

experimental data for each of these 3 flights was obtained. The procedure was repeated for 

5 different environments, with 3 flights for each environment, that is a total of 15 flights. 

8.2 Methodology 

8.2.1. Environment Creation: A hypothetical environment was created to perform the 

experiment. The environment consisted of 3 obstacles of cylindrical shape with infinite 

height in XYZ space which represented the potential danger/red zones for the drone to fly 

in.  

8.2.2. Path Generation: The start and end points of the mission were first defined in the 

system. A random path was generated afterwards. 

The path shown in Figure 8-1 was then optimized using our homegrown cost function and 

optimization algorithm[41].  

Figure 8-1: 3D environment 
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8.2.3. Reference Frame Transformation:  As we can see in Figure 8-2, the optimized 

path was generated in the XYZ coordinate system. This was then transformed to real-life 

latitude longitude altitude (LLA) frame. This path was then converted into a mission file 

with dot way point extension using a python script.  

8.2.4. Mission Flight: By running the Arducopter firmware and the Mission Planner UI, 

the path can be directly uploaded to the UA. The UA takes off and performs the mission, 

taking the path generated by the computational methods and optimization algorithm. At the 

end of the mission, a log file is generated which contains all the critical information about 

Figure 8-2: Optimized path considering length, time and energy consumption 

Figure 8-3: Generated path in mission planner 
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the flight. Figure 8-3 shows the optimized path plotted in mission planner and Figure 8-4 

shows a picture of a demo taken in our university playground. 

8.3 Results Evaluation 

The results were evaluated from the log files received from the UA after the completion of 

the mission. The experimental data was extracted from the log files in the form of total 

distance flown, flight time and battery energy consumption as shown in Figure 8-5 and in 

Figure 8-6. The theoretical data was obtained from the output of the optimization script. 

This also included the total distance to be flown, flight time and theoretical battery 

consumption. The theoretical data also included the cost of each flight as per the 

optimization algorithm. The results were then compared to see whether the theoretically 

low-cost path actually gave the best possible path as defined by distance, time and energy 

consumption experimentally.  

Figure 8-4: Test flight 
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Figure 8-5: Power consumption graph from data log 

Figure 8-6: Power consumption and flight path 
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CHAPTER 9: RESULTS AND FINDINGS 

9.1 Result Discussion: The simulation and experimental results for five distinct 

environments are shown in the following tables. Each area has a unique collection of 

obstacles, as well as a unique starting route that must be navigated. 

The proposed method finds the best route four times for each environment, once for each 

environment. 

The ideal route was determined by evaluating it against the objective function that was 

constructed. After that, the quadrotor was flown along the optimal route using the 

experimental methods described in chapter 5. 

If we look into the first test data in Table 9.1, here for total 4 flights, flight 3 gives the 

minimum cost which is 95.03. Figure 9-1 shows the optimized path given for flight 3, the 

best in this test scenario. Here theoretical and experimental path length, time and energy 

consumptions were the minimum amongst the other 3 flights. Which validate the 

theoretical and experimental similarities. 

Similarly Table 9.2,Table 9.3, Table 9.4, Table 9.5 shows the data from the test no 02, test 

no 03, test no 04 and test no 05 accordingly. Figure 9-2 shows the best flight path, which 

is flight 4 in test no 02.  Figure 9-3 shows the path of test no 03, which is flight 2.  Figure 

9-4 shows flight 4 of test no 04 and Figure 9-5 is the flight 4 of test no 05. Here only the 

path that got minimum cost after optimization is shown. 

It is clear from the following tables that there is a strong correlation between the least cost 

path and the experimental outcomes, in both the simulation and the experimental scenarios. 

From the following figures optimized paths are visible. Here it is clear that optimized path 

gives best route considering length, time and energy consumption avoiding collision with 

the obstacles. Blue line in the figures shows initially randomly generated path, orange line 

is the optimized path. 
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Table 9.1: Theoretical and experimental data for test no. 01 

  

Test 

No.1 

Theoretical Experimental Total 

Cost Path 

Length 

(m) 

Minimum 

Time 

(s) 

Energy 

Consumption 

(KJ) 

Path 

Length 

(m) 

Time 

(s) 

Energy 

Consumption 

(KJ) 

Flight -

1 

81.14 85.29 59.11 89.91 93.34 60.56 99.3 

Flight -

2 

82.48 86.7 60.09 89.39 92.8 60.21 98.72 

Flight -

3 

82.09 86.29 59.8 86.04 89.32 57.95 95.03 

Flight -

4 

79.4 83.46 57.84 90.36 93.81 60.87 99.8 

Figure 9-1: Flight path for test no. 01 
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Figure 9-2: Flight Path for test no. 02 

  

Test 

No.2 

Theoretical Experimental Total 

Cost Path 

Length 

(m) 

Minimum 

Time 

(s) 

Energy 

Consumption 

(KJ) 

Path 

Length 

(m) 

Time 

(s) 

Energy 

Consumption 

(KJ) 

Flight 

-1 

81.53 85.31 57.72 92.83 91.31 58.06 95.52 

Flight 

-2 

83.25   87.11    58.93 95.07   93.52  59.46   97.83 

Flight 

-3 

80.19   83.91    56.77 91.53   90.03  57.24   94.18 

Flight 

-4 

82.44   86.26    58.36 86.12   84.71  53.87   88.62 

Table 9.2: Theoretical and experimental data for test no. 02 
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Figure 9-3: Flight Path for test no. 03 

  

Test 

No.3 

Theoretical Experimental Total 

Cost Path 

Length 

(m) 

Minimum 

Time 

(s) 

Energy 

Consumption 

(KJ) 

Path 

Length 

(m) 

Time 

(s) 

Energy 

Consumption 

(KJ) 

Flight 

-1 

82.54 86.78 56.88 89.09 98.05 61.58 92.1 

Flight 

-2 

82.97   87.24    57.18 88.75  97.68  61.35  91.75 

Flight 

-3 

79.71   83.81    54.93 92.54  101.85   63.96   95.67 

Flight 

-4 

81.6    85.79    56.23 87.87  90.84  60.73 96.7   

Table 9.3: Theoretical and experimental data for test no. 03 
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Test 

No.4 

Theoretical Experimental Total 

Cost Path 

Length 

(m) 

Minimum 

Time 

(s) 

Energy 

Consumption 

(KJ) 

Path 

Length 

(m) 

Time 

(s) 

Energy 

Consumption 

(KJ) 

Flight 

-1 

81.56 85.31 58.98 84.74 93.53 64.05 98.52 

Flight 

-2 

82.21  85.99  59.45 83.68  92.36 63.25 97.28 

Flight 

-3 

84.34  88.22  60.99 82.75   91.33 62.55 96.21 

Flight 

-4 

79.64  83.3   57.59 81.66  90.13  61.72 94.94 

Table 9.4: Theoretical and experimental data for test no. 04 

Figure 9-4: Flight Path for test no. 04 
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Figure 9-5: Flight Path for test no 05 

 

  

Test 

No.5 

Theoretical Experimental Total 

Cost Path 

Length 

(m) 

Minimum 

Time 

(s) 

Energy 

Consumption 

(KJ) 

Path 

Length 

(m) 

Time 

(s) 

Energy 

Consumption 

(KJ) 

Flight 

-1 

86.5 92.06 60.09 100.65 103.71 65.69 103.94 

Flight 

-2 

84.67  90.11  58.82 99.01  102.02   64.62  102.25 

Flight 

-3 

85.39  90.88  59.32 104.34  107.51   68.1   107.75 

Flight 

-4 

84.76  90.21  58.88 99.    102.01   64.61  102.24 

Table 9.5: Theoretical and experimental data for test no. 05 
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9.2 Conclusion and Further Study 

In this paper, a multi-objective optimizer-based method has been proposed and 

successfully applied to solve the path planning problem of quadrotor UAVs in a 3D static 

environment. The path planning problem was formulated as a multi-objective optimization 

problem under operational constraints. The proposed planning approach aims to lead the 

drone to traverse a short and fast path in a static environment without collision while 

consuming the minimum amount of energy. The demonstrative results and experiments 

show that the proposed MMO-based method is a viable process to plan paths in complex 

3D environments. The future scope of this work includes – Using RTK GPS to get better 

experimental results with less noise. Using an RF beacon to perform the experiment with 

a reduced effect of random variables increasing the fidelity of the cost functions to better 

approximate the dynamics of a quadrotor. Optimize the code to run faster and enable it to 

run in real time on a remote/companion computer in conjunction with the flight controller. 
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APPENDIX-A: Pseudo Code 

Step 1: SET obstacles array 

Step 2: SET step size  

Step 3: SET start location 

Step 4: SET destination location 

Step 5: Generate Initial path in NED frame 

Step 6: Optimize path 

Step 7: Optimize path using objective function and Nelder Mead algorithm 

Step 8: Convert path from NED frame to earth frame 

Step 9: Generate mission file from path in global frame 

Step 10: Save mission file 

Step 11: Conduct test flight 

Step 12: Download flight log 

Step 13: Extract length, time, energy consumption from flight log 

Step 14: Compare with saved path using objective function 


