
Islamic University of Technology (IUT)

Department of Computer Science and Engineering (CSE)

Blockchain-based Decentralized Source Code

Repository Hosting Service with Middleware

Approach

Authors

Md. Tahmid Islam, 170042038

&

Sakibul Islam Munna, 170042060

&

MD. Rafid Haque, 170042072

Supervisor

A.B.M. Ashikur Rahman

Asst. Professor, Department of CSE

A thesis submitted to the Department of CSE

in partial fulfillment of the requirements for the degree of B.Sc.

Academic Year: 2020-2021

April, 2022

Declaration of Authorship

This is to certify that the work presented in this thesis is the outcome of the

analysis and experiments carried out by MD. Rafid Haque, Sakibul Islam Munna

and Md. Tahmid Islam under the supervision of A.B.M. Ashikur Rahman, Asst.

Professor, Department of CSE, Islamic University of Technology (IUT). It is also

declared that neither of this thesis nor any part of this thesis has been submitted

anywhere else for any degree or diploma. Information derived from the published

and unpublished work of others has been acknowledged in the text and a list of

references is given.

Authors:

Md. Tahmid Islam

Student ID - 170042038

Sakibul Islam Munna

Student ID - 170042060

MD. Rafid Haque

Student ID - 170042072

Stamp

Stamp

Stamp

Supervisor:

A.B.M. Ashikur Rahman

Asst. Professor

Department of Computer Science and Engineering

Islamic University of Technology (IUT)

Stamp

Acknowledgement

We would like to express our grateful appreciation for A.B.M. Ashikur Rah-

man, Asst. Professor, Department of Computer Science & Engineering, IUT

for being our adviser and mentor. His motivation, suggestions and insights for

this research have been invaluable. Without his support and proper guidance this

research would never have been possible. His valuable opinion, time and input pro-

vided throughout the thesis work, from first phase of thesis topics introduction,

subject selection, proposing algorithm, modification till the project implementa-

tion and finalization which helped us to do our thesis work in proper way. We are

really grateful to him.

We are also grateful toMr. Md Hasan Onik, Lecturer, Department of Computer

Science, American International University-Bangladesh, for his valuable inspection

and suggestions.

Abstract

Software developers must work together in order to provide a better product. As

a result, many software developers use version control systems throughout project

development since it helps them manage source code and enables them to keep

track of the many versions they’ve worked on. Items are organized, regulated, and

directed by this strategy. In spite of the fact that the version control system is

generally decentralized, there is no properly defined practical method for remotely

maintaining the code that is not centralized. For a distributed network of comput-

ers, we describe and explain our solution, which leverages a blockchain and smart

contracts to authorize, monitor, and perform version control actions on a code

repository. Using our strategy, there is no need to have a centralized authority

that is trustworthy. The immutability of the code and the ownership information

of the code writer are protected via the blockchain. A network of servers (IPFS)

also maintains the security of the code repository and its content. In this system,

the code is stored on a distributed network of servers, ensuring its availability

and integrity, while a decentralized blockchain ensures ownership information and

the immutability of the repository by encrypting information from the codebase’s

remote location with a hash that combines the owner’s key and the entire code

repository.

Contents

1 Introduction 4

1.1 Overview . 4

1.2 Problem Statement . 7

1.3 Motivation and Scope of Research 8

1.4 Thesis Outline . 9

2 Background Study/Literature Review 10

2.1 Ethereum . 10

2.2 IPFS . 11

2.2.1 Hash Tables on a Distributed Scale 12

2.2.2 Exchanges of Blocks . 13

2.2.3 DAG Merkle . 13

2.2.4 Self-Certification File System 13

2.3 Asymmetric Encryption . 14

2.4 Blockchain Middleware Approach 15

2.5 Middleware Database . 17

2.6 Literature Review . 19

3 Proposed Approach 25

3.1 Code Submission . 25

3.2 IPFS Codebase Storage . 28

3.3 Hashing and Encryption . 29

3.4 Encrypted Token Storage in Blockchain 30

3.5 Encrypted Token Storage in Middleware IPFS 30

3.6 Code Retrieval via Decryption and Rehash-Checking 31

3.7 Implementation . 33

4 Result 35

4.1 Security and Vulnerabilities . 35

1

4.2 Performance . 37

4.3 Discussion . 39

4.3.1 Ensuring Writers Ownership 39

4.3.2 Ensuring Code Integrity . 39

4.3.3 Scalability Management . 42

4.3.4 Speed Issues . 43

4.3.5 Cost . 45

4.3.6 Centralised vs Decentralised Repository 46

5 Conclusion 47

5.1 Summary . 47

5.2 Future Work . 48

2

List of Figures

1 IPFS . 12

2 Asymmetric Encryption . 14

3 Second State’s Enterprise Middleware 16

4 IoT-Fog Communication Interface using Middleware 17

5 Middlware Database . 18

6 Traditional Centralized Version Control System 19

7 Code Copyright Management System 21

8 Repository Submission Process . 26

9 Repository Retrieval Process . 27

10 Oynote Report . 36

11 Performance Analysis . 38

12 Blockchain Structure ensuring Integrity 40

3

1 Introduction

1.1 Overview

For projects that contain more than a few hundred lines of code or need more than

one developer to work on the same project, a Version Control System, also known

as Revision Control System or a Source Control System, must be used. As a result,

the vast majority of software development initiatives make use of it. Source code

and project files may be tracked and restored using a Version Control System

(VCS). It employs a repository, a form of database that is used by many other

applications, for each file (and the whole project structure). Many projects use

version control systems (VCS) and other technologies like issue tracking systems

to keep track of their progress. In my role as a software manager, the most

difficult task is scaling up the change process to accommodate huge numbers of

software developers located in many time zones without losing quality or increasing

complexity. Technology has an important role in how new contributors may join

a project, how often various development lines are integrated, how code reviews

and support for previously published codes are handled, and how new feature

development is managed in the majority of cases.

Despite their importance, there is a paucity of knowledge on how these tech-

nologies effect development and the trade-offs associated with their use. A number

of open and closed-source projects, as well as the Apache Software Foundation,

have either suggested or have implemented the shift from centralized version con-

trol systems (CVCS) to decentralized version control systems (DVCS) (DVCS).

[1] The data connected with a software repository employing Blockchains, on the

other hand, will not be able to be stored entirely in these systems.

One of the most exciting new technologies to emerge after Bitcoin’s first tri-

umph is blockchain technology. Bitcoin is founded on the currency’s foundation

and utilizes blockchain technology. [2] Blockchain technology uses the network’s

consensus mechanism to create a distributed ledger or database that is accessi-

ble to all members of the network. As a consequence, there is no longer any

4

need for a third-party validator, creating a completely decentralized system.[3] [4]

Mining nodes keep a copy of the Blockchain ledger and are responsible for verify-

ing and validating each transaction that results in a change to the ledger. As a

consequence, tamper-proof ledgers are created that are distributed, secure, time-

stamped, and shared among all participants. [5] Blockchain technology has been

used by a number of industries, including banking, healthcare, supply chain and

logistics, and document management and accounting.[6][7][8] As a consequence of

its powerful and decentralized design, blockchain technology is being utilized to

solve challenges like trust, effectiveness, privacy, and data sharing , amongst other

things. As a result of the use of cryptography, this approach removes the need for

a third-party transaction authority altogether. ”Smart Contracts” are computer

programs that may be run on the Blockchain network’s nodes. Smart contracts

are self-executing codes, which may be used to ensure that set terms and condi-

tions are adhered to.[9][10] Data is stored in blocks rather than digital currencies

by blockchain mining nodes as opposed to validators for digital currencies like

Bitcoin. Smart contracts are decentralized applications that may be programmed

to do various tasks based on inputs sent to their Ethereum addresses.[10] Be-

cause it is based on Ethereum’s decentralized ledger, Ethereum is a distributed,

open source platform with smart contract functionality. Due to Ethereum’s open

source nature, users are free to create their own own apps. Ether is used to pay for

transactions on the Ethereum network by both Bitcoin and Ethereum. Using an

Ethereum Address, one may uniquely identify another person on the blockchain

(EA). The buzz these days is that blockchain is the next big thing.[3] In contrast,

because of the 1MB file size constraint per block on the Bitcoin blockchain, storing

large documents is still prohibitively costly. With so much data being stored on

blockchains, there is certain to be a huge overhead.[11] [12] Examples of decentral-

ized storage systems designed to satisfy the urgent demand for storing vast quan-

tities of data include IPFS (InterPlanetary File System), Storj, SWARM, and Sia.

IPFS is the most widely used and well-established platform because of the nature

of this study. The IPFS distributed file system, which is a content-addressable,

5

peer-to-peer, and open source file system, can store and transmit massive amounts

of data fast.[13] When it comes to storing vast amounts of data, the blockchain

is inefficient. Hashes of documents in the chain have been shown to be more ef-

fective than the originals themselves in preventing unauthorized access.[6] A hash

is generated and maintained in the smart contract that retrieves this information

from IPFS for each document. Every time a document is accessed, its hash value

changes.

In a peer-to-peer distributed file system, such as IPFS, data may be stored and

exchanged across users. IPFS leverages content addressing to guarantee that each

file in a global namespace, which links all computing devices, is uniquely recog-

nized. Similar to a file sharing technique like BitTorrent, IPFS enables users store

and transmit files. IPFS is based on a decentralized system of user-operators who

individually store a small percentage of the overall data, despite the fact that a cen-

trally maintained server is periodically employed. [14] A more secure way to store

and send files has been made possible owing to this approach. The Interplanetary

File System is only one of several open-source projects Juan Benet is involved with

(IPFS). It was created because of the drawbacks of the client-server architecture

and HTTP web service applications. IPFS, a decentralized or secure data distri-

bution network, enables quick throughput, minimum latency, and the ability to

transmit data safely. We use a self-certifying namespace, a distributed hash table

(DHT), and an incentive-based block exchange to create a more ubiquitous DAG

that is more secure (Merkle directed acyclic graph). This hash table is constructed

taking into consideration the distributed system’s proximity to nodes.[15]

IPFS, in contrast to BitTorrent, aspires to build a single worldwide network

of files and data. In practice, this implies that if two peers publish a block of

data with the same hash, the peers getting the content from Alice and the peers

downloading the content from Bob will trade data with one another. [16] IPFS

proposes to replace the protocols that are now used for static site delivery by

using gateways that are available over HTTP as a replacement. A public gateway

may be used instead of installing an IPFS client on a user’s device, if that is their

6

preference. The IPFS GitHub website has a list of these gateways that is updated

on a regular basis.

The code repository for a distributed network of computers may be authorized,

monitored, and controlled using smart contracts and a public blockchain. Our so-

lution eliminates the requirement for a centralized authority that is trustworthy.

The code’s immutability and the code author’s ownership information are pro-

tected by a public blockchain. A distributed network of servers protects the code

repository and its content. Protecting the transmitter’s identity is a top priority

for Broadcast Encryption (BE). We provide a public blockchain-based blockchain-

based solution for digital document version control systems. This technique does

away with the need for a reliable third-party authenticator altogether. We fo-

cus on the most important parts of our methodology, such as the overall system

architecture and the most critical interactions between members.

1.2 Problem Statement

The bulk of Source Code Repository Hosting Services are now centralized, which

implies that the system is managed by a single company, which is inconvenient.

On top of that, as the repositories are in a centralized database in most cases,

it implies that a single point of failure is created. This means that the system

may fail and the data contained therein may be lost. Additionally, ownership

information is not always well-maintained or readily available.

This is addressed by our Blockchain based Source Code Repository Hosting

Service. Our solution uses a public blockchain and smart contracts to authorize,

monitor, and govern a distributed code repository. Our approach does away with

a trusted central authority. A public blockchain protects the code’s immutability

and the author’s ownership information. A network of servers protects the code

repository and its content. The sender’s identity is safeguarded via Broadcast

Encryption. Blockchain-based digital document version management is proposed

by us. A third-party authenticator may be avoided by using our method. We

focus on the most critical components of our strategy, such as the overall system

7

architecture and the way players interact with the system. New developers will

be registered, code contributions will be enabled, other people’s work will be

retrieved, and the system will be designed and tested as a whole.

1.3 Motivation and Scope of Research

A Blockchain-based Decentralized Source Code Repository Hosting Service has

the ability to fundamentally alter the way we store code remotely, work remotely,

and communicate. Additionally, it alters how code ownership is controlled.

As a result of a pressing need for a decentralized, reliable, and secure way

to share and govern code repositories, this paper presents a blockchain-based so-

lution. An agreement on the state and availability of shared data in a trustless

environment may be maintained by participating organizations using a distributed

system known as the blockchain. [5]

Data transferred through the chain of custody is safeguarded by cryptographic

techniques, which prohibit tampering with records. Indeed, each block in the

blockchain is confirmed by all active participants before being added to the chain

(i.e. consensus by all participants) (i.e. consensus by all active participants). It

may be possible to employ smart contracts for new user registrations and user-

provided code repository changes.

In order to automate digital code repositories’ version control logic and work-

flow while allowing for controlled or limited data exchange, we recommend using

smart contracts. As an alternative, smart contracts function as decentralized or-

ganisers of interactions between parties, as opposed to centralized ones. As a

result, the most important contribution of this study is as follows: Using smart

contracts, we present a mechanism for regulating the version of a digital code

repository. Our solution eliminates the requirement for a trusted third-party au-

thenticator to serve as a go-between. Our blockchain solution’s overall system de-

sign and architecture emphasize the importance of participant interactions. Docu-

ment version control may help a wide number of businesses, including healthcare,

banking and property registration.

8

1.4 Thesis Outline

As for the rest of the document, it is structured as follows. Section 2 provides an

overview of the relevant literature. The decentralized hosting service for source

code repositories is presented in Section 3 of this document. The findings and

conclusions of the proposed system are discussed in detail in Section 4. Section 5

is the last section of the report.

9

2 Background Study/Literature Review

Prior work on blockchain-based version control and controlled data sharing for

digital documents as well as topics pertinent to our study will be examined in this

portion of the paper.

2.1 Ethereum

In addition to the ether coin, Ethereum is a blockchain platform for decentralized

applications (dApps). Smart contracts developed on the Ethereum platform power

the network. Smart contracts and the blockchain are critical components of DeFi

and other applications. As of January 2022, Ethereum is only second in market

valuation to Bitcoin. [17]

Since all cryptocurrencies are built on the blockchain, Ethereum is no excep-

tion. Access to all blocks in a chain of linked blocks is available to all blockchain

participants. If all network users share the same understanding of the blockchain,

which operates like an electronic ledger, distributed agreement on the blockchain’s

state may be obtained and maintained. The present state of the Ethereum net-

work is determined through a distributed consensus mechanism based on the

blockchain.. Whenever a transaction is completed and fresh ether money is coined,

or smart contracts for Ethereum decentralized apps (dApps) are performed, new

blocks on the Ethereum blockchain are created.

The Ethereum network is secure because of the decentralized structure of the

blockchain technology. Any updates to the Ethereum blockchain’s global network

of computers need distributed consensus (majority agreement). This would need

taking over the bulk of the Ethereum platform’s processing power, which is very

difficult or impossible. [18]

A greater number of apps can run on Ethereum than on other cryptocurrencies

like Litecoin or Monero. [?] Many different types of apps are available on the

Ethereum network for users to build, publish, monetize, and utilize, and all of

them may be paid for using ETH or another cryptocurrency.

10

Ethereum’s native coin is Ether (ETH). Ethereum, a blockchain platform

that supports a wide range of decentralized applications, may be used to host

dApps (decentralized apps) (cryptocurrencies included). More people use the term

”ethereum” to describe the blockchain-based technology Ethereum, rather than

”ETH.” [19]

2.2 IPFS

IPFS is a peer-to-peer (p2p) file sharing system with the goal of radically altering

how information is delivered throughout and beyond the world. It combines vari-

ous advancements in communication protocols and distributed systems to create

a file system unlike any other. It is a file sharing system that aims to overcome

the shortcomings of the client-server approach and the HTTP web. This system

is the result of a combination of numerous novel and current technologies. IPFS is

an open-source project developed by Protocol Labs, a network protocol research

and development lab and former Y Combinator company. [20] [21] Protocol Labs

also creates ancillary technologies such as IPLD and Filecoin, which will be dis-

cussed in further detail below. Hundreds of developers from all around the globe

participated in the creation of IPFS, making its orchestration a mammoth task.

The URL of the server on which the data is kept is used to make a standard

HTTP request for the data. On the other hand, data saved on IPFS is accessed

by requesting the data’s cryptographic hash. In a standard HTTP architecture,

data cannot be accessible if the server is unavailable or fails, or if any of the

server’s connections are lost. Data is replicated over a large number of nodes,

which enables it to be retrieved anytime it is required. Due to the fact that

several clients are simultaneously requesting information from a single server, the

bandwidth available under the typical HTTP paradigm is limited. IPFS, on the

other hand, has a high bandwidth need due to the fact that data is requested from

the peer with the nearest copy of the required information. To make data publicly

accessible using the standard HTTP approach, one must either set up or pay for

a hosting server. By contrast, data posted to IPFS does not need the usage of

11

a host server; rather, the data is saved on each node’s local storage device. In

comparison, HTTP is a well-established industry standard; this is an area where

HTTP has an advantage. IPFS is a more recent protocol that is not as widely

used as HTTP. It is designed to facilitate file sharing. Apart from that, practically

all computers provide HTTP functionality. On the other side, in order for IPFS

to operate, one must either use the HTTP to IPFS portal or manually configure

an IPFS node on their own computer.

The following are the major components:

Figure 1: IPFS

2.2.1 Hash Tables on a Distributed Scale

In a hash table, information is kept in the form of key/value pairs. Because the

data is spread over a number of machines, distributed hash tables can be accessed

and searched quickly throughout the network (DHT).

Decentralization, fault tolerance, and scalability are important advantages of

DHTs. Without central coordination, DHTs may grow to millions of nodes, and

the system can continue to run even if nodes fail or leave the network. Client-server

systems are often less resilient when these traits are combined.

12

2.2.2 Exchanges of Blocks

To successfully distribute data over millions of nodes, Bittorrent uses a revolution-

ary data exchange protocol, but it is only available in the torrent environment. As

a marketplace for all types of data, IPFS offers BitSwap, a generalized version of

this protocol. Filecoin, a peer-to-peer storage technology based on IPFS, is built

on this marketplace.

2.2.3 DAG Merkle

Merkle Trees and Directed Acyclic Graphs are combined to form Merkle DAGs

(DAG). P2P networks are protected by Merkle trees, which guarantee the integrity

of data blocks. To arrange data blocks for this verification, cryptographic hash

techniques are used. An alphanumeric string (hash) is returned by this basic

function, which receives an input and returns an alphanumeric string (hash). It is

simple to prove that a given input will create a specific hash, but far more difficult

to determine the input from the hash itself.

2.2.4 Self-Certification File System

The Self-Certifying File System is the last key IPFS component we’ll go through

(SFS). It’s a distributed file system that doesn’t need any specific rights to move

data across computers. Self-certification may be applied to filenames since they

are utilized for verification purposes when sending data to clients (which is signed

by the server). The openness of local storage means that we may view stuff from

other locations without fear of security breaches.

It is this idea that serves as the foundation for IPNS (IPNS). An SFS that

uses public key cryptography to allow users to verify the authenticity of their

own postings is what we call a self-certifying SFS. IPFS nodes may be uniquely

recognized as well, as was previously established. Besides the public and private

keys, each node in the network has a node ID, which is a hash of the public key.

Since private keys are assigned to any data objects that are published, the sender’s

public key may be used to verify the data’s validity. [3][22]

13

2.3 Asymmetric Encryption

In asymmetric cryptography, two mathematically similar but not identical keys

are used — a public key and a private key. This kind of encryption is known

as public key cryptography. This method differs from others in that it does not

utilize the same key for both encryption and decryption. Encryption relies on the

public key, whereas decryption relies on the private key.

Figure 2: Asymmetric Encryption

Calculating the private key from the public key is mathematically impossible.

Public keys may be widely circulated, allowing users to encrypt material and verify

digital signatures, but private keys can be kept secret, guaranteeing that only the

private key owner can decode information and produce digital signatures. This

results in a more secure system.

For security reasons, public keys are put on digital certificates for transmission

and distribution, since they are too large to memorize alone. For security reasons,

private keys are only saved in the software or operating system we are using, or

in hardware (such as a USB token or a security module) that offers drivers for use

with the software.

14

2.4 Blockchain Middleware Approach

It is common to talk about ”blockchain middleware” when discussing the many

components of a blockchain. In addition, it may include software that combines

several blockchain implementations into one unified interface for convenience of

use and (typically) as a means of increasing the scalability of the system. A

blockchain middleware may also be used to adapt blockchain to use cases that are

not well covered by current blockchain solutions. As Maurizio Canton, the CTO

of Tibco Software’s EMEA area, points out, even while the business case for using

blockchain is solid, the implementation might be the difference between reaping

all of the advantages of the technology and not. [23] Inherent in the process of

implementing this technology is a degree of difficulty. Middleware supporting inte-

gration, correlation, and analytics as well as driving security and governance must

be a primary concern for any project that is based on the notion of partnership and

cooperation.. Canton stresses the need of integrating a wide range of data sources

into a business architecture in real time. In order to quickly and easily collect

data and improve prediction skills, tools that can visualize blockchain-generated

technical and business information are essential. These insights range from fraud

detection to user behavior throughout the blockchain.

Business decision-making may be transparent and collaborative with the use

of smart contracts on the blockchain. For the implementation of smart contracts

in businesses, Second State develops a set of open source infrastructure tools

that includes blockchains and virtual machines as well as rules engines, search

engines, data analytics, and other development and DevOps tools. [24] When

it comes to smart contracts, the blockchain virtual machine is essential. Any

participant may write and deploy virtual machine-based smart contracts at any

moment without interrupting the blockchain. Smart contracts can automate and

ensure the enforcement of the hundreds of business choices that an organization

may make every day between various parties.

Second State approaches blockchain infrastructure as an enterprise middleware

solution. The virtual machine resembles an application server, and the decentral-

15

Figure 3: Second State’s Enterprise Middleware

ized ledger is like a database. Blockchain data services and smart contracts are

comparable to the application services running on the application servers.

This study [25] uses blockchain technology to provide a middleware architecture

for the Internet of Things’ network of smart devices. Blockchains and the Internet

of Things are linked in a new research that gives communication security to the

Internet of smart devices. Our key contribution is to connect this new study. It

is the goal of this study to develop a new communication paradigm between the

Internet of Things and fog computing. Middleware, fog, and the Internet of Things

(IoT) are all used in conjunction with blockchain technology in this study. The

framework reduces traffic rate vacillation as well as the number of smart devices,

16

which provides Quality of Service (QoS). Using idle state as an example, this study

examines the framework’s overall performance in terms of the overall efficiency of

the system. IoTFog will monitor and analyze real-time data acquired from fog

nodes, and then take action.

Figure 4: IoT-Fog Communication Interface using Middleware

Fog and blockchain are used in this study to provide a communication frame-

work that allows for rapid and reliable communication across the Internet of

Things’ smart devices. Study in the past has concentrated on developing and

optimizing communication frameworks, but this research does not provide a com-

plete framework for IoT-Fog communication among the internet of smart devices.

2.5 Middleware Database

The phrase ”blockchain middleware” refers to software functions that are designed

to link a number of interconnected blockchain instances and pieces of information.

Along with blockchain implementations, it may comprise software that binds mul-

tiple blockchain implementations together into a uniform interface for ease of use

and (in some situations) scalability. Additionally, blockchain middleware may be

used to introduce blockchain to use cases in industries where existing blockchain

technology is presently underutilized, such as the pharmaceutical business. Ac-

cording to Maurizio Canton, CTO of Tibco Software for the EMEA region, al-

17

though the business case for blockchain technology may be appealing, deployment

may be a deal breaker if the full benefits and value are to be achieved. [26]

Figure 5: Middlware Database

It is generally recognized as a technology with the potential to alter the Inter-

net in general and the financial Internet in particular because of the blockchain’s

anti-tampering, decentralization, and anonymity transaction capabilities. The

blockchain, as a vast distributed ledger, seems to have flaws in terms of the archi-

tecture of query processing modules and the efficiency with which clients query

the blockchain. The current blockchain storage engine is also incapable of allowing

version control and multi-party collaboration.

A research led by Zhaoyi Zhang, Yanru Zhong, and Xiaofan Yu revealed that

storage middleware not only dramatically boosts query performance, but also

accelerates the development of blockchain applications by several persons working

together. [27] In their experiments, they demonstrate how to effectively solve the

18

problem of poor query performance and semantics by linking to other databases,

how to implement the version control function by designing the version control

semantics separately, and how to effectively use the Pos-tree to delete duplicate

data in order to solve the problem of storage space waste while performing version

control operations.

2.6 Literature Review

Figure 6: Traditional Centralized Version Control System

Costa, Felipe Zimmerle da N., and colleagues created Capivara, a decentral-

ized package version control system based on Blockchain technology. This research

demonstrated that it is feasible to have a repository for software programs on a

Blockchain with distributed consensus, as shown by the proof-of-download ap-

proach. However, they provided no evidence of implementation to back up their

notion. [28]

A blockchain-based solution and framework for document sharing and ver-

sion control were proposed by Nizamuddin, Nishara, et al. in order to facilitate

multi-user collaboration and track changes in a trusted, secure, and decentralized

manner, without the involvement of a centralized trusted entity or third party.[29]

19

Based on the use of Ethereum smart contracts to manage and regulate the docu-

ment version control functions among the document’s producers and developers,

as well as its validators, this solution is implemented. Furthermore, our approach

takes use of the IPFS (Interplanetary File System) to store documents on a de-

centralized file system, allowing for greater efficiency. They’ve also shown how

they’ve put their concept into action by implementing it. They neglected, how-

ever, to account for the system’s speed. Due to the fact that they did not address

the time-consuming nature of blockchain, such a system would need a large amount

of time to accomplish each action. Each transaction on public blockchains such as

Ethereum takes at least ten minutes and up to four hours to complete. This de-

gree of time consumption is too high in a real-world scenario where developers may

need to submit and retrieve code in less than one or two minutes. This strategy

would also be inefficient in terms of cost, since they said that the system would do

Ethereum transactions for each push, and as we all know, Ethereum transactions

are expensive. Additionally, this article delves deeply into the blockchain system’s

operation, including how miners will approve submitted code and everything else.

This is redundant, since all of them are fundamental Ethereum blockchain pro-

cesses. The system needed simply to include a smart contract, and the ethereum

blockchain would have taken care of the rest. Additionally, the system does not

need off-chain code verification by the blockchain’s approvers, since code verifica-

tion can be conducted incredibly rapidly and effectively using our approach, which

incorporates encryption and hashing.

RecordsKeeper [30] has suggested a publicly accessible, open source, mineable

blockchain ecosystem driven by high-level encryption and blockchain technology

for record management and document security that is publically available, open

source, and mineable. Data transmission and authorization may be made easier

with the use of this organization’s strong platform. Peer groups may more easily

distribute documents across the network thanks to the decentralized storage net-

work’s improved security. Immutable records that can’t be changed can be created

using blockchain technology, unlike typical database systems like MySQL and Or-

20

acle. An end-user may get a rigid structure for maintaining documents on the

Blockchain that is verifiable at any moment, enabling them to focus on the partic-

ular use case or problem at hand, as a consequence of employing RecordsKeeper.

There is no genuine solution for handling document version control, despite the

fact that this model has a high degree of nature when it comes to record manage-

ment. The Swedish government is testing this strategy in an effort to streamline

real estate transactions. The Swedish National Land Survey (Lantmäteriet) said

today that it is collaborating with blockchain startup ChromaWay, [31] consulting

business Kairos Future, and telephone service provider Telia on a proof-of-concept

to reduce human errors and increase document security. To confirm the identities

of users on a new smart contract system that ChromaWay developed, CEO Hen-

rik Hjelte employed Telia’s technology in the proof-of-concept. Using the demo,

anybody can observe how smart contracts operate on any blockchain, whether

it’s Bitcoin or Ethereum. Input and sponsorship came from Lantmäteriet, while

Kairos Future created a report. In Magnus Kempe’s opinion, the most valuable

aspect of the project is the potential for more openness that blockchain-based

systems may provide, as well as the potential to position Sweden as a leader in

the field of emerging technology. A smart contract-based system uses this method

to verify the identity of a user who has registered. Using blockchain technology,

any parties engaged in a property title may track, repair, and validate its entire

history.

Figure 7: Code Copyright Management System

21

Recently, blockchain technology has been used for the protection of intellectual

property and the administration of corporate transactions. Savelyev et al. [32] in-

vestigated the legal implications of blockchain applications in the context of copy-

right management, and he concluded that blockchain has the potential to disrupt

the copyright management sector. Liang et al [33] developed a blockchain-based

Intellectual Property (IP) copyright protection system that uses homomorphic

encryption to secure intellectual property rights. The researchers’ experimental

findings indicate that blockchain technology increases the security and reliability

of real-time circuit copyright authentication while also decreasing its cost. Xiao

et al [34] developed a blockchain-based intellectual property copyright protection

method that is focused on IP circuit trade. A distributed random embedding tech-

nique, as well as a position mapping function, help to increase the efficiency of the

transaction process. Photographic picture copyright protection may be achieved

by the use of digital watermarking and perceptual hash technology, which can

create immutable hash values that can be put into the blockchain and controlled

through particular technology and protocol to offer acceptable protection Meng et

al., 2018 [35]. Recent research has also looked at the use of blockchain technology

in the protection of digital music copyright, which is now under investigation. Cai

et al. [36] utilizes deep learning and blockchain technology to build a digital mu-

sic copyright protection system and test its effectiveness in the real world. Nan

Jing, Qi Liu et al. propose a code copyright management system that is based

on blockchain technology.[37] First and foremost, an Abstract Syntax Tree-based

code originality verification model is developed and tested. By comparing the

uploaded code to other original codes, it is possible to verify whether or not it

is really unique. A second use of the Peer-to-Peer blockchain network is to pre-

serve the copyright information pertaining to the original code that was created.

Based on the code originality verification paradigm, the nodes in the blockchain

network are able to check the authenticity of the code sent to them. Building the

blockchain-based code copyright management system follows, which involves the

production of blocks, the certification of their legality, and the connecting of these

22

blocks together. All of the steps in the process ensure that the copyright creation

is traceable and will not be tampered with in any way. In order to check for plagia-

rism, the system server turns the code into code eigenvalues using preprocessing

methods such as ANTLR and other similar tools. The flaw in this study is that

the authors spent a significant amount of time and effort attempting to find a

solution to the plagiarism issue. Additionally, in order to address this issue, they

have significantly slowed down the transaction processing time. Furthermore, they

did not provide any implementation of their proposal. As a copyright manage-

ment system, these materials have not much to do with a code repository, but are

instead utilized for copyrighting the code. It’s possible to expand most of them

into systems that can function as code repositories. Eleks Labs established an in-

novative approach to document security by using Ethereum to allow safe storage

and transmission for a variety of financial, legal, and other sorts of sensitive data

[38]. The organization established a secure environment in which legal transac-

tions may be handled without the need of a third-party middleman. The created

system is a permissionless blockchain, which means that anybody may join the

network as a participant and observe or commit any transaction. The objective

of this system is to offer a safe method for storing and transferring any kind of

document, including legal agreements, financial papers, and personal information.

The primary objective of designing such a system was to assure efficient and secure

transactions without the need of an intermediary. In practice, in order to validate

a legal agreement, the parties need a certifier who checks, signs, and registers the

agreement’s substance. Due to the fact that blockchain technology removes the

need for a notary, it is cost efficient. In this case, Ethereum-based smart contracts

are used to verify and maintain documents stored on IPFS. Cryptographic meth-

ods may be used to verify the signatures of several parties. The smart contract

interface enables controlled access and monitoring of document modifications. If

they hold an encryption key, every valid member in the network may modify ex-

isting documents and monitor the alterations that are traced through the chain.

The authors of this work underline the need of sharing, updating, altering, and

23

recreating research and scientific publication data. [39]

Version control on the blockchain and the controlled exchange of digital docu-

ments’ data were the focus of our investigation in this part. Most of the present

ideas described in this section are abstract and high-level in nature, with no details

on how they are to be implemented, as we have learned.

24

3 Proposed Approach

This section summarizes and proposes our strategy, which use the Ethereum

blockchain and smart contracts to authorize, monitor, and maintain version control

for IPFS-stored code repository. Through transactions and records, our system

eliminates the need for a trusted centralized authority and allows the sharing and

monitoring of different versions of online documents. To build a decentralized

and distributed version control system with high integrity, tenacity, security and

reliability throughout the system, we followed the following steps:

1. Code Submission

2. Code Storage in IPFS

3. Hashing and Encryption

4. Encrypted Token Storage in Blockchain

5. Encrypted Token Storage in Middleware IPFS

6. Code Retrieval via Decryption and Rehashing-Checking

All of these stages will be discussed in further depth in the next sections of

this study.

3.1 Code Submission

The technique is deemed complete if all of the code has been prepared by the

developers or users and has been submitted to the system for approval before it is

implemented. At its core, this component behaves just like any other version con-

trol system would, which is to say that it functions in a manner that is completely

equivalent to the other systems. They will create a directory at the beginning of

the project that will include all of the files and folders that will be required for it

at the conclusion of it. After that, they will go to work on the job at hand. Their

work will begin as soon as they are placed in the directory to which they have

25

Figure 8: Repository Submission Process

been allocated. By browsing to the newly generated directory with their mouse

and double-clicking on its icon, they may get access to the newly created direc-

tory that they made. In the command line, type initializing command to start

up the command line, which will enable them to begin working on their project

right away. They may incorporate the files in their project by following the steps

outlined below on their computer: Include the files using the git add command

(git adds). The following two commands are used in git to commit the changes:

commit and rollback as well as git commit It is necessary to perform the following

instructions in order to commit the modifications: design and develop a piece of

computer programming from the ground up. Every project includes a Readme

file, which may be in plain text or Markdown format and offers an overview of the

project’s capabilities. The Readme file can be in plain text or Markdown format.

This file is essential in order to get things going. The Readme file is provided only

for demonstration purposes alone. As soon as a piece of software is run for the

26

Figure 9: Repository Retrieval Process

first time, it’s almost always the case that the application generates a Readme file

as the first file it creates (and then later added to and committed to).

It has now been established for them a personal repository on the network,

which can be accessed using their personal computer. It is not necessary to repeat

the process if the file has been successfully uploaded to the system repository the

first time. Customers must first enter into the system and then link their crypto

wallets to the blockchain, which takes a few minutes. After that, they will be

able to access their accounts. Following the completion of the file or code, the

new repository button will appear on the right-hand side of the screen. By just

27

clicking on the button to the right of the code, we will be able to submit the code

in a matter of seconds.

What occurs in this section is that the user uploads the code files so that they

may be uploaded into the distributed storage, hashed, and encrypted before being

put into the blockchain at a later time.

3.2 IPFS Codebase Storage

IPFS is a file-sharing system that attempts to overcome the shortcomings of both

the HTTP based client-server web paradigms. So, instead of a traditional HTTP

client-server architecture, we chose to employ IPFS as our file sharing mechanism

in our design. The following are the grounds behind this decision:

• Data is requested using the URL on which the data is housed in a standard

HTTP style. On the other hand, data on IPFS is requested using the data’s

cryptographic hash.

• Data cannot be accessible in a standard HTTP architecture if the server is

offline or fails, or if any connection is broken. But on IPFS data is replicated

among numerous nodes, allowing it to be retrieved anytime it is required.

• The bandwidth offered in a standard HTTP paradigm is limited since several

clients request from a single server at the same time. On the other side,

bandwidth is high on IPFS since data is requested from the nearest peer

who has a copy of that material.

• To make material publicly accessible in a typical HTTP approach, one must

either build up or pay for a hosting server. Uploading material on IPFS, on

the other hand, does not need a host server; instead, the data is hosted on

the network by each node.

The user will make a submission to the system of the code or repository. It will

be saved in the IPFS system after it is submitted. The system will then get a token

from the IPFS system that has an address that points to the remote repository.

28

Anyone may use this URL to access the IPFS and remotely locate the codebase.

The request and storage of data will be safe since they will be encrypted using the

data’s cryptographic hash. This approach also ensures data availability, since data

is duplicated over several nodes, enabling it to be accessed at any moment. As a

result, system users will not be inconvenienced if one of the servers loses data or

becomes destroyed. Additionally, our suggested system would enable high-speed

data retrieval and transmission through IPFS, since users will always get data

from the system’s closest node.

3.3 Hashing and Encryption

It is not immediately transmitted to distributed storage or the blockchain when

the code is uploaded in step 1. An internal mechanism takes place throughout

this transitional period. Our goal is not to upload the whole program to the

blockchain, but rather to upload a single token. Furthermore, since the nodes or

validators of the blockchain system should have no contact with the information or

code that we are working with in this system, they should be unable to look them

up in the blockchain’s ledger. As a consequence, before transferring information

to the blockchain, we must first encrypt it to prevent it from being read.

With a distributed storage system, we can simply encrypt and share a token

or even a link that points another person to the desired repository that is stored

remotely. However, when the ledger transactions are processed, how would the

code owner or writer be identified by those transactions? It is not sufficient to

just provide the URL of the repository. In addition, we must devise a way for

associating the encrypted token’s owner’s identity with it. We’re going to use the

public key of the owner to represent the identification in this case.

But, we cannot be guaranteed that no one will ever hack into the distributed

system of storage (IPFS), or that an ill-intentioned person inside the system would

not modify its code or documentation. In order to prevent this, we feel that we

should include extra information in the blockchain ledger that would alert the

system to the fact that there has been a change in the code, which we believe is

29

necessary to avoid this. In order to do this, the document saved in the IPFS is

hashed and then added to the encryption key pool. Additional proof of ownership

is provided by the provision of the owner’s identifying information (public key).

This is how the ownership, integrity, and immutability of the repository are

protected by the solution we developed.

3.4 Encrypted Token Storage in Blockchain

Blockchain technology is well known for its inability to store large amounts of

data at one time. When it comes to storing enormous file sizes, blockchains are

inefficient. It is not a particularly scalable or efficient path for anything other than

core ledger data and associated hashes to be stored ”on-chain.” It is also quite

costly to store data ”on-chain.” Costs may mount up each terabyte of data sent

on the chain per transaction, with costs accruing each time the data is accessed.

Consequently, there is no discussion of keeping the actual code on the blockchain.

In this stage, the blockchain will only store the encrypted code of the complete

codebase, which is made up of a token that has been obtained from the IPFS stor-

age and a hash that has been generated. In order to create the hash, the complete

codebase as well as the writer’s key will be used. After being properly validated

by the validators or miners, the whole key will be recorded on the blockchain and

accessible by everybody. As a result, once the key has been saved, the ownership

information of the code is assured since the identity of the person who wrote it

is integrated into the code due to the fact that the blockchain system is prac-

tically unchangeable. As soon as the encrypted code has been entered into the

blockchain, it is available to be seen or read by anybody.

3.5 Encrypted Token Storage in Middleware IPFS

But there is a problem with storing the encrypted tokens just within the blockchain.

Blockchains are considered to be sluggish when it comes to real-time transactions.

[40] Due to the complexity of the transactions and the blockchain’s encrypted,

distributed structure, blockchain transactions may take longer than ”traditional”

30

payment methods like cash or debit cards.

We need to be able to quickly access each other’s data in order to work together

on coding projects. This method will make it happen. When the blockchain is

not verifying the encrypted code, a middleware system consisting of a centralized

database is expected to be employed. Because IPFSs, which are comparable to

single source remote servers, run efficiently and, in certain situations, faster than

traditional remote servers, it will guarantee that persons working obtain their code

in real time. [41] [27]

Since the data has already been recorded into the blockchain, the middleware

will delete it following confirmation. Until then, users must rely on middleware

to exchange encrypted codes. This will theoretically impair our proposed sys-

tem’s decentralized nature, but it is inevitable because any version control system

must be operational, accessible, and consistent in real time. A single source of

information poses certain security problems; however, this is a minor worry since

the Ethereum network routinely confirms transactions in less than ten minutes,

leaving little time for an assault on IPFS. Because IPFS is a dispersed network,

hackers cannot target it.

Our system will look for a code by first checking the middleware IPFS, and

if the code is not found there, it is clear that the information has been validated

and inserted into the blockchain. As a consequence, it will scan the blockchain for

information and extract it. It will assure system consistency.

3.6 Code Retrieval via Decryption and Rehash-Checking

Now for the section in which someone attempts to obtain a code. To get the

Code, the individual must first determine the location of the code. If the code

has been submitted to the system, it has been stored in the IPFS Repository.

However, it continues to refuse to disclose the whereabouts of its encrypted code.

The code’s true owner or author receives the encrypted token from the system,

which was created using the code, the owner’s key, and the token from the IPFS

repository. The code is either stored in the middleware or verified and stored in

31

the blockchain ledger. When a collaborator requests it, the owner just delivers the

encrypted code to them.

The retriever receives only the encrypted code from the submitter. The indi-

vidual decrypts the code using the sender’s public key and then obtains the IPFS

token and the codebase’s hash. This decryption step verifies that the code was

transmitted by the sender and was not changed or sent by a third party. The

receiver now use the IPFS token to get the code that was stored inside. Now, he

hashes the codebase and compares it to the hash from the previously decrypted

code. If the code matches, then the IPFS code that was obtained is the correct

one. Additionally, it verifies that the IPFS code has not been modified.The por-

tion in which someone tries to gain a code is now up for discussion. In order to

get the Code, the person must first discover where the code is located. It is kept

in the IPFS Repository if the code has been submitted to the system and has

been accepted by the system. It, on the other hand, has maintained its refusal to

reveal the location of its encrypted code. The authenticated owner or creator of

the code gets an encrypted token from the system, which was generated with the

help of the code, the owner’s key, and the token from the IPFS repository, and

which is then sent to him or her. The code is either saved in the middleware or

checked and recorded in the blockchain ledger, depending on the implementation.

In response to a collaborator’s request, the owner simply sends the encrypted code

to that collaborator. The submitter is the only one who may provide the code to

the retriever. The person decrypts the code with the help of the sender’s public

key, and then retrieves the IPFS token as well as the hash of the codebase. This

decryption phase ensures that the code was communicated by the sender and that

it was not altered or delivered by a third party after it has been encrypted. The

IPFS token is now used by the receiver to get the code that was previously stored

inside it. He hashes the codebase and compares it to the hash from the previously

decrypted code to see if there is any difference. The IPFS code that was acquired

is correct if the code obtained matches the code that was obtained. Additionally,

it checks to make sure that the IPFS code has not been altered in any way.

32

3.7 Implementation

We developed our system utilizing Ethereum, IPFS and React as front-end. For

testing purposes, we first used our local network as our blockchain environment.

Later, the Ropsten Test Network was established to test the technology in a real-

world setting. Remix is the IDE we used to write our Solidity code. For testing

purposes, two Ethereum addresses were used in Remix. Each participant, devel-

oper and collaborator, gets 100 Ether for testing purposes. We set their addresses

to be 0ace3b7d915458ef540aade6068fe2f4ae8fa733c and 067383cfd2b6eeeeeeee8ffdc160c.

The contract state is used as a requirement for the execution of any function call

when functions are built to be called in a certain sequence. We requested 1 ether

on the Ropsten Test Network and got it. After that, we used it for all of our

transactions.

1 contract SmartContract {

2 string [] public storedData;

3 event myEventTest(string eventOutput);

4 function set(string memory myText) public {

5 storedData.push(myText);

6 emit myEventTest(myText);

7 }

8 function get() public view returns (string memory) {

9 return storedData[storedData.length - 1];

10 }

11 }

Listing 1: SmartContract

1

2 function setHandler(event) {

3 event.preventDefault ();

4 setStatus ("Sent to IPFS");

5 var hashed_pubkey_code = sha256(

6 defaultAccount + event.target.setText.value

7);

8 var data = hashed_pubkey_code + " " + ipfsLink;

9 var encr_codelink_hash = CryptoJS.AES.encrypt(

33

10 JSON.stringify(data),

11 defaultAccount

12).toString ();

13 contract.set(encr_codelink_hash); // sends the encrypted

data to the blockchain

14 }

15 function getCurrentVal () {

16 console.log(contract);

17 let val = contract.get().then((val) => {

18 setErrorMessage(val);

19 });

20 }

Listing 2: Encrypted Key Push and Pull Functions

1

2 function decryptMessage(event) {

3 event.preventDefault ();

4 var ownerPublicKey = event.target.ownerPublicKey.value;

5 var encryptedMessage = event.target.decrypt.value;

6 var bytes = CryptoJS.AES.decrypt(encryptedMessage ,

ownerPublicKey);

7 var decryptedData = JSON.parse(bytes.toString(CryptoJS.enc

.Utf8));

8 setDecryptedMessage(decryptedData);

9 }

10

11 function findHash(event) {

12 event.preventDefault ();

13 var ownerPublicKey = event.target.

ownerPublicKey_for_hashchecking.value;

14 var code = event.target.code.value;

15 var hashed_pubkey_code = sha256(ownerPublicKey + code);

16 setHashedValue(hashed_pubkey_code);

17 }

Listing 3: Decrypting and Hashing Functions

34

4 Result

4.1 Security and Vulnerabilities

In order to prevent cyberattacks, it is critical that the smart contract’s implemen-

tation be devoid of defects and weaknesses. Ethereum smart contracts include a

number of security flaws, which we’ll examine in this section. Code and data on

the network need to be protected since they might be attacked. Clearly, blockchain

engineering is needed to overcome this difficulty brought by smart contract pro-

gramming and other blockchain-based applications [42]. In the solidity language,

bad programming techniques are to blame for the security vulnerabilities. It’s

important to note that, in contrast to web apps, the Ethereum platform is di-

rectly tied to money, thus any misuse results in quick and serious financial loss.

Many industries have struggled to implement an effective security architecture

because of these large losses. Smart contract vulnerability testing is now a key

aspect of ensuring the soundness and stability of a contract. If you look at an

Ethereum-based smart contract for the DAO project, you can see that it had a

severe technical weakness and was hacked in 2016. This led to the theft of 3.6

million Ether [43]. As a venture capital fund for crypto and decentralized plat-

forms, the DAO was designed The DAO hack and other incidents have altered

people’s perceptions of Ethereum’s security and brought attention to the issue

of cryptocurrencies’ and Blockchain technology’s security. The smart contract’s

security is constantly threatened by bugs in the code.

Here are some known vulnerabilities:

• Solidity code

– Call to unknown address

– Gasless send

– Reentrancy attack

– Exception disorders

35

– Type Casts

• Blockchain

– Generating randomness

– Unpredictable state

– Time Constraints

• Ethereum virtual machine

– Immutable bugs

– Ether lost in the transfer

– Stack size limit

Oyente [44] is an essential smart contract analysis tool. Ethereum-based pro-

gramming languages like as Solidity and Serpent may be used with Oyente. It is

also compatible with a lower level Lisp-like language (LLL). This tool have been

used to check our smart contract for known security flaws and threats. The report

provided by the Oyente tool shows that all identified vulnerabilities were ”False,”

and our smart contract was found to be safe enough and devoid of any known

flaws.

Figure 10: Oynote Report

36

4.2 Performance

Blockchains are considered to be sluggish when it comes to real-time transac-

tions. Due to the complexity of the transactions and the blockchain’s encrypted,

distributed structure, blockchain transactions may take longer than ”traditional”

payment methods like cash or debit cards. Using Bitcoin to pay for a coffee around

lunch is difficult due to the lengthy transaction time. This is not an option unless

the seller is ready to take some risk. This approach may theoretically be used to

record transactions or interactions in an Internet of Things context. The network’s

file chains are growing in size, but the number of machines reading and writing to

them is increasing. They’re merely files on a computer. We expect that advances

in engineering and processing speed will soon eliminate this issue. For now, there

is concern. So we need to be able to access one other’s data quickly in real time to

work on coding projects. This plan will make it happen. When the blockchain is

not verifying the encrypted code, a middleware system consisting of a centralized

database is expected to be employed. Because IPFSs, which are comparable to

single source remote servers, run efficiently and, in certain situations, faster than

traditional remote servers, it will guarantee that persons working obtain their

code in real time. Since the data has already been recorded into the blockchain,

the middleware will delete it following confirmation. Until then, users must rely

on middleware to exchange encrypted codes. This will theoretically impair our

proposed system’s decentralized nature, but it is inevitable because any version

control system must be operational, accessible, and consistent in real time. A

single source of information poses certain security problems; however, this is a

minor worry since the Ethereum network routinely confirms transactions in less

than ten minutes, leaving little time for an assault on IPFS. Because IPFS is a

dispersed network, hackers cannot target it. Our system will look for a code by

first checking the middleware IPFS, and if the code is not found there, it is clear

that the information has been validated and inserted into the blockchain. As a

consequence, it will scan the blockchain for information and extract it. It will

assure system consistency.

37

We experimented with and without the usage of Middleware in our own sys-

tem. We manually did 20 push and attempted to pull a period of many hours on

the Ropsten Test Network. Here is what we discovered as a consequence of our

research:

Figure 11: Performance Analysis

Due to the fact that it has not yet reached the middleware or the blockchain, we

discovered that the no system can pull within 5 seconds of a push being initiated.

After 20 seconds, we can observe that both systems are capable of pulling two

pushes. Due to the fact that the middleware IPFS system has not yet been

completed, but the blockchain has confirmed the 2 push information, this is the

case. Following that, we can notice that all of the push and pull operations are

performing smoothly in the system that has middleware integrated, as opposed

to the system that does not have middleware service integrated. This finding

demonstrates that employing a middleware service in conjunction with blockchain

is preferable than a system that just relies on blockchain.

38

4.3 Discussion

4.3.1 Ensuring Writers Ownership

Using a Private Key to sign a given message with Public Key is the most reliable

method of proving ownership of crypto currency. This allows the third-party to

verify that the counterparty really understands the corresponding Private Key

without having to divulge the key itself or send a transaction to the counterparty.

Our suggested technique is comparable to the one we already use. We know

that blockchains are immutable because the code’s true author’s information is

encoded into the encrypted message that is stored in the blockchain’s ledger. An

immutable ledger in blockchain is a record that can never be modified. It’s im-

possible to modify, thus the data is safe. This ensures a high level of security.

Without collusion, it is almost impossible to make any modifications to an im-

mutable system. The immutability of blockchain is due to cryptographic hashes,

one of the essential components of the blockchain. It is impossible to decode a

hash, which is a major benefit of using it. That’s why it’s so in demand. To put

it another way, SHA-256 is the most often used hash algorithm. A checksum is

generated as a result of the hash function’s input.

It’s possible to utilize the blockchain as a credible evidence of authorship in

the event that someone tries to claim someone else’s code as their own.

4.3.2 Ensuring Code Integrity

Our suggested solution guarantees the code’s integrity. The code in typical cen-

tralised system may be changed in numerous ways. Such as hacking, breakdown

in the system or even harm done by some ill-intentioned individual in the central

authority as well.

Cryptographic hashes are one of the key principles that make blockchain im-

mutable, which is why blockchain is immutable. The most significant advantage

of hash is that it cannot be reverse-engineered. That is why it is so well-liked. The

most used hash function is SHA-256, which stands for Secure Hash Algorithm 256.

39

There is an input that is fed into the hash function, and the output is a checksum.

In the following diagram, we can see how ’Blockchain is Disruptive’ is used as an

input, followed by hashing, which results in an encrypted output as a checksum.

In the diagram below, after hashing a block, its checksum is an input to another

block, which generates a checksum as an output. Every iteration here will result

in a new checksum. In a block, transactional data is processed using the preceding

hash, as well as the Meta-Data and TX Data Hash, which are all hashed together.

As a result, the checksum computed at each block is always unique. This explains

why blockchain is, to some extent, immutable. Trades confirmed by a blockchain

network in this system include squares of data embedded with timestamps, which

is ensured by a hashing cycle. It connects the preceding square’s hash and consoli-

dates it. This device establishes the ordered chain that connects each square. The

hashing continually incorporates the previous square’s meta-information while es-

tablishing another hash for it, forming a connection between the square and the

chain, which at that point becomes ”rugged.” The evidence imply that this is a

formidable system. In any case, there are a few issues that this component must

deal with.

Figure 12: Blockchain Structure ensuring Integrity

The fundamental advantage of blockchain is that data cannot be changed;

nevertheless, as shown by previous databases, data may be easily modified and

wiped. In the event that the data is tampered with, the blockchain will fail.

40

Making changes to both disconnected and live blockchain technologies is difficult.

When people speak to the blockchain as ”permanent,” they mean that it is hard to

make changes without a conspiracy, not that the information cannot be changed.

As a result, it solves the question of why blockchain is immutable. Furthermore,

this innovation has both positive and negative implications for information secu-

rity. Ledgers that convey blockchain innovation may ensure an application’s whole

history and information trail. When a transaction is added to the blockchain, it

remains there to represent the record up to that point in time. The chain’s legiti-

macy may be confirmed at any moment by simply re-calculating the square hashes

— if there is a disagreement between block information and its corresponding hash,

it indicates that the transactions are not real. This enables associations and their

industry controllers to quickly identify information breaches. This ensures total

data integrity.

One goal of IPFS is to preserve user’s data by enabling users to keep data while

lowering the risk of such data being lost or accidentally wiped. Permanency is a

term used to describe this situation. Nodes on the IPFS network may automati-

cally cache resources that they download in order to keep those resources available

to other nodes. This system is dependent on nodes being willing and able to cache

and share network resources. Because storage is limited, nodes must clear some of

their previously cached resources to make room for new resources. This method

is known as garbage collecting. Data may be pinned to one or more IPFS nodes

to ensure that it remains and is not destroyed during garbage collection. Pinning

allows us to regulate storage space and data protection. As a result, we should

use that option to pin anything we want to keep on IPFS indefinitely.

Out suggested solution overcomes all these difficulties. As our system employs

Blockchain, it is difficult to manipulate any data that is residing in there. The

blockchain includes encrypted code that has the hash of the full codebase in it

together with the identity of the individual who has developed it. So, any discrep-

ancy between the information in blockchain and the information in the real code

may be quickly recognized. Also since we implemented IPFS, it offers even more

41

integrity for our repository, as it gives end-to-end integrity. Even if the recorded

data in one server of the ipfs is distroyed or updated, the copies of that data in

other servers in the distributed system must not be damaged. So, the code in the

system will eternally be secure.

4.3.3 Scalability Management

Scalability of blockchain networks refers to the platform’s capacity to handle rising

transaction loads and node counts.

The consensus protocol or method is used to disseminate, verify, and com-

plete a transaction on a blockchain network. Also, in a blockchain network, this

consensus technique balances decentralization, scalability, and security. Thus, the

consensus method influences the blockchain network’s performance. Network la-

tency is the most important factor affecting dispersed network performance. After

validation, the transaction is broadcast to all nodes for majority-based consensus.

It minimizes latency and increases overall performance. Infrastructur Blockchain

nodes operate on-premises or in the cloud. Node performance will be impacted

by the absence of dedicated infrastructure resources (CPU, memory, hard disk).

So infrastructure size and IOPS allotment are crucial. Having more nodes slows

down transaction propagation and consensus, affecting overall performance. A

leader node or other peer node’s validation history may help solve this problem.

Easy transactions - Most benchmarking research or assertions are based on lab

testing. Processing latency increases as smart contracts get more complex in terms

of validation logic and read/write operations to the ledger. Larger payloads need

more network traffic to duplicate between nodes. Large payloads and documents

should be kept offchain and referenced on blockchain. A blockchain network’s

transactions and state are commonly stored as key-value pairs. The database’s ef-

ficiency impacts the network’s overall performance. With several nodes and hence

high availability, each node’s transaction handling capacity regulates how many

transactions are allowed for further processing by the client applications. This

directly impacts network performance. [45]

42

Simplifying the consensus mechanism may help solve the blockchain’s scala-

bility issue. Proof of Work consensus is currently used with Bitcoin and other

famous blockchains. Despite its slowness, proof-of-work consensus ensures secu-

rity. Many blockchain networks regard Proof-of-Stake as a solution to scalability

issues. The PoS consensus mechanism does not need miners to employ massive

computing power to solve cryptographic algorithms. Choosing validators based on

network stakes ensures unanimity. Using PoS consensus for Ethereum networks

has several advantages. Improved network capacity, security, and decentralization.

Sharding is a popular on-chain scaling technique. One notable example is shard-

ing, a layer-1 scalability strategy for blockchain networks based on distributed

databases. Sharding divides huge transactions into smaller, more manageable bits

of data. The network processing all shards at once allows for parallel processing

of many transactions. Sharding allows data distribution over several nodes while

ensuring data consistency. Shards interact to communicate addresses, general sta-

tus, and balances via cross-shard communication protocols. Layered blockchain

may be a solution to scalability concerns. It’s a decentralized network design that

leverages the main blockchain to establish network parameters. The secondary

chain network ensures rapid transaction completion. Nesting seems to be the

most viable layer-2 solution to blockchain scalability. [46]

We made our system scalable by integrating off-chain external database to

operate as a second layer to our real blockchain network as, it will be absurd

to consider if the blockchain can be a storage for the real coding which may be

terabytes in size, since it implies all the nodes of the network would have to carry

around this much data. So, our approach is to make use the IPFS as the second

layer to our system where the real data will be kept and the blockchain will carry

the instance that will make sure that the data in the off chain IPFS is valid.

4.3.4 Speed Issues

In the world of cryptocurrency, it is well known that blockchains are very slow

when it comes to real-time transactions. [47] [24] It is possible that blockchain

43

transactions may take longer to complete than ”conventional” payment methods

such as cash or debit cards because of the intricacy of the transactions and the

encrypted, distributed nature of the blockchain. To use Bitcoin to pay for a

cup of coffee during lunch hour is tough since the transaction may take several

hours to complete. Unless the seller is willing to incur some amount of risk,

this is not an option. As a theoretical application, this method might be used

to blockchain networks that are not just utilized for the storage of cash, such

as recording transactions or interactions in an Internet of Things setting. This

network’s file chains are becoming larger, but as the number of computers reading

and writing to it grows, they risk becoming unwieldy and unmanageable. After

all, they’re just computer files. We believe that this problem will soon be a thing

of the past because to advancements in engineering and processing speed. There

is still a worry for the time being.

So, it’s important to be able to access each other’s data rapidly in real life, so

we can collaborate on coding projects in real time. This is how this strategy will

ensure that it happens. It is anticipated that a middleware system, which would

consist of a centralized database, will be used to store the encrypted code when

the blockchain is not certifying it. It will ensure that individuals who are working

get their code from one another in real time since IPFSs, which are similar to

single source remote servers, operate effectively and, in certain cases, even more

quickly than conventional remote servers. [41]

Due to the fact that the data has already been entered into the blockchain,

the middleware will erase it after it has been confirmed. Users will have to de-

pend on the middleware till then in order to acquire the encrypted code from one

another. The decentralized character of our proposed system will be technically

compromised as a result of this, but it is an unavoidable evil since it is essential

for any version control system to be operational, accessible, and consistent in real

time. Because the information is contained in a single source, there are some

security concerns; however, this can be considered a very minor concern because

the Ethereum network typically validates transactions in less than ten minutes,

44

providing a very small window for an attack on the IPFS to take place. Because

IPFS is a distributed network, the very nature of IPFS will prevent hackers from

launching attacks against it as well.

The procedure that our system will take in order to search for a code is to first

check the middleware IPFS, and if the code is not located there, it is certain that

the information has been erased from there and has been confirmed and entered

into the blockchain. As a result, it will search for information on the blockchain

and extract it from there. It will ensure consistency in the system.

4.3.5 Cost

There are several Source Code Repository Hosting Services available. There are

several well-known free ones. Bitbucket, Github, Sourceforge, and so forth. There

are also several paid Source Code Repository Hosting Services available for pre-

mium services. For instance, ProjectLocker, Gitlab Premium, Fog Creek Kiln,

and so on. People pay for the subscription edition of the Source Code Reposi-

tory Hosting Service because it has additional premium features. They increase

accountability. Furthermore, it features improved technology that gives greater

security, integrity, consistency, and immutability.

These are the benefits that our suggested system will bring as well, thanks

to the power of Blockchain, IPFS, and Middleware. Because our system uses

Blockchain, it is impossible to change any data that is stored there, making it

more reliable, safe, and consistent than other paid services on the market. The

blockchain contains encrypted code that contains the hash of the whole codebase

as well as the identify of the person who created it. As a result, any inconsistency

between the information in blockchain and the information in the actual code may

be identified fast. Also, since we added IPFS, our repository has gained even more

integrity since it provides end-to-end integrity. Even if the recorded data on one

of the ipfs servers is corrupted or modified, the copies of that data on other servers

in the distributed system must not be harmed. As a result, the code in the system

will remain secure in perpetuity.

45

People who now pay for Source Code Repository Hosting Service will have no

trouble paying for the solution we have presented, which has greater technology

and accountability.

4.3.6 Centralised vs Decentralised Repository

Databases can be classified as either centralized or distributed based on how they

store and access data. Distributed database works with multiple database files,

while centralized database only has access to the same single database file. If all of

your data is housed in a single database, you’re dealing with a centralized database.

There are two or more databases in a distributed database that are located in

different parts of the network. Because there is only one database file, managing,

updating, and taking backups of data is much easier in a centralized database.

Distributed databases require more time to synchronize data because they contain

multiple databases. It takes longer to retrieve data from a centralized database

because multiple users are accessing the same file. It is frequently used. Because

data is retrieved from the nearest database file when using a distributed database,

access times are faster. Users lose access to a database in a centralized database

if the database fails. Users can still access other database files in a distributed

database even if one database fails. Data consistency is better in a centralized

database. It gives the user a complete picture. Data replication is possible in

a distributed database. Because of this, there may be some discrepancies in the

data. Considering all these reasons, we chose to use a Decentralised Database as

our repository.

46

5 Conclusion

5.1 Summary

Many software developers use version control systems to manage source code and

keep track of the many versions they’ve worked on. In this proposed system, the

code is stored on a distributed network of servers, while a decentralized blockchain

ensures ownership information and the immutability of the repository. Using our

strategy, there is no need to have a centralized authority that is trustworthy. Cryp-

tographic hashes are one of the key principles that make blockchain immutable.

The most significant advantage of hash is that it cannot be reverse-engineered.

In a block, transactional data is processed using the preceding hash, as well

as the Meta-Data and TX Data Hash, which are all hashed together. Every it-

eration here will result in a new checksum, which guarantees the code’s integrity.

Data may be pinned to one or more IPFS nodes to ensure that it remains and is

not destroyed during garbage collection. This enables associations and their in-

dustry controllers to quickly identify information breaches and ensures total data

integrity. In the world of cryptocurrency, it is well known that blockchains are

very slow when it comes to real-time transactions. Even if the recorded data in

one server of the ipfs is distroyed or updated, the copies of that data in other

servers in the distributed system must not be damaged. We believe that this

problem will soon be a thing of the past because to advancements in engineering

and processing speed. There are several Source Code Repository Hosting Services

available. There are also several well-known free ones, Bitbucket, Github, Source-

forge, and so forth. For instance, ProjectLocker, Gitlab Premium, Fog Creek Kiln,

etc. People pay for the subscription edition because it has additional premium

features. It features improved technology that gives greater security, integrity,

consistency, and immutability. Because our system uses.Blockchain, it is impossi-

ble to change any data that is stored there. This makes it more reliable, safe, and

consistent than other paid services. Most of the Source Code Repository Hosting

Service these days are centralised, which is a bad thing as there is a single source

47

of failure.

To authorize, monitor, and execute version control on a code repository for a

distributed network of computers, we employ a public blockchain and smart con-

tracts. Our approach eliminates the necessity for a trustworthy central authority.

The immutability of the code, as well as the ownership information of the code

writer, are both protected by a public blockchain. A distributed network of servers

protects the code repository and its contents. Broadcast Encryption protects the

transmitter’s identity. We provide a public blockchain-based blockchain-based

solution for digital document version control systems. In the first place, using

our suggested solution removes the need for a trustworthy third-party authenti-

cator. The most important features of our approach in terms of overall system

design and architecture, as well as the most critical interactions between players,

are highlighted in particular. Registering new developers, authorizing new code

contributions, retrieving other people’s work, the concepts of logical flow and in-

teractions, and developing and testing the system’s overall operation will all be

covered. Decentralized document version management and sharing was one of our

main contribution. Blockchain, smart contracts, and the IPFS file system all play

a role in our approach. By removing any reliance on any third party, the suggested

solution eliminates all of those problems. Also, our suggested system displays a

more quick performance than the rest of the proposed systems out there since we

employed intermediary IPFS as a temporary hub to store encrypted codes while

the blockchain is verifying, assuring there is no annoyance among the users. For

findings indicated that our solution is incredibly safe, both for utilizing blockchain

and also overcoming the weaknesses that smart contracts come with.

5.2 Future Work

Our suggested method for hosting a decentralized source code repository may

easily be expanded to other types of documents that need a distributed storage

facility and a decentralized network to monitor ownership.

For instance, writers would undoubtedly benefit from a system in which their

48

literary works are stored in a distributed network of servers that is safe, secure,

and accessible from anywhere; and their ownership information is stored in a

decentralized ledger that is not controlled by anyone, ensuring that their literary

works’ ownership information is also secure.

A distributed network of servers can also benefit artists, whose work is stored

in a safe, secure, and easily accessible location, and whose ownership information

is stored in a decentralized ledger that is not under the control of any one party.

This technology may also assist the NFT (Non-Fungible Token) business, since

the NFTs are stored in a distributed network of servers, which is safe and secure,

and the ownership information is stored in a decentralized ledger that is not con-

trolled by anybody, which is also safe.

Also, from the technological point of view, instead of using IPFS, we may uti-

lize Arweave. [48] The Arweave project is a decentralized data storage system that

operates on blockweave technology and the Arweave token, which is a native cryp-

tocurrency. Despite its benefits, IPFS cannot provide permanent storage without

the use of workarounds — and even then, the workarounds tend to have downsides

and catches that make NFTs unfit for long-term preservation. The cloud, if it is

not kept on an incentivized blockchain, is more similar to the internet. Having

an NFT saved on Airweave is the best solution for the long-term since it allows

permanent storage without the need to pay monthly storage costs.

49

References

[1] B. De Alwis and J. Sillito, “Why are software projects moving from central-

ized to decentralized version control systems?” in 2009 ICSE Workshop on

Cooperative and Human Aspects on Software Engineering. IEEE, 2009, pp.

36–39.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized

Business Review, p. 21260, 2008.

[3] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv preprint

arXiv:1407.3561, 2014.

[4] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Business &

Information Systems Engineering, vol. 59, no. 3, pp. 183–187, 2017.

[5] J. L. Zhao, S. Fan, and J. Yan, “Overview of business innovations and research

opportunities in blockchain and introduction to the special issue,” pp. 1–7,

2016.

[6] K. Salah, M. H. U. Rehman, N. Nizamuddin, and A. Al-Fuqaha, “Blockchain

for ai: Review and open research challenges,” IEEE Access, vol. 7, pp. 10 127–

10 149, 2019.

[7] M. A. H. Khan, N. Aktar, N. Sultana, S. Akhter, and M. F. Hossain, “Baseline

survey for farm productivity improvement through agricultural technologies

in charland of mymensingh,” International Journal of Business, Management

and Social Research, vol. 7, no. 01, pp. 395–411, 2019.

[8] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H.

Rehmani, “Applications of blockchains in the internet of things: A com-

prehensive survey,” IEEE Communications Surveys Tutorials, vol. 21, no. 2,

pp. 1676–1717, 2019.

50

[9] T. Bocek, B. B. Rodrigues, T. Strasser, and B. Stiller, “Blockchains

everywhere-a use-case of blockchains in the pharma supply-chain,” in 2017

IFIP/IEEE symposium on integrated network and service management (IM).

IEEE, 2017, pp. 772–777.

[10] G. Wood et al., “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[11] N. Z. Benisi, M. Aminian, and B. Javadi, “Blockchain-based decentralized

storage networks: A survey,” Journal of Network and Computer Applications,

vol. 162, p. 102656, 2020.

[12] S. Vimal and S. Srivatsa, “A new cluster p2p file sharing system based on ipfs

and blockchain technology,” Journal of Ambient Intelligence and Humanized

Computing, pp. 1–7, 2019.

[13] M. Ernst, “Version control concepts and best practices,” Version control con-

cepts and best practices, 2012.

[14] H. Zhang, B. Liu, H. Susanto, G. Xue, and T. Sun, “Incentive mechanism for

proximity-based mobile crowd service systems,” in IEEE INFOCOM 2016-

The 35th Annual IEEE International Conference on Computer Communica-

tions. IEEE, 2016, pp. 1–9.

[15] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubi-

atowicz, “Tapestry: A resilient global-scale overlay for service deployment,”

IEEE Journal on selected areas in communications, vol. 22, no. 1, pp. 41–53,

2004.

[16] “IPFS Documentation | IPFS Docs.” [Online]. Available:

https://docs.ipfs.io/

[17] “Cryptocurrency Prices, Charts And Market Capitalizations.” [Online].

Available: https://coinmarketcap.com/

[18] “Ethereum Whitepaper.” [Online]. Available: https://ethereum.org

51

[19] “What is Ethereum?” [Online]. Available: https://ethereum.org

[20] “What is ether (ETH)?” [Online]. Available: https://ethereum.org

[21] Y. Chen, H. Li, K. Li, and J. Zhang, “An improved p2p file system scheme

based on ipfs and blockchain,” in 2017 IEEE International Conference on Big

Data (Big Data). IEEE, 2017, pp. 2652–2657.

[22] Q. Zheng, Y. Li, P. Chen, and X. Dong, “An innovative ipfs-based storage

model for blockchain,” in 2018 IEEE/WIC/ACM international conference on

web intelligence (WI). IEEE, 2018, pp. 704–708.

[23] M. , “Blockchain Middleware. How we are paving the path to the next... | by

MetisDAO | Medium,” dec 15 2021, [Online; accessed 2022-04-22].

[24] “The 5 Big Problems With Blockchain Everyone Should Be Aware Of |

Bernard Marr,” jul 2 2021, [Online; accessed 2022-04-22].

[25] T. Alam, “Design a blockchain-based middleware layer in the internet of

things architecture,” JOIV: International Journal on Informatics Visualiza-

tion, vol. 4, no. 1, pp. 28–31, 2020.

[26] “Why middleware is a the vital link for blockchain success.” [On-

line]. Available: https://www.linkedin.com/pulse/why-middleware-vital-

link-blockchain-success-maurizio-canton

[27] Z. Zhang, Y. Zhong, and X. Yu, “Blockchain storage middleware based on

external database,” in 2021 6th International Conference on Intelligent Com-

puting and Signal Processing (ICSP), 2021, pp. 1301–1304.

[28] F. Z. d. N. Costa and R. J. G. B. de Queiroz, “Capivara: A decentralized

package version control using blockchain,” arXiv preprint arXiv:1907.12960,

2019.

[29] N. Nizamuddin, K. Salah, M. A. Azad, J. Arshad, and M. Rehman, “De-

centralized document version control using ethereum blockchain and ipfs,”

Computers & Electrical Engineering, vol. 76, pp. 183–197, 2019.

52

[30] “RecordsKeeper - Decentralized Database for Decentralized Apps (DApps).”

[Online]. Available: https://www.recordskeeper.com/

[31] “ChromaWay.” [Online]. Available: https://chromaway.com

[32] A. Savelyev, “Copyright in the blockchain era: Promises and challenges,”

Computer law & security review, vol. 34, no. 3, pp. 550–561, 2018.

[33] W. Liang, D. Zhang, X. Lei, M. Tang, K.-C. Li, and A. Y. Zomaya, “Cir-

cuit copyright blockchain: blockchain-based homomorphic encryption for ip

circuit protection,” IEEE Transactions on Emerging Topics in Computing,

vol. 9, no. 3, pp. 1410–1420, 2020.

[34] L. Xiao, W. Huang, Y. Xie, W. Xiao, and K.-C. Li, “A blockchain-based

traceable ip copyright protection algorithm,” IEEE Access, vol. 8, pp. 49 532–

49 542, 2020.

[35] Z. Cai, “Usage of deep learning and blockchain in compilation and copyright

protection of digital music,” IEEE Access, vol. 8, pp. 164 144–164 154, 2020.

[36] Z. Meng, T. Morizumi, S. Miyata, and H. Kinoshita, “Design scheme of copy-

right management system based on digital watermarking and blockchain,” in

2018 IEEE 42nd Annual Computer Software and Applications Conference

(COMPSAC), vol. 2. IEEE, 2018, pp. 359–364.

[37] N. Jing, Q. Liu, and V. Sugumaran, “A blockchain-based code copyright

management system,” Information Processing & Management, vol. 58, no. 3,

p. 102518, 2021.

[38] “ELEKS Labs - Research and Development Blog.” [Online]. Available:

https://labs.eleks.com/

[39] “What is blockchain and why should records manage-

ment professionals care?” Aug. 2020. [Online]. Avail-

able: https://www.ironmountain.com/resources/general-articles/w/what-

is-blockchain-and-why-should-records-management-professionals-care

53

[40] K. Gomi, “Council Post: Are Blockchains Vulnerable, Slow And Unfair?” jul

12 2021, [Online; accessed 2022-04-22].

[41] N. Wang, B. Wang, T. Liu, W. Li, and S. Yang, “A middleware approach

to synchronize transaction data to blockchain,” in 2020 29th International

Conference on Computer Communications and Networks (ICCCN), 2020, pp.

1–8.

[42] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and R. Hierons,

“Smart contracts vulnerabilities: a call for blockchain software engineering?”

in 2018 International Workshop on Blockchain Oriented Software Engineering

(IWBOSE), 2018, pp. 19–25.

[43] D. Siegel, “Understanding the dao attack, coindesk,” Retrieved July, vol. 14,

p. 2020, 2016.

[44] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart

contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, ser. CCS ’16. New York, NY,

USA: Association for Computing Machinery, 2016, p. 254–269. [Online].

Available: https://doi.org/10.1145/2976749.2978309

[45] D. Geroni, “Blockchain Scalability Problem - Why is it Difficult to Scale

Blockchain,” sep 30 2021, [Online; accessed 2022-04-23].

[46] ——, “Blockchain Scalability Solutions - An Overview,” oct 5 2021, [Online;

accessed 2022-04-23].

[47] “Blockchain is slow and useless?! - Iconis Agency,” jul 28 2021, [Online;

accessed 2022-04-22].

[48] T. A. Project, “What is Arweave? | by The Arweave Project | Medium,”

may 2 2018, [Online; accessed 2022-04-23].

54

